Zoran Skoda bicategory of cleft extensions

Description

HH is a fixed Hopf algebra over a fixed ground ring kk.

Objects

Pairs (E,γ)(E,\gamma) of a right HH-comodule algebra and a convolution invertible map of HH-comodules γ:HE\gamma:H\to E.

1-cells

A 1-cell from (E,γ)(E,\gamma) to (E,γ)(E',\gamma') is a EE-EE'-bimodule in the category of HH-comodules.

2-cells

A 2-cell is a morphism DD in the category E E H{}_E\mathcal{M}^H_{E'}.

Vertical composition

Composition in the category E E H{}_E\mathcal{M}^H_{E'}.

Horizontal composition

Tensor product over the middle HH-comodule algebra.

Base category (for coinvariants)

Objects

An algebra UU with HH-measuring \triangleright and (normalized) cocycle σ:HHU\sigma:H\otimes H\to U.

Cocycle means:

... ...

Morphisms

Bimodules with (left) bimodule measuring compatible with the cocycle.

2-cells

Morphisms of bimodules commuting with bimodule measuring.

ϕ:CC\phi: C\to C' of UU-UU'-bimodules.

Equivalence of bicategories

(E,γ)(E coH, γ)(E,\gamma)\mapsto (E^{co H},\triangleright_\gamma), hu=γ(h (1))uγ 1(h (2))h\triangleright u = \gamma(h_{(1)})u\gamma^{-1}(h_{(2)}).

UD V UD V coH{}_U D_V\mapsto {}_U D^{co H}_V

hc=γ U(h (1))uγ V 1(h (2))h\triangleright c = \gamma_U(h_{(1)})u\gamma^{-1}_V (h_{(2)})

2-cell to restriction.

σ(h,k)=γ(h (1))γ(k (1))γ 1(h (2)k (2))\sigma(h,k) = \gamma(h_{(1)})\gamma(k_{(1)})\gamma^{-1}(h_{(2)}k_{(2)}).

Other direction:

Tensoring with HH for objects.

On 1-cells: CHC\otimes H has UHU\sharp H-UHU'\sharp H-bimodule structure

(uh)(cg)(uh)=u(h (1)c)(h (2)g (1)u)h (3)g (2)h(u\otimes h)(c\otimes g)(u'\otimes h') = u (h_{(1)}\triangleright c)(h_{(2)}g_{(1)}\triangleright u')\otimes h_{(3)}g_{(2)}h'

for the case of trivial cocycle for UU'

Discuss the cocycle for the bimodule measuring. Then instead of expression like (h (1)c)h (2)g(h_{(1)}\triangleright c)\otimes h_{(2)}g we need (h (1)c)σ(h (2),g (1))h (3)g (2)(h_{(1)}\triangleright c)\sigma'(h_{(2)},g_{(1)})\otimes h_{(3)}g_{(2)}

(uh)(cg)(uh)=u((h (1)c)(σ(h (2),g (1))(h (3)g (2)u))σ(h (4)g (3),h (1))h (5)g (3)h (1)(u\otimes h)(c\otimes g)(u'\otimes h') = u ((h_{(1)}\triangleright c)(\sigma'(h_{(2)},g_{(1)})\cdot (h_{(3)}g_{(2)}\triangleright u'))\sigma'(h_{(4)}g_{(3)},h'_{(1)})\otimes h_{(5)}g_{(3)}h'_{(1)}

Need a compatibility condition here (to have a bimodule!).

Left action only:

(uh).(cg)=u.(h (1)c).σ(h (2),g (1))h (3)g (2) (u\otimes h).(c\otimes g) = u.(h_{(1)}\triangleright c).\sigma'(h_{(2)},g_{(1)})\otimes h_{(3)}g_{(2)}

Right action only:

(cg).(vk)=c.((g (1)v)σ(g (2),k (1)))g (3)k (2) (c\otimes g).(v\otimes k) = c.((g_{(1)}\triangleright v)\sigma'(g_{(2)},k_{(1)}))\otimes g_{(3)} k_{(2)}

Last revised on April 21, 2024 at 19:27:09. See the history of this page for a list of all contributions to it.