nLab inconsistency

Contents

Context

Foundations

foundations

The basis of it all

 Set theory

set theory

Foundational axioms

foundational axioms

Removing axioms

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Contents

Idea

A system in formal logic is called inconsistent if it admits a proof of a contradiction (that is, usually, a proof of false, or an inhabitant of the empty type).

Accordingly an axiom is called inconsistent or to lead to an inconsistency if adding it to an (implicitly understood) ambient logical system makes that system inconsistent.

In most usual logical systems, it follows that an inconsistent system admits a proof of every proposition, by the rule ex falso quodlibet (which is just the elimination rule for the empty type). For this reason, sometimes (especially in type theory), the adjective “inconsistent” is used to mean a system with this property instead. If we want to distinguish, then a system which admits a proof of every proposition may be called trivial.

As a further complication, a paraconsistent logic is often described as ‘inconsistent but not trivial’. However, many paraconsistent logics (such as dual-intuitionistic logic?) admit ex falso quadlibet and fail to prove \bot; their ‘inconsistency’ is a proof of p¬pp \wedge \neg{p} (or two proofs, one of pp and one of ¬p\neg{p}), which then fails to entail \bot. We thus get three distinct levels of inconsistency: * triviality (proving everything), * proving a statement identified as \bot, * proving pp and ¬p\neg{p} for some statement pp and using an operator identified as negation.

Examples

Last revised on September 7, 2018 at 05:58:06. See the history of this page for a list of all contributions to it.