A TENTATIVE PROPOSAL FOR A GENERAL SYNTAX OF
HIGHER INDUCTIVE TYPES

1. OVERVIEW

First of all, I will consider all inductive types to be specified by elimination
rules. Coq implements eliminators in terms of primitive match and fix operations,
whereas conversely it is a theorem that at least for single, ordinary, inductive types,
match and fix can be reduced to eliminators. It is not clear whether there are
notions of match and fix for higher inductive types.

Now, we may say that specifying an inductive definition in terms of an eliminator
involves describing three related notions:

e an algebra of some sort,
e a corresponding notion of dependent algebra over an algebra, and
e a notion of algebra section of a dependent algebra.

The resulting inductive type is then an algebra (this gives its constructors) such that
any other dependent algebra over it (this gives the hypotheses of the eliminator)
there exists a specified algebra section (the eliminator; its being an algebra section
specifies the computation rules).

For instance, when describing the natural numbers, we have:

e An algebra is a type X together with an element zx : X and a function
sx: X — X.

e A dependent algebra over X is a dependent type X F Y together with an
element zy : Y(zx) and a function sy : [[,.x (Y (z) = Y (sx(x))).

e An algebra section of such a Y is a function f : [],.y Y(x) such that
f(zx) = zy and f(sx(2)) = sy (f(z)).

Similarly, when describing the circle S*, we might have:

e An algebra is a type X together with bx : X and a loop £x : (bx = bx).

e A dependent algebra over X is a dependent type X F Y together with an
element by : X(bx) and a path £y : ({x)x(by) = by.

e An algebra section of such a Y is a function f : [[,.y Y (x) such that
f(bx) =by and fu(lx) = ty.

Category-theoretically, simple inductive types can be viewed as initial algebras
for endofunctors. Suppose we have an endofunctor F' which acts on dependent
types and sections. That is, for a dependent type X + Y, we have a dependent type
FX F FY, and similarly for a section f : [],.y Y (x) we have F(f) : [[,.px FY ().
Then we can define:

e An algebra is a type X with a map ax : FX — X.
e A dependent algebra is a dependent type X F Y together with a term
ay : [],.px(FY(z) = Y(ax(x))). Categorically, we may view this as a
1
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commuting square

FY —Y

|

FX—X.

e An algebra section of such is a function f : [,y Y (z) such that f(ax(z)) =
ay (F f(z)). Categorically, this means that the following square commutes:

FY —Y

L

FX—X.
For instance, F' might be defined by
(3) FX=Ax(B—C—X).
Then we can canonically extend F' to act on dependent types by taking X FY to

(a,9): Ax(B=>C—=X)F J] Y(gb,0).
b:B,c:C

and on sections by taking f: [],.y Y (z) to
Aa, g)Abe. f(g(b, ).

The resulting inductive type W will have one constructor of type
(4) A->(B—-C—-W)->W

In Coq syntax, this would be the inductive type

Inductive W : Type :=
| constr : A -> (B ->C > W ->W.

Inductive types with multiple constructors can be modeled with single endofunctors
using coproducts, but syntactically, it is more natural to use multiple endofunctors.
(In particular, this is the only way to obtain empty types and coproducts as induc-
tive types.) Namely, if we have endofunctors F; which act on dependent types and
sections as above, then we can define an algebra to come with maps F; X — X for
all 4, and so on.

We require the functors F; to adhere to a special form—strict positivity—so that
initial algebras can consistently be expected to exist. The example functor F' above
is the prototype: we can have constant factors in F'X independent of X, and also
function types with X as target.

More generally, we allow all function types to be dependent, and we allow X
to also be dependent on some context I' of indices. To describe a fully general
dependent constructor form, let A be a context, and for each i = 1,...,n let
A+ ©; be a dependent context, and let A+ p: T and A,0; F §; : T be vectors of
terms. Then the constructor form specified by these data is the following type in
the context of a variable X : I' — Type.

11 I x@@Ea)|—-—={ I X@@n)| - xX@E)

A Yn:On () 71:01 ()
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This is not exactly an endofunctor F' of types in any context. But we can regard
F' as taking our type X in context I' and producing a type

I x@@g) | == [] X@@hn)

Tn:On (Z) 71:01 (%)

in context & : A. Then we can say that X is an algebra for F if we have a map
FX — X lying over p: A — T'. (And, of course, we can have multiple such F’s.)
There are similar definitions of dependent algebras and algebra sections. For the
most part, in the rest of this note, we will speak only about endofunctors of the
simple sort, but everything should apply just as well in the fully dependent case
with indices.

One final, less commonly mentioned, modification is that instead of considering
all the constructors being given at once, we can add them inductively: a speci-
fication of an inductive type is then either empty (in which case it specifies the
empty type), or such a specification together with an additional “constructor” of a
specified sort. This is the point of departure for higher inductive types. Namely, we
consider specifications defined inductively like this, but now at each step, we can
either add an ordinary constructor as before (a “point-constructor”) or a “higher
constructor”. The goal is to produce notions of “algebra” such as we did for our
description of S! above. In this case, the inductive ramification is necessary, be-
cause the types of later constructors (such as ¢ : b = b for the circle) must refer to
the previous constructors (such as b).

In this note, we will restrict consideration to HI'Ts with only points and 1-paths,
no higher paths. Probably most of what I’'m going to say could be made to work in
the general case, but it would be technically more difficult. Moreover, higher paths
are known to not increase the expressiveness of HITs: higher path constructors
are (propositionally) reducible to 1-paths using the “hub and spoke” method. (In
particular, types of arbitrarily high h-level can be constructed by iterating 1-path
constructors parametrized by types with higher homotopy.)

Moreover, no interesting examples of HITs that I know of require k-path con-
structors for k£ > 2, and not many of them even require k = 2. So performing the
hub-and-spoke reduction manually when necessary would not be a very big deal.
Thus for implementation purposes, I propose to focus on 1-path constructors for
now. (It is necessary, however, that we allow HITs with more than one 1-path
constructor.)

2. A SEMANTIC APPROACH

Consider some list of constructors for a higher inductive type. In this section we
will suppose, for simplicity, that they are all “simple” in that their domains do not
involve dependencies. Thus, a point constructor might look like (4):

A-B—->C—->W)—->W
while a 1-path constructor might look like
(5) A-(B—=-C—-W)—= (u=0v)

where v and v are some terms of type W. We will restrict ourselves to 1-path
constructors for simplicity. Note that (5) can be regarded as a homotopy between
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two morphisms:

where FX = Ax (B— C — X) as in (3).

Now, suppose that we have defined the notions of algebra, dependent algebra,
and algebra section for the higher inductive type specified by the first n constructors
in our list (where perhaps n = 0). Call these n-algebras. We now consider what the
valid forms are for the (n + 1)5* constructor, and what its corresponding (n + 1)-
algebra notions should be.

Of course, there are two cases depending on whether the (n 4 1) constructor
is a point constructor or a path constructor. If it is a point constructor, then it is
specified by the single datum of an endofunctor F' (satisfying the same restrictions
as for ordinary inductive types). In this case, just like we did in the previous section
for a single endofunctor, we define:

st

e An (n + 1)-algebra is an n-algebra X together with a map ax : FX — X.

e A dependent (n+1)-algebra over such an X is a dependent n-algebra X Y
together with a term ay : [[,. g (FY (2) = Y(ax(x))).

e An (n+1)-algebra section of such a Y is an n-algebra section f : [[. ¢ Y (z)
such that f(ax(z)) = ay(Ff(z)). Note that we ask for a definitional
equality here.

Now consider the case of a 1-path constructor. In order to specify the data of
such a constructor, we define the auxiliary notion of a F'-point of n-algebras. This
consists of

e In the context of an n-algebra X, a term sx : F X — X.

e In the context of a dependent n-algebra ¥ — X, a dependent term sy :
FY — Y i.e. such that the following square commutes:

FY sy

[

FX —— X.

e In the context of an n-algebra section X — Y, a homotopy in the following
square:

FY sy

™ |z ]

If (7) commutes definitionally, we say that s is a strict F-point of n-algebras.
Now, the minimum necessary data for a path constructor consists of an endo-
functor F' and two F-points of n-algebras, say s and ¢t. Given this, we can define:
e An (n + 1)-algebra is an n-algebra X together with a homotopy between
sy :FX —Xandtxy : FX — X.
e A dependent (n + 1)-algebra over such an X is a dependent n-algebra
Y — X together with a homotopy between sy and ty lying over the given
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homotopy sx ~ tx:
sy
TN
Fy | Y
~e-T
ty
(8) j
5x
AT
FX | X
e ———
tx
The front and back squares here commute because s and t are F-points
of n-algebras, and Y — X is a dependent n-algebra. (Recall that type-
theoretically, the usual way to give a homotopy ¢ lying over a homotopy p
is to give ¢ a type such as pxx = y, where px denotes transport along p.)
e An (n + 1)-algebra section of such a Y is an n-algebra section X — Y
together with a higher homotopy filling the following cylinder:

sy
T
FY (2 Y
~
ty
9) 7
sx
T
FX \%LM/ X
x

Here the top and bottom are the homotopies specified in the (n+1)-algebra
structure of X and the dependent (n + 1)-algebra structure of Y, and the
front and back are the homotopies specified since s and ¢ are F-points of
n-algebras and X — Y is an n-algebra section.

Note that we ask only for a homotopy in the definition of an (n + 1)-algebra
section. This corresponds to asking for a propositional computation rule for the
higher constructors of higher inductive types. We do this for various reasons. On
the one hand, in most cases, we only know how to construct models that have a
propositional rule. On the other hand, in order to have a definitional rule, we’d
need to make some arbitrary choices in, e.g., the definition of map_dep (versus some
doppelganger of it), the definition of “paths over” (do you transport the source or
the target, or define a basic inductive type of dependent paths, or...), and so
on. It seems unnatural to privilege one such choice by making it the output of a
definitional rule.

On the other hand, we do want a definitional computation rule for the point
constructors of an HIT. Getting this would probably be the biggest advantage of
a native Coq implementation of HITs (followed by not having to write out the
elimination and computation rules by hand). It’s a real pain to have to transport
along propositional computation rules for points all the time; all the models we
know how to build do have definitional computation for point constructors; and
there are no arbitrary choices involved. So there is no reason not to make those
computation rules definitional.

In the case of dependent functors and inductive families with indices, as described
briefly in §1, we might separate out the data slightly differently. We consider the
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contexts A, A F 0,;, and the terms A, ©; F ¢; : T to be part of the functor F' (which
takes types in context I' to types in context A, as before). However, at least when
describing a 1-path constructor, it is natual to regard the terms A F p': I' not as
part of F', but as part of an F-point of n-algebras. In particular, the two points u
and v can lie over different points of I', say A+ p: " and A F ¢ : I'. In this case
we would also require, as part of the data, a homotopy in I' between p and ¢, and
we would ask the homotopy in the definition of an (n + 1)-algebra to lie over this
one in I'. However, since dependent paths are equivalently paths with transported
source, we should be able to restrict to the case when p' and ¢ are the same without
real loss of expressivity, and this would probably be easier to implement.

But even with all of that settled, there are several problems with this as a
definition. Firstly, there is no syntactic description of what constitutes an F-point
of n-algebras. Secondly, if the user had to specify such an F-point explicitly, it
would involve giving three terms (sx, sy, and the homotopy), hence siz terms for
each 1-path constructor, instead of the two that, one feels, ought to be enough (its
source and target).

And finally, for a sensible notion (in particular, one which exists in models) we
expect an F-point to be a natural transformation. The data given above makes it
natural up to homotopy, but (unless the point is strict) it seems unlikely that these
homotopies need be coherent, which is problematic. For all of these reasons, the
definition needs improvement.

3. A SYNTACTIC APPROACH

Now let’s approach the problem from the syntactic side. Considering the usual
informal presentation of a higher inductive type, we may suppose that a 1-path
constructor is specified by, in addition to the usual input data F, two terms (its
source and target) in the context of the previous constructors and the inputs F'.

For example, if we suppose for simplicity that our constructor has the form

A— (B—X)— (u=v),

then this means that u and v are terms of type X in a context containing a type
variable X along with data making X into an n-algebra, a variable a : A, and a
variable g : B — X.

Obviously, the intent is that when we define a higher inductive type W, the
corresponding constructor will be a homotopy between uy : FW — W and vy :
FW — W. Here uy denotes the interpretation of the term u with X = W and
its m-algebra data, and with the variables a and g abstracted over to produce a
function FW — W.

This looks like the first (non-dependent) part of the data for an F-point of n-
algebras. However, it is not immediately clear how to derive the rest of the data.
In fact, in general it is impossible! Suppose that the ambient context contains a
term

r: | x—X).

X :Type

Of course, P might be the parametric identity (and if it were defined by a term,
then probably it must be so, by parametricity), but in some models there can be
other such P’s. For instance, classically we could take P to be the nonidentity
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automorphism of bool, but the identity on every other type; nothing requires that
P be “natural” in any sense.

Now suppose that in the context containing P, we defined an “interval” I with
two point-constructors by, by : I, but instead of o : by = by as the path-constructor,
we asked for o : Pr(b1) = Pr(bz). What would the hypotheses of the dependent
eliminator for I say? We should have a dependent type I Y, together with data
y1 : Y(b1) and yo : Y (b2), but now we should ask for a path in Y living over o, i.e.
an identity ox(?) =? in Y(P(b2)). However, nothing ensures that Y (P(b;)) and
Y (P(b2)) are even inhabited! We know that Y (b;) and Y (by) are inhabited by y;
and ys, but this tells us nothing about Y (P(b1)) and Y (P(b2)).

It is worth noting that the terms P;(b;) and Pj(bs) contain the type I being
defined as an argument of a function (namely P). In ordinary inductive types,
the only terms which can appear on the “right hand side” of a constructor are
indices, which are not allowed to contain I as an argument to functions. (Thanks
to Kristina for pointing this out.) However, in our case we really do need to allow
the terms v and v to contain the type being defined as an argument. For instance,
we may want to concatenate paths in v and v, and path-concatenation is a function
involving the type as an argument.

In conclusion, we have an example in which there is no way to define a dependent
eliminator, and hence no way to extend u and v to F-points of n-algebras. As
mentioned in the last section, one solution would be to ask the user to specify, as
part of defining a higher inductive type, the other two parts of the data of an F-
point. However, we’d like to automate this process to some extent to make things
easier on the user, and we’d like to ensure that our homotopies are more likely to
be coherent.

With these goals in mind, we will now explain how to derive an entire F-point of
n-algebras from any term u as above. The catch is that the morphisms F X — X
will not in general be the same as those obtained by naively interpreting w in the
appropriate context. However, it seems that in all reasonable cases, they will be
at least propositionally equal, and that this might be provable automatically. (In
some simple cases, they are even definitionally equal.)

Suppose FX = A x (B — X), as above, and that we have a term wu given as
before. Let Z be the inductive type generated by the first n constructors together
with a single additional constructor g : B — Z. Then u can be regarded as defining
a term of type Z in the context of a single variable a : A.

Note that the elimination rule of Z says that if we have a dependent n-algebra
Z Y together with a term ¢’ : [[,.5 Y (g(b)), then there is an n-algebra section
f 1., Y (2) such that f(g(z)) = ¢'(b). We are now ready to define our F-point.

e Given an n-algebra X, in the context of a : A and h : B — X, we can apply
the non-dependent eliminator of Z to the n-algebra structure of X together
with h, to obtain a term rec(X,h) : Z — X. Then rec(X, h)(u(a)) : X in
context (a, h) gives the desired morphism ux : FX — X.

e Given a dependent n-algebra X F Y, we build ux : FX — X as above.
What remains is to give, in the context of @ : A and h: B — X and b/ :
[1,.5 Y (R(D)), a term of type Y (ux(a,h)). However, since rec(X,h) : Z —
X is an n-algebra map®, the pullback Z I Y (rec(X,h)(z)) is a dependent

We do need to know, for this, that dependent n-algebras pull back along n-algebra maps.
This should be provable by induction.
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n-algebra, and in the context of a : Aand h: B — X and b/ : [[,.5 Y (h(D)).
Now since rec(X, h)(g(b)) = h(b), we have h' : [], 5 Y (rec(X, h)(g(b))), so
we can apply the dependent eliminator of Z to obtain a section rec(Y, /') :
[1.., Y(rec(X,h)(2)). Evaluating this at u(a) yields the desired term sy :
FYy —-Y.

e We can obtain (7) by induction on Z.

(It seems at least more likely that these homotopies will be coherently natural,
since they are produced by induction over an inductive type. However, we have not
proven this yet.)

4. SOME EXAMPLES

Now let’s consider what this looks like in some examples. First, an example
where it gives exactly what we expect. Consider the second constructor for the
circle, where the terms u and v are both the basepoint b. The schema above would
tell us that to calculate the source of the path ¢ in S*, we should follow the following
recipe. First define an inductive type with one unary constructor (coming from the
one previous constructor of S, namely b)—that is, a copy of the unit type—then
eliminate out of this type into S' sending its generating element to the basepoint
b. Now evaluate this eliminator at its generating element. Clearly this is merely a
roundabout way to specify the basepoint b : S*.

It appears that this definitional coincidence will happen whenever the term w
is literally one of the previous constructors of the inductive type, or one of the
arguments to the new constructor. This includes many useful examples, such as
suspensions, mapping cylinders, homotopy pushouts, and the h-prop truncation.

On the other hand, in bizarre cases the two interpretations may not even be
propositionally equal. Consider the counterexample above, with P in context and
our “interval” I. Then according to this scheme, the actual source and target of
the path constructor o would be obtained by building the two-element inductive
type bool, applying P to its two points, and then applying the obvious morphism
into I. Since P may not be natural, this could be very different from the result of
applying P to the two points by,bs : 1.

Let’s consider a more complicated example: the O-truncation. The naivest way
to do this is

Inductive piO (A:Type) : Type :=

| cpnt : A -> pi0 A

| isset : forall (xy : pi0O A) (pq :x=y), p=4q.

However, this doesn’t fit our scheme. We are not generalizing the input types of
the constructors used for ordinary inductive types, only their output types, and
forall (xy : A) (p q: x =y)isnota valid input type for a constructor
of an inductive type. We might consider generalizing further to allow this sort
of constructor, but fortunately, we don’t really need them. Here is an equivalent
definition:

Inductive piO (A:Type) : Type :=

| cpnt : A -> pi0 A

| isset : forall (1 : S1 -> pi0 A), refl (1 base) = map 1 loop.

That is, we force all loops in the space pi0 A to be contractible. Now the input to
the second constructor is of the standard sort we considered above, with A = 1 and
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B = S'. Finally, we make one more modification, reducing the 2-path constructor
to a 1-path constructor with a hub-and-spoke construction:

Inductive piO (A:Type) : Type :=

| cpnt : A -> pi0 A

| isset_hub : forall (1 : S1 -> pi0 A), pi0 A

| isset_spoke : forall (1 : S1 -> piO A) (x : S1), 1 x = isset_hub 1.
Now we again get a definitional equality. The terms u and v are, respectively,
1 x and isset_hub 1, and since both 1 and isset_hub are constructors of the
intermediate ordinary inductive type Z, they are preserved definitionally by its
eliminators (at least, if we have definitional n-conversion for functions).

Finally, let’s consider some examples in which we have only a propositional equal-
ity. On the one hand, we might simply be referring to previous path-constructors,
which only have a propositional elimination.

Inductive sphere : Type :=

| base : sphere

| equator : base = base

| north : equator = refl base
| south : equator = refl base.

Rather than go through the work of reducing this to a 1-path constructor, just note
that since equator is a path constructor, its computation rule is only propositional.
Thus the type of, say, north (or whatever 1-path constructor replaces it) will not
involve equator (in X) but rather the image of the corresponding path from the
intermediate higher inductive type Z.

More than this can happen; consider the projective plane.
Inductive RP2 : Type :=
| base : RP2
| equator : base = base
| hemisphere : equator @ equator = refl base.

Now the source of hemisphere involves a path concatenation, and hence so will
the resulting 1-path constructor. But path concatenation is also only preserved
propositionally. Clearly, all sorts of operations on paths and higher paths can get
into the act here.

As a final example, consider the hub-and-spoke reduction for (say) 2-paths. We
start from

Inductive stuff :=
[ ...
| constr (args) : p =q

|

with p and q being parallel 1-path terms. Now we build a version of the 1-sphere
generated by two points and two paths between them; then we can write a term rep
P 9 : S1 -> X which eliminates these generating paths onto p and q respectively.
The reduction is then

Inductive stuff :=
[ ...
| constr_hub (args) : stuff

| constr_spoke (args) (x:S1) : rep p q x = constr_hub args
|
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Now aside from rep p q having only propositional computation, there is a third
issue: lack of n-conversion for the higher inductive S1.

5. POTENTIAL SOLUTIONS

Obviously, it will be annoying to the user for the constructors that the system
produces to have different types from those asked for. Even more problematically,
since one constructor can be used in a later one, if the first one has the “wrong”
type, then the “obvious” way to write some later constructor may be ill-typed.
Thus, although implementing higher inductive types exactly as described above
would be much better than nothing—the user should usually be able to manually
transport the constructors, eliminator, and computation rules along the requisite
propositional equalities—it would be better to be able to “correct” the constructors.

One possibility would be to stick the user with proof obligations, for each path
constructor, to show that its source and target terms, after being modified as in
§3, remain propositionally equal to their naive interpretations. Then the named
constructor could be defined by concatenating the “real” constructor, obtained as
in §3, with the equalities supplied by the user. This would have the advantage that
in the case of definitional equality, the system could notice it and not require the
proof obligation or modify the constructor. One might also hope to automate a
search for these equality proofs: in most examples it seems quite obvious what the
equality should be, and a well-designed rewrite system might be able to find most
of them.

The user would probably also prefer to modify the eliminator and computation
rules, so as to refer to the constructors asked for rather than their automatically
generated modifications. This is slightly less important, since it could always be
done by hand, and at least it doesn’t impact the type-checking of later constructors.
It’s also somewhat trickier, because it would require a “naive interpretation” of the
dependent part of an F-point, which we have seen does not always exist. So if this
were to be given to the user as a proof obligation, it would seemingly require first
a specification of such a dependent term, and then a proof of its equality with the
dependent version of §3, lying over the non-dependent version. (In particular, we
would be back to requiring six or even eight data for each path constructor.)

We're hoping that there is a simpler solution. Perhaps a better one will emerge
in attempting to implement the approach we have described.



