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1 C-structures

1 C-structures as set level categories

The objects which we call C-structures are better know as ”contextual categories”. They where
introduces by Cartmell in [3] and then described in more detail by Streicher (see [9, Def. 1.2,
p.47]). It will be important for us to distinguish two notions of a category. What is understood by
a category by most practicing mathematicians i.e. a category up to an equivalence, will be called,
when an explicit distinction is needed, a category of h-level 3. A category as an algebraic object
i.e. a category up to an isomorphism will be called a set-level category or category of h-level 2. A
set-level category C'is a pair of sets Mor(C') and Ob(C) with structure given by four maps

60,31 : MOT(C) — Ob(C)
Id: 0b(C) — Mor(C)

and
o: Mor(C)g, x5, Mor(C) — Mor(C)

which satisfy the well known conditions (note that we write composition of morphisms in the form
fogwhere f:Y - Xandg:Z—Y).

A C-structure is a set-level category C'C with additional structure of the form
1. a function [ : Ob(CC) — N,
2. an object pt,
3. amap ft: O0b(CC)— Ob(CC),
4. for each X € Ob(CC) a morphism px : X — ft(X),

5. for each X € Ob(CC) such that X # pt and each morphism f : Y — ft(X) an object f*X
and a morphism ¢(f, X) : f*X — X,

which satisfies the following conditions:

1 174(0) = {pt)

2. for X such that {(X) > 0 one has [(ft(X)) =1(X) —1

3. ft(pt) = pt

4. pt is a final object,

5. for X € Ob(CC) such that X # pt and f:Y — ft(X) one has ft(f*X) =Y and the square

X UUINE
[2009.10.14.eq}.»]xl lpx (1)
vy L px)

is a pull-back square,



6. for X € Ob(CC) such that X # pt one has iy x) (X) = X and q(idgyx), X) = idx,

7. for X € Ob(CC) such that X # pt, f:Y — ft(X) and g : Z — Y one has (fg)*(X) =
9" (f*(X)) and ¢(fg, X) = q(f, X)q(g, f*X).

Let B,(CC) = {X € 0b(CC)|l(X) = n} and let Mor,,(CC) = {f : Mor(CC)|0y(f) €
B, and0:1(f) € Bp}. One can reformulate the definition of a C-structure using B,(CC) and
Mory, m(CC) as the underlying sets together with the obvious analogs of maps and conditions
the definition given above. In this reformulation there will be no use of # and the only use of
the existential qualifier will be as a part of ”there exists a unique” condition. This shows that
C-structures can be considered as models of a quasi-equational theory with sorts By, and Mory, ,,
and in particular all the results of [6] are applicable to C-structures.

We will also use the following notations:
1. B(X)={Y € Ob(CCO)| ft(Y) = X andY # pt},

2. &J(CC) is the set of pairs of the form (X, s) where X € Ob(CC), X # pt and s is a section
of the canonical morphism px : X — ft(X) i.e. a morphism s : ft(X) — X such that
px os = Idpyx),

3. B, ={(X,s) € Ob(CC)| X € B,} (note that By = 0),
4. 8 : By, — B, is the function defined by (X, s) = X,
5. B(X)=0"1(X) (note that B(pt) = ).

2 C-substructures.

A C-substructure CC’ of a C-structure CC is a subcategory of the underlying set-level category
which is closed, in the obvious sense under the operations which define the C-structure on CC
and such that the canonical squares which belong to CC’ are pull-back squares in CC’. A C-
substructure is called non-trivial if it contains at least one element other than pt. A C-substructure
is itself a C-structure with respect to the induced structure. The following elementary result plays
a key role in many constructions of type theory:

Proposition 2.1 [2009.10.15.propl/ Let CC be a C-structure. Then for any family CCy, of
C-substructures of CC, the intersection CC' = N,CCy is a C-substructure.

Proof: The only condition to check is that a canonical square which belongs to CC” is a pull-back
square in C'C". This follows from the definition of pull-back squares and the fact that fiber products
of sets commute with intersections of sets.

Corollary 2.2 [2009.10.15.corl/ Let CC be a C-structure, Cy a set of objects of CC and C; a
set of morphisms of CC. Then there exists the smallest C-substructure [Cq,Cy| which contains Cy
and Cy. It is called the C-substructure generated by Cy and C.

Lemma 2.3 [2009.10.15.11] Let CC be a C-structure and CC', CC" be two C-substructures
such that Ob(CC") = Ob(CC") (as subsets of Ob(CC)) and Ob(CC’) = Ob(CC") (as subsets of
ob(CC)). Then CC" =CC".



Proof: Let f:Y — X be a morphism in CC’. We want to show that it belongs to C'C”. Proceed
by induction on m where X € B,,. For m = 0 the assertion is obvious. Suppose that m > 0. Since
CC is a C-structure we have a commutative diagram

s X
v ¥ (px f)* X a(px £,X)
[2009.11.07.oldeq1ﬂ lp/ lp (2)
Yy =% v T r(X)

such that f = q(px f, X)sy. Since the right hand side square is a canonical one, ((px f)*I",ss) €
Ob(CC) and ft(X) € By,—1, the inductive assumption implies that f € CC”.

Remark 2.4 In Lemma 2.3, it is sufficient to assume that Ob(CC’) = Ob(CC"). The condition
Ob(CC") = Ob(CC") is then also satisfied. Indeed, let X € Ob(CC”). Then p% X is the product
X x X in CC. Consider the diagonal section Ax : X — p5 X of Pp (X)- Since C'C’ is assumed to
be a C-substructure we conclude that Ay € Ob(CC") = Ob(CC") and therefore X € ob(CC”). 1
is however more convenient to think of C-substructures in terms of subsets of both Ob and Ob.

Let CC be a C-structure. Let us say that a pair of subsets C' C Ob(CC) Cc Ob(CC’) is saturated
if there exists a C-substructure CC’ such that C' = Ob(CC’) and C = Ob(C’C”) By Lemma 2.3 we
have a bijection between C-substructures of CC' and saturated pairs (C, C’)

Let us introduce the following notations. Let X € Ob(CC) and i > 0. Denote by px,; the
composition of the canonical projections X — ft(X) — ... — ft(X) such that pxo = Idx
and px1 = px. For f:Y — ft/(X) denote by q(f, X,i) : f*(X,i) — X the morphism defined
inductively by the rule

fA(X,00=Y q(f,X,0) = {,

Fr(Xyi+1) = q(f, f1(X),0)7(X)  q(f, X,i+ 1) = q(q(f, fE(X), 1), X).

In other words, ¢(f, X,4) is the canonical pull-back of the morphism f : Y — f#!(X) with respect
to the sequence of canonical projections X — ft(X) — ... — ft'(X).

Leti>1, f:Y — ft’( ) be a morphism and s : ft(X) — X an element of bvb(C’C’). Denote by
f*(s,i) the element of Ob(CC) of the form f*(ft(X),i —1) — f*(X,7) which is the pull-back of s
with respect to q(f, ft(X),i —1).

Proposition 2.5 [2009.10.15.prop2/ A pair (C, 5’) is saturated if and only if it satisfies the
following conditions:

1. pt € C,

2. if X € C then ft(X) € C,

3. if (s: ft(X) = X) € C then X € C,
4o if(s: ft(X) > X) e C, X' €C,i>1and ft:(X) = ft(X') then q(px, ft(X),i—1)*(s) € C,
5.

if (s1: ft(X) — X) € C,i>1 and (sy : fETH(X) = ft{(X)) € C then q(sq, fH(X),i —
1)* 51) € C}



6. if X € C then the diagonal s;q, : X — (px)*(X) is in C.

Conditions (4) and (5) are illustrated by the following diagrams:

q(pxs,fH(X),i—1)
S

3k . * . 52, X ,7,71
P (fH(X),i— 1) FUX)  sh(ft(X) i —1) L2 lEOTN gk
q(pX/,ft(X),ifl)*(S) s q(SQ:ft(X)vifl)*(sl) 51

P (X, ) Aoxe XD $5(X, ) A XD

pPXx pPx

* . ( ’7ft(X)7i_1) * . S2, t(X i—1
P (Fr(X), i — 1) S0y (X)), — 1) LD gy x
X! _Pxr FH(X) (X)) —2, ftH(X)

Proof: The ”only if” part of the proposition is straightforward. Let us prove that for any (C, 6)
satisfying the conditions of the proposition there exists a C-substructure CC'" of CC such that
C =0b(CC") and C = Ob(CC").

For a morphism f:Y — X let ft(f) =pxf:Y — ft(X). Any morphism f:Y — X in CC has a
canonical representation of the form Y 2% Xy 24 X where Xy = ft(f)*(X), qf = q(ft(f),X) and
sy :Y — X is the section of the canonical projection Xy — Y corresponding to f.

Define a candidate subcategory CC’ setting Ob(C'C') = C and defining the set Mor(CC’) of
morphisms of CC” inductively by the conditions:

1. Y — ptisin Mor(CC") if and only if Y € C,
2. f:Y = X isin Mor(CC') if and only if X € Ob(C), ft(f) € Mor(CC’) and s5 € C.

(note that the for (f:Y — X) € Mor(CC") one has Y € C since sy : Y — Xy).

Let us show that if the condition of the proposition are satisfied then (Ob(CC"), Mor(CC")) form
a C-substructure of C'C.

The subset Ob(C'C") contains pt and is closed under ft map by the first two conditions. The follow-
ing lemma shows that Mor(CC") contains identities and the compositions of canonical projections.

Lemma 2.6 [2009.10.16.11/ Under the assumptions of the proposition, if X € C and i > 0 then
pxi: X — fti(X) is in Mor(CC").

Proof: By definition of C-structures there exists n such that ft"(X) = pt. Then px, , € Mor(CC")
by the first constructor of Mor(CC"). By induction it remains to show that if X € C' and px; €
Mor(CC") then px;—1 € Mor(CC"). We have ft(px,;-1) = px,; and sp,, , is the pull-back
of the diagonal ft='(X) — (pftiﬂ(x))*(fti_l(X)) with respect to the canonical morphism X —
ft=1(X). The diagonal is in C by condition (6) and therefore s, , , isin C by repeated application
of condition (4).



Lemma 2.7 [2009.10.16.13] Under the assumptions of the proposition, let X € C, (s : ft(X)
X)eC,i>0,and (f: Y — ft'(X)) € Mor(CC"). Then q(f, ft(X),i — 1)*(s) : ft(f*(X,1))
f*(X,4) is in Mor(CC").

_)
—

Proof: Suppose first that fti(X) = pt. Then f = Py, for some n and the statement of the
lemma follows from repeated application of condition (4). Suppose that the lemma is proved for
all morphisms to objects of length j — 1 and let the length of ft'(X) be j. Consider the canonical
decomposition f = grsg. The morphism ¢y is the canonical pull-back of ft(f) and therefore the
pull-back of s relative to g coincides with its pull-back relative to ft(f) which is C by the inductive
assumption. The pull-back of an element of C with respect to sy is in C by condition (5).

Lemma 2.8 [2009.10.16.14/ Under the assumptions of the proposition, let g : Z — Y and f :
Y — X be in Mor(CC"). Then fg € Mor(CC").

Proof: If X = pt the the statement is obvious. Assume that it is proved for all f whose codomain is
of length < j and let X be of length j. We have ft(fg) = ft(f)g and therefore ft(fg) € Mor(CC")
by the inductive assumption. It remains to show that sy, € C. We have the following diagram
whose squares are canonical pull-back squares

ng—>Xf—> X

Lo [

7 g % Jt(f) FHX)

which shows that sy, = g*(ss). Therefore, sf;, € Mor(CC’) by Lemma 2.7.

Lemma 2.9 [2009.10.16.15/ Under the assumptions of the proposition, let X € C and let f :
Y — ft(X) be in Mor(CC’), then f*(X) € C and q(f,X) € Mor(CC").

Proof: Consider the diagram

q(f,X) X

fH(X)

Sq(f,X) SIdx

q(f, X)(X) — px(X) — X

JAC O I CCUN GE—T'e
Pr*(X) px
Y s mx)

where the squares are canonical. By condition (6) we have syq € C. Therefore, by Lemma 2.7, we
have s,(s x) € C. In particular, ¢(f, X)*(X) € C and therefore f*(X) = ft(q(f, X)*(X)) € C. The

fact that ¢(f, X) € Mor(CC") follows from the fact that s, x) € C and ft(q(f, X)) = f O Ppe(x)
is in Mor(CC") by previous lemmas.



Lemma 2.10 [2009.10.16.16] Under the assumptions of Lemma 2.9, the square

F4(X) q(f,X) X

(
pf*(X)l le

y L mx)

is a pull-back square in CC".

Proof: We need to show that for a morphism g : Z — f*(X) such that ps-(x)g and ¢(f, X)g are in
Mor(CC") one has g € Mor(CC"). We have ft(g) = ps+(x)g, therefore by definition of Mor(CC")

it remains to check that s, € C. The diagram

(1Y) — fv 5 x

l l |

shows that s, = sq(f,x)g and therefore s, € Mor(CC’).

To finish the proof of the proposition it remains to show that Ob(CC’) = C and Ob(CC’) = C.
The first assertion is tautological. The second one follows immediately from the fact that for

(s: ft(X) — X) € Ob(CC) one has ft(s) = Idsx) and ss = s.

3 The sequent axiomatics of C-structures.

Proposition 2.5 suggests that a C-structure C'C' can be reconstructed from the sets B, = B, (CC)
and By +1 = Bp+1(CC), n > 0 together with the structures on these sets which correspond to the
conditions of the proposition. Let us show that it is indeed the case.

In addition to the sets B,, and En and maps ft: B,+1 — B, and 0 : §n+1 — Bp+1 let us consider
the following maps given for all m > n > 0:

L. T : (Bng1)ft X pgm+1-n (Bmy1) = Bpga, which sends (Y, X) such that ft(Y) = ft™+1-"(X)
to pj-(X,m+1—n),

2. T: (Bus1)t X gpmt1-ng (Bmg1) — B2, which sends (Y, s) such that ft(Y) = ft™+1-79(s)
to py(s,m+1—n),

3.5 (Bni1)o X pgm+1-n (Bmi2) = Bpme1, which sends (r, X) such that 8(r) = ft™+1"(X) to
r(X,m+1—n),

4.5 : (Buy1)o X fymt1-ng (Bma2) — Bmy1, which sends (r, s) such that d(r) = ft™+-"3(s) to
r*(s,m+1—mn).

5. 0: Bpy1 — §n+2 which sends X to the diagonal section of the projection p5 X — X.

Note that we have:



1. for Y € By41, X € By such that ft(Y) = ftmF1=7(X) and m > n > 0 one has:

s = { O G0 .
2. for Y € Byy1, s € Bpyy such that ft(Y) = ft"+17"9(s) and m > n > 0 one has:
O(T(Y.s) = T(Y,0(s)) @

3. for r € Byy1, X € Bpyo such that 8(r) = ft™+1="(X) and m > n > 0 one has:

-0 42

4. for r € Byy1, 5 € By such that 8(r) = ft"1-"9(s) and m > n > 0 one has:

9(S(r,s)) = S(r, 0(s)) (6)

(2009.12.27.eq1]9(5(X)) = T(X, X) (7)

Let us denote by
T : (Bntj)fts X pem+i-n (Bm+1) = Bmgi+j

Tj : (Bnj) i X prm+1-np (Bm41) = Bma14j

the maps which are defined inductively by

(X if j =0 R ify=0
Tj(Y,X)—{ T(Y,Tj—1(ft(Y), X)) if j>0 { T

Note that for any ¢ = 0,...,j we have
T;(Y. X) = T(Y, Tj—i(ft'(Y), X))

and
T;(Y,s) = Ti(Y, T,i(ft'(Y), 5))

Lemma 3.1 [T'nft] One has
T;(Y, f1(X)) = fu(T;(Y, X))

Proof: For n = 0 the statement is obvious. For n > 0 we have by induction on j
T(Y, ft(X)) = T(Y, T (f1(Y), fE(X))) = T(Y, fFHT51 (f1(Y), X)) =

= [HT Y, T (F1(Y), X)) = fH(T;(Y, X))

Let Y € B,,. Define by induction on m > 0 the following collection of data:



1. for any X € By, a set Mory, (Y, X),

2. for any i > 0, X € Bpyi and f € Mory, (Y, ft'(X)) - an element f*(X) € By
setting:

1. Mory,o(Y,pt) is the one point set whose only element we denote by py,, and for i > 0 and
X € B; we set
Py (X) =Tn(Y, X)

2. for m > 0 one has:

(a) for X € By, Mor,,m(Y,X) is the set of pairs (rf, ftf) where rf € Buy1, ftf €
Mory, m—1(Y, ft(X)) and O(rf) = ftf*(X),
(b) for i >0, X € By and f = (rf, ftf) € Mory, (Y, ft'(X)) we set

fHX) = 50f, ftf* (X))

To check that this construction is well defined we need to verify that S(rf, ftf*(X)) is defined.

We have i > 0, X € Bpyi, 7f € Bny1 and ftf € Mory m—1(Y, ft771(X)) and therefore ftf*(X) €

Bptit1. It remains to check that O(rf) = ft'(ftf*(X)). By definition of Mory, , we have d(r f) =

ftf(fe(X)).

To verify that ft'(ftf*(X)) = ftf*(ft*(X)) it is sufficient to check that ft(ftf*(X")) = ftf*(ft(X"))
for X' = ft/(X) where j = 0,...,i—1. Then X' =€ By4i—j and ftf € Mory ,m—1(Y, ft:7H1(X)).

If m =1 then ftf = py,, and we have
ftyn (X)) = fHTL(Y, X)) = Tu(Y, fH(XT)) = py, (FHXT)).

where the middle equality holds by Lemma 3.1.

If m > 1 then ftf = (rf’, ftf') where rf' € Buy1, ftf' € Morpm_o(Y, fET2(X)), (ftf')*(X') €
B yi—j+2 and

fE(ftf (X)) = fHS(rf', (ftf)1(X)) = S(rf', fH{(ff7(X))) =

S(rf’, (FLf)"(fHXT) = (ff)"(f(X)

where the second equality holds by property (3) assumed above since i > j and the third equality
holds by the inductive assumption.

For f € Mory , (Y, X) where m > 0 we define r(f) € Byny1 and ft(f) € Mory, m-1(Y, ft(X)) by
the condition that f = (r(f), ft(f)).

Let i >0, f € Mory (Y, ft'(X)) and s € §m+i where 9(s) = X define f*(s) € §n+i as follows:
L. if m = 0 then f*(s) = p}.,,(s) = Tu(Y, s),
2. if m > 0 then f*(s) = (r(f), ft(f))*(s) =

Let now g € Mor,,m(Z,Y), f € Mory, (Y, X). Define the composition fog € Mor,(Z,X) as
follows:



1. if k=0 then fog=pzn,
2. if k> 0 then fog= (¢*(r(f)), ft(f) o g).

To show that our construction is well defined we need to verify that several conditions:

Let f : Y — X be a morphism such that Y € B, and X € B,. Define a sequence (s1(f), ..., sm(f))
of elements of Bt inductively by the rule

(510f)s - ssm(f)) = (s1(ft(f)), - - s sm—1(fE(f)), 87) = (Spem—r(f)s- - Sfe(s) SF)

where ft(f) = pxf, sy is defined by the diagram (2) and for m = 0 we start with the empty
sequence. This construction can be illustrated by the following diagram for f : ¥ — X where
X € By:

sa(f)

Y — Z4,3 Z4,2 Z471 _ Tn(Y,X) _ X
y =9, 7., Zsy —— To(Y, ft(X)) —— fH(X)
s2(f) 5 2 9)
Y —— Zy1 —— T, ft*(X)) —— ft*(X)

S 7L, (X)) —— F3(X)

Y — s pt

which is completely determined by the condition that the squares are the canonical ones and the
composition of morphisms in the i-th arrow from the top is ft*(f). For the objects Z! we have:

Zsg = S(s1(f), Tn(Y, X)) Zso = S(s2(f), Za1) Zaz = S(s3(f), Zu2)
Zza = S(s1(f), Tu(Y, fU(X)))  Z32 = S(s2(f), Z3,1) (10)
Za1 = S(s1(f), Tu(Y, ft*(X)))

A simple inductive argument similar to the one in the proof of Lemma 2.3 show that if f, f/: Y — X

are two morphisms such that X € By, and s;(f) = s;(f’) for i = 1,...,m then f = f’. Therefore,
we may consider the set Mor(CC) of morphisms of CC as a subset in 11, ;y>0B, X B x Bl 4.

Let us show how to describe this subset in terms of the operations introduced above.

Lemma 3.2 [2009.11.07.11] An element (Y, X,s1,...,8m) of By X By, X Eg’ﬂrl corresponds to
a morphism if and only if the element (Y, ft(X),s1,...,8m—1) corresponds to a morphism and
0(8m) = Zmm—1 where Zy, ; is defined inductively by the rule:

Zmo=To(Y,X)  Zmi+1 = 5(Si+1, Zm,)

10



Proof: Straightforward from the example considered above.

Let us show now how to identify the canonical morphisms px; : X — ft!(X) and in particular the
identity morphisms.

Lemma 3.3 [2009.11.10.11] Let X € By, and 0 <i < m. Let px;: X — ft'(X) be the canonical
morphism. Then one has:

Sj(pXﬂ'):Tm—j<X76ftm—j(X)) ]Zlvvm_l

Proof: Let us proceed by induction on m —i. For ¢ = m the assertion is trivial. Assume the lemma
proved for i + 1. Since ft(px;) = px,i+1 we have s;(px:) = sj(px,i+1) for j=1,....m—i—1. It
remains to show that B

[2009.11.10.eq1]sm_i(pX7Z~) == E(X, 5ft1(X)) (11)

By definition s,—i(px,) = spy,; and (11) follows from the commutative diagram:

X — ft(X)

spl léfti(x)

Py i (FE(X)) —— pl o (JE(X)) —— fHi(X)

l prwo

X — fHH(X) — ftY(X)

where p = px ;.

Lemma 3.4 [2009.11.10.12] Let (X, s) € §m+1; Y eB, and f:Y — ft(X). Define inductively
(f,9)*(s) € Bpym+1—i by the rule B
(f’ O)*(S) = Tn(Ya 3)

(i +1)%(s) = S(si1 (f), (£,)"(5))
Then f*(s) = (f,m)*(s).

11



Proof: It follows from the diagram:

y @B * * ft(X)
f*(S)l (Fm—1)*(s) GO | G0 s
¥ — % Kk ——s . * * X

y B * * ft(X)

y Smao . . F2(X)

y 2@, FEmL(X)

Y ——  pt

Lemma 3.5 Letg: Z =Y, f:Y — X and X € By,,. Then s;(fg) = g*si(f).
Proof: It follows immediately from the equations sy, = g*sy and ft(fg) = ft(f)g.

Lemma 3.6 [2009.11.10.14] Let f : Y — ft(X) be a morphism, Y € By, and X € By,4+1. Define
(f,0)*(X) inductively by the rule:
(f,0)"(X) = T (Y, X)

(fyi+1)"(X) = S(sita1(f), (f,9)"(X))
Then f*(X) = (f,m)*(X).

Proof: Similar to the proof of Lemma 3.4.

Lemma 3.7 [2009.11.10.14] Let f : Y — ft(X) be a morphism, Y € By, and X € Bp,41. Then

T(f*X,si(f) ifi<m
Sz(Q(f,X)): _
T(f*X,6x) ifi=m+1

Proof: We have s;(q(f, X)) = spm+1-i(g(,x))- Fori < m we have S g (f, X)) = fT N fppex.
Therefore,

S prrei=i(q(£.X)) = S Ppgex = PpoxSpen=i( = T X, i(f)

12



and for 1 = m + 1 we have

si(q(f, X)) = sq(p.x) = Dj-x (6x) = T(f* X, 6x).

The lemmas proved above show that a C-structure can be reconstructed from the pair of sets B, B
connected by the maps ft, 0, 6, T, T , S and S. While this way of encoding C-structures may be
less convenient than their encoding as a pair of sets Ob and Mor connected by the maps dy, 01, ¢
(composition), id, ft and gpb : (f, X) — q(f, X), this fact has the following important corollary.

Proposition 3.8 [2009.11.10.propl/ Let CC, CC" be two C-structures. Then there is a natural
bijection betweepv C—structug morphisms F : CC — CC’ and pairs of maps Fy : Ob(CC) —
ov(CC"), Fy : Ob(CC) — Ob(CC") which commute in the obvious sense with ft, 0, T, T, S, S
and §.

Remark 3.9 Notes on the properties of the maps introduced above:
1. for Y € B>p42, S((Sftn+l(y),T(ftn+1(Y)7Y)) =Y.

2. The maps S and T can be defined as ft8§ d and ft@f & respectively.

2 Type systems

1 Systems of expressions

Free systems of expressions. Let M be a set and let T'(M) be the set of finite rooted trees
whose vertices (including the root) are labeled by elements of M and such that for any vertex the
set of edges leaving this vertex is ordered. Note that such ordered trees have no symmetries. We
will use the following notations. For T' € T (M) let Vrtx(T') be the set of vertices of 7" and for
v € Vrtz(T) let 1bl(v) = Ibl(v)p € M be the label on v. We will sometimes write v € T instead
of v € Vrtx(T). For v € Vrtz(T) let [v] = [v]r € T(M) be the subtree in 7" which consists of
v and all the vertices under v. Let val(v) be the valency of v i.e. the number of edges leaving v
and chy(v), ..., chyqw)(v) € Vrtz(T) be the "children” of v i.e. the end points of these edges. Let
further br;j(v) = [chi(v)] be the branches of [v]. We write v < w (resp. v < w) if v € [w] (resp.
v € [w] —w). We say that two vertices v and w are independent if v ¢ [w] and w ¢ [v].

For three sets A, B and Cont let
AllEzp(A, B;Con) =T(AII BII (Con x (lI,>0B")))

Elements of AllExzp(A, B;Con) are called expressions over the alphabet Con (or with a set of
constructors Con), free variables from A and bound variables from B.

An expression is called unambiguous if it satisfies the following conditions:
1. if Ibl(v) € ALl B then val(v) = 0,

2. (a) ifv <o/, Ibl(v) = (c;21,...,2,) and bI(V') = (c;2),... @
{1‘1a---,$n}ﬂ{x'1,...,x;,} = @7

/) then

/
n
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(b) if bl(v) = (¢; 1, ..., xy) then x; # x; for i # j,
3. if Ibl(v) = (s 21, ..., @) and I(V') € {x1,...,2,} then o' € [v].

The first conditions says that a vertex labeled by a variable is a leaf. The second one is equivalent
to saying that if the same variable is bound at two different vertices v,v’ then these vertices are
independent i.e. [v] N[v] = 0 and that a vertex can not bind the same variable twice. The third
one says that all the leaves labeled by a bound variable lie under the vertex where it is boud. We
let UAExp(A, B; Con) denote the subset of unambiguous expressions in AllEzp(A, B;Con). Note
that for for any T'€ UAExp(A, B;Con) and v € Vrtz(T) there is a subset Ext(v) C B such that

[v] e UAExp(A 1l Ext(v), B\Ext(v); Con)

Any triple of maps foon: A — A’, fg: B — B, fcon : Con — Con’ define a map
fe = (fa, [B, focon)s : AllExp(A, B;Con) — AllExp(A’, B'; Con’)

which changes labels in the obvious way. If fp is injective then f, maps unambiguous expressions
to unambiguous ones.

An element T of UAExzp(A, B;Con) is said to be strictly unambiguous if for any v # ¢ in
Vrtxz(T) such that Ibl(v) = (¢;21,...,2,) and bI(V') = (527,...,2],) one has {z1,,...,z,} N

{z},...,2],} = 0 i.e. if the names of all bound variables are different. We let SUAExzp(A, B; Con)
denote the subset of strictly unambiguous expressions in UAFExzp(A, B; Con).

An element T of U AExzp(A, B; Con) is said to be a-equivalent to an element 7”7 of U AExp(A, B'; Con)
if there is a set B” , an element 7" € UAExp(A, B";Con) and twomaps f: B” — B, f': B - B’
such that T = (Id, f, Id).(T") and T' = (Id, f',1d).(T"). The following lemma is straightforward:

Lemma 1.1 [2009.09.08.11/ For any two sets A and Con one has:

1. a-equivalence is an equivalence relation,

2. for any set B and any element T' € UAExp(A, B; Con) there exists an element
T' € UAExp(A,N;Con) such that T ~T' and T’ is strictly unambiguous,

3. fwo strictly unambiguous elements T, T" € UAExp(A, B;Con) are a-equivalent if and only if
there exists a permutation f: B — B such that (Id, f,1d).(T) =T".

We let Expy(A; Con) denote the set of a-equivalence classes in lIgUAEzp(A, B;Con). In view
of Lemma 1.1 this set is well defined and can be also defined as the set of equivalence classes in
SUAFExp(A,N; Con) modulo the equivalence relation generated by the permutations on N.

Note that for two a-equivalent expressions 77,75 and a vertex v € V(T7) = V(1%) the expressions
[v], and [v], need not be a-equivalent since some of the variables which are bound in 77 may be
free in [v].

The maps (fa, fB, foon)x respect a-equivalence. Therefore for any f4 : A — A" and feo, : Con —
Con/ there is a well defined map

(fa, foon)s : Expa(A;Con) — Exp(A’; Con’)
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which make Fzp,(—;—) into a covariant functors from pairs of sets to sets. In addition there is
a well defined notion of substitution on Exp,(—; Con) which may be considered as a collection of
maps of the form:

Empa(A; Con) X (H Expa(Xa; Con)) — Ewpa(HaEAXaQ COTI)
a€A

given for all pairs (A; { X4} aca) where A is a set and {X,}4c4 a family of sets parametrized by A.
Alternatively, the substitution structure can be seen as a collection of maps

Expo(Expo(A; Con); Con) — Expa(A; Con)

given for all A and Con. These maps make the functor Ezp,(—; Con) into a monad (triple) on the
category of sets which functorially depends on the set Con.

Example 1.2 [lambda] The mapping which sends a set X to the set of a-equivalence classes
of terms of the untyped A-calculus with free variables from X is a sub-triple of Exp,(—;Con)
where Con = {\,ev}. Elements T of UAExp(X,N;{\, ev}) which belong to this sub-triple are
characterized by the following ”local” conditions:

1. for each v € T, Ibl(v) € X IINII {ev} IT {\} x N
2. if bl(v) € {A\} x N then val(v) =1
3. if [bl(v) = ev then val(v) = 2.

Example 1.3 [propositional/The mapping which sends a set X to the set of terms of the propo-
sitional calculus with free variables from X is a sub-triple of Exp,(—; Cp) where Cy = {V, A, T, =}.
Elements T' of UAExzp(X,N; Cy) which belong to this sub-triple are characterized by the following
”local” conditions:

1. forallv e T, Ibl(v) € X I1 Cy
2. if Ibl(v) € {V, A, =} then val(v) =2

3. if [bl(v) =" then val(v) = 1.

Example 1.4 [multisorted] Consider first order logic with several sorts GS = {S1,...,S,}. Let
G P be the set of generating predicates and GF the set of generating functions. Let Cy = ColI{V, 3}
and Cy = C{IHGPUGFIGS. We can identify the a-equivalence classes of formulas of the first order
language defined by G'S and GF with free variables from a set X with a subset in Exp, (X, N; Co).
Vertices which are labeled by (V; ) and (3; z) have valency two. For such a vertex v, the first branch
of [v] is one vertex labeled by an element of G'S giving the sort over which the quantification occurs
and the second branch is the expression which is quantified. Now however, these subsets do not
form a sub-triple of Fxp, since not all substitutions are allowed. By allowing all substitutions
irrespectively of the sort we get (for each X) a subset in Exp,(X;Cy) whose elements will be called
pseudo-formulas.

The following operations on expressions are well defined up to the a-equivalence:
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1. If Th,..., T, € Ezpa(A;Con), ai,...,a, are pair-wise different elements of A and M €
Con we will write (M, ay,...,a,)(T4,...,T,) for the expression whose root v is labeled by
(M,ai,...,a,), val(v) =n and br;(v) = T;.

2. For T, Ty € Expy(A;Con) and v € T} we let T1(T2/[v]) be the expression obtained by
replacing [v] in 77 with T3 where T3 is obtained from T by the change of bound variables
such that the bound variables of T4 do not conflict with the variables of 7.

3. ForT,Ry,..., R, € Exps(A;Con) and y1,...,y, € Awelet T(R1/y1,- .., Rn/yn) denote the
expression obtained by changing R;’s by a-equivalent R] such that bnd(R}) N bnd(R;) = 0
for i # j, changing T to an a-equivalent 7" such that bnd(T") N (var(R))U...Uvar(R])) =0
and then replacing all the leaves of 7" marked by y; by R;.

In all the examples considered above, these operations correspond to the usual operations on
formulas. The first operation can be used to directly associate expressions in our sense with the
formulas. For example, the expression associated with the formula Vz : S.P(x,y) in a multi-sorted
predicate calculus is (V,z)(S, P(x,y)) where as was mentioned above we use the same notation for
an element of AII BII (Con x (II,>0B™)) and the one vertex tree with the corresponding label.

Note: about representing elements of AllExp(A, B;Con) by linear sequences of elements of A II
BII??.

Reduction structures. Another component of the structure present in systems of expressions
used in formal systems is the reduction relation. It is very important for our approach to type
systems that the reduction relation is defined on all pseudo-formulas and is compatible with the
substitution structure even when not all psedu-formulas are well formed formulas. In what follows
we will consider, instead of a particular syntactic system, a pair (S5,>) where S is a continuous
triple on the category of sets and > is a reduction structure on S i.e. a collection of relations >x
on S(X) given for all finite sets X satisfying the following two conditions:

L if BEe S{z1,...,zn})s fr,-- o for fi € SH{y1, - ym}) and fivgy, o0y fi then
E(fi/z1, - fi/Tis - fo)Tn) Doy, eny E(f1/21, fllziy o fu)zn),
2. it B, E' € S({z1,--»2n}), 1, fu € S{y1, - Ym}) and Evgy oy E' then
E(fi/21, o fafon) e any B/ (f1/T1, s fuf2n).
The following two results are obvious but important.

Proposition 1.5 [2009.10.17.propl/ Let S be a continuous triple on Sets and >, be a family of
reduction structures on S. Then the intersection NaPq @ X + Naba,x @5 a Teduction structure on

S.

Corollary 1.6 [2009.10.17.corl/ For any family (Xa,preq) of pairs of the form (X, pre) where
X is a set and pre is a relation on S(X) (i.e. a subset of S(X) x S(X)) there exists the smallest
reduction structure > = >(Xq, preq) on S such that for each o and each (f,g) € pre, one has frg.
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2 C-structures defined by a triple.

Let S be a continuous triple on Sets. Let S — cor be the full subcategory of the Kleisli category
of S whose objects are finite sets. Recall, that the set of morphisms from X to Y in S — cor is the
set of maps from X to S(Y) i.e. S(Y)X (in other words, S — cor is the category of free, finitely
generated S-algebras). We will construct two C-structures C'(S) and C'C(S)which are based on
(S — cor)°P.

Examples:

1. If S = Id ie. S(X) = X the S — cor = FSets is the category of finite sets. It is easy to
see that the category of finite sets is the free category with finite coproducts generated by
one object. Therefore, (FSets)? can be thought of the free category with finite products
generated by one object.

2. Let S be given by S(X) = X IT A where A is a set. This corresponds to the system of
expressions where all expressions are either variables or constants and the set of constants
is A. The category (S — cor)°? can be though of as the free category with finite products
generated by an object U and the set A of morphisms pt — U.

The categories of sets, finite sets or even the category of finite linearly ordered sets and their
isomorphisms are all level 1 categories and so is the category S — cor. We can get a set-level model
C(S) for (S — cor)? by setting Ob(C(S)) = N and Homg(s)(n,m) = S({1,...,n})™.

The category C(S) extends to a C-structure which is defined as follows. The final object is 0. The
map ft is given by

0 ifn=20
ft(n){n—l ifn>0
The canonical projection n — n — 1 is given by the sequence (1,...,n—1). For f = (f1,..., fm) :

n — m the canonical square build on f and the canonical projection m 4+ 1 — m is of the form

l l

n (flv"'vfm) m

Any morphism of triples S — S’ defines a C-structure morphism C(S) — C(S’). Non-trivial

C-substructures of C'(S) are in one-to-one correspondence with continuous sub-triples of S.

Note: add notes that a continuous sub-triple of S is exactly the same as a subcategory in S —
cor which contains all (isomorphism classes of) objects. Intersection of two sub-triples is a sub-
triple which allows us to speak of sub-triples (systems of expressions etc.) generated by a set of
expressions. For the construction of type systems the category S—cor is replaced by the C-structure
cC (s, X).

Note: that continuous triples on Sets are the same as category structures on N which extend the
a category structure of finite sets and where the addition remains to be coproduct.

Let now CC(S) be the set-level category whose set of objects is Ob(CC(S)) = I1,>00b,, where

Ob, =S(0) x ... x S({1,...,n—1})
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and the set of morphisms is

mor(CC(S)) = [] Obn x Obpm x S{1,...,n})™

n,m>0

with the obvious domain and codomain maps. The composition of morphisms is defined in the
same way as in C(S) such that the mapping Ob(CC(S)) — N which sends all elements of Ob,
to n, is a functor. The associativity of compositions follows immediately from the associativity of
compositions in S — cor.

Note that if S(@) = 0 then CC(S) = 0 and otherwise the functor CC(S) — (S — cor)? is an
equivalence, so that in the second case C'(S) and C'C(S) are indistinguishable as level 1 categories.
However, as set level categories they are quite different.

The category CC(S) is given a C-structure as follows. The final object is the only element of Oby,
the map ft is defined by the rule

FHT1, ..., Ty) = (T4, ..., To_1).

The canonical pull-back square defined by an object (71,...,Tn+1) and a morphism (f1,..., fm) €
SH1,...,n})™ from (Ry,...,Ry) to (T1,...,T) is of the form

yeeeyJm T 1
(R17'"7R7L7Tm+1(f1/17"'7fm/m)) M (T17"'7Tm+1)
[2009.11.05.0ldeq1] l l (12)
(Ri,...,Ry) Mol (L T

Proposition 2.1 [2009.10.01.prop2/ With the maps defined above CC(S) is a C-structure.

Proof: Straightforward.

Note that the natural projection CC(S) — C(S) is a C-structure morphism. It’s C-structure
sections are in one-to-one correspondence with S()) such that U € S(@)) corresponds to the section
which takes the object n of C(S) to the object (U,...,U) of CC(S).

Any morphism of triples S — S’ defines a C-structure morphism CC(S) — CC(S’). C-substructures
of CC(S), which are discussed in more detail below, provide an important class of type systems
over S.

There is another construction of a category from a continuous triple S which takes as an additional
parameter a set Var which is called the set of variables. Let F,,(Var) be the set of sequences of
length n of pair-wise distinct elements of Var. Define the category CC(S, Var) as follows. The set
of objects of CC(S,Var) is

Ob(CC(S, Var)) = ano H(m,...,xn)an(Var) S(@) X ... X S({:Cl, ey xn_1}>

For notational compatibility with the traditional type theory we will write the elements of Ob(C'C(S, X))
as sequences of the form zi : F1,...,x, : F,. The set of morphisms is given by

Homec(s,vary(T1: B1y ey s Bp), (Y12 Ths o Ym  Tn)) = SHxn, -0 w0 )™
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The composition is defined in such a way that the projection

(@12 Bv, .oy mn s By) = (By, Ea(1/21), . En(L/@, .o on = 1/an 1))

is a functor from C'C(S, X) to CC(S). This functor is clearly an equivalence. There is an obvious
final object and ft map on CC(S,X). There is however a real problem in making it into a C-
structure which is due to the following. Consider an object (y1 : Th,...,Ym+1 : Tm+1) and a
morphism (f1,..., fm): (x1: Ry,...,2n: Ry) = (y1 : 11, ..., Ym : Tin). In order for the functor to
CC(S) to be a C-structure morphism the canonical square build on this pair should have the form

f 7"'7fm7 +1
(1: Ry @n s Ry pgr 2 T (f1/1, .5 f/m)) Mrfmnt ), (W1 :T1, - Ymest s Trngr)

! !

(fiyesfm)
(x1: Ryy...,xpn: Ry) bl (y1: T, o Ym : Tin)
where x,41 is an element of X which is distinct from each of the elements x1,...,x,. Moreover,

we should choose z,11 in such a way the the resulting construction satisfies the C-structure axioms
for (f1,..., fm) = Id and for the compositions (g1,...,9n) © (f1,..., fm). One can easily see that
no such choice is possible for a finite set X. At the moment it is not clear to me whether or not
such it is possible for an infinite X.

3 C-substructures of CC(S).

Let T'S be a C-substructure of CC(S5). By Lemma 2.3, T'S is determined by the subsets B = Ob(T'S)
and B = Ob(T'S) in Ob(CC(S)) and Ob(CC(S)). By definition we have

I IS

n>0 =0

An element of &(CC(S’)) is given by a pair (I',s) where I' € Ob(CC(S)) is an object and s :
ft(I') — T is a section of the canonical morphism pr : I' — ft#(I'). It follows immediately from
the definition of CC(S) that for ' = (Ey, ..., Ept1), a morphism (f1,..., for1) € S({1,...,n})" !
from ft(I') to I' is a section of pr if an only if f; = i for ¢ = 1,...,n. Therefore, any such
section is determined by its last component f,, 11 and mapping ((E1,..., Ent1), (f1,..., fat1)) to
(E1,...,En, Ent1, fny1) we get a bijection

2009.10.15.eq2]0b(CC(S)) = ] ( H S ) x S({1,...,n})? (13)

n>0 =0

For ' = (Ey,..., E,) we write (I>7g) if (B, ..., E,) isin Band (' Fpgt: T) if (Ey,..., E,, T,t)
is in B. When no confusion is possible we will write I instead of F7g. We also write {(I') = n and

FHT) = (Br,..., En_1).

The following result is an immediate corollary of Proposition 2.5.

Proposition 3.1 [2009.10.16.prop3/ Let S be a continuous triple on Sets. A pair of subsets

n—1
Bc [T ]I st

n>0 =0
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B (] s¢1.-.-.i}) x S({1,...,n})?
defines a C-substructure of CC(S) if and only if the following conditions hold:

1. (>)
2. (I'>) = (ft(T)>)
3. TFt:T)= (I,Tr)
4. (01, To,F 0: 8) A (D1, T>) = (01, T, 5i011 b 85410 : 5i415) where i = (T'y)
9. (I}‘Ll,T Ty :é )S) Tibr:T)= (D1, dig1(Tofr/i + 1)) b diga (tr/i + 1]) = diga (T[r /i + 1))
where i = (T

6. (0,T>)= T, THn+1:T) where n=1(T).

where for E € S({1,...,k}), s E =E[i+1/i,....k+1/k] € S{1,...,k+ 1} and d;E = E[i/i +
1,....,k—1/kle S{1,...,k—1}

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following
4a (Fl,FQD) A (Fl,Tl>) = (Fl,T, Si+1F2l>) where i = Z(Fl)
5a (Fl,T, F2I>) A (Fl For: T) = (Fl,di“(l“g[r/z‘ + 1])I>) where 7 = l(Fl).

Note also that modulo condition (2), condition (1) is equivalent to the condition that B # ).

Remark 3.2 [2010.08.07.rem1] If one re-writes the conditions of Proposition 3.1 in the more
familiar in type theory form where the variables introduced in the context are named rather than
directly numbered one arrives at the following rules:

x1: B, xn s B> x1: B, oy Byt T
> x1: B, . xp 1 By 1 x1:FEy,.. o, By F

z1: B, o Byt T xy i B,z By F>

,=10,...
[El:El,...,xiZEi,y:F,xi+1:Ei+1,...,$n:EnFt:T7 ! ’ W
xltEl,...,J}niEnl—t:T IL’1:E1,...,:IZZ'2EZ‘|—7’:EZ‘+1 X 0 1
, t=U,...,n—
X El, N A Ei,l'i_;,_g : Ei+2[r/xi+1], N En[r/a?iﬂ] - t[r/xiH] : T[T/l‘i_;,_l]

x1: B, B>
1B, xn By x, s By
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which are similar to (and probably equivalent) the ”basic rules of DTT” given in [4, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-structure.

Lemma 3.3 [2009.11.05.11/ Let S, B, B be as above and let (Er,...,En),(Th,...,T)n) € B and
(fiy-oos fm) € SHL,...,n})™. Then

(fl,...,fm) GHOTfLTs((El,...,En),(Tl,...,Tm))
Zf and O’flly Zf (flv"' 7fm—1> € HomTS((Ela"')En)7(T1>'"7Tm—1)) and
(Biy ... B Ton(f1/1, ..., fe1/m —1), fm) € B

Proof: Straightforward using the fact that the canonical pull-back squares in CC(S) are given by
(12).

4 Type systems over S.

Definition 4.1 ftypesystem/ Let S be a continuous triple on Sets. A type system over S is a
collection of data of the form:
n—1
Bc [T ] s«

n>0 i=0

n—1
Beg c [T(I] SU1.---,i}) x SH{1,...,n})?

n>0 =0

B[« HS ) x S({1,...,n})°
n>0 =0

BeqCH HS ) x S({1,...,n})?
n>0 =0

ForT = (Ty,...,Tn) € 1,50 [11= S({1L,...,i}) and S1,S> € S({1,...,i}) we write (' - Sy = Ss)
to signify that (T4, ..., Ty, S1,S2) € Beq. Similarly for S,0,0' € S({1,...,n}) we write (T - 0 =
o 1 S) to signify that (Ty,...,T,,S,0,0") € Beq. These data should satisfy the following conditions:

1. Conditions (1)-(6) on B and B from Proposition 3.1 (referred to below as conditions (1.1)-
(1.6) from Definition 4.1).

a) T =T)=,T>)

by (0, T)=TrHT=T)

¢) CFT=T)=CFT =T)

d CFT=T)ACFT =T"=C+T=T")

S

(=
~ =

Tro=0d:T)=Tto:T)
Tko:T)=TFo=0:T)
Trho=0d:T)=TkFd=0:T)
Tho=0d:T)YANTFJ=0":T)=TrFo=0":T)

o
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(CL) (Fl FT = T/) VAN (Fl,T, Iy S = S/):>(F1,T/,F2 FS= S/)
b) MiFT=T)YANT1,T.ToFo=0:9=11,T ThoFo=0:5)
(¢) TES=8)ATFo=0d:8)=TFo=0:5)

.

(a) (Fl,Tl>) VAN (Fl,rg FS= S/):>(F1,T, Si+112 F Si+1S = Si—HS/) 1= Z(F)

(b) (Fl,T[>) VAN (Fl,rg Fo=0: S):>(F1,T, Si+1l'2 F sjp10 = Si+10/ : Si+15) 1= l(P)
6.

(a) (Fl,T I8 = S/) VAN (Fl For: T)=>

(T1, diga(Ta[r/i +1]) = dipa (S[r/i + 1]) = dipa (S'[r /i + 1])) i=1(T")

(b) (Fl,TFQFO—OI:S)/\(Fll—T’:T)é

(T'1, diga(Te[r/i +1]) = dipa (o[r /i + 1)) = diga ('[r/i + 1]) : diga (S[r/i+1])) i =U(T')
7.

((I) (Fl,T FQ,SD)/\(I&'—T:T/ZT)#

Ty, diga(Telr/i +1]) = diga (S[r/i + 1]) = dipa (S[r'/i + 1])) i=1(I')
(b) (Fl,TFQI_O S)/\(Flf—T‘:’l’/ZT)i

(T, dipa (Po[r/i + 1)) = diga(o[r/i +1]) = dipa(o[r'/i + 1]) : diga (S[r/i +1])) i =1(T"1)

Definition 4.2 [simandsimeq/ Given S, B, Beq, B and B\e/q as_above and assuming that condi-
tions (1.2) and (1.3) hold, define relations ~,, on B, and ~, on By, as follows:

1. for T = (Th,...,T,), I'" = (17,...,T}) in B, we set ' ~, I" iff ft(T') ~p_1 ft(I') and
Ty,....Th b1, =T,

2. for (THo:8), (I"Fo :8) in B, weset THo:8)~, I"Fd:8) iff (T,8) ~n (I",5)
and TFHo=0":19).

Lemma 4.3 fiseqrelsimll/ Let S, B, Beg, B and é\e/q be as above. Then for alln > 0, one has:

1. If conditions (1.2), (4a) of Definition 4.1 holds then ('S = SHYA (T ~, IM)=1"F S =5").

2. If conditions (1.2), (1.8), (4a), (4b), (4¢) hold then (T'F o= 0" : S)A(T, S ~py1 TV, 8)=(T"
o=0d:5").

Proof: (1) For n = 0 the assertion is obvious. Therefore by induction we may assume that
CkES=8AT~IM=>(I"FS=Y.)for all i < n and all appropriate IV, S and S’
and that (Th,..., T, - S = S)A(Ty,..., T, ~, Ty,...,T)) holds and we need to show that
(T1,..., T, F S =5") holds. Let us show by induction on j that (17,..., T}, Tj+1,..., T, - S = §')
for all j =0,...,n. For j = 0 it is a part of our assumptions. By induction we may assume that
(T{,...,T],T_H,...,Tn - S = 5'). By definition of ~, we have (T1,...,T; - Tj11 = T},,). By
the inductive assumption we have (77,..., 7/ = Tj11 =T}, ,). Applying (4a) Wlth Iy =(17,...13),

T="Tjn, T'= TJ/Jrl and I'y = (Tj42,...,T,) we conclude that (17,..., T/, 1,Tjt2,..., Tn F S =
S7).

9 ]+17
(2) By the first part of the lemma we have I'" F S = S’. Therefore by (4c) it is sufficient to show
that (TFo=0":S)A (L ~, I")=(I"F 0=0":S5). The proof of this fact is similar to the proof of
the first part of the lemma using (4b) instead of (4a).
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Proposition 4.4 fiseqrelsim/ Let S, B, Beq, B and Eveq be as above. Then one has:

1. Assume that conditions (1.2), (2b), (2c¢), (2d) and (4a) of Definition 4.1 hold. Then ~, is
an equivalence relation for each n > 0.

2. Assume that conditions of the previous part of the proposition as well as conditions (1.3),
(8b), (3¢), (3d), (4b) and (4c) hold. Then ~, is an equivalence relation for each n > 0.

Proof: (1) Reflexivity follows directly from (1.2) and (2b). The relation ~g is symmetric by (2c).
Let (I',T) ~p41 (IV,T"). By induction we may assume that IV ~,, T'. By Lemma 4.3(a) we have
(I"+=T =T') and by (2¢) we have (I' - T' = T). We conclude that (I, T") ~,41 ([, T) i.e. that
~p1 is symmetric. The proof of transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ~,, (1.3) and (3b). Symmetry and transitivity
are also easy using Lemma 4.3.

From this point on we assume that all conditions of Definition 4.1 hold. Let B; = B,/ ~;, and
Bl = B,/ ~,. It follows immediately from our definitions that the functions ft: B,+1 — B, and

8 : B, — B, define functions ft': B/, — Bl and & : Bl, — B,

Lemma 4.5 [surjll/ Under the above assumptions the following maps are surjective for all m >
n>0:

TTm,n * (Bn+1)ft X pgmt1-—n (Bm (B +1)ft’ X (ftrym+1-—n (B;n,—i-l)

+
—_

77,1"—17m7n N (Bn+]_)ft Xftm+1—n6 Bm+]_ B +1 ft/ X(ft/)m+l nal (B?,’)’L+1)

)
( ) = (Bny1)

TS mmn - (En—l-l)(? X fgmt1-n (Bm+2) (B +1)8" X (ftrym+1-n (Bm+2)
( ) = (Buy1)

(R ) /
TG mm * (Bnt1)o X prmii-ng (B2 Bi1)or X (erymi-ngy (Bpia)

Proof: We will show that the projections

(Bp+1) gt X pemt1-n (Bm+1) = (Bpy1) e X (perym+1-n (Bs1)

(Bp+1) i X grm+1-ng (Bmt1) = (Bpy1) pir X (perym+1-nor (Bm1)
(Bnt1)a X pems1-n (Bmta) = (Bls1)or X (pryms1-n (Bmya)

(Bn+1)o X prm+1-ng (Bmr2) = (Bnga)or X (pirymt1-ng (Bms2)
are already surjective.

(1) We need to show that for (I'y, 7>), (I}, T2>) where I'y ~,, '] there exists (I'},7't>) such that
(T'1,T) ~y (T, T7). 1t is sufficient to take T'= T". Indeed by (2b) we have I' - T' = T', by Lemma
4.3(2) we conclude that IV =T =T and by (1a) that IV, Tr>.

2) Same proof as for (1).

(

(3) We need to show that for (I'y F o : S), (I}, S, T'ar>) where (I',S) ~p41 (I7,S’) there exists
(T F o =8 such that (T} F o' : S) ~p41 (I'1 Fo: S). It is sufficient to take o' = o. Indeed, by
(3b) we have (I'y -0 = 0 : S), by Lemma 4.3(2) we conclude that (I'} - o =0 :5") and by (2a)
that (I} Fo:5").

(

4). Same proof as for (3).
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Lemma 4.6 [TSetc/ Under the above assumptions the maps T, T, S,§ and § which form the C-
structure on (B, B) define unique maps

T, N (B;’L—‘rl)ft/ X(ft/)m—n (B:’)’L) —> B;)’L—‘rl

TI N (B’;%F].)ft/ X(ft/)m+lfnal (B;n+1) — B’I/TL+2
S/ : (B7/1+1)8/ X(ft’)"”rl*”a’ (B;n+2) — B7/’VL+1

/. n/
0": By = By

Proof: Uniqueness follows immediately from Lemma 4.5. Let us show existence.

(1) Given (I'1,Tt>) ~pt1 (I, T'>) and (', Tal>) ~py, (I, T5>) we have to show that
(T1, T, sp4102) ~mgr (01, T, sn4115).

Proceed by induction on m —n = [(I'2). For [(I'2) = 0 the assertion is obvious. Let (I'1,T>) ~p41
(I, T'>) and (T'1,T9, S>) ~p, (T7,T%,5'>). The later condition is equivalent to (I'1,T'al>) ~y,
(T}, T5>) and (I'h,I'y = S = S’). By the inductive assumption we have (I'1, T, $p4+102) ~mi1
(T}, T, sp41l%). By (5a) we conclude that (I'1, T, spy1l2 F 8415 = $p41S5”). Therefore by defini-
tion of ~p,4+1 we have (I'1, T, spt1l'2, $p4+15) ~ma1 (0L T, spsa1lh, sp1157).

(2) Given (I'1,Tr>) ~pt1 (T}, T'>) and (T'1,To F 0 : S) 2y (T),T5 F 0 2 S7) we have to show that
(T, T, snt1l2 F spg10 : $p11S) g2 (0L T sp41Th B spg10' : sp415"). We have (I'1, T2, .S) ~pmp1
(T,15,5") and (T'1,T2 F o =0 :S5). By (5b) we get (I't,T, spt11'2 F spt10 = $p410" : 5p415).
By (1) of this lemma we get (I'1, T, $nt+102, $n41S5) ~m+2 (I}, T7, $nt10%, sp+1S”) and therefore by
definition of ~ we get (I'1, T, sp+1l2 F spt10 : $p41S) o (T, T, sp11Th b Spp10  5p1157).

(3) Given (I'1 Fr:T) g (D) E o' 2 T") and (T, T,T2>) ~pgr (I, 77, T5>) we have to show
that
(Tt dps1 (Tafr/n +1])) ~m (T, dng (D[ /n + 1)),

Proceed by induction on m —n = [(I'2). For {(I'z) = 0 the assertion follows directly from the
definitions. Let (Tt k7 :T) ~p11 Ty F 7' :T7) and (T'1, T, T2, St>) ~p, (T, T7,T%, S't>). The later
condition is equivalent to (I'y, T, T'ao>) ~p, (I}, T, T5>) and (I'1,T,T2 - S = S’). By the inductive
assumption we have (I'1, dp41(T2[r/n + 1])) ~m (T, dnt1(Th[r' /n + 1])). It remains to show that
(T1,dp1(Dafr/n+ 1)) b dps1(S[r/n+ 1)) = dpy1 (S’[7"/n+ 1])). By (2d) it is sufficient to show
that (Pl,dn+1(F2[7’/n + 1]) F dn+1(5[r/n + 1]) = dn+1(S’[r/n + 1])) and (Fl,dn+1(F2[T/n + 1]) +
dpt1(S'[r/n+1]) = dpy1(S'[r'/n+1])). The first relation follows directly from (6a). To prove the
second one it is sufficient by (7a) to show that (I'y,7, T2, S'>>) which follows from our assumption
through (2c) and (2a).

(4) Given (1 Fr:T) ~ppq (T) " 2 T') and (T'1, T, T2k 0:S) ~ppqa (T, T/, T o' - S”) we have
to show that

(T1, dny1(Lafr/n+ 1)) F dpsa(olr/n+1]) : dpt1(S[r/n + 1)) ~mi

(1 dnaa (Lo /n 4 1)) F dpa (0 /n+1]) ¢ dnga (S /m + 1)),

or equivalently that (I'y, dp11(D2[r/n+1]), dps1 (S[r/n+1])) ~mgr (T, dppr (D517 /n+1]), dppr ([ /n+
1))) and (T'1,dps+1(Ta[r/n + 1)) F dpyi(o[r/n + 1)) = dpy1 ('[r /0 +1]) : dps1(S[r/n + 1])). The
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first statement follows from part (3) of the lemma. To prove the second statement it is sufficient by
(3d) to show that (I'1,dp11(Tafr/n+ 1)) b dysa(olr/n+ 1)) = dpi1 (o [r/n+1)) : dpy1 (S[r/n+1)))
and (T'1,dp+1(Ta[r/n+ 1)) F dps1 (0 [r/n + 1)) = dp1 (' /n + 1)) : dpg1(S[r/n + 1])). The first
assertion follows directly from (6b). To prove the second one it is sufficient in view of (7b) to show
that (I'1,T, T2 o' : S) which follows conditions (3c) and (3a).

(5) Given (I, T) ~py1 (I, T") we need to show that (I, TF (n+1) : T) ~pqo (I, T'F (n+1): T")
or equivalently that (I',T,T) ~p42 (0,7, 7") and (I, T+ (n+1) = (n+ 1) : T). The second part
follows from (3b). To prove the first part we need to show that (I',; 7+ T = T"). This follows from
our assumption by (5a).

Definition 4.7 [2009.11.4.defl] Let S, > and T'S be as above. Let further (C,p) be a category
with a universe structure. A closed model of T'S with values in (C,p) is a C-structure morphism
M:TS — CC(C,p)

which is compatible with > i.e. such that the following conditions hold:

1. if (Er,...,E,) € Ob(TS), i =1,...,n and E, € S({x1,...,x;_1}) is such that E;> E! then
M(Ey,...,E)) = M(By, ..., E.,... E,),

2.4f (f1,---, fm) € Homps((E1, ..., Ey),(Th,....,T)), i =1,....m and f/ € S{1,...,n}) is
such that f;> f] then

M((fl,-u7fm);(El,u-,En);(le-u,Tm)) :M((fl,...,fz{,...,fm);(El,...,En);(Tl,...,Tm)

3. if (Ev,....Ep),(Th,...,Tyy) € Ob(TS), (f1,--- fm) € SH{L,....,n})", i=1,...,n and E} €
S({1,...,i—1}) is such that E; > E| then

M((f1,- s fm); (Bry oo B (Thy oo T) = M((fry ooy fn); (Bry oo EL oV ER); (T, ., T))

4. if (El,...,En),(Tl,...,Tm) S Ob(TS), (fl;---,fm) S S({l,,n})m, i =1,....,m and
T! € S({1,...,i—1}) is such that T; > T then

M((f1,- s fm); (Bry oo B (Thy oo Tn) = M((frs oo fn); (B oo By (T, T T))

. are called the subset of type sequents and the subset of term sequents of a type system. By
Lemma 2.3 they uniquely determine the type system.

Elements of Seqy are called contexts and elements of Seq; are called judgements. Proposition 3.1
shows that for any type system T'S and any (F1, ..., Ey,t,T) in Seq; (T'S) the sequence (Ey, ..., E,)
is in Seqq i.e. the first part of a judgement should be a valid context.

One also often uses the notation E1, Fo, ..., E, F T : Type which is equivalent to E1, Fo, ..., E,, T>.
The meaning assigned to these subsets is as follows:

1. By, Fs, ..., E,> means that Ep is a well formed closed type expression and for ¢ > 1,
E;(1,...,i—1) is a well formed type expression in the context where variables 1,...,i — 1
have types Fn, ..., F;_1 respectively,

2. B, FEs,...,E, -t : T means that E1,Fs,...,E,,T> and in the context where variables
1,...,n are of the types Ei,...E, respectively, t(1,...,n) is a well formed term expression
of type T'(1,...,n).
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3 C-structures defined by universes in 1-categories

C-structures CC(C,p).

Definition 0.8 [2009.11.1.defl] Let C be a (level 1) category. A universe on C is a morphism
p: U — U together with a mapping which assigns to any morphism f : X — U in C a pull-back

square

x, ) 22 @

P(X,f)l lp

x v

In what follows we will write (X, fi,..., fn) for (... (X, f1), f2) ..., fn)-

Let C be a l-category, p a universe on C and pt a final object of C. For such a triple define a
C-structure CC' = CC(C,p) as follows. Objects of CC are sequences of the form (F1,...,F,)
where Fy € Home(pt,U) and F;y1 € Home((pt, F1, ..., F;),U). Morphisms from (Gy,...,Gy) to
(Fi,..., Fy) are given by

Homeco((Gh,...,Gr), (F1,..., Fp)) = Home((pt,G1,...,Gp), (pt, F1, ..., Fp))

and units and compositions are defined as units and compositions in C such that the mapping
(F1,...,F,) — (pt,F1,..., F,) is a full embedding of the underlying category of CC to C. The
image of this embedding consists of objects X for which the canonical morphism X — pt is a
composition of morphisms which are (canonical) pull-backs of p. We will denote this embedding
by int.

The final object of CC' is the empty sequence (). The map ft sends (Fy,...,F,) to (Fi,..., Fu_1).
The canonical morphism p(p, . F,) is the projection

p((pt,Fl,...,Fn_l),Fn) : ((ptu F17 v 7Fn—1)7 Fn) — (ptv F17 v 7Fn—1)

For an object (Fi,...,Fy,+1) and a morphism f : (Gy,...,G,) — (Fi,...,Fy) the canonical
pull-back square is of the form

(Gryee s Gy Frin /)~ (B, F)
[2009.10.26.eq3] pgl lpF (14)
!

(Gi,...,Gn)  —I— (F,...,Fp)

where int(pr) = p((pt, F1,...,Fn-1), Fy), int(pg) = p((pt,G1,...,Gn-1), Fint1 o f) and q(f)
is the morphism such that ppq(f) = fpg and Q(F+1)int(q(f)) = Q(Fpm+1f). The unity and
composition axioms for the canonical squares follow immediately from the unity and associativity
axioms for compositions of morphisms in C.

Let (C,p,pt) and (C',p’,pt’) be two sets of data as above. Let ® : C — C’ be a functor which takes
distinguished squares in C to pull-back squares in C’ and such that ®(pt) — pt’ is an isomorphism,
let further ¢ : ®(U) — U’, ¢ : ®(U) — U’ be two morphisms such that

o(U) BN 5
@(p) lp/

o(U) —2 U

26



is a pull-back square. Denote by 1) the isomorphism ¢ : pt’ — ®(pt).

Define a functor H = H(®, ¢, ¢) from CC(C,p) to CC(C',p’) as follows. We define by induction
on n objects H(F,...,F,) € CC(C',p') and isomorphisms

Uy, Fy it (H(Fy, .. Fy)) — O(int(FL, .. F))

where int and int’ are the canonical functors CC(C,p) — C and CC(C',p’) — C’ respectively.
For n = 0 we set H(pt) = pt and ¢y = 1. For n > 0 let

(Fl,...,F,_)=H(F,... Fy_1)

s tn—1

and let F), : int(Fy,..., F,—1) = U. Define F, as the composition

[2009.10.26.eq5]F. : int'(F, ..., F'_,)
and let H(Fy,...,F,) = (Fy|,...,F._{,F)). Then

int (H(Fy,...,Fy)) = (int' (H(Fy, ..., Fy)), F)

To define
w(FL---,Fn) : int/(H(Fl, e Fn)) — <I>(z'nt(F1, e ,Fn))

observe that by our conditions on ¢, 5 and ® the squares of the diagram

O(int(F, ..., F)) —~CED @) 5
D (F) 5

(I)(’L'nt(Fl,...,anl)) —_— (I)(U) — U

are pull-back. Therefore there is a unique morphism ¢ g, ,) such that the diagram

int'(H(Fy, ..., Fn)) O(int(Fy,...,Fy)) 2R

2009.10.26.eg2] l l l (16)

P2 (Frn)

int,(H(Fl,...,Fn_l)) q)(int(Fl,...,Fn_l))

commutes and
2009.10.26.eq7]6P(Q(Fn))U(r,... k) = QOR(F)Y(ry, 5y 1)) (17)

and this morphism is an isomorphism.

To define H on morphism we use the fact that morphisms ¢ p,  g,) are isomorphisms and for
fi(Fr,...,F,) — (Gy,...,Gp) we set

2009.10.26.eq6]H (f) = ¥, ¢\ @(F)V(r,. 1) (18)

The fact that this construction gives a functor i.e. satisfies the unity and composition axioms is
straightforward.
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It remains to verify that this morphism respects the rest of the C-structure. It is clear that it
respects the length function and the ft maps. The fact that it takes the canonical projections to
canonical projections is equivalent to the commutativity of the left hand side square in (16).

Consider a canonical square of the form (14). Its image is a square of the form

H(q(f))
( /17""G;17G;1+1> ‘1—> (F1/7"'7F721+1)

2009.10.26.c04]  r(rc) | | e (19)

@,y 2D

We already know that the vertical arrows are canonical projections. Therefore, in order to prove
that (19) is a canonical square in CC(C’,p’) we have to show that G, = F),_ int(H(f)) and

m

2009.10.26.eq8]Q(F;, 1, )int(H(q(f))) = Q(F, 1int(H(f))) (20)

(F{,...,E)

By (15) we have
ni1 = OP(Fny1 f)Yc,..cn)
1 = OP(Fmy )V (p,... P
and by (18)
nt(H(f) = ¥ 0 V@)

int(H(q(f))) = 1/1(}11 £ Q@G G )

-----

Therefore the relation G, = F},  int(H(f)) follows immediately and the relation (20) follows by
application of (17).

Our construction of H shows that if @ is a full embedding and ¢ and 5 are isomorphisms then
H is an isomorphism of C-structures. This implies in particular that considered up to a canon-
ical isomorphism C'C(C,p) depends only on the equivalence class of the pair (C,p) i.e. that our
construction maps pairs (C, p) which are of h-level 3 to C-structures which are at the set level.

Let us describe now an inverse construction which shows that any C-structure is isomorphic to a C-
structure of the form CC(C,p). Let CC be a C-structure. Denote by PreShv(CC) the 1-category
of contravariant functors from the category underlying C'C' to Sets.

Let Ty be the functor which takes an object I' € CC to the set
Ty(T) = {I' € CC| fu(T’) = T}

and a morphism f : A — T to the map IV — f*I". It is a functor due to the composition and unity
axioms for f*. Let T'm be the functor which takes an object I' to the set

Tm(T) = {s € CC| ftd(s) =T}

and a morphism f : A — T' to the map s — f*(s). Let further p : Tm — Ty be the morphism
which takes s to O(s). It is well defined as a morphisms of families of sets and forms a morphism
of presheaves since 9(f*(s)) = f*(9(s)).

Proposition 0.9 [2009.12.28.propl/ For any C-structure CC' there is a natural isomorphism

CC = CC(PreShv(CC),p)
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Proof: We start with the key lemma. (In what follows we identify objects of CC with the corre-

sponding representable presheaves and, for a presheaf F' and an object I', we identify morphisms
I' = F in PreShv(CC) with F(T)).

Lemma 0.10 [2009.12.28.11] Let IV € Ob(CC') and let T = ft(I). Then the square

S
I —L— Tm

e | |7

r 2 o7y

s a pull-back square.

Proof: We have to show that for any A € CC the obvious map
[2009.12.28.eq2|Hom(A,T") = Hom(A,T) Xpya) Tm(A) (21)

is a bijection. Let f1, fo : A — I' be two morphisms such that their images under (21) coincide
i.e. such that pp/fi = pr fo and f;(6r/) = f5(01). These two conditions are equivalent to saying,
in the notation introduced above, that ft(fi) = ft(f2) and sy, = sy,. This implies that f; = fo
i.e. that (21) is injective. Let f : A — I' be a morphism and s € T'm(A) a section such that
ft(0(s)) = f*(I'’). Then the composition ¢(f,I")s is a morphism f': A — I'' such that pp f' = f.
We also have

(f)*(0r) = s*q(f, ') (6r) = s

which proves that (21) is surjective.

To construct the required isomorphism we now choose a universe structure on p such that the
pull-back squares associated with morphisms from representable objects are squares (21). The
isomorphism is now obvious.

Definition 0.11 [2009.12.27.defl] Let CC' be a C-structure. A closed model of CC'is a collection
of data of the following form:

1. A I-category C,
2. a universe p : U—=UinCanda final object pt of C,
3. a C-structure morphism CC — CC(C,p).

The following proposition shows that any "model” of a C-structure can be viewed as a closed model.

Proposition 0.12 [2009.12.27.propl/ Let C be a I-category, CC be a C-structure and M :
CC — C a functor such that M(ptcc) is a final object of C and M maps distinguished squares of
CC to pull-back squares of C. Then there exists a universe pyr : Upr — Upr in PreSho(C) and a
C-structure morphism M’ : CC — CC(PreShv(C),pym) such that the square

cc M, C

e l

CC(PreShv(C),pm) it PreShv(C)
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where the right hand side vertical arrow is the Yoneda embedding, commutes up to a canonical
isomorphism.

Proof: We will write p : U — U instead of DM ﬁM — Ups. Set

U =Ilrecc. M (T) U =HUrecco. M(ft(I'))  p=Urecc.,M(pr)

Let pt be final object of PreShv(C). Set M'(ptcc) = pt.

[I-universes in lcc categories. Recall that a (level 1) category C is called a lcc (locally Cartesian
closed) category if it has fiber products and all the over-categories C/X have internal Hom-objects.

Definition 0.13 [2009.10.27.defl/ Let C be an lcc category and let p; : U — U, i=1,23 be
three morphisms in C. A Il-structure on (p1,p2,ps) is a Cartesian square of the form
HomUl(ﬁl,Ul X 6;) _r, Us
[Pisql] pél lpzz (22)
HomUl(ﬁl,Ul X UQ) L Ug
such that ply is the natural morphism defined by pa. A Il-structure on p : U — U is a I-structure
on (p,p,p).
Remark 0.14 A Il-structure on (pi, p2,p3) corresponds to the rule

DX :U,f: X — Us>
DX U, f: X —>Ubk]]z: Xev(f,x):Us

Let C be as above, p : U — U and let (ﬁ, P) be a Il-structure on (p,p,p). Let us construct a
structure of II-C-structure on CC' = CC(C, p).

We start by recalling some level 1 constructions in C.

Lemma 0.15 [2009.11.24.15/ Consider a pair of pull back squares

I L) [71 13 & (72
[2009.11.24.eq2ﬂl lpl qu lpz (23)
I L) Uy Iy i> Us

Then there exists a unique morphism fr g, : Iy — HomUl(ﬁl, Uy x Us) such that its composition
with the natural morphism to Uy is F1 and the composition of its adjoint

evo (fr,m XU, ﬁl) Iy =11 Xy, Uy — Uy x Us

with the projection to Us is Fy.
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Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 0.16 [2009.11.24.13/ In the notation of Lemma 0.15 let

JQ L) IQ J3 L I3
Lokl b
1 o2
J ——— L Jy —— I

be two pull-back squares. Then fr 4, Fopo = fFi,F, © 1.

Proof: Straightforward.

Let pq : Uy — Uy, po: Us — Uy be a pair of morphisms in an lcc C. Consider a pull-back square of
the form

Fama(p1, p2) — U
(2009.11.24.eq4] pul lpz (24)
Myl(ﬁhm x Us) xp, Uy 2% Uy

where _ -
ev : HomUl(Ul,Ul X UQ) XUy U1 — U1 X U2

is the canonical morphism.
Then for any two pull-back squares as in Lemma 0.15, the morphism fr, g, defines factorizations

of the pull-back squares (23) of the form

f7><(7 ~ __ .
I, 2220 Homy, (U, Uy x Us) xu, Uy —2— U,

! l I

Iry Py
2,

Il HOmUl(ﬁl,Ul X UQ) — U1
and ~
Iz — Fama(p1, p2) — U
QQJ( J{mz J{pz
fry ><U1(71 ~ -~  proev
I2 _— HomUl(UlaUl X U2) Xty U1 E— U2

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back

squares of the form
I3 — Fama(p1, p2)

| |

fry 7y xuy Un

I, 2220 Homy, (U, Uy x Us) xp, Uy

o | |7

At Homy, (01, Uy x Uy)
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Let
g : Homyy, (U1, Ur x Us) xy, Uy — Fama(p1, p2)

be the morphism over Homy, ((71, Ui xUs) %y, U, whose composition with the projection Fama(p1, p2) —
U, equals pr o ev where

€ev : HomUl(ﬁlaUl X ﬁg) XUy /UI — U1 X ﬁg

is the canonical morphism.

Lemma 0.17 [2009.11.24.12] The pair
(Homy;, (Ur, Uy x Us) = Homyy, (U1, Ur x Us), g)

is universal for (pio2,pr).

Proof: For a given w : Z — HomUl(ﬁl,Ul x Us), a morphism Z — HomUl(@'vl,Ul x Us) over
HomUl(Ul,Ul x Usy) is the same as a morphism Z xg, Uy — Us such that the adjoint of its
composition with po : Uy — Us is w.

A morphism from Z to the universal pair for p19 over Homy;, ([71, U1 xUs) is a morphism Z X, ﬁ; —

U, whose composition with py is (pr o ev) o (w Xy, I dﬁ) which coincides with the condition that
the composition of its adjoint with po is w. This can be also seen from the diagram

Fama(p1,p2) —— Uy

pe | |

proev

MUl(ﬁhUl x Up) xp, Uy —— Myl(ﬁl,[ﬁ x Uz) xp, Uy 225 Uy

| [m

HomUl(ﬁl,Ul x Us) — HomUl(ﬁI,Ul x Us)

Lemma 0.18 [2009.11.24.14] For two pull back squares as in (23), consider a pull-back square of
the form N N
R(F1, Fy) —— Homy, (Ur,Up x Uz)

! l

Lo I Homy, (00,05 x Uy)

and the morphism
9 Fy - R(F17F2) X1 IQ — 13

whose composition with the morphism Iy — U coincides with the composition
R(F\, Fy) xp, I = R(F\, F») xp, Ui — Homyy, (U1, Uy x Uz) xp, U1 "' Uy

Then (R(F1, F2), gry ) is a universal pair for (q1,qz2).
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Proof: It follows from Lemma 0.17 and the fact that in a lcc a pull-back of a universal pair is a
universal pair.

Let us now construct a II-C-structure on CC = CC(C, p). Let n > 2 and (F1,. .., F,) € CC. Denote
(pt, F1,...,F,_2) by I. Then we have two morphisms F,,_1 : [ — U and F,, : (I, F,_1) = U.

Applying Lemma 0.15 to the corresponding pull-back squares we get a morphism
an—l,Fn I — MU(ﬁv U x U)

Set II(Fy,...,F,) = (I,Po fr, \F,) = (F1,...,Fy—2,P o fr, | F,). Since the square (22) is a
pull-back square there is a unique morphism II(Fi,...,F,) — Homy(U,U x U) such that the
diagram

(F,...,F,) —— Homy(U,UxU) —2— U

! ! l

IF,_1,Fn

I Sl Homy (U, U x U) —2— U

commutes and the composition of the two upper arrows is Q(fr,_, r,). The left hand side square
in this diagram is automatically a pull-back square. Applying to this square Lemma 0.18 we obtain
a morphism

eval(g,,.. ryy (L, Fo1, (Po fr,_y F,) opr) = (I, Fyo1, Fy)
over (I, Fy,_1) (where pr: (I, F,,—1) — I is the projection).

The fact that this construction satisfies the first condition of Definition 1.2 follows from Lemma
0.16. The fact that it satisfies the second condition of this definition follows from Lemma 0.18.

Y-universes in lcc categories.

Definition 0.19 /2009.10.27.def2/ Let C be an lcc category and p; : U — Ui, i =1,2,3 be three
morphisms in C. A X-structure on (p1,p2,p3) is a diagram of the form

172 — Fam,(Uy,Us) —_ (73
| |
Us M Uy XU, MUI(&], Uy x Us) lps
[
Homy, (U, Uy x Us)  —=— Us

such that ph is the natural morphism defined by pa, eval is the canonical evaluation morphism
and both the square and the vertical rectangle are Cartesian. A X-structure onp : U — U is a
Y-structure on (p,p,p).

A Y-structure on (p1, p2, p3) corresponds to the rule

X :U,f: X = U
O,X:Up,,f: X —>Uk> z: Xev(f,x):Us
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Definition 0.20 /2009.11.2.defl] Let C be an lcc category and p : U— U bea morphism. A
Prop-structure on p is a collection of data of the following form:

1. two pull-back squares

P——U P——1U
I
pt —— U P —U
2. a I-structure on (p, po, po)-
A Prop-structure on p corresponds to the rules:
rf: X — P>

z:P> z:Py:xz> I, f:X—>PkF][z: Xev(f,x): P

4 Universes in the category of simplicial sets

1 Well-ordered morphisms of simplicial sets

Let X, Y be simplicilal sets. A well-ordered morphism p : Y — X is a pair which consists of a
morphism ¥ — X (also denoted by p) and of a function which assigns to each n > 0 and each
o € X,, a well-ordering on p~1(0) C Y.

Note that there is a unique well-ordering on any isomorphism but, for example, the morphism
pt II pt — pt has uncountably many well-orderings since pt,, = pt for all n and we require no
compatibility conditions for well orderings of the fibers over different simplexes of the target.

Ifp:Y - X,p : Y — X are two well-ordered morphisms then we define a standard isomorphism
from Y to Y’ over X as an isomorphism over X such that for each n > 0 and each ¢ € X,
the bijection p~1(0) — (p')~(o) is order-preserving. Since there is at most one order-preserving
bijection between two well-ordered sets, there is at most one standard isomorphism between two
well-ordered simplicial sets over X.

Let WOM (X, < «) be the set of standard isomorphism classes of well-ordered simplicial sets
p:Y — X over X such that for each n > 0 and each o € X,, the fiber p~!(0) has cardinality < a.
For any f : X’ — X the pull-back p' : Y = X’ xx Y — X’ of a well-ordered morphism has a
natural well-ordering which makes WOM (X, < «) into a functor from A°Sets to Sets.

Consider WOM (A", < «). These sets depend on A™ functorially and therefore define a simplicial
set WOM(< «). Let m<A",< a) be the set of pairs p : ¥ — A", s € Y, where p €
WOM (A", < ) and s € p~!(0,) where o, is the non-degenerate n-simplex of A™. These sets also
depend on A™ functorially and define a simplicial set m(< Q).

P

Since p~!(o) carries a well-ordering the natural projection WOM (< o) — WOM (< a) carries a
natural well-ordering.

Proposition 1.1 [2009.12.10.pr1] The morphism WOM (< o) — WOM(< «) is a universal
well-ordered morphism with fibers of cardinality < a. In particular, WOM (< «) represents the
functor WOM (—, < «).
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Proof: Straightforward.

Note that WOM (< «) is obviously a contractible Kan simplicial set for any a > 0.

Let us consider now the sub-object WOF (< ) of WOM (< «) which classifies well-ordered Kan fi-

brations whose fibers have cardinality < a and let WOF (< o) — WOF (< «) be the corresponding
universal fibration.

The idea of the proof of the following result and in general the idea to use minimal fibrations is
due to A. Bousfield and reached me through Peter May and Rick Jardine.

Proposition 1.2 [2009.12.8.propl/ Let « be an infinite cardinal. Then the simplicial set WOF (<
a) is Kan.

Proof: One can easily see that it is sufficient to show that for any horn inclusion A} — A™ and
any Kan fibration p : B — A} there exists a pull-back square of the form

B —— C
[2009.12.8.eq1p | K (25)
A} —— AF
where ¢ is a Kan fibration whose fibers have cardinality < a. By Quillen’s Lemma ([8]) there is

a factorization of p of the form B LIy A} where p’ is a trivial fibration and p” is a minimal
fibration. Since trivial fibrations are surjective, both p’ and p” have fibers of cardinality < a. By
[5, Cor. 11.7, p.45] the fibration p” is isomorphic to a fibration F' x A} — A} where F is a Kan
simplicial set. Together with Lemma 1.4 it shows that there is a diagram of the form

B —_— C

A} —— A"

with pull-back squares such that ¢’ is a trivial fibration with fibers of cardinality < a. The external
square of this diagram has the required form (25).

Lemma 1.3 [2009.12.11.11] Let « be an infinite cardinal. Let p: Y — X be a map of simplicial
sets such that for each n > 0, x € X, one has |p~'(x) N Y| < a where Y,* is the subset of
non-degenate simplexes in Y,. Then for each n >0, o € X,, one has |p~*(z)| < a.

Proof: Since for any surjection s the map s* : X,,, — X, is an inclusion and there are only finitely

many surjections of the form [n] — [m] (where [n] = {0,...,n}) there exists only finitely many
pair-wise distinct pairs (x;, s;) where z1,...,x4 € Xy, and s : [n] — [m,] is a surjection, such that
si(x;) = .

Consider the map
[2009.12.11.eq1] II; s} : I;(p~ ' (z;) N Yd) — p~ () (26)
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If y € p~1(z) then there exists s : [n] — [m] and 3/ € Y;”¢ such that s*(y') = y. Then s*p(y/) =
ps*(y') = x and therefore s = s; for i = 1,...,d. We conclude that the map (26) is surjective and
therefore [p~1(x)| < a.

Lemma 1.4 [2009.12.8.14/ Let a > X be an cardinal. Let j : A — X be a cofibration (monomor-
phism) and p: B — A be a trivial Kan fibration with fibers of cardinality < «. Then there exists a

pull-back square of the form
B — Y

[2009.12.8.eq2ﬂ lq (27)
A1, x
such that q is a trivial Kan fibration with fibers of cardinality < c.

Proof: Define inductively squares

B—>BZ'

[2009.12.8.eq3} | | (28)
A x
setting pp = p and defining B; 1 by the push-out square of the form
o, g, , 0A" —— B;
[2009.12.11.eq2] l l (29)
o, g, , A" —— By
where (), ; is the set of commutative squares of the form

Lo

A" ——— X

such that its base simplex i.e. the simplex corresponding to the map A™ — X does not belong to
A.

Since for such a map f one has f~(A4) C A" the squares (28) are pull-back squares. Define Y as
colim B;. Then one verifies easily that (27) is a pull-back square and ¢ is a fibration. Let us show
that the fibares of ¢ have cardinality < «. Since o > N it is sufficient to show that, assuming that
the fibers of B; — X are of cardinality < «, the fibers of B;y; are. The squares (29) show that for
each n and x € X,, the fiber pz;ll (z) N (Biy1)7? is of the form (p; *(x) N (B;)7%) I Q(n, i;x) where
Q(n,i;x) is the subset in Q(n,i) which consists of squares whose base simplex A" — X is x. It

remains to observe that the number of such squares is < a™*! and to apply Lemma 1.3.

The category A°Sets is a topos and in particular an lcc. The relative internal Hom-objects in
A°PSets can be explicitly described as follows.

Lemma 1.5 [2009.12.8.15/ Let p1 : By — B, pa : B2 — B be morphisms of simplicial sets.
Consider the simplicial set H(p1, p2) whose set of n-simplexes is the set of pairs of the form (f, f)
where f: A" — B and f: f*(p1) — p2 is a morphism over B.
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Let H(p1,p2) — B be the morphism ev : (f, f) — f and let H(p1,p2) xp E1 — E> be the morphism

which sends ((f, f),o) to f(o). Then (H(p1,p2),ev) is an internal Hom-object from Ey to Ey over
B.

Lemma 1.6 [2009.12.8.16/ Let p; : By — B, p2 : E2 — B be Kan fibrations. Then H(py,p2) — B
is a Kan fibration.

Proof: It follows immediately from definitions and the fact that for a fibration p; : £1 — B and
an anodyne morphism A — X over B, the morphism A xp E1 — X xXp Fj is anodyne.

Lemma 1.7 [2009.12.9.11] Let p; : By — B, ps : E3 — B be Kan fibrations and f : E1 — FE»
a morphism over B which is a weak equivalence. Then for any g : B — B the pull-back f :
B’ xg E1 — B’ xg Fy is a weak equivalence.

Proof: Using the factorization of f into a trivial cofibration and a trivial fibration and the fact that
the pull-back of a trivial fibration is a trivial fibration we may assume that f is a trivial cofibration.
A trivial cofibration between two fibrant objects (in the category over B) is a homotopy equivalence
and the pull-back of a homotopy equivalence is a homotopy equivalence.

Lemma 1.8 [2009.12.9.13] Let p; : By — B, ps : B3 — B be Kan fibrations and f : E1 — FE»
a morphism over B. Suppose that for any n > 0 and any simplexr o : A" — B the pull-back
fo i A" xpg E1 — A" xg Es is a weak equivalence. Then f is a weak equivalence.

Proof: Replacing pi, po by minimal fibrations we may assume that p;, po are minimal. Then our
condition implies that f, is an isomorphism for each ¢ and therefore is an isomorphism globally.

Let p1, p2 be Kan fibrations as above. Consider the internal Hom-object H(p1,p2). A morphism
f+ A — H(pi,p2) defines a morphism pr(f) : A — B and a morphism fib(f) : A xgp E1 —
A xp Ey. Let Eq(p1,p2)n be the subset of simplexes o : A™ — H(p1,p2) such that fib(o) is a weak
equivalence. Lemma 1.7 implies that these subsets form a simplicial subset in H(p1,p2) which we

denote by Eq(p1,p2) or Eqp(p1,p2).

Lemma 1.9 [2009.12.9.12] Let p1, p2 be Kan fibrations as above and f : A — H(p1,p2) a mor-
phism. The fib(f) is a weak equivalence if and only if Im(f) C Eq(p1,p2).

Proof: Straightforward using Lemmas 1.7 and 1.8.

Lemma 1.10 [2009.12.9.14] Let p1, p2 be Kan fibrations as above, f : E1 — Ea a morphism over
B and b € B. Assume that B is connected and that p;*(b) — py *(b) is a weak equivalence. Then
f is a weak equivalence.

Proof: In view of Lemma 1.8 we may assume that B = A™. Since the pull-back of a weak
equivalence along a fibration is a weak equivalence and b : A — A" is a weak equivalence, we
conclude that p;'(b) — Ey and p,*(b) — Es are weak equivalences. Therefore, if f, : p;*(b) —
Dy L(b) is a weak equivalence then so is f.
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Lemma 1.11 [2009.12.9.15] Let p1, pa be Kan fibrations as above. Then Eq(p1,p2) is a union of
connected components of H(p1,p2) i.e. if (A,a) is a connected pointed simplicial set and f : A —
H(p1,p2) a morphism such that f(a) € Eq(p1,p2) then Im(f) C Eq(p1,p2).

Proof: Follows immediately from Lemma 1.10.

Let p: E — B be a fibration. Let p1 : E x B — B x B and ps : B x E — B x B be the obvious
projections. Consider the space H(p1,p2) over B x B. The natural isomorphism pfl(A(B)) =
Py '(A(B)) where A is the diagonal defines a morphism B — H(py,p2) over B x B which, by
Lemma 1.9, takes values in Eq(p1,p2). Let us denote this morphism by mm, : B — Eq(p1,p2).

Definition 1.12 [2009.12.9.defl/ A Kan fibration p : E — B is called univalent if the morphism
mmy : B — Eq(p1,p2) defined above is a weak equivalence.

Theorem 1.13 [2009.12.9.th1/ The Kan fibration
Dfib m(< a) > WOF (a)

18 univalent.

Proof: Let E = WOF(< ) and B=WOF(< a). Let P, : ExB — Bx B, Py: BxE — Bx B
be the projections. Proposition 1.1 implies easily that the space H (P, P,) represents the functor
which sends X into the set of (standard isomorphism classes of) triples of the form p; : Y1 — X,
p2: Yo — X, f: Y] — Yo where pi,po are well ordered Kan fibrations with fibers of cardinality
< a and f is a morphism over X. The subspace Eq(P;, P») classifies triples such that f is a weak
equivalence.

Consider now the morphism r : B — Eq(P,P,) - B x B ¢ B. To prove the theorem it is
sufficient to show that the composition Eq(P;, P») — B — Eq(Py, P,) is homotopic to the identity.
This composition represents the functor morphism which sends (p1,p2, f) to (p2, p2,id).

Applying Lemma 1.14 to the universal equivalence of fibrations over Eq(Py, P») and using the axiom
of choice we construct the required homotopy.

Lemma 1.14 [2009.12.11.13/ Let p; : Y1 — X, p2 : Yo = X be two Kan fibrations and f : Y] —
Y5 be a morphism over X which is a weak equivalence. Then there exists a fibration q : Z — X x Al
and a morphism F : Z — Yo x Al over X such that the fiber of F' over X x {0} is isomorphic to
f and the fiber over X x {1} is isomorphic to Idy,.

In addition if a > Ny is a cardinal and the fibers of p1 and pa have cardinality < o then we can
choose q such that its fibers have cardinality < c.

Proof: Let Y1 23 Y/ Box , Yo el Y, "X X be factorizations of p1 and pp such that p) is a trivial
fibration and p! a minimal fibration which exist by [8]. If s; is a section of pj (which exist since all
simplicial sets are cofibrant) then p f s is a weak equivalence between two minimal fibrations over
X and therefore an isomorphism. Let us denote it by f’:Y{ — Y3.
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Applying Lemma 1.4 to the trivial fibration pj IT p,, : ¥; I Yo — Y/ II' Y] and monomorphism
j=(io f/'Iiy): Y/ Y] — Y] x Al we obtain a pull-back square of the form

vy, —~ 2z

wl L
Y/ IY] —L— Y] x Al

Consider now the square

VY, My o Al

kl J{pgxld

Z  —— Y{x Al
q
Let us show that it commutes. (The following argument was supplied by Thomas Streicher). It
clearly commutes on the Y summand. On the Y; summand the corresponding maps are (up to
inclusions into Yy x A!) of the form f’ o p} and p o f. Note that a priory it is not clear that
f'op) = pho f. However these two maps are homotopic since in the homotopy category over X,
the morphism p) and therefore its section s; are isomorphisms and therefore s; o p is homotopic
to the identity. On the other hand Y] is a minimal fibration over X and any two morphisms with
values in this simplicial set which are homotopic and coincide after projection to X are equal.

Since k is a cofibration (monomorphism) and p) x Id is a trivial fibration, there is a morphism
F : Z — Y, x Al which splits this square into two commutative triangles. One verifies easily that
the pair (Z, F') satisfies the conditions of the lemma.

Letp': E— B, p: U—U be two Kan fibrations. For a simplicial set X denote by HInd(p', p)(X)
the set of pairs ( f f) where f ExX— U f: B x X — U are morphisms such that the square

ExX —1 40

[2009.12.23.%;}% lp (30)

BxX — U

is a homotopy pull-back square i.e. such that p o f=fo (p’ x Idx) and the obvious morphism
E x X — (B x X) xy U is a weak equivalence. Since p’ and p are fibrations, the composition of a
homotopy pull-back square of the form (30) with a pull-back square

ExX —— ExX

! l

BxX —— BxX

defined by any morphism f : X’ — X is a homotopy pull-back square. Therefore HInd(p',p)(—)
is a contravariant functor on A°Sets and Lemma 1.8 implies easily that it is represented by the
simplicial set HInd(p',p) whose set of n-simplexes is HInd(p',p)(A™).

Proposition 1.15 [2009.12.23.propl]/ A Kan fibration p : U — U such that U is a Kan sim-
plicial set is univalent if and only if for any Kan fibration p' : E — B, (HInd(p',p) # 0) =
(HInd(p',p) is contractible).
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Proof: Let p' : E — B be a Kan fibration such that HInd(p',p) # 0 i.e. such that there exists a
pull-back square of the form N
E——U
f

S

B — U
!
Let X be a simplicial set. Then a morphism X — HInd(p,p) is given by a pair of a morphism
fx : Bx X — U and a weak equivalence £ x X — (B x X) ¢, X, U over B x X. The morphism
E x X — B x X is canonically isomorphic to the projection (B X X)topry Xp U — BxX.
Therefore, morphisms X — HInd(p',p) correspond to morphisms B x X — Eq(p x Idy,Idy x p)

whose composition with Fq(p x Idy, Idy X p) PR x U3 U equals foprg : Bx X — B EN U.

Since U is assumed to be a Kan simplicial set the morphism prs o pg, is a Kan fibration. If p is
univalent it is a trivial Kan fibration and from the previous description of H [ nr(p’, p) we conclude
that for any cofibration X C Y and a morphism F = (f, f) : X — HInt(p/,p) there exists an
extension of F' to Y i.e. that HInt(p/,p) — pt is a trivial Kan fibration.

To prove the other implication consider the case when B = pt. Then our considerations show that
HInd(p',p) is isomorphic to the fiber of prg o pgg over f(pt) € Up. Since any Kan fibrations with
contractible fibers is a trivial Kan fibration we conclude that the required implication holds.

2 Well-ordered simplicial sets

We consider a triple (ST, ST’, M) where ST, ST' are ZF-like set-theories and M is a model of ST
and ST’. These data defines ”the set of all ST sets” as an ST’-set. Similarly, these data provides
an unambiguous definition for objects such as ”the set of isomorphism classes of simplicial sets”
etc.

Our first step is to choose a convenient set-level model of the 1-category of simplicial sets.

Definition 2.1 [2009.12.8.defl] A well-ordered simplicial set is a simplicial set (X,,)n>0 together
with well orderings < on each of X,,.

Note that the well orderings on X, are note assumed to be compatible with the boundary or
degeneracy maps. By a morphism between two well-ordered simplicial sets we will mean a morphism
between the corresponding simplicial sets without any regard for orderings. A morphism which
preserves well-orderings on each of X,, will be called a standard morphism.

The standard facts about well-ordered sets imply that there is at most one standard isomorphism
between any two well-ordered simplicial sets. Therefore, we may consider a set level model C' of
A°PSets where Ob(C) is the set of standard isomorphism classes of well-ordered simplicial sets and
Mor(X,Y) is the set of all morphisms from X to Y. The uniqueness of standard isomorphisms
implies that the composition of morphisms is well defined.

For well-ordered simplicial sets X, Y denote by X x Y the well-ordered simplicial set whose terms
X, x Y, are well-ordered with respect to the lexicographical ordering such that the projection to
X (but not to Y) is a standard morphism.
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For f: X’ = X and p: Y — X define the standard pull-back square

frvp) Ty

] J»

x I x

setting f*(Y,p) to be the subset in X’ x Y defined by the usual equations with the induced well-
ordering.

One verifies easily the following results.

Lemma 2.2 [2009.12.8.11] For any p the morphism py is standard and p : Y — X is standard if
and only if Id% (p) = p.

Lemma 2.3 [2009.12.8.12] For any p : ¥ — X and g : X" — X', f : X' — X one has
(f9)*(p) = 9" f*(p), a(f9,Y.p) = a(g, f*(p), pr)a(f,Y,p) and pyy = (py)q-

Note that ¢(f,Y,p) need not be standard even if both p and f are standard (consider e.g. the case
when X = pt).

In what follows we choose a well-ordering on the sets A7 and consider the standard simplexes as
objects of C with respect to this ordering.

5 Type theoretic constructs in terms of C-structures

1 II-C-structures

The notion of a II-C-structure is equivalent to the notion of a contextual category with products
of families of types from [9]. We use the name II-C-structures to emphasize the fact that we are
dealing here with an additional structure on a C-structure rather than with a property of such an
object.

Let us recall first the following definition.

Definition 1.1 [2009.11.24.def2/ Let C be a 1-category. Let g : Z =Y, f:Y — X be a pair of
morphisms such that for any U — X a fiber product U X x Y exists. A pair

(w: W —=X,h:WxxY — 2)
such that g o h = pr is called a universal pair for (f,q) if for any U — X the map
Homx(U,W) — Homy (U xx Y, Z)

of the form u — ho (u x Idy) is a bijection.

If a universal pair exists then it is easily seen to be unique up to a canonical isomorphism. We denote
such a pair by (IL(g, f),eq,f : Il(g, f) Xxx Y — Z). Note that if f':Y - X andpr: V' xx Y =Y
is the projection then

(I(pr, ), pr" 0 eprp 1 (g, f) xx Y = V') = (Homx (Y,Y'), ev : Homx (Y,Y') xx Y = Y’)

so that relative internal Hom-objects are particular cases of universal pairs.
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Definition 1.2 [2009.11.24.defl] A II-C-structure is a C-structure CC' together with additional
data of the form

1. for each' Y € Ob(CC)>2 an object II(Y) € Ob(CC) such that ft(IL(Y)) = ft3(Y),
2. for each’ Y € Ob(CC)>2 a morphism eval : T(ft(Y),II(Y)) = Py (IL(Y)) = Y over ft(Y),

such that

(i) for any f: Z — ft*(Y) one has f*(II(Y)) = II(f*(Y)) and f*(evaly) = eval(y),
(ii) (IL(Y),evaly)) is a universal pair for (py,psi(v))-

Let us now prove that this definition can be re-written in a less compact but purely equational
form. As before let us write B,, for Ob(CC),, B, for Ob(CC),, etc.

The C-structure is completely determined by the sets By, §n+1, n > 0 and maps 0 : §n+1 — By,
ft: Bpy1 — Bp, 6 : B, = By and the maps Ty41, Trt1, Snt1, Snt1 considered above.

Suppose now that we are given a II-C-structure. Then we have maps
1. II: Bn+2 — Bn+17 n > 07
2. X §n+2 — §n+17 n > Oa

3. ev: (But1)o X gt (Bug2)t Xo (Bus1) = Buy1, n >0

as follows. The map II is the map from Definition 1.2. Since (II(Y'), evaly) is a universal pair for
(py,pfi(v)) the mapping

¢y : {f € Buy1 |0(f) =TL(Y)} = {5 € Buya|d(s) = Y}

given by the formula

oy (f) = evaly o T(ft(Y), f)

is a bijection. One defines Ay as the inverse to this bijection.

The map ev sends a triple (r,Y, f) such that 9(r) = ft(Y) and 9(f) = II(Y) to

ev(r,Y, f) = §(r, eval o T(ft(Y),f))

as partially illustrated by the following diagram:

42



Lemma 1.3 [2009.11.30.11] Let n > i > 0, Y € Bpyo, g: Z — ft'P2(Y) and f € B(IL(Y)).
Then one has

g (By (f)yi+2) = Ggeiviire) (g™ (fri+ 1))
Proof: Let hy = q(g, ft(Y),i+ 1), ha = q(g, ft'Y),i + 2). Then one has
g by (f),i +2) = Bi(dy (f)) = hi(evaly o T(ft(Y), f)) = hi(evaly) o h{(T(ft(Y), f))
= evalp: (v)Pys(fo(v),i+1) (12()) = ny(v)(ha(f)) = Ggr (viit2) (9" (f i+ 1)).

As an immediate corollary of Lemma 1.3 we have:

Lemma 1.4 [2009.11.30.12] Letn > i >0, Y € Buya, g: Z — ftiT2(Y) and r € B(Y). Then
one has
G, i+ 1) = A(g*(ryi +2)).

Lemma 1.5 [2009.11.30.13] Let n > i > 0, Y € Bui2, g : Z — ftF2(Y), r € B(ft(Y)) and
f e B(IL(Y)). Then one has

g"(ev(r, Y, f),i+ 1) = evl(g"(r,i +2), " (Vi +2), 9" (f,i + 1))

Proof: Let hy = q(g, ft(Y),i+ 1), ha = q(g, ftY),i +2).
g (ev(r,Y, f),i+ 1) = h3(S(r,eval o T(f1(Y), f))) = hi(r*(eval o T(fH(Y), f))) =
)

= (W3(r))*hi(eval o T(ft(Y), ))) = (W3(r))* (i (cval) o hiplyy(f) =
= (" (i + ) (eval o Py sy (B5(F)) = ev(g* (i +2), g7 (Vi 4 2), 6" (f,i + 1)),

Then one has:

Proposition 1.6 [/2009.11.29.propl/ Let CC = (Bn,gn,ft, 0,6) be a C-structure. Let further
(I1, eval) be a Il-structure on CC. Then the maps 11, A\, ev defined by this structure satisfy the
following conditions:

1. for'Y € B,io one has

(a) fEINY) = f*(Y),
(b) forn+1>i>1, Z € Bpyo_; such that ft(Z) = ft'7Y(Y), T(Z,1(Y)) = I(T(Z,Y)),
(¢) forn+1>i>1,t€ Byyi_; such that d(t) = ftH1(Y), St I(Y)) = I(S(¢,Y)),

2. fors e §n+2 one has

(a) OX(s) =110(s),

(b) forn+1>i>1, Z € Buro_; such that ft(Z) = ftit1 d(s), T(Z,\(s)) = MT(Z, s)),

(c) forn+1>i>1,t€ Buyi_; such that d(t) = ft1(s), S(t, A(s)) = A(S(t, s)),
Y)

3. forre §n+1, Y € Byio and f € §n+1 such that O(r) = ft(Y) and O(f) = II(
(a) O(ev(r,Y, f)) = S(r,Y),

one has
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(b) forn+1>i>1, Z € Bpya_; such that ft(Z) = ft'*1(Y),
I(Z,r),T(2,Y),T(Z,[)),
(¢) forn+1>i>1,t€ Byyi_; such that d(t) = ftH1(Y),
S(t,ev(r,Y, ) = ev(S(t,7), S(t,Y), S(t, f)),
4. forr € Bpy1, s € Buys such that ft(0(s)) = (r)
ev(r,0s,\(s)) = S(r, s)

T(Z, ev(r,Y, f)) = ev(T

(B-reduction),
5. for Y € Bpnya, f € Buy1 such that O(f) = II(Y),
2009.11.30.0ldeq1]\(ev (3 sy, T(ft(Y),Y), T(ft(Y), ) = f (31)

(n-reduction,).
Proof: (la) Follows from Definition 1.2(1). (1b) Follows from Definition 1.2(i) applied to f =
q(pz, ft2(Y),i —1). (1c) Follows from Definition 1.2(i) applied to f = q(t, ft2(Y),i — 1).

(2a) Follows from the definition of A. (2b) Follows from Lemma 1.4 applied to pz. (2c¢) Follows
from Lemma 1.4 applied to .

(3a) Follows from the definition of ev. (3b) Follows from Lemma 1.5 applied to pz. (3c) Follows
from Lemma 1.5 applied to t.

(4) One has

ev(r,ds,A(s)) = r*(eval o (pyyyy(A(s)))) = r"(dy (s)) = r"(s) = S(r, ).
(5) Let Ty = T(ft(Y), ft(Y)) and To = T'(ft(Y),Y). Then
ev(B vy T(FHY), V), T(fHY), f)) = 85yy (evalr, o pF, (D (f))) =
= 0y (evalmy) 0 6%,y \PTy DYy (y) (f) = eval(;;tm(:pz) ° Py (f) = evaly o ply iy (f) = dy (f)
which implies (31) by definition of \.

The converse to Proposition 1.6 holds as well. Let CC = (B,, En, ft,0,9) be a C-structure and let
1. II: Byy2 = Bpy1, n > 0,
2. A Bpyo — Bpi1, n >0,
3. ev: (Bui1)o X st (Bui2)u Xo (Bny1) = Bui1, n >0

be maps satisfying the conclusion of Proposition 1.6. For each Y € §n+2 define a morphism

evaly : T(ft(Y),II(Y)) = Y

by the formula
6’Ualy = q(pZ, Y) o €U(p*Z((5ft(y)), TQ(Z, Y), (5z)
where Z = p}y 5 (TI(Y)).

44



Proposition 1.7 [2009.11.30.prop2/ Under the assumption made above the morphisms evaly
are well defined and (11, eval) is a II-structure on CC.

Proof: Let us show that evay is well defined. This requires us to check the following conditions:

1. ft2(Y) = ft(II(Y)), therefore Z is defined,

2. ft(Z) = ftO(6sy(y)) since ft(Z) = ft(Y), therefore p} (6 s4(y)) is defined,

3. ft2(Z) = ft3(Y), therefore Ty(Z,Y) is defined,

4.0y (65(v)))) = P5Phy) (JHY), fFU(T2(Z,Y)) = To(Z, ft(Y)) = pyphyy) (FEH(Y)),

5. 0(6z) = py(Z) = p}p}t(y)(H(Y)) = gy (zy), therefore ev = ev(pZ(dpyyy), 12(Z,Y),dz7) is
defined,

d(ev) = (p7(0:v)))" (12(2,Y)) = (p7(01ex))) T (2, T(f1(Y),Y)) =
= Pz (85v)) " (p2)" (L))" (Y, 2),2) = (070 510))) 4Pz, Py (FEY ) (Pgev)) " (V2 2) =
= (Pz5ev))) a(pz, Py (FH(Y))) a(pse(ry, SUY)) (V) =
= (qruv), SUY))a(pz, Py (FE(Y)))pZ0530)))" (V) = p7(Y)

and q(pz,Y) : p5(Y) = Y. Therefore evaly is defined and is a morphism from Z to Y as
required by Definition 1.2(2).

We leave the verification of the conditions (i) of (ii) of Definition 1.2 for the later, more mechanized
version of this paper.

2 Impredicative [I-universe structures.

Definition 2.1 [2009.12.04.defl] Let CC = (B, B, ... 11,...) be II-C-structure. An impredica-
tive IT-universe structure on CC' is a collection of data of the form

1. an object Qc Bs,
2. for anyn >0,Y € Byi1, g: Y — fH(Q) a morphism ma(g) : ft(Y) — ft(ﬁ),
such that the following conditions hold

(i) for any g as above WQ(g)*(ﬁ) = W(g*(ﬁ)),

(ii) for any g as above and h : Z — ft(Y) one has

ma(g) o h =ma(goq(h,Y))
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The sequent presentation of an impredicative II-structure looks as follows. Given an impredicative
Il-universe (€2, 7o) denote by € the object ft(Q). Note that for any Y € B, and Z € By the
mapping which sends s € B, 1 (T,,(Y, Z)) to s0q(py,n, Z) defines a bijection ¢y : By (T(Y, Z)) —
Homcc(Y, Z).

Foranyn > 0,Y € Bpi1, $ € Bpio(Tai1(Y,Q)) define o(s) € Byt (To(ft(Y),2)) by the formula
Ma(s) = 67y, (maldv(9))):
One verifies immediately that the conditions of Definition 2.1 imply that
L. S(Ig(s), Tu(FE(Y), ) = T1(S(s, Tri1 (Y, D)),
2. forn+1>i>1, Z € Byyo_; such that ft(Z) = fti(Y), T(Z,qg(s)) = Lo (T(Z, s)),
3. forn+1>i>1,t€ B,y such that 9(t) = fti(Y), S(t, Ha(s)) = o (S(t, s)).
Conversely one has:

Proposition 2.2 [2009.12.4.propl/ Let CC = (B,E, .. 10,...) be II-C-structure. Let Q€ B,
Q= ft(2) and N N

o : (Bnt1)7,,(—.0) X0 (Bnt2) = Bt
be maps satisfying conditions (1),(2),(3) listed above. Then they correspond to a unique impredica-
tive II-structure on CC.

3 Predicative II-universe structures.

Definition 3.1 [2009.12.1defd4] Let CC = (B, B,...,1I1,...) be II-C-structure. A predicative T1-
universe structure on C'C' is a collection of data of the form

1. an object Qe B,

2. forany f: X — ft(ﬁ), g: f*(ﬁ) — ft(2) a morphism lq(f,g) : X — ft(ﬁ),
such that the following conditions hold

(i) for any f.g as above Ta(f, 9)* () = H(g* (%),

(ii) for any f,g as above and h : Z — X one has
To(f,9) o h =Ta(f o h,g o q(h, f*(2)))

Note that any impredicative universe structure defines a predicative universe structure by the
formula II(f, g) = II(g).

The sequent representation of a predicative II-universe structure looks as follows.

Proposition 3.2 [2009.12.4.prop2/ Let CC = (B, B,...,1,.. .) be I1-C-structure. Any predica-
tive Il-universe structure on CC' is uniquely determined by a collection of data of the form

1. an object Q € By (we will write Q for ft(2)),
2. a morphism g : I(To(Q, f1())) — ft(),

which satisfies the following conditions.
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6 The system of Coq

The goal of these notes is to collect the material needed to prove that the system of inductive
constructors and reductions supported by the Coq proof assistant is compatible with the univalent
interpretation of type theory. For information about inductive definitions in Coq see [10], [2][p.77]
(good notations) and [7].

1 A type system CICO

We start with a subset of current Coq system with a simplified universe structure which we call
CICO. Namely, we will only allow for two universes Prop and Type0 = Type(0) with Prop C
TypeO and Prop : TypeO but without TypeO : Type0. We only allow universal quantification
over expressions which type to TypeO and our Prop is impredicative i.e. the product of any
family of members of Prop again types to Prop. We will also use slightly different syntax in our
description. We will use || and A and most notably we will make the evaluation explicit and having
three arguments the first of which is the domain of the function to be evaluated. This allows one
to have unambiguous n-reduction.

For simplicity of notation we will use named free variables (instead of the free variables being always
named by natural numbers as in Proposition 3.1). We will also use ”vector notation” writing & : E
for 1 : E1,...,x, : By etc. and write I' to denote any valid context. To distinguish the names of
variables and constructors (including constants) from the symbols which denote expressions we will
use bold face for the former (except for [], A etc. where no ambiguity is possible). Since writing
out the three-argument evaluation expressions would make the text very hard to read we will often
write ev(f,Z) instead of ev(Xy,...,ev(X;,...,ev(Xy, f,21),...,2i),...,x,) where X; is the type
of ZTj.

Remark 1.1 [2010.08.08.rem1] Note that if one does not include the substitution rules of Propo-
sition 3.1 explitly, the context and judgement formation rules should be such that the variables
introduced by a context ”above the line” can appear in the expressions ”below the line” either
among the context variables or among the bounded variables of the expressions. If a variable in-
troduced in a context "above the line” appears in an expression below the line as a free variable
such a rule will be unstable under the substitution of this variable by an expression.

The basic context and judgement formation rules in CICO are as follows.

Basic rules

X1:FB1,...,Xn: B>
X1:E1,...,Xn2En|_Xi:Ei

1=1,...,n

The universe structure

I's I'=T: TypeO I'> I'-P:Prop
I'T: TypeOr It: T I',P: Prop> Ip: Pk
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I's I'-P:Prop
I'-Prop: Type0 TI'F P:TypeO

Underlying A-calculus

Tt1:T71,t2: 72>
L3 :[[t1:T1.72>

I'T1:Type0 I',t1:T1FT2:TypeO
FH][t1:T1.72: TypeO

It1:7T1+T2: Prop
I-][t1:T1.72: Prop

Lt1:T1H¢2:72 PEf:][t1:T1.72 TkHt:T1
PEAtY:T1.62:[[t1:T1.72 I'Fev(Tl, f,t): T2[t/t1]

B — reduction : ev(T1,At1: T1.t2,t) \ t2[t/tl]  n—reduction: Atl:Tl.ev(T1, f,t1)\, f
Note that the - and n-reductions are defined on the level of the system of expressions.

Inductive types (Ia)
I'>
I'~0:Prop

Lt:T> Tha:)
I'ke(x,T): T

CHT:Type0 ThHax:() )
I'ke(x,T): T

(resp.

t1:7T1> I,t2:72>
Lt (71, 7T2)>

I'ET1:TypeO0 T'F=T2: Typel
I'-11(T1,72) : TypeO

)

(resp.

Inductive types (II)

What follows is just an explicit form of a general inductive construction of the CIC with additional
restrictions on the ”sizes” of the relevant type expressions and with the condition that in the
constructors all the non-recursive components are grouped together and placed in front of the
"recursive” ones. The input ("above the line”) data for a general inductive definition in a context
I'> looks as follows:
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1. integers: na > 0 (the number of ”pseudo-parametrs”) and nc > 0 (the number of construc-
tors),

2. for each i = 1,...,nc and integer nd® > 0,
3. a valid context (T';ay : A1,...,ana : Apa>)

4. for each i = 1,...,nc a valid context of the form (T, b . gib), such that each B](-i) types to
TypeO in the context where it is defined,

5. for each ¢ = 1,...,nc and each j =1,...,na a valid judgement of the form

(0,60 BO =l Ay jay, ... mlY | Jay1]),

6. foreachi=1,...,ncand each j = 1,...,nd® a valid context of the form (T, b E(i), d@d .

D). >), such that each expression D,(:)’j types to TypeO in the context where it is defined,

7. foreachi=1,...,nc,j=1,...,nd® and k =1,...,na a valid judgement of the form

(0,60 : B d@d . DO 1 ¢ 45 Jay,. ., g\ Jar-1])

For simplicity of notation we will write simply A, B, D, q and m for a : A, (B(l) : g(l)), cel, (5("6) :
B(9)) etc. To further simplify the matter we will write BID (”Basic Input Data”) for the sequence
(na; ne; nd®, ... nd™); A; B; D; g; m) which has to be included in the notation for every object
generated by the inductive construction.

The output consists of the following objects:

1. A valid judgement of the form (I' - IT(BID) : [[a : A.Type0). Note that the expression
IT(BID) bounds the variables ay, ..., aq, b@ and d®-.

2. For each i = 1,...,nc a valid judgement of the form
I'+c(i,BID): [ b : B,

H Z§Z) : (H a(i),l :E(i)y]-’ eV(IT(BID),J(l)’l)),

H Z(i)md“) . (H a(i)7nd(i) :[j(i),nd(i)’ ev(IT(BID),(f(i)’nd(i)))’

ev(IT(BID), ")
where each c(i, BID) again bounds all of the variables ay, ..., apq, b® and d@+.

3. A valid judgement of the form
I' - rect(ar,r, BID) : Trect(at,r, BID)

where
Trect(ar,r, BID) :=

= H P: <H ar: A, ev(IT(BID),atr) — TypeO) ;

49



(RCY—> ... — > RCMI_ > H ar: A, H :ev(IT(BID),at),ev(ev(P,ar),r))

and

RCW = [ B : B,
[T12": (] d9*: DO ev(T(BID), 79Y)),
[T 57 (T d9*: DO ev(ev(P,g@1), ev(al”, dOY))),

zn() "’zn() —(3) .nd®
[Tz = (T dO ", ev(IT(BID), 7)),
}nd®  [5(0)nd® i) ; A nd®
I v : (T 9 . ev(ev(P,g ), ev(z) . dDmY))),
ev(ev(P,m®), ev(ev(c(i, BID),b%"),z ).

4. The constructions IT, ¢ and rect satisfy the following reduction rule which is called ¢-
reduction:

Note that with the previous definition (which we will call P-definition) one can not use inductive
elimination to define functions from inductive types to ”large types”. E.g. given a type expression
T there is no way to define a function f : nat— > Type0 such that fn=T".

Alternatively we can define the )-form of inductive constructions as follows. The input data is the
same. The output data is of the form:

1. A valid judgement of the form (I' - IT(BID) : [][&: A Type0).
2. For each ¢ = 1,...,nc a valid judgement of the form
I'+c(i,BID): [] b®: B,
IT2": ([ d': DD, evaT(BID),d"Y)),
[T 20 : ([T 9 : 5O, evan(BID), 7)),
ev(IT(BID), ")
3. For any valid context of the form
(T,ar : A,r : ev(IT(BID),at),x : Qr>)
a valid judgement of the form
I'F rect(ar,r,Q, BID) : TrectQ(at,r,Q, BID)

where

TrectQ(at,r,Q, BID) :=
RCQW-> ... —>RCQ" - > ][ at:A]] r:evAT(BID),at),Q
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and

ROQY = H b®
I = H d® 1 ev(IT(BID), *@’1)),
H y( g H d®1 . DO Q[ /ar, ev(z1 ,dOy /r)),

H H dl) nd<) _‘ (4) nd<) eV(IT(BID) (z),nd(i)))7
1),n n i),nd® 3).nd®
[1v%: H d@nd? ; pOnd? Qg nd? s ev( O dOd™) ),
QI /ar, ev(ev(c(i, BID),b"),z) /r].

4. The constructions IT, ¢ and rect satisfy the following ¢-reduction rule:

Finally, there is the following R-form of inductive constructions which is stronger than the previous
two. The input data is the same but without the restriction on B and D to be small. The output
data is of the form:

1. A valid context of the form (I, af : A,r : ITR(ar, BID)>),

2. For each 1 = 1,...,nc a valid judgement of the form
I'+c(i,BID): [ b : B,

12 (] d9": B ITR(BID) (7 /ak]),

IT 2%, : (] d@"4” : D@4 ITR(BID)[g" "4 /ai),
ITR(BID)[m /at]
3. For any valid context of the form
(T,at : A,r : ITR(BID),x : Qr>)
a valid judgement of the form
I'F rect(at,r,Q, BID) : TrectR(at,r,Q, BID)

where
TrectR(ar,r,Q, BID) :=

ROQW-> ... —>RCQ" - >[]ar: A[] r: ITR(BID),Q

and

RCQ(i) _ H B . g(q
I1 = H d®': DO ITR(BID)[7 >1/ar])
[T+ : (T dOt: DO, QIO /at, ev(z?, d1) /x]),
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),nd® i),nd(® D)nd® ;-
H d() (JJ d®me D()d JITR(BID)[gW " /ar)),

H yg;(i) . (H d(z),nd : D(z),nd ,Q[q (4),ndC /ar ev( (C)l(l)’d(z),nd )/I‘]),
QI /ar, ev(ev(c(i, BID),b"),z) /r].
4. The constructions ITR, ¢ and rect satisfy the following ¢-reduction rule:
In the case of R-form we also have an extra rule which says that if B and D are small (type to
Type0) then (I'yai : A+ ITR(ar, BID) : Type0) is a valid judgement.

The Coq syntax for an inductive definition with these input data and values in a sort s (where
s = Prop, Set or Type) would look as follows:

Inductive X : forall &: A, s := ¢V : ¢V | ... |ene) ; ¢e),
Where

C .= forall b . _‘(i),
forall 2y : (forall d" : DY, X @"),..., foralt 2, - (foraut d¥) - BV ' x g ),
X m®,
We will use below the notation C¥ for the direct analog of this expression in CICO as well. To
write this analog explicitly one has to replace all ” forall w : W,” with "[[ w : W.” and write

our three-arguments ev(...,...,...) wherever applications occur. For example, X m® will look as
follows:
X @) = ev(A (i) (@) A (D @) /o
ev(X,m") =ev(Apamy’/ar,...,my,_1/ana—1],...,ev(Ajm;’ /ag,..., mjfl/aj,l], e

ev(Al,X,mgi)), e ,mg-i)), ...m¥)

na

Example 1.2 The following list gives the form of our BID for some of the inductive constructions
which are often used in Coq.

1. To define natural numbers nat one takes na = 0, nc = 2, ndV = 0, nd® = 1, B» = ()
(empty sequence), B® = 0, 552) = ().

2. To define binary trees one takes na = 0, nc = 2, ndV) = 0, nd® =2, BO = (), B® =),
=(2 =(2
D =0, B = 0).

3. Given (I' - T : Type0) one defines the equality types for T" using the input data of the form
na=2nc=1,ndY =0, A= (t1:T,t2:T), BO = (t:T), mH = (t,t).

4. Given (I' H T'1 : Type0) and (I',t1 : T1 - T2 : Type0) one defines the dependent sum
(in the standard notation Y t1 : T1.72) using the input data na = 0, nc = 1, ndM) = 0,
BW = (t1:T1,t2:T2).

5. empty, unit, unions.
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2 Representing inductive definitions in Coq as combinations of elementary ones

In Coq an inductive definition with parameters is just a combination of an inductive definition
without parameters in a wider context with the dependent product and abstraction. For a detailed
translation see Appendix A. In what follows we will discuss only inductive definitions of the basic
Calculus of Inductive Constructions as described in [10], [7] and [2, pp.77-80].

Recall, that in the notation of CIC one writes (a : A) for what in Coq is foralla : A, and in the
standard type-theoretic notation [ a : A. and [a : A] for what in Coq is funa : A => and in the
standard type-theoretic notation Aa : A. .

A general expression for an inductive type in a context I' is of the form I(X : As){C®) ... ()}
where A s is an "arity” i.e. a valid type expression in I" of the form

(@: A)s=(a1: A1) ... (ana : Ana)s

where s is a sort and each C®) is a type expression defined in the context T, X : A s which has the
form of a ”type of constructor expression” (cf. [2, p.77]).

In Coq inductive type of the form I(X : f_l's){C(l), ..., C)} s introduced using the following
syntax:

Inductive X: forall a_1:A_1, forall a_2:A_2, ... forall ana:A na,s:=cc.1: C1]|..|ccnc: Cnc.

Lemma 2.1 [2010.1.19.12] Any type of constructor expression C' in variable X of type As can
be written in a unique way in the form:

C=(z11:(d:D11)) X q11) - (Z1md, : (d: Dipay) X Gonay) (b1 : Bi)

- o

(221 :(d:D21) X @21) - (22.ndy (J 52,nd2) X Go.nd,) (b2 : Ba)

(b = Buv) (Za1 = (d: Dy 1) X Guvt) - - - by = (d = Dribindy) X Gbnd,y) X 170

where B;, ﬁi,j, ¢i; and m do not depend on X i.e. can be defined in a context which does not
contain X.

Since zp,; can only appear in a context which contains X we get the following observation:

Lemma 2.2 [2010.1.14.11] In a type of constructor expression of the form given above D’m’, Qi js
m and B; do not depend on z .

The dependencies between different sub-terms of C' can be visualized by the following diagram:

(F7B17 ) Bi:ﬁi,l)z LR (F7 Bl: . 7Bi75i,ndi) (F7ﬁ1,1)7 e (F7 l_jl,ndl)
[2010.1.14.eq1] J l
L (F,Bl,...,Bi) (F)

(32)

The sequences ¢j ; correspond to morphisms (I', By, ..., B;, D; ;) — (I', A) over I" and the sequence

M to a morphism (I', B) — (I, @ : A) over I.
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Due to the structure of the dependencies diagram (32), the expression

2010.1.21.eq2]C" = (b: B) (21,1 : (d: D11) X Gi1) - - (Zubndny © (4 Drbindny) X Gabindyy) X 110
(33)
is well formed in (I', X : As) and there is a canonical bijection between the terms of type C' and
terms of type C".

The inductive machinery of Coq defines for any collection of contexts of the form
[2010.1.21.eql]([,d: A,s), ([, X:As,CV:5"), .  (I,X:AsC") ;4" (34)

where C%) are of the form described above, a term I = I(X : Es){C(l), ..., C1Y of type (@ : /f)s
in T, a sequence of terms ¢¥) of types C'(¥) [I/X] for k=1,...,ncin ' and , for each ”admissible”
sort & a "recursor” term I, (again in I'). The type of this term is

—,

[2010.1.17.eq1) e - (Q: (@: A)(r: T@)s')(f1: A{T/X,CV,Q, M /e}) ...

o fre : A{I)X,CM) Q) Je3) (@ A)(r: T@)Qar (35)

where for C of the form given above and defined for a variable X, A{X,C,Q,c} is the type
expression in the context (I', X : (@: A)s,Q : (@: A)(r: X d)s',c: C) of the form:

(z11:(d:Dy)X 1) (wra: (d: D11)Qqua(z11d)). .. (21,ndy ° (d: D1.nay) X @indy)

(Y1,nd; : (d: ql,ndl)Q @1 ndy (#1,nd, d))(by : By)
(221 : (d: Da1)X Go1)(yanr : (d: Da1)Q (221 d)) . (Zomdy : (d: Dongy)X Gomds,)
(Y2,nds (d: qz,ndQ)Q @2.nds (22,nds d))(by : By)

(bub = Bu) (Zap1 = (42 D)X Guo1) Wb = (d 2 Dy 1)Q Gt (Zap 1 d)) - - -
(Znbdpy © (42 Dobndny) X Gubsndiy) Ynbndyy (A2 Drbindy)Q Gubindry (Znbmd,y, D))
Qmi(cziq - . Zind D122 -+ 22mdy D2 - bpp Znb1 -+ - Znbond,,y)
([2, p.78] uses the notation A{I, X, Cy,Q,c} for A{I/X,C%) Q,c}). Because of the structure of
the dependency diagram (32) the expression
A{X,C,Q,c}=(b:B)(z11: (d: D11) X G11) (w1 : (d: D1)Q (211 ). ..

st (anvndnb : (J Dnbzndnb) X anrnd7Lb)(ynb,nd7Lb : (d_' BnbyndTLb)Q inbvndnb (anyndnb Ci))

(Q m (C/ 521,1 ce Z’nb,ndnb))

where ¢’ is the term of C” corresponding to c, is a well defined type expression and its terms are in
a canonical bijection with the terms of A{X,C,Q, c}. For a term f of A{X,C,Q, c} we will denote
by f’ the corresponding term of A'{X,C,Q,c} (note that our A’{...} is not to be confused with
A'[...] used in [2, p.79]). We will also write I, for the term of the type

(Q:(@: A)(r:Ta)s)(f]: A{I/X,CV,Q,cMV/e}). ..

(NI X, Q) )@@ A)(r T@)Qar

corresponding to I,cc.
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The data produced by an inductive definition satisfies the t-reduction(s). For an inductive definition
of the form given above and expressed in the form of (definitional) equalities in the context

T,Q: (a:A)(r:Ia)s,
o AI/X,0W Q.M Je}, .t A{T/X, M Q, ™) /e,

b: B, 21,1 - (d : Dl,l) ICTLl; <oy Znbnd,y, - (d : Dnb,ndnb) I Cfnb,ndnb)

(i.e. using the ordering of variables b; and z; ; corresponding to C" and A’) they take the following
form (for i =1,...,nc): A
[2010.1.19.eq1]I’,. Q f m (W b 2) =

-

z
= f{bz01([d: Doal (Iee QF o (201d))). ..
- Znbnday ([Cf ﬁnb,ndnb] (Ir{ec Q .]?/ an,ndnb (an,ndnb d’))) (36)

Let us consider inductive constructions in Coq of the following particular forms (following the
syntax of Coq we write Type for any sort, note that several occurrences of Type in the same
expression may actually refer to different sorts):

Inductive unit : Type := tt:unit.

Inductive Sum (T:Type) (Pf:T-> Type) : Type := pair: (forall t:T, forall x: Pft, Sum T Pf).
Sum_rect: forall (T : Type) (Pf: T -> Type) (P : Sum T Pf-> Type), (forall (t: T) (x: Pf
t), P (pair T Pft x)) -> forall s : Sum T Pf, P s

Inductive emptytype : Type := .

Inductive Union (T1:Type) (T2:Type) : Type :=iil: T1 -> Union T1 T2 | ii2: T2 -> Union T1
T2.
Union_rect: forall (T1 T2 : Type) (P : Union T1 T2 -> Type), (forall t : T1, P (i1 T1 T2
t)) -> (forall t : T2, P (i2 T1 T2 t)) -> forall u : Union T1 T2, P u

Inductive Eq (T:Type): T -> T-> Type := ideq: forall t:T, eq T t t .
Eq.rect: forall (T : Type) (P : forall t t0 : T, Eq T t t0 -> Type), (forall t : T, P t t (ideq
T t))->forall (y y0: T) (m: Eq Ty y0),Pyy0m

Inductive IC(A:Type)(B:Type)(Df:B->Type)(q:forall b:B, forall d: Df b, A)(m:forall b:B, A) : A
-> Type :=
cic: forall b:B, ((forall d: Df b, IC A B Dfqm (g bd))->1IC A B Df qm (m b)).
IC_rect: forall (A B : Type) (Df: B -> Type) (q: forallb: B, Dfb-> A) (m: B-> A) (P
:foralla: A, IC A B Df q m a -> Type), (forall (b: B) (i: foralld: Df b, IC A B Df q m
(@bd)), (foralld : Df b, P (¢ bd) (id)) -> P (m b) (cic A BDfqm b i))-> forall (y: A)
(i:ICABDfqmy),Pyi

Inductive IPO(B:Type)(Df:B->Type) : Type :=
cip0: forall b:B, ((forall d: Df b, IPO B Df) -> IP0 B Df).
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Inductive IP(A:Type)(Bf:forall a:A,Type)(Df:forall a:A, forall b: Bf a, Type)(q: forall a:A, forall
b: Bf a, forall d: Df a b, A) (a:A): Type :=
cip: forall b: Bf a, forall f: (forall d: Df a b, (IP A Bf Df q (q a b d))), (IP A Bf Df q a).

IP_rect: forall (A : Type) (Bf : A -> Type) (Df: forall a : A, Bf a -> Type) (q : forall (a :
A) (b: Bfa), Dfab-> A) (P : foralla: A IP A Bf Df q a-> Type), (forall (a: A) (b: Bf
a) (f: foralld: Df ab, IP ABf Dfq (qabd)), (foralld: Dfab,P (qabd) (fd))->Pa
(cip ABfDfqabf))->forall (a: A) (i: IPABfDfqa),Pai

Let us show how to construct an interpretation of Coq in itself which transforms any inductive def-
inition into a sequence of definitions of forms unit, Sum, emptytype, Union, Eq and IP. Definitions
of the form IC will be used for an intermediate step in the construction.

Given any context of the form I', Z : T where 7 = (x1,...,xy) and T = Ti,...,T, we can form a
new context I,z : X(Z : T') where (7 : T') is defined by repeated application of the construction
Sum such that for n =1 we have X(x : T)) =T and for n > 1,

S(Z:T) = SumTy (funzy : Ty => S((22,...,2,) : (Ta,...,T)))

For n = 0 we set (& : T) = unit.

Similarly given a sequence of contexts of the form I',z; : T; where ¢ = 1,...,n we can define a
context I', z : II;T; where for n = 1 we have IIT =T and for n > 1,

HZ'TZ' = Union T1 (Hz’Ti—i-l)

For n = 0 we set II;T; = emptytype.

—,

Given any arity As of the form (@ : A)s define A as ¥ (@: A) and As as (a: A)s. Given any C of
the form given above let us define the following:

B=%(b: B)

(in the context T'),

in the context I',b : B where 5;] are obtained from 5” by replacing b; : By,...,b; : B; with the
corresponding projections of b: B and

D' = H’i,jDz,',j

also in the context I',b : B. The sequences §; ; define a function ¢f : (I',b: B,d' : D') — (I',a : A)
over I and the sequence m defines a function mf : (I';b: B) — (I';a : A) over I'.

Suppose now that we have a sequence of type of constructor expressions C' M., 0™ in a variable
X of arity A's. Denote by B®), D'®) qf®) mf®) where k = 1,...,nc the objects defined above
which correspond to the expression C*). Let us do the groupings again. Set BB = II,B®¥).
Then there are functions of the form Df®) : BB — Type such that for b : Bj, j # k one has
Df(k)ijb = () and for b : By one has Df®i b = D'®) . Set DD = 11, Df*)b such that we have
a valid context (I',bb : BB,dd : DD). The morphisms qf® and mf%® define now morphisms
qf : (I';bb : BB,dd : DD) — (I'ya : A) and mf : (I'bb : BB) — (I';a : A) over I which we
represent by terms I' g : (bb: BB)(dd : DD)A and I' - m : BB — A.
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This construction provides for any inductive definition I(X : A s){C} of the form permitted in Coq
a set-up consisting of valid contexts and sequents of the form:

[2010.1.18.eq2](I',a: A),  (I,bb: BB,dd: DD)

(T'+q: (bb: BB)(dd: DD)A), (CFm:BB — A) (37)

where BB, DD, q and m are expressions which use only the dependent sum and disjoint union
constructions and the original expressions A and C. If ¢’ : Y ((bb,dd) : (BB, DD))— > A is adjoint
to ¢ then our data can be shows in the form of a diagram:

!

S2((bb,dd) : (BB, DD)) —+— A

Phl
BB
|
A

When na = 0 i.e. A = unit we can ignore ¢ and m and we obtain the diagram

> ((bb,dd) : (BB, DD)) ™ BB

Proposition 2.3 [2010.1.18.propl/ Let I(X : As){C} be a valid inductive definition in Coq in
a context I.

If na > 0, consider the type I = IC ABB (funbb : BB => DD)qm where A,BB,DD,q and
m are defined based on As and C as explained above. Then there is a term expression based on
ICrect ABB (funbb : BB => DD)gm of type (35) in T' and this expression satisfies the same
reduction rules as (35).

If na = 0, consider the type I = IPOBB (funbb: BB => DD). Then there is a term expression
based on I POyect BB (funbb: BB => DD) of type (35) in T and this expression satisfies the same
reduction rules as (35).

Example 2.4 [2010.8.4.ex1/Let us consider the construction described above in the case of the
standard definition of natural numbers:

Inductive nat : Type := O : nat | S : nat -> nat.
We have s = T'ype, A = unit, nc = 2,

CcM =nat BW =unit DW= emptytype
c? = (Z[S,Ql) nat)nat  B® =unit D = unit
When we group C) and C? together we get:
BB = Union unit unit

The explicit forms for Df1 = Df(1) and Df2 = Df® in Coq are:
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Fixpoint Dfl (bb:BB) Type :=
match bb:BB with

iil tt1 => emptytype |

ii2 tt2 => emptytype

end.

Fixpoint Df2 (bb:BB) Type :=
match bb:BB with

iil tt1 => unit |

ii2 tt2 => emptytype

end.

and DD (in the context (I', bb:B) ) is of the form Union (Dfl bb) (Df2 bb). Therefore, our

construction would replace the usual definition of nat by
Definition nat’:= [P0 BB (fun bb:BB => Union (Df1l bb) (Df2 bb)).
which is equivalent to the one of the form

nat’ : Type := (Union nat’ unit) -> nat’.

Proposition 2.3 can be informally summarized by saying that the procedure described above allows
one to express any inductive definition of Coq as a combination of a number of dependent sums,
dependent products and a single inductive definition of the form IC.

We will show now how to transform, using eq, a definition of the form IC into an equivalent (in the
sense clarified by Proposition 2.5 below) inductive definition of the form IP.

Consider a set-up of the form (37). In the context I';a : A define B’ = ¥b : B,eqAa(mb).
Consider the term sequent

(T,a: AV : B',d : D[(pr1t)/b] F q(pr1b’)d : A)
This sequent is of the form which can serve as an input for the construction of IP. Set
I=IP ABf Df ¢

where Bf' = (funa => B'), Df' = (funa => (funb’ => D|[(pr1?¥')/b])) and ¢’ = (funa =>
(funt/ => (fund =>a(prid’)d))).

Proposition 2.5 [2010.1.25.propl/ In the notations introduced above, there exists a term ex-
pression in T based on IProct A Bf' Df’ ¢ which has the same type as ICyreet A B (funb: B =>
D) g m and satisfies the same t-reduction property.

3 Interpretations of inductive definitions in lccc’s
To get started let is consider an interpretation [-] of the calculus of construction (with some uni-
verses) in a lcce C which is compatible with dependent products.

We start by interpreting dependent sums (which can be seen in Coq as inductive definitions
with one strictly positive constructor) in the usual way. After they are interpreted we can al-
ways replace an expression of the form (x; : Th)(xa : To)...(®p @ Tp)Tny1 by (x @ Ooxp
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Ty, ..., Y xn—1Tp—1,Ty)) Th+1 i.e. to replace all sequences of dependent products by a single de-
pendent product parametrized by a dependent sum.

We also interpret inductive definitions with several constructors of the form T; — I where T;’s do
not depend on I as disjoint unions.

Using this reduction and also identifications of Prop and Set with subtypes of Type we may
assume that a general inductive definition is of the form X = Ind(X : A — Type){C1,...,Cy}
where C; = (z; : B;) X m;, X is not present in m; and B; is a dependent sum of the form

[2009189(11]31 = Z Zi,0 - Bi,Oa Z Zi1 - Bi,la Z e aBi,m (38)

where B; ; does not depend on X or is of the form (y; ; : D; ;) X ¢;; where D; ; and ¢;; do not
depend on X.

Presumably, these conditions imply in particular that if B;; = (v;; : D;j) X ¢;; and k > j then
B, i, does not depend on z; j. Therefore, we can collect all the terms B; ; which do not depend on
X into B; and assume that for j > 0 the term B;; is of the form (y;; : D; ;) X ¢; ;. Note that
these terms do not depend on each other for various ji, j2 > 0.

Suppose we have already interpreted everything ”before” this definition. By passing to the slice
category we may assume that we work in an empty context. Then [B; o] is an object of C and each of
the [Di,j] is a family of objects over [Bi’(]]. Let Ei,j = Ezi,() : Bl"g, Di,j- Then [pi,j] : [Ei,j] — [Bmo]
is the map whose fibers give this family and [g; ;] can be seen as a morphism [g; ;] : [E; ;] = A.

Let Tot(X) => a: A, Xa. Then [Tot(X)] is an object over [A] and = the object [B;] as an object
over [Biol is [[;[pil[ai;]"([Tot(X)]/[A]). By taking disjoint union of the types E;; for j > 0
we may collect them into one type E; and the maps p; ; and ¢;; into two maps p; : E; — B, p,
q; : Ez — A.

Since m; does not depend on X it means in particular that, as a function B; — A it only depends
on z i.e. that m; is a function B; o — A. Summing things up we find that each constructor C;
defines three morphisms p; : E; = B;o, ¢; : E; = A and m; : B;o — A of which p; is a "display
map” (i.e. the canonical morphism F; — ft(FE;)):

|

A — Bi,O

and for X : A — Type, a term ¢; of type C;(X) is a morphism (p; )« (¢;)* (Tot(X)/A) — (m;)*(Tot(X)/A).
We conclude that an interpretation of such a term is a morphism
[pi)ulai)* (Dot (X))/[A]) = [mal* ([Tot(X)]/A))

or equivalently by adjunction a morphism of the form

(il ¢lpi)-las)* (ITot(X)]) = [Tot(X)]
over [A]. We can further collect these morphisms together for different i setting

E=1LE; B=1;B;oy q=1;q; p=ILip; m=Im;

and define a functor F'(X') = [m]x[p]«[¢]*(X’) from C/[A] to itself.

An inductive definition introduces the following data:
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1. an object I such that ft(I) = A,
2. a morphism cx : p.q*(I) — m*(I) over A,

3. a mapping which assigns to any pair (P,cp) where P is an object such that ft(P) = I and
cp : p«q*(I) = m*(P), a section s : I — P of pp such that m*(s) cx = cp (p«q*(s)).

It is not difficult to show now that an initial algebra for F' provides an interpretation for I with all of
its recursors. However, in the case of the univalent models this is not a satisfactory interpretation
since for a fibration X’ — [A] the morphism F(X’) — [A] needs not be a fibration unless [m]
happened to be a fibration.

In order to overcome this difficulty one re-writes any inductive definition as a combination of
dependent sums, disjoint unions, equivalence types and I P constructions as explained above. A
univalent (compatible with the equivalence axiom) interpretation of dependent sums, disjoint unions
and equivalence types is known. We obtain a univalent interpretation of IP types using [1, Th.
5.6] since the I P construction can be interpreted as the initial algebra of a functor which takes Kan
fibrations to Kan fibrations and which depends on its parameters in a way which respects weak
equivalences.
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