
Notes on type systems

Vladimir Voevodsky

Started September 08, 2009, cont. July 23, 2012

Contents

1 C-structures 2

1 C-structures as set level categories . 2

2 C-substructures. 3

3 The sequent axiomatics of C-structures. 7

2 Type systems 13

1 Systems of expressions . 13

2 C-structures defined by a triple. 17

3 C-substructures of CC(S). 19

4 Type systems over S. 21

3 C-structures defined by universes in 1-categories 26

4 Universes in the category of simplicial sets 34

1 Well-ordered morphisms of simplicial sets . 34

2 Well-ordered simplicial sets . 40

5 Type theoretic constructs in terms of C-structures 41

1 Π-C-structures . 41

2 Impredicative Π-universe structures. 45

3 Predicative Π-universe structures. 46

6 The system of Coq 47

1 A type system CIC0 . 47

2 Representing inductive definitions in Coq as combinations of elementary ones 53

3 Interpretations of inductive definitions in lccc’s . 58

1

1 C-structures

1 C-structures as set level categories

The objects which we call C-structures are better know as ”contextual categories”. They where
introduces by Cartmell in [3] and then described in more detail by Streicher (see [9, Def. 1.2,
p.47]). It will be important for us to distinguish two notions of a category. What is understood by
a category by most practicing mathematicians i.e. a category up to an equivalence, will be called,
when an explicit distinction is needed, a category of h-level 3. A category as an algebraic object
i.e. a category up to an isomorphism will be called a set-level category or category of h-level 2. A
set-level category C is a pair of sets Mor(C) and Ob(C) with structure given by four maps

∂0, ∂1 :Mor(C)→ Ob(C)

Id : Ob(C)→Mor(C)

and
◦ :Mor(C)∂0 ×∂1 Mor(C)→Mor(C)

which satisfy the well known conditions (note that we write composition of morphisms in the form
f ◦ g where f : Y → X and g : Z → Y).

A C-structure is a set-level category CC with additional structure of the form

1. a function l : Ob(CC)→ N,

2. an object pt,

3. a map ft : Ob(CC)→ Ob(CC),

4. for each X ∈ Ob(CC) a morphism pX : X → ft(X),

5. for each X ∈ Ob(CC) such that X ̸= pt and each morphism f : Y → ft(X) an object f∗X
and a morphism q(f,X) : f∗X → X,

which satisfies the following conditions:

1. l−1(0) = {pt}

2. for X such that l(X) > 0 one has l(ft(X)) = l(X)− 1

3. ft(pt) = pt

4. pt is a final object,

5. for X ∈ Ob(CC) such that X ̸= pt and f : Y → ft(X) one has ft(f∗X) = Y and the square

[2009.10.14.eq1]

f∗X
q(f,X)−−−−→ X

pf∗X

y ypX
Y

f−−−→ ft(X)

(1)

is a pull-back square,

2

6. for X ∈ Ob(CC) such that X ̸= pt one has id∗ft(X)(X) = X and q(idft(X), X) = idX ,

7. for X ∈ Ob(CC) such that X ̸= pt, f : Y → ft(X) and g : Z → Y one has (fg)∗(X) =
g∗(f∗(X)) and q(fg,X) = q(f,X)q(g, f∗X).

Let Bn(CC) = {X ∈ Ob(CC) | l(X) = n} and let Morn,m(CC) = {f : Mor(CC)|∂0(f) ∈
Bn and ∂1(f) ∈ Bm}. One can reformulate the definition of a C-structure using Bn(CC) and
Morn,m(CC) as the underlying sets together with the obvious analogs of maps and conditions
the definition given above. In this reformulation there will be no use of ̸= and the only use of
the existential qualifier will be as a part of ”there exists a unique” condition. This shows that
C-structures can be considered as models of a quasi-equational theory with sorts Bn, and Morn,m
and in particular all the results of [6] are applicable to C-structures.

We will also use the following notations:

1. B(X) = {Y ∈ Ob(CC) | ft(Y) = X andY ̸= pt},

2. Õb(CC) is the set of pairs of the form (X, s) where X ∈ Ob(CC), X ̸= pt and s is a section
of the canonical morphism pX : X → ft(X) i.e. a morphism s : ft(X) → X such that
pX ◦ s = Idft(X),

3. B̃n = {(X, s) ∈ Õb(CC) |X ∈ Bn} (note that B̃0 = ∅),

4. ∂ : B̃n → Bn is the function defined by ∂(X, s) = X,

5. B̃(X) = ∂−1(X) (note that B̃(pt) = ∅).

2 C-substructures.

A C-substructure CC ′ of a C-structure CC is a subcategory of the underlying set-level category
which is closed, in the obvious sense under the operations which define the C-structure on CC
and such that the canonical squares which belong to CC ′ are pull-back squares in CC ′. A C-
substructure is called non-trivial if it contains at least one element other than pt. A C-substructure
is itself a C-structure with respect to the induced structure. The following elementary result plays
a key role in many constructions of type theory:

Proposition 2.1 [2009.10.15.prop1] Let CC be a C-structure. Then for any family CCα of
C-substructures of CC, the intersection CC ′ = ∩αCCα is a C-substructure.

Proof: The only condition to check is that a canonical square which belongs to CC ′ is a pull-back
square in CC ′. This follows from the definition of pull-back squares and the fact that fiber products
of sets commute with intersections of sets.

Corollary 2.2 [2009.10.15.cor1] Let CC be a C-structure, C0 a set of objects of CC and C1 a
set of morphisms of CC. Then there exists the smallest C-substructure [C1, C0] which contains C0

and C1. It is called the C-substructure generated by C0 and C1.

Lemma 2.3 [2009.10.15.l1] Let CC be a C-structure and CC ′, CC ′′ be two C-substructures

such that Ob(CC ′) = Ob(CC ′′) (as subsets of Ob(CC)) and Õb(CC ′) = Õb(CC ′′) (as subsets of

Õb(CC)). Then CC ′ = CC ′′.

3

Proof: Let f : Y → X be a morphism in CC ′. We want to show that it belongs to CC ′′. Proceed
by induction on m where X ∈ Bm. For m = 0 the assertion is obvious. Suppose that m > 0. Since
CC is a C-structure we have a commutative diagram

[2009.11.07.oldeq1]

Y
sf−−−→ (pXf)

∗X
q(pXf,X)−−−−−−→ X

=

y yp′ yp
Y

=−−−→ Y
pXf−−−→ ft(X)

(2)

such that f = q(pXf,X) sf . Since the right hand side square is a canonical one, ((pXf)
∗Γ′, sf) ∈

Õb(CC) and ft(X) ∈ Bm−1, the inductive assumption implies that f ∈ CC ′′.

Remark 2.4 In Lemma 2.3, it is sufficient to assume that Õb(CC ′) = Õb(CC ′′). The condition
Ob(CC ′) = Ob(CC ′′) is then also satisfied. Indeed, let X ∈ Ob(CC ′). Then p∗XX is the product
X ×X in CC. Consider the diagonal section ∆X : X → p∗XX of pp∗X(X). Since CC

′ is assumed to

be a C-substructure we conclude that ∆X ∈ Õb(CC ′) = Õb(CC ′′) and therefore X ∈ Ob(CC ′′). It

is however more convenient to think of C-substructures in terms of subsets of both Ob and Õb.

Let CC be a C-structure. Let us say that a pair of subsets C ⊂ Ob(CC), C̃ ⊂ Õb(CC) is saturated
if there exists a C-substructure CC ′ such that C = Ob(CC ′) and C̃ = Õb(CC ′). By Lemma 2.3 we
have a bijection between C-substructures of CC and saturated pairs (C, C̃).

Let us introduce the following notations. Let X ∈ Ob(CC) and i ≥ 0. Denote by pX,i the
composition of the canonical projections X → ft(X) → . . . → fti(X) such that pX,0 = IdX
and pX,1 = pX . For f : Y → fti(X) denote by q(f,X, i) : f∗(X, i) → X the morphism defined
inductively by the rule

f∗(X, 0) = Y q(f,X, 0) = f,

f∗(X, i+ 1) = q(f, ft(X), i)∗(X) q(f,X, i+ 1) = q(q(f, ft(X), i), X).

In other words, q(f,X, i) is the canonical pull-back of the morphism f : Y → fti(X) with respect
to the sequence of canonical projections X → ft(X)→ . . .→ fti(X).

Let i ≥ 1, f : Y → fti(X) be a morphism and s : ft(X) → X an element of Õb(CC). Denote by

f∗(s, i) the element of Õb(CC) of the form f∗(ft(X), i− 1)→ f∗(X, i) which is the pull-back of s
with respect to q(f, ft(X), i− 1).

Proposition 2.5 [2009.10.15.prop2] A pair (C, C̃) is saturated if and only if it satisfies the
following conditions:

1. pt ∈ C,

2. if X ∈ C then ft(X) ∈ C,

3. if (s : ft(X)→ X) ∈ C̃ then X ∈ C,

4. if (s : ft(X)→ X) ∈ C̃, X ′ ∈ C, i ≥ 1 and fti(X) = ft(X ′) then q(pX′ , ft(X), i−1)∗(s) ∈ C̃,

5. if (s1 : ft(X) → X) ∈ C̃, i ≥ 1 and (s2 : fti+1(X) → fti(X)) ∈ C̃ then q(s2, ft(X), i −
1)∗(s1) ∈ C̃,

4

6. if X ∈ C then the diagonal sidX : X → (pX)
∗(X) is in C̃.

Conditions (4) and (5) are illustrated by the following diagrams:

p∗X′(ft(X), i− 1)
q(pX′ ,ft(X),i−1)
−−−−−−−−−−→ ft(X)yq(pX′ ,ft(X),i−1)∗(s)

ys
p∗X′(X, i)

q(pX′ ,X,i)−−−−−−→ Xy ypX
p∗X′(ft(X), i− 1)

q(pX′ ,ft(X),i−1)
−−−−−−−−−−→ ft(X)y y

.y y
X ′ pX′−−−→ fti(X)

s∗2(ft(X), i− 1)
q(s2,ft(X),i−1)−−−−−−−−−→ ft(X)yq(s2,ft(X),i−1)∗(s1)

ys1
s∗2(X, i)

q(s2,X,i)−−−−−→ Xy ypX
s∗2(ft(X), i− 1)

q(s2,ft(X),i−1)−−−−−−−−−→ ft(X)y y
.y y

fti+1(X)
s2−−−→ fti(X)

Proof: The ”only if” part of the proposition is straightforward. Let us prove that for any (C, C̃)
satisfying the conditions of the proposition there exists a C-substructure CC ′ of CC such that
C = Ob(CC ′) and C̃ = Õb(CC ′).

For a morphism f : Y → X let ft(f) = pXf : Y → ft(X). Any morphism f : Y → X in CC has a

canonical representation of the form Y
sf→ Xf

qf→ X where Xf = ft(f)∗(X), qf = q(ft(f), X) and
sf : Y → Xf is the section of the canonical projection Xf → Y corresponding to f .

Define a candidate subcategory CC ′ setting Ob(CC ′) = C and defining the set Mor(CC ′) of
morphisms of CC ′ inductively by the conditions:

1. Y → pt is in Mor(CC ′) if and only if Y ∈ C,

2. f : Y → X is in Mor(CC ′) if and only if X ∈ Ob(C), ft(f) ∈Mor(CC ′) and sf ∈ C̃.

(note that the for (f : Y → X) ∈Mor(CC ′) one has Y ∈ C since sf : Y → Xf).

Let us show that if the condition of the proposition are satisfied then (Ob(CC ′),Mor(CC ′)) form
a C-substructure of CC.

The subset Ob(CC ′) contains pt and is closed under ft map by the first two conditions. The follow-
ing lemma shows that Mor(CC ′) contains identities and the compositions of canonical projections.

Lemma 2.6 [2009.10.16.l1] Under the assumptions of the proposition, if X ∈ C and i ≥ 0 then
pX,i : X → fti(X) is in Mor(CC ′).

Proof: By definition of C-structures there exists n such that ftn(X) = pt. Then pX,n ∈Mor(CC ′)
by the first constructor of Mor(CC ′). By induction it remains to show that if X ∈ C and pX,i ∈
Mor(CC ′) then pX,i−1 ∈ Mor(CC ′). We have ft(pX,i−1) = pX,i and spX,i−1 is the pull-back
of the diagonal fti−1(X) → (pfti−1(X))

∗(fti−1(X)) with respect to the canonical morphism X →
fti−1(X). The diagonal is in C̃ by condition (6) and therefore spX,i−1 is in C̃ by repeated application
of condition (4).

5

Lemma 2.7 [2009.10.16.l3] Under the assumptions of the proposition, let X ∈ C, (s : ft(X)→
X) ∈ C̃, i ≥ 0, and (f : Y → fti(X)) ∈ Mor(CC ′). Then q(f, ft(X), i − 1)∗(s) : ft(f∗(X, i)) →
f∗(X, i) is in Mor(CC ′).

Proof: Suppose first that fti(X) = pt. Then f = pY,n for some n and the statement of the
lemma follows from repeated application of condition (4). Suppose that the lemma is proved for
all morphisms to objects of length j − 1 and let the length of fti(X) be j. Consider the canonical
decomposition f = qfsf . The morphism qf is the canonical pull-back of ft(f) and therefore the

pull-back of s relative to qf coincides with its pull-back relative to ft(f) which is C̃ by the inductive

assumption. The pull-back of an element of C̃ with respect to sf is in C̃ by condition (5).

Lemma 2.8 [2009.10.16.l4] Under the assumptions of the proposition, let g : Z → Y and f :
Y → X be in Mor(CC ′). Then fg ∈Mor(CC ′).

Proof: If X = pt the the statement is obvious. Assume that it is proved for all f whose codomain is
of length < j and let X be of length j. We have ft(fg) = ft(f)g and therefore ft(fg) ∈Mor(CC ′)
by the inductive assumption. It remains to show that sfg ∈ C̃. We have the following diagram
whose squares are canonical pull-back squares

Xfg −−−→ Xf −−−→ Xy y ypX
Z

g−−−→ Y
ft(f)−−−→ ft(X)

which shows that sfg = g∗(sf). Therefore, sfg ∈Mor(CC ′) by Lemma 2.7.

Lemma 2.9 [2009.10.16.l5] Under the assumptions of the proposition, let X ∈ C and let f :
Y → ft(X) be in Mor(CC ′), then f∗(X) ∈ C and q(f,X) ∈Mor(CC ′).

Proof: Consider the diagram

f∗(X)
q(f,X)−−−−→ X

sq(f,X)

y ysIdX
q(f,X)∗(X) −−−→ p∗X(X) −−−→ Xy y y
f∗(X)

q(f,X)−−−−→ X −−−→ ft(X)

pf∗(X)

y ypX
Y

f−−−→ ft(X)

where the squares are canonical. By condition (6) we have sId ∈ C̃. Therefore, by Lemma 2.7, we
have sq(f,X) ∈ C̃. In particular, q(f,X)∗(X) ∈ C and therefore f∗(X) = ft(q(f,X)∗(X)) ∈ C. The
fact that q(f,X) ∈ Mor(CC ′) follows from the fact that sq(f,X) ∈ C̃ and ft(q(f,X)) = f ◦ pf∗(X)

is in Mor(CC ′) by previous lemmas.

6

Lemma 2.10 [2009.10.16.l6] Under the assumptions of Lemma 2.9, the square

f∗(X)
q(f,X)−−−−→ X

pf∗(X)

y ypX
Y

f−−−→ ft(X)

is a pull-back square in CC ′.

Proof: We need to show that for a morphism g : Z → f∗(X) such that pf∗(X)g and q(f,X)g are in
Mor(CC ′) one has g ∈Mor(CC ′). We have ft(g) = pf∗(X)g, therefore by definition of Mor(CC ′)

it remains to check that sg ∈ C̃. The diagram

(f∗Y)g −−−→ f∗Y
q(f,X)−−−−→ Xy y y

Z
ft(g)−−−→ Y

f−−−→ ft(X)

shows that sg = sq(f,X)g and therefore sg ∈Mor(CC ′).

To finish the proof of the proposition it remains to show that Ob(CC ′) = C and Õb(CC ′) = C̃.
The first assertion is tautological. The second one follows immediately from the fact that for
(s : ft(X)→ X) ∈ Õb(CC) one has ft(s) = Idft(X) and ss = s.

3 The sequent axiomatics of C-structures.

Proposition 2.5 suggests that a C-structure CC can be reconstructed from the sets Bn = Bn(CC)
and B̃n+1 = B̃n+1(CC), n ≥ 0 together with the structures on these sets which correspond to the
conditions of the proposition. Let us show that it is indeed the case.

In addition to the sets Bn and B̃n and maps ft : Bn+1 → Bn and ∂ : B̃n+1 → Bn+1 let us consider
the following maps given for all m ≥ n ≥ 0:

1. T : (Bn+1)ft ×ftm+1−n (Bm+1) → Bm+2, which sends (Y,X) such that ft(Y) = ftm+1−n(X)
to p∗Y (X,m+ 1− n),

2. T̃ : (Bn+1)ft ×ftm+1−n∂ (B̃m+1)→ B̃m+2, which sends (Y, s) such that ft(Y) = ftm+1−n∂(s)
to p∗Y (s,m+ 1− n),

3. S : (B̃n+1)∂ ×ftm+1−n (Bm+2) → Bm+1, which sends (r,X) such that ∂(r) = ftm+1−n(X) to
r∗(X,m+ 1− n),

4. S̃ : (B̃n+1)∂ ×ftm+1−n∂ (B̃m+2)→ B̃m+1, which sends (r, s) such that ∂(r) = ftm+1−n∂(s) to
r∗(s,m+ 1− n).

5. δ : Bn+1 → B̃n+2 which sends X to the diagonal section of the projection p∗XX → X.

Note that we have:

7

1. for Y ∈ Bn+1, X ∈ Bm+1 such that ft(Y) = ftm+1−n(X) and m ≥ n ≥ 0 one has:

ft(T (Y,X)) =

{
T (Y, ft(X)) if m > n
Y if m = n

(3)

2. for Y ∈ Bn+1, s ∈ B̃m+1 such that ft(Y) = ftm+1−n∂(s) and m ≥ n ≥ 0 one has:

∂(T̃ (Y, s) = T (Y, ∂(s)) (4)

3. for r ∈ B̃n+1, X ∈ B̃m+2 such that ∂(r) = ftm+1−n(X) and m ≥ n ≥ 0 one has:

ft(S(r,X)) =

{
S(r, ft(X)) if m > n
ft(Y) if m = n

(5)

4. for r ∈ B̃n+1, s ∈ B̃m+2 such that ∂(r) = ftm+1−n∂(s) and m ≥ n ≥ 0 one has:

∂(S̃(r, s)) = S(r, ∂(s)) (6)

5.
[2009.12.27.eq1]∂(δ(X)) = T (X,X) (7)

Let us denote by
Tj : (Bn+j)ftj ×ftm+1−n (Bm+1)→ Bm+1+j

T̃j : (Bn+j)ftj ×ftm+1−n∂ (B̃m+1)→ B̃m+1+j

the maps which are defined inductively by

Tj(Y,X) =

{
X if j = 0
T (Y, Tj−1(ft(Y), X)) if j > 0

T̃j(Y, s) =

{
s if j = 0

T̃ (Y, T̃j−1(ft(Y), s)) if j > 0
(8)

Note that for any i = 0, . . . , j we have

Tj(Y,X) = Ti(Y, Tj−i(ft
i(Y), X))

and
T̃j(Y, s) = T̃i(Y, T̃j−i(ft

i(Y), s))

Lemma 3.1 [Tnft] One has
Tj(Y, ft(X)) = ft(Tj(Y,X))

Proof: For n = 0 the statement is obvious. For n > 0 we have by induction on j

Tj(Y, ft(X)) = T (Y, Tj−1(ft(Y), ft(X))) = T (Y, ft(Tj−1(ft(Y), X))) =

= ft(T (Y, Tj−1(ft(Y), X))) = ft(Tj(Y,X)).

Let Y ∈ Bn. Define by induction on m ≥ 0 the following collection of data:

8

1. for any X ∈ Bm a set Morn,m(Y,X),

2. for any i > 0, X ∈ Bm+i and f ∈Morn,m(Y, ft
i(X)) - an element f∗(X) ∈ Bn+i

setting:

1. Morn,0(Y, pt) is the one point set whose only element we denote by pY,n and for i > 0 and
X ∈ Bi we set

p∗Y,n(X) = Tn(Y,X)

2. for m > 0 one has:

(a) for X ∈ Bm, Morn,m(Y,X) is the set of pairs (rf, ftf) where rf ∈ B̃n+1, ftf ∈
Morn,m−1(Y, ft(X)) and ∂(rf) = ftf∗(X),

(b) for i > 0, X ∈ Bm+i and f = (rf, ftf) ∈Morn,m(Y, ft
i(X)) we set

f∗(X) = S(rf, ftf∗(X)).

To check that this construction is well defined we need to verify that S(rf, ftf∗(X)) is defined.
We have i > 0, X ∈ Bm+i, rf ∈ B̃n+1 and ftf ∈Morn,m−1(Y, ft

i+1(X)) and therefore ftf∗(X) ∈
Bn+i+1. It remains to check that ∂(rf) = fti(ftf∗(X)). By definition of Morn,m we have ∂(rf) =
ftf∗(fti(X)).

To verify that fti(ftf∗(X)) = ftf∗(fti(X)) it is sufficient to check that ft(ftf∗(X ′)) = ftf∗(ft(X ′))
for X ′ = ftj(X) where j = 0, . . . , i−1. Then X ′ =∈ Bm+i−j and ftf ∈Morn,m−1(Y, ft

i−j+1(X ′)).

If m = 1 then ftf = pY,n and we have

ft(p∗Y,n(X
′)) = ft(Tn(Y,X

′)) = Tn(Y, ft(X
′)) = p∗Y,n(ft(X

′)).

where the middle equality holds by Lemma 3.1.

If m > 1 then ftf = (rf ′, ftf ′) where rf ′ ∈ B̃n+1, ftf
′ ∈ Morn,m−2(Y, ft

i+2(X)), (ftf ′)∗(X ′) ∈
Bn+i−j+2 and

ft(ftf∗(X ′)) = ft(S(rf ′, (ftf ′)∗(X ′))) = S(rf ′, ft((ftf∗(X ′)))) =

S(rf ′, (ftf ′)∗(ft(X ′))) = (ftf)∗(ft(X))

where the second equality holds by property (3) assumed above since i > j and the third equality
holds by the inductive assumption.

For f ∈ Morn,m(Y,X) where m > 0 we define r(f) ∈ B̃n+1 and ft(f) ∈ Morn,m−1(Y, ft(X)) by
the condition that f = (r(f), ft(f)).

Let i > 0, f ∈Morn,m(Y, ft
i(X)) and s ∈ B̃m+i where ∂(s) = X define f∗(s) ∈ B̃n+i as follows:

1. if m = 0 then f∗(s) = p∗Y,n(s) = T̃n(Y, s),

2. if m > 0 then f∗(s) = (r(f), ft(f))∗(s) =

Let now g ∈ Morn,m(Z, Y), f ∈ Morm,k(Y,X). Define the composition f ◦ g ∈ Morn,k(Z,X) as
follows:

9

1. if k = 0 then f ◦ g = pZ,n,

2. if k > 0 then f ◦ g = (g∗(r(f)), ft(f) ◦ g).

To show that our construction is well defined we need to verify that several conditions:

Let f : Y → X be a morphism such that Y ∈ Bn andX ∈ Bm. Define a sequence (s1(f), . . . , sm(f))
of elements of B̃n+1 inductively by the rule

(s1(f), . . . , sm(f)) = (s1(ft(f)), . . . , sm−1(ft(f)), sf) = (sftm−1(f), . . . , sft(f), sf)

where ft(f) = pXf , sf is defined by the diagram (2) and for m = 0 we start with the empty
sequence. This construction can be illustrated by the following diagram for f : Y → X where
X ∈ B4:

Y
s4(f)−−−→ Z4,3 −−−→ Z4,2 −−−→ Z4,1 −−−→ Tn(Y,X) −−−→ Xy y y y y

Y
s3(f)−−−→ Z3,2 −−−→ Z3,1 −−−→ Tn(Y, ft(X)) −−−→ ft(X)y y y y

Y
s2(f)−−−→ Z2,1 −−−→ Tn(Y, ft

2(X)) −−−→ ft2(X)y y y
Y

s1(f)−−−→ Tn(Y, ft
3(X)) −−−→ ft3(X)y y

Y −−−→ pt

(9)

which is completely determined by the condition that the squares are the canonical ones and the
composition of morphisms in the i-th arrow from the top is fti(f). For the objects Zji we have:

Z4,1 = S(s1(f), Tn(Y,X)) Z4,2 = S(s2(f), Z4,1) Z4,3 = S(s3(f), Z4,2)

Z3,1 = S(s1(f), Tn(Y, ft(X))) Z3,2 = S(s2(f), Z3,1)

Z2,1 = S(s1(f), Tn(Y, ft
2(X)))

(10)

A simple inductive argument similar to the one in the proof of Lemma 2.3 show that if f, f ′ : Y → X
are two morphisms such that X ∈ Bm and si(f) = si(f

′) for i = 1, . . . ,m then f = f ′. Therefore,
we may consider the set Mor(CC) of morphisms of CC as a subset in ⨿n,m≥0Bn ×Bm × B̃m

n+1.

Let us show how to describe this subset in terms of the operations introduced above.

Lemma 3.2 [2009.11.07.l1] An element (Y,X, s1, . . . , sm) of Bn × Bm × B̃m
n+1 corresponds to

a morphism if and only if the element (Y, ft(X), s1, . . . , sm−1) corresponds to a morphism and
∂(sm) = Zm,m−1 where Zm,i is defined inductively by the rule:

Zm,0 = Tn(Y,X) Zm,i+1 = S(si+1, Zm,i)

10

Proof: Straightforward from the example considered above.

Let us show now how to identify the canonical morphisms pX,i : X → fti(X) and in particular the
identity morphisms.

Lemma 3.3 [2009.11.10.l1] Let X ∈ Bm and 0 ≤ i ≤ m. Let pX,i : X → fti(X) be the canonical
morphism. Then one has:

sj(pX,i) = T̃m−j(X, δftm−j(X)) j = 1, . . . ,m− i

Proof: Let us proceed by induction on m− i. For i = m the assertion is trivial. Assume the lemma
proved for i+ 1. Since ft(pX,i) = pX,i+1 we have sj(pX,i) = sj(pX,i+1) for j = 1, . . . ,m− i− 1. It
remains to show that

[2009.11.10.eq1]sm−i(pX,i) = T̃i(X, δfti(X)) (11)

By definition sm−i(pX,i) = spX,i and (11) follows from the commutative diagram:

X −−−→ fti(X)

sp

y yδfti(X)

p∗X,i+1(ft
i(X)) −−−→ p∗

fti(X)
(fti(X)) −−−→ fti(X)y y ypfti(X)

X −−−→ fti(X) −−−→ fti+1(X)

where p = pX,i.

Lemma 3.4 [2009.11.10.l2] Let (X, s) ∈ B̃m+1, Y ∈ Bn and f : Y → ft(X). Define inductively
(f, i)∗(s) ∈ B̃n+m+1−i by the rule

(f, 0)∗(s) = T̃n(Y, s)

(f, i+ 1)∗(s) = S̃(si+1(f), (f, i)
∗(s))

Then f∗(s) = (f,m)∗(s).

11

Proof: It follows from the diagram:

Y
sm(f)−−−→ ∗ −−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ ft(X)

f∗(s)

y y(f,m−1)∗(s)

y(f,1)∗(s)

y(f,0)∗(s)

ys
∗ −−−→ ∗ −−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ Xy y y y y
Y

sm(f)−−−→ ∗ −−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ ft(X)y y y y
Y

sm−1(f)−−−−−→ . . . −−−→ ∗ −−−→ ∗ −−−→ ft2(X)y y y
.y y y
Y

s1(f)−−−→ ∗ −−−→ ftm−1(X)y y
Y −−−→ pt

Lemma 3.5 Let g : Z → Y , f : Y → X and X ∈ Bm. Then si(fg) = g∗si(f).

Proof: It follows immediately from the equations sfg = g∗sf and ft(fg) = ft(f)g.

Lemma 3.6 [2009.11.10.l4] Let f : Y → ft(X) be a morphism, Y ∈ Bn and X ∈ Bm+1. Define
(f, i)∗(X) inductively by the rule:

(f, 0)∗(X) = Tn(Y,X)

(f, i+ 1)∗(X) = S(si+1(f), (f, i)
∗(X))

Then f∗(X) = (f,m)∗(X).

Proof: Similar to the proof of Lemma 3.4.

Lemma 3.7 [2009.11.10.l4] Let f : Y → ft(X) be a morphism, Y ∈ Bn and X ∈ Bm+1. Then

si(q(f,X)) =


T̃ (f∗X, si(f)) if i ≤ m

T̃ (f∗X, δX) if i = m+ 1

Proof: We have si(q(f,X)) = sftm+1−i(q(f,X)). For i ≤ m we have ftm+1−i(q(f,X)) = ftm−i(f)pf∗X .
Therefore,

sftm+1−i(q(f,X)) = sftm−i(f)pf∗X
= p∗f∗Xsftm−i(f) = T̃ (f∗X, si(f))

12

and for i = m+ 1 we have

si(q(f,X)) = sq(f,X) = p∗f∗X(δX) = T̃ (f∗X, δX).

The lemmas proved above show that a C-structure can be reconstructed from the pair of sets B, B̃
connected by the maps ft, ∂, δ, T , T̃ , S and S̃. While this way of encoding C-structures may be
less convenient than their encoding as a pair of sets Ob and Mor connected by the maps ∂0, ∂1, c
(composition), id, ft and qpb : (f,X) 7→ q(f,X), this fact has the following important corollary.

Proposition 3.8 [2009.11.10.prop1] Let CC, CC ′ be two C-structures. Then there is a natural
bijection between C-structure morphisms F : CC → CC ′ and pairs of maps F0 : Ob(CC) →
Ob(CC ′), F1 : Õb(CC) → Õb(CC ′) which commute in the obvious sense with ft, ∂, T , T̃ , S, S̃
and δ.

Remark 3.9 Notes on the properties of the maps introduced above:

1. for Y ∈ B≥n+2, S(δftn+1(Y), T (ft
n+1(Y), Y)) = Y .

2. The maps S and T can be defined as ft ∂ S̃ δ and ft ∂ T̃ δ respectively.

2 Type systems

1 Systems of expressions

Free systems of expressions. Let M be a set and let T (M) be the set of finite rooted trees
whose vertices (including the root) are labeled by elements of M and such that for any vertex the
set of edges leaving this vertex is ordered. Note that such ordered trees have no symmetries. We
will use the following notations. For T ∈ T (M) let V rtx(T) be the set of vertices of T and for
v ∈ V rtx(T) let lbl(v) = lbl(v)T ∈ M be the label on v. We will sometimes write v ∈ T instead
of v ∈ V rtx(T). For v ∈ V rtx(T) let [v] = [v]T ∈ T (M) be the subtree in T which consists of
v and all the vertices under v. Let val(v) be the valency of v i.e. the number of edges leaving v
and ch1(v), . . . , chval(v)(v) ∈ V rtx(T) be the ”children” of v i.e. the end points of these edges. Let
further bri(v) = [chi(v)] be the branches of [v]. We write v ≤ w (resp. v < w) if v ∈ [w] (resp.
v ∈ [w]− w). We say that two vertices v and w are independent if v /∈ [w] and w /∈ [v].

For three sets A,B and Cont let

AllExp(A,B;Con) = T (A⨿B ⨿ (Con× (⨿n≥0B
n)))

Elements of AllExp(A,B;Con) are called expressions over the alphabet Con (or with a set of
constructors Con), free variables from A and bound variables from B.

An expression is called unambiguous if it satisfies the following conditions:

1. if lbl(v) ∈ A⨿B then val(v) = 0,

2. (a) if v < v′, lbl(v) = (c;x1, . . . , xn) and lbl(v
′) = (c′;x′1, . . . , x

′
n′) then

{x1, . . . , xn} ∩ {x′1, . . . , x′n′} = ∅,

13

(b) if lbl(v) = (c;x1, . . . , xn) then xi ̸= xj for i ̸= j,

3. if lbl(v) = (c;x1, . . . , xn) and lbl(v
′) ∈ {x1, . . . , xn} then v′ ∈ [v].

The first conditions says that a vertex labeled by a variable is a leaf. The second one is equivalent
to saying that if the same variable is bound at two different vertices v, v′ then these vertices are
independent i.e. [v] ∩ [v′] = ∅ and that a vertex can not bind the same variable twice. The third
one says that all the leaves labeled by a bound variable lie under the vertex where it is boud. We
let UAExp(A,B;Con) denote the subset of unambiguous expressions in AllExp(A,B;Con). Note
that for for any T ∈ UAExp(A,B;Con) and v ∈ V rtx(T) there is a subset Ext(v) ⊂ B such that

[v] ∈ UAExp(A⨿ Ext(v), B\Ext(v);Con)

Any triple of maps fCon : A→ A′, fB : B → B′, fCon : Con→ Con′ define a map

f∗ = (fA, fB, fCon)∗ : AllExp(A,B;Con)→ AllExp(A′, B′;Con′)

which changes labels in the obvious way. If fB is injective then f∗ maps unambiguous expressions
to unambiguous ones.

An element T of UAExp(A,B;Con) is said to be strictly unambiguous if for any v ̸= v′ in
V rtx(T) such that lbl(v) = (c;x1, . . . , xn) and lbl(v′) = (c′;x′1, . . . , x

′
n′) one has {x1, , . . . , xn} ∩

{x′1, . . . , x′n′} = ∅ i.e. if the names of all bound variables are different. We let SUAExp(A,B;Con)
denote the subset of strictly unambiguous expressions in UAExp(A,B;Con).

An element T of UAExp(A,B;Con) is said to be α-equivalent to an element T ′ of UAExp(A,B′;Con)
if there is a set B′′ , an element T ′′ ∈ UAExp(A,B′′;Con) and two maps f : B′′ → B, f ′ : B′′ → B′

such that T = (Id, f, Id)∗(T
′′) and T ′ = (Id, f ′, Id)∗(T

′′). The following lemma is straightforward:

Lemma 1.1 [2009.09.08.l1] For any two sets A and Con one has:

1. α-equivalence is an equivalence relation,

2. for any set B and any element T ∈ UAExp(A,B;Con) there exists an element
T ′ ∈ UAExp(A,N;Con) such that T

α∼ T ′ and T ′ is strictly unambiguous,

3. fwo strictly unambiguous elements T, T ′ ∈ UAExp(A,B;Con) are α-equivalent if and only if
there exists a permutation f : B → B such that (Id, f, Id)∗(T) = T ′.

We let Expα(A;Con) denote the set of α-equivalence classes in ⨿BUAExp(A,B;Con). In view
of Lemma 1.1 this set is well defined and can be also defined as the set of equivalence classes in
SUAExp(A,N;Con) modulo the equivalence relation generated by the permutations on N.

Note that for two α-equivalent expressions T1, T2 and a vertex v ∈ V (T1) = V (T2) the expressions
[v]T1 and [v]T2 need not be α-equivalent since some of the variables which are bound in T1 may be
free in [v].

The maps (fA, fB, fCon)∗ respect α-equivalence. Therefore for any fA : A→ A′ and fCon : Con→
Con′ there is a well defined map

(fA, fCon)∗ : Expα(A;Con)→ Exp(A′;Con′)

14

which make Expα(−;−) into a covariant functors from pairs of sets to sets. In addition there is
a well defined notion of substitution on Expα(−;Con) which may be considered as a collection of
maps of the form:

Expα(A;Con)× (
∏
a∈A

Expα(Xa;Con))→ Expα(⨿a∈AXa;Con)

given for all pairs (A; {Xa}a∈A) where A is a set and {Xa}a∈A a family of sets parametrized by A.
Alternatively, the substitution structure can be seen as a collection of maps

Expα(Expα(A;Con);Con)→ Expα(A;Con)

given for all A and Con. These maps make the functor Expα(−;Con) into a monad (triple) on the
category of sets which functorially depends on the set Con.

Example 1.2 [lambda] The mapping which sends a set X to the set of α-equivalence classes
of terms of the untyped λ-calculus with free variables from X is a sub-triple of Expα(−;Con)
where Con = {λ, ev}. Elements T of UAExp(X,N; {λ, ev}) which belong to this sub-triple are
characterized by the following ”local” conditions:

1. for each v ∈ T , lbl(v) ∈ X ⨿N⨿ {ev} ⨿ {λ} ×N

2. if lbl(v) ∈ {λ} ×N then val(v) = 1

3. if lbl(v) = ev then val(v) = 2.

Example 1.3 [propositional]The mapping which sends a set X to the set of terms of the propo-
sitional calculus with free variables from X is a sub-triple of Expα(−;C0) where C0 = {∨,∧, ⌝,⇒}.
Elements T of UAExp(X,N;C0) which belong to this sub-triple are characterized by the following
”local” conditions:

1. for all v ∈ T , lbl(v) ∈ X ⨿ C0

2. if lbl(v) ∈ {∨,∧,⇒} then val(v) = 2

3. if lbl(v) =⌝ then val(v) = 1.

Example 1.4 [multisorted] Consider first order logic with several sorts GS = {S1, . . . , Sn}. Let
GP be the set of generating predicates and GF the set of generating functions. Let C1 = C0⨿{∀, ∃}
and C2 = C1⨿GP⨿GF⨿GS. We can identify the α-equivalence classes of formulas of the first order
language defined by GS and GF with free variables from a set X with a subset in Expα(X,N;C2).
Vertices which are labeled by (∀;x) and (∃;x) have valency two. For such a vertex v, the first branch
of [v] is one vertex labeled by an element of GS giving the sort over which the quantification occurs
and the second branch is the expression which is quantified. Now however, these subsets do not
form a sub-triple of Expα since not all substitutions are allowed. By allowing all substitutions
irrespectively of the sort we get (for each X) a subset in Expα(X;C2) whose elements will be called
pseudo-formulas.

The following operations on expressions are well defined up to the α-equivalence:

15

1. If T1, . . . , Tm ∈ Expα(A;Con), a1, . . . , an are pair-wise different elements of A and M ∈
Con we will write (M,a1, . . . , an)(T1, . . . , Tm) for the expression whose root v is labeled by
(M,a1, . . . , an), val(v) = n and bri(v) = Ti.

2. For T1, T2 ∈ Expα(A;Con) and v ∈ T1 we let T1(T2/[v]) be the expression obtained by
replacing [v] in T1 with T ′

2 where T ′
2 is obtained from T2 by the change of bound variables

such that the bound variables of T ′
2 do not conflict with the variables of T1.

3. For T,R1, . . . , Rn ∈ Expα(A;Con) and y1, . . . , yn ∈ A we let T (R1/y1, . . . , Rn/yn) denote the
expression obtained by changing Ri’s by α-equivalent R′

i such that bnd(R′
i) ∩ bnd(Rj)′ = ∅

for i ̸= j, changing T to an α-equivalent T ′ such that bnd(T ′)∩ (var(R′
1)∪ . . .∪ var(R′

n)) = ∅
and then replacing all the leaves of T ′ marked by yi by R

′
i.

In all the examples considered above, these operations correspond to the usual operations on
formulas. The first operation can be used to directly associate expressions in our sense with the
formulas. For example, the expression associated with the formula ∀x : S.P (x, y) in a multi-sorted
predicate calculus is (∀, x)(S, P (x, y)) where as was mentioned above we use the same notation for
an element of A⨿B ⨿ (Con× (⨿n≥0B

n)) and the one vertex tree with the corresponding label.

Note: about representing elements of AllExp(A,B;Con) by linear sequences of elements of A ⨿
B⨿??.

Reduction structures. Another component of the structure present in systems of expressions
used in formal systems is the reduction relation. It is very important for our approach to type
systems that the reduction relation is defined on all pseudo-formulas and is compatible with the
substitution structure even when not all psedu-formulas are well formed formulas. In what follows
we will consider, instead of a particular syntactic system, a pair (S, ▷) where S is a continuous
triple on the category of sets and ▷ is a reduction structure on S i.e. a collection of relations ▷X
on S(X) given for all finite sets X satisfying the following two conditions:

1. if E ∈ S({x1, . . . , xn}), f1, . . . , fn, f ′i ∈ S({y1, . . . , ym}) and fi ▷{y1,...,ym} f
′
i then

E(f1/x1, . . . , fi/xi, . . . fn/xn) ▷{x1,...,xn} E(f1/x1, . . . , f
′
i/xi, . . . fn/xn),

2. if E,E′ ∈ S({x1, . . . , xn}), f1, . . . , fn ∈ S({y1, . . . , ym}) and E ▷{x1,...,xn} E
′ then

E(f1/x1, . . . , fn/xn) ▷{x1,...,xn} E
′(f1/x1, . . . , fn/xn).

The following two results are obvious but important.

Proposition 1.5 [2009.10.17.prop1] Let S be a continuous triple on Sets and ▷α be a family of
reduction structures on S. Then the intersection ∩α▷α : X 7→ ∩α▷α,X is a reduction structure on
S.

Corollary 1.6 [2009.10.17.cor1] For any family (Xα, preα) of pairs of the form (X, pre) where
X is a set and pre is a relation on S(X) (i.e. a subset of S(X)× S(X)) there exists the smallest
reduction structure ▷ = ▷(Xα, preα) on S such that for each α and each (f, g) ∈ preα one has f ▷ g.

16

2 C-structures defined by a triple.

Let S be a continuous triple on Sets. Let S − cor be the full subcategory of the Kleisli category
of S whose objects are finite sets. Recall, that the set of morphisms from X to Y in S − cor is the
set of maps from X to S(Y) i.e. S(Y)X (in other words, S − cor is the category of free, finitely
generated S-algebras). We will construct two C-structures C(S) and CC(S)which are based on
(S − cor)op.

Examples:

1. If S = Id i.e. S(X) = X the S − cor = FSets is the category of finite sets. It is easy to
see that the category of finite sets is the free category with finite coproducts generated by
one object. Therefore, (FSets)op can be thought of the free category with finite products
generated by one object.

2. Let S be given by S(X) = X ⨿ A where A is a set. This corresponds to the system of
expressions where all expressions are either variables or constants and the set of constants
is A. The category (S − cor)op can be though of as the free category with finite products
generated by an object U and the set A of morphisms pt→ U .

The categories of sets, finite sets or even the category of finite linearly ordered sets and their
isomorphisms are all level 1 categories and so is the category S− cor. We can get a set-level model
C(S) for (S − cor)op by setting Ob(C(S)) = N and HomC(S)(n,m) = S({1, . . . , n})m.

The category C(S) extends to a C-structure which is defined as follows. The final object is 0. The
map ft is given by

ft(n) =

{
0 if n = 0
n− 1 if n > 0

The canonical projection n→ n− 1 is given by the sequence (1, . . . , n− 1). For f = (f1, . . . , fm) :
n→ m the canonical square build on f and the canonical projection m+ 1→ m is of the form

n+ 1
(f1,...,fm,n+1)−−−−−−−−−→ m+ 1y y

n
(f1,...,fm)−−−−−−→ m

Any morphism of triples S → S′ defines a C-structure morphism C(S) → C(S′). Non-trivial
C-substructures of C(S) are in one-to-one correspondence with continuous sub-triples of S.

Note: add notes that a continuous sub-triple of S is exactly the same as a subcategory in S −
cor which contains all (isomorphism classes of) objects. Intersection of two sub-triples is a sub-
triple which allows us to speak of sub-triples (systems of expressions etc.) generated by a set of
expressions. For the construction of type systems the category S−cor is replaced by the C-structure
CC(S,X).

Note: that continuous triples on Sets are the same as category structures on N which extend the
a category structure of finite sets and where the addition remains to be coproduct.

Let now CC(S) be the set-level category whose set of objects is Ob(CC(S)) = ⨿n≥0Obn where

Obn = S(∅)× . . .× S({1, . . . , n− 1})

17

and the set of morphisms is

mor(CC(S)) =
⨿

n,m≥0

Obn ×Obm × S({1, . . . , n})m

with the obvious domain and codomain maps. The composition of morphisms is defined in the
same way as in C(S) such that the mapping Ob(CC(S)) → N which sends all elements of Obn
to n, is a functor. The associativity of compositions follows immediately from the associativity of
compositions in S − cor.

Note that if S(∅) = ∅ then CC(S) = ∅ and otherwise the functor CC(S) → (S − cor)op is an
equivalence, so that in the second case C(S) and CC(S) are indistinguishable as level 1 categories.
However, as set level categories they are quite different.

The category CC(S) is given a C-structure as follows. The final object is the only element of Ob0,
the map ft is defined by the rule

ft(T1, . . . , Tn) = (T1, . . . , Tn−1).

The canonical pull-back square defined by an object (T1, . . . , Tm+1) and a morphism (f1, . . . , fm) ∈
S({1, . . . , n})m from (R1, . . . , Rn) to (T1, . . . , Tm) is of the form

[2009.11.05.oldeq1]

(R1, . . . , Rn, Tm+1(f1/1, . . . , fm/m))
(f1,...,fm,n+1)−−−−−−−−−→ (T1, . . . , Tm+1)y y

(R1, . . . , Rn)
(f1,...,fm)−−−−−−→ (T1, . . . , Tm)

(12)

Proposition 2.1 [2009.10.01.prop2] With the maps defined above CC(S) is a C-structure.

Proof: Straightforward.

Note that the natural projection CC(S) → C(S) is a C-structure morphism. It’s C-structure
sections are in one-to-one correspondence with S(∅) such that U ∈ S(∅) corresponds to the section
which takes the object n of C(S) to the object (U, . . . , U) of CC(S).

Any morphism of triples S → S′ defines a C-structure morphism CC(S)→ CC(S′). C-substructures
of CC(S), which are discussed in more detail below, provide an important class of type systems
over S.

There is another construction of a category from a continuous triple S which takes as an additional
parameter a set V ar which is called the set of variables. Let Fn(V ar) be the set of sequences of
length n of pair-wise distinct elements of V ar. Define the category CC(S, V ar) as follows. The set
of objects of CC(S, V ar) is

Ob(CC(S, V ar)) = ⨿n≥0 ⨿(x1,...,xn)∈Fn(V ar) S(∅)× . . .× S({x1, . . . , xn−1})

For notational compatibility with the traditional type theory we will write the elements ofOb(CC(S,X))
as sequences of the form x1 : E1, . . . , xn : En. The set of morphisms is given by

HomCC(S,,V ar)((x1 : E1, . . . , xn : En), (y1 : T1, . . . , ym : Tm)) = S({x1, . . . , xn})m

18

The composition is defined in such a way that the projection

(x1 : E1, . . . , xn : En) 7→ (E1, E2(1/x1), . . . , En(1/x1, . . . , n− 1/xn−1))

is a functor from CC(S,X) to CC(S). This functor is clearly an equivalence. There is an obvious
final object and ft map on CC(S,X). There is however a real problem in making it into a C-
structure which is due to the following. Consider an object (y1 : T1, . . . , ym+1 : Tm+1) and a
morphism (f1, . . . , fm) : (x1 : R1, . . . , xn : Rn)→ (y1 : T1, . . . , ym : Tm). In order for the functor to
CC(S) to be a C-structure morphism the canonical square build on this pair should have the form

(x1 : R1, . . . , xn : Rn, xn+1 : Tm+1(f1/1, . . . , fm/m))
(f1,...,fm,n+1)−−−−−−−−−→ (y1 : T1, . . . , ym+1 : Tm+1)y y

(x1 : R1, . . . , xn : Rn)
(f1,...,fm)−−−−−−→ (y1 : T1, . . . , ym : Tm)

where xn+1 is an element of X which is distinct from each of the elements x1, . . . , xn. Moreover,
we should choose xn+1 in such a way the the resulting construction satisfies the C-structure axioms
for (f1, . . . , fm) = Id and for the compositions (g1, . . . , gn) ◦ (f1, . . . , fm). One can easily see that
no such choice is possible for a finite set X. At the moment it is not clear to me whether or not
such it is possible for an infinite X.

3 C-substructures of CC(S).

Let TS be a C-substructure of CC(S). By Lemma 2.3, TS is determined by the subsetsB = Ob(TS)

and B̃ = Õb(TS) in Ob(CC(S)) and Õb(CC(S)). By definition we have

Ob(CC(S)) =
⨿
n≥0

n−1∏
i=0

S({1, . . . , i})

An element of Õb(CC(S)) is given by a pair (Γ, s) where Γ ∈ Ob(CC(S)) is an object and s :
ft(Γ) → Γ is a section of the canonical morphism pΓ : Γ → ft(Γ). It follows immediately from
the definition of CC(S) that for Γ = (E1, . . . , En+1), a morphism (f1, . . . , fn+1) ∈ S({1, . . . , n})n+1

from ft(Γ) to Γ is a section of pΓ if an only if fi = i for i = 1, . . . , n. Therefore, any such
section is determined by its last component fn+1 and mapping ((E1, . . . , En+1), (f1, . . . , fn+1)) to
(E1, . . . , En, En+1, fn+1) we get a bijection

[2009.10.15.eq2]Õb(CC(S)) ∼=
⨿
n≥0

(
n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})2 (13)

For Γ = (E1, . . . , En) we write (Γ▷TS) if (E1, . . . , En) is in B and (Γ ⊢TS t : T) if (E1, . . . , En, T, t)
is in B̃. When no confusion is possible we will write ⊢ instead of ⊢TS . We also write l(Γ) = n and
ft(Γ) = (E1, . . . , En−1).

The following result is an immediate corollary of Proposition 2.5.

Proposition 3.1 [2009.10.16.prop3] Let S be a continuous triple on Sets. A pair of subsets

B ⊂
⨿
n≥0

n−1∏
i=0

S({1, . . . , i})

19

B̃ ⊂
⨿
n≥0

(
n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})2

defines a C-substructure of CC(S) if and only if the following conditions hold:

1. (▷)

2. (Γ▷)⇒ (ft(Γ)▷)

3. (Γ ⊢ t : T)⇒ (Γ, T▷)

4. (Γ1,Γ2,⊢ o : S) ∧ (Γ1, T▷)⇒ (Γ1, T, si+1Γ
′ ⊢ si+1o : si+1S) where i = l(Γ1)

5. (Γ1, T,Γ2 ⊢ o : S) ∧ (Γ1 ⊢ r : T)⇒ (Γ1, di+1(Γ2[r/i+ 1]) ⊢ di+1(t[r/i+ 1]) : di+1(T [r/i+ 1]))
where i = l(Γ1)

6. (Γ, T▷)⇒ (Γ, T ⊢ n+ 1 : T) where n = l(Γ).

where for E ∈ S({1, . . . , k}), siE = E[i + 1/i, . . . , k + 1/k] ∈ S({1, . . . , k + 1} and diE = E[i/i +
1, . . . , k − 1/k] ∈ S({1, . . . , k − 1}

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following

4a (Γ1,Γ2▷) ∧ (Γ1, T▷)⇒ (Γ1, T, si+1Γ2▷) where i = l(Γ1)

5a (Γ1, T,Γ2▷) ∧ (Γ1 ⊢ r : T)⇒ (Γ1, di+1(Γ2[r/i+ 1])▷) where i = l(Γ1).

Note also that modulo condition (2), condition (1) is equivalent to the condition that B ̸= ∅.

Remark 3.2 [2010.08.07.rem1] If one re-writes the conditions of Proposition 3.1 in the more
familiar in type theory form where the variables introduced in the context are named rather than
directly numbered one arrives at the following rules:

▷
x1 : E1, . . . , xn : En▷

x1 : E1, . . . , xn−1 : En−1 ⊢
x1 : E1, . . . , xn : En ▷ t : T

x1 : E1, . . . , xn : En ⊢

x1 : E1, . . . , xn : En ⊢ t : T x1 : E1, . . . , xi : Ei, y : F▷
x1 : E1, . . . , xi : Ei, y : F, xi+1 : Ei+1, . . . , xn : En ⊢ t : T

, i = 0, . . . , n

x1 : E1, . . . , xn : En ⊢ t : T x1 : E1, . . . , xi : Ei ⊢ r : Ei+1

x1 : E1, . . . , xi : Ei, xi+2 : Ei+2[r/xi+1], . . . , xn : En[r/xi+1] ⊢ t[r/xi+1] : T [r/xi+1]
, i = 0, . . . , n−1

x1 : E1, . . . , xn : En▷
x1 : E1, . . . , xn : En ⊢ xn : En

20

which are similar to (and probably equivalent) the ”basic rules of DTT” given in [4, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-structure.

Lemma 3.3 [2009.11.05.l1] Let S, B, B̃ be as above and let (E1, . . . , En), (T1, . . . , Tm) ∈ B and
(f1, . . . , fm) ∈ S({1, . . . , n})m. Then

(f1, . . . , fm) ∈ HomTS((E1, . . . , En), (T1, . . . , Tm))

if and only if (f1, . . . , fm−1) ∈ HomTS((E1, . . . , En), (T1, . . . , Tm−1)) and

(E1, . . . , En, Tm(f1/1, . . . , fm−1/m− 1), fm) ∈ B̃

Proof: Straightforward using the fact that the canonical pull-back squares in CC(S) are given by
(12).

4 Type systems over S.

Definition 4.1 [typesystem] Let S be a continuous triple on Sets. A type system over S is a
collection of data of the form:

B ⊂
⨿
n≥0

n−1∏
i=0

S({1, . . . , i})

Beq ⊂
⨿
n≥0

(

n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})2

B̃ ⊂
⨿
n≥0

(

n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})2

B̃eq ⊂
⨿
n≥0

(

n−1∏
i=0

S({1, . . . , i}))× S({1, . . . , n})3

For Γ = (T1, . . . , Tn) ∈
⨿
n≥0

∏n−1
i=0 S({1, . . . , i}) and S1, S2 ∈ S({1, . . . , i}) we write (Γ ⊢ S1 = S2)

to signify that (T1, . . . , Tn, S1, S2) ∈ Beq. Similarly for S, o, o′ ∈ S({1, . . . , n}) we write (Γ ⊢ o =

o′ : S) to signify that (T1, . . . , Tn, S, o, o
′) ∈ B̃eq. These data should satisfy the following conditions:

1. Conditions (1)-(6) on B and B̃ from Proposition 3.1 (referred to below as conditions (1.1)-
(1.6) from Definition 4.1).

2.
(a) (Γ ⊢ T = T ′)⇒(Γ, T▷)
(b) (Γ, T▷)⇒(Γ ⊢ T = T)
(c) (Γ ⊢ T = T ′)⇒(Γ ⊢ T ′ = T)
(d) (Γ ⊢ T = T ′) ∧ (Γ ⊢ T ′ = T ′′)⇒(Γ ⊢ T = T ′′)

3.
(a) (Γ ⊢ o = o′ : T)⇒(Γ ⊢ o : T)
(b) (Γ ⊢ o : T)⇒(Γ ⊢ o = o : T)
(c) (Γ ⊢ o = o′ : T)⇒(Γ ⊢ o′ = o : T)
(d) (Γ ⊢ o = o′ : T) ∧ (Γ ⊢ o′ = o′′ : T)⇒(Γ ⊢ o = o′′ : T)

21

4.
(a) (Γ1 ⊢ T = T ′) ∧ (Γ1, T,Γ2 ⊢ S = S′)⇒(Γ1, T

′,Γ2 ⊢ S = S′)
(b) (Γ1 ⊢ T = T ′) ∧ (Γ1, T,Γ2 ⊢ o = o′ : S)⇒(Γ1, T

′,Γ′
2 ⊢ o = o′ : S)

(c) (Γ ⊢ S = S′) ∧ (Γ ⊢ o = o′ : S)⇒(Γ ⊢ o = o′ : S′)

5.

(a) (Γ1, T▷) ∧ (Γ1,Γ2 ⊢ S = S′)⇒(Γ1, T, si+1Γ2 ⊢ si+1S = si+1S
′) i = l(Γ)

(b) (Γ1, T▷) ∧ (Γ1,Γ2 ⊢ o = o′ : S)⇒(Γ1, T, si+1Γ2 ⊢ si+1o = si+1o
′ : si+1S) i = l(Γ)

6.

(a) (Γ1, T,Γ2 ⊢ S = S′) ∧ (Γ1 ⊢ r : T)⇒
(Γ1, di+1(Γ2[r/i+ 1]) ⊢ di+1(S[r/i+ 1]) = di+1(S

′[r/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ⊢ o = o′ : S) ∧ (Γ1 ⊢ r : T)⇒
(Γ1, di+1(Γ2[r/i+ 1]) ⊢ di+1(o[r/i+ 1]) = di+1(o

′[r/i+ 1]) : di+1(S[r/i+ 1])) i = l(Γ1)

7.

(a) (Γ1, T,Γ2, S▷) ∧ (Γ1 ⊢ r = r′ : T)⇒
(Γ1, di+1(Γ2[r/i+ 1]) ⊢ di+1(S[r/i+ 1]) = di+1(S[r

′/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ⊢ o : S) ∧ (Γ1 ⊢ r = r′ : T)⇒
(Γ1, di+1(Γ2[r/i+ 1]) ⊢ di+1(o[r/i+ 1]) = di+1(o[r

′/i+ 1]) : di+1(S[r/i+ 1])) i = l(Γ1)

Definition 4.2 [simandsimeq] Given S, B, Beq, B̃ and B̃eq as above and assuming that condi-
tions (1.2) and (1.3) hold, define relations ∼n on Bn and ≃n on B̃n as follows:

1. for Γ = (T1, . . . , Tn), Γ′ = (T ′
1, . . . , T

′
n) in Bn we set Γ ∼n Γ′ iff ft(Γ) ∼n−1 ft(Γ′) and

T1, . . . , Tn−1 ⊢ Tn = T ′
n,

2. for (Γ ⊢ o : S), (Γ′ ⊢ o′ : S′) in B̃n we set (Γ ⊢ o : S) ≃n (Γ′ ⊢ o′ : S′) iff (Γ, S) ∼n (Γ′, S′)
and (Γ ⊢ o = o′ : S).

Lemma 4.3 [iseqrelsiml1] Let S, B, Beq, B̃ and B̃eq be as above. Then for all n ≥ 0, one has:

1. If conditions (1.2), (4a) of Definition 4.1 holds then (Γ ⊢ S = S′)∧ (Γ ∼n Γ′)⇒(Γ′ ⊢ S = S′).

2. If conditions (1.2), (1.3), (4a), (4b), (4c) hold then (Γ ⊢ o = o′ : S)∧(Γ, S ∼n+1 Γ
′, S′)⇒(Γ′ ⊢

o = o′ : S′).

Proof: (1) For n = 0 the assertion is obvious. Therefore by induction we may assume that
(Γ ⊢ S = S′) ∧ (Γ ∼i Γ′)⇒(Γ′ ⊢ S = S′) for all i < n and all appropriate Γ,Γ′, S and S′

and that (T1, . . . , Tn ⊢ S = S′) ∧ (T1, . . . , Tn ∼n T ′
1, . . . , T

′
n) holds and we need to show that

(T ′
1, . . . , T

′
n ⊢ S = S′) holds. Let us show by induction on j that (T ′

1, . . . , T
′
j , Tj+1, . . . , Tn ⊢ S = S′)

for all j = 0, . . . , n. For j = 0 it is a part of our assumptions. By induction we may assume that
(T ′

1, . . . , T
′
j , Tj+1, . . . , Tn ⊢ S = S′). By definition of ∼n we have (T1, . . . , Tj ⊢ Tj+1 = T ′

j+1). By
the inductive assumption we have (T ′

1, . . . , T
′
j ⊢ Tj+1 = T ′

j+1). Applying (4a) with Γ1 = (T ′
1, . . . T

′
j),

T = Tj+1, T
′ = T ′

j+1 and Γ2 = (Tj+2, . . . , Tn) we conclude that (T ′
1, . . . , T

′
j+1, Tj+2, . . . , Tn ⊢ S =

S′).

(2) By the first part of the lemma we have Γ′ ⊢ S = S′. Therefore by (4c) it is sufficient to show
that (Γ ⊢ o = o′ : S) ∧ (Γ ∼n Γ′)⇒(Γ′ ⊢ o = o′ : S). The proof of this fact is similar to the proof of
the first part of the lemma using (4b) instead of (4a).

22

Proposition 4.4 [iseqrelsim] Let S, B, Beq, B̃ and B̃eq be as above. Then one has:

1. Assume that conditions (1.2), (2b), (2c), (2d) and (4a) of Definition 4.1 hold. Then ∼n is
an equivalence relation for each n ≥ 0.

2. Assume that conditions of the previous part of the proposition as well as conditions (1.3),
(3b), (3c), (3d), (4b) and (4c) hold. Then ≃n is an equivalence relation for each n ≥ 0.

Proof: (1) Reflexivity follows directly from (1.2) and (2b). The relation ∼0 is symmetric by (2c).
Let (Γ, T) ∼n+1 (Γ′, T ′). By induction we may assume that Γ′ ∼n Γ. By Lemma 4.3(a) we have
(Γ′ ⊢ T = T ′) and by (2c) we have (Γ′ ⊢ T ′ = T). We conclude that (Γ′, T ′) ∼n+1 (Γ, T) i.e. that
∼n+1 is symmetric. The proof of transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ∼∗, (1.3) and (3b). Symmetry and transitivity
are also easy using Lemma 4.3.

From this point on we assume that all conditions of Definition 4.1 hold. Let B′
n = Bn/ ∼n and

B̃′
n = B̃n/ ≃n. It follows immediately from our definitions that the functions ft : Bn+1 → Bn and

∂ : B̃n → Bn define functions ft′ : B′
n+1 → B′

n and ∂′ : B̃′
n → B′

n.

Lemma 4.5 [surjl1] Under the above assumptions the following maps are surjective for all m ≥
n ≥ 0:

πT,m,n : (Bn+1)ft ×ftm+1−n (Bm+1)→ (B′
n+1)ft′ ×(ft′)m+1−n (B′

m+1)

π
T̃ ,m,n

: (Bn+1)ft ×ftm+1−n∂ (B̃m+1)→ (B′
n+1)ft′ ×(ft′)m+1−n∂′ (B̃

′
m+1)

πS,m,n : (B̃n+1)∂ ×ftm+1−n (Bm+2)→ (B̃′
n+1)∂′′ ×(ft′)m+1−n (B′

m+2)

π
S̃,m,n

: (B̃n+1)∂ ×ftm+1−n∂ (B̃m+2)→ (B̃′
n+1)∂′ ×(ft′)m+1−n∂′ (B

′
m+2)

Proof: We will show that the projections

(Bn+1)ft ×ftm+1−n (Bm+1)→ (B′
n+1)ft′ ×(ft′)m+1−n (Bm+1)

(Bn+1)ft ×ftm+1−n∂ (B̃m+1)→ (B′
n+1)ft′ ×(ft′)m+1−n∂′ (B̃m+1)

(B̃n+1)∂ ×ftm+1−n (Bm+2)→ (B̃′
n+1)∂′ ×(ft′)m+1−n (Bm+2)

(B̃n+1)∂ ×ftm+1−n∂ (B̃m+2)→ (B̃′
n+1)∂′ ×(ft′)m+1−n∂′ (Bm+2)

are already surjective.

(1) We need to show that for (Γ1, T▷), (Γ′
1,Γ2▷) where Γ1 ∼n Γ′

1 there exists (Γ′
1, T

′▷) such that
(Γ1, T) ∼n (Γ′

1, T
′). It is sufficient to take T = T ′. Indeed by (2b) we have Γ ⊢ T = T , by Lemma

4.3(2) we conclude that Γ′ ⊢ T = T and by (1a) that Γ′, T▷.

(2) Same proof as for (1).

(3) We need to show that for (Γ1 ⊢ o : S), (Γ′
1, S

′,Γ2▷) where (Γ, S) ∼n+1 (Γ′, S′) there exists
(Γ′

1 ⊢ o′ : S′) such that (Γ′
1 ⊢ o′ : S′) ≃n+1 (Γ1 ⊢ o : S). It is sufficient to take o′ = o. Indeed, by

(3b) we have (Γ1 ⊢ o = o : S), by Lemma 4.3(2) we conclude that (Γ′
1 ⊢ o = o : S′) and by (2a)

that (Γ′
1 ⊢ o : S′).

(4). Same proof as for (3).

23

Lemma 4.6 [TSetc] Under the above assumptions the maps T, T̃ , S, S̃ and δ which form the C-
structure on (B, B̃) define unique maps

T ′ : (B′
n+1)ft′ ×(ft′)m−n (B′

m)→ B′
m+1

T̃ ′ : (B′
n+1)ft′ ×(ft′)m+1−n∂′ (B̃

′
m+1)→ B̃′

m+2

S′ : (B̃′
n+1)∂′ ×(ft′)m−n (B′

m+1)→ B′
m

S̃′ : (B̃′
n+1)∂′ ×(ft′)m+1−n∂′ (B̃

′
m+2)→ B̃′

m+1

δ′ : B′
n+1 → B̃′

n+2

Proof: Uniqueness follows immediately from Lemma 4.5. Let us show existence.

(1) Given (Γ1, T▷) ∼n+1 (Γ
′
1, T

′▷) and (Γ1,Γ2▷) ∼m (Γ′
1,Γ

′
2▷) we have to show that

(Γ1, T, sn+1Γ2) ∼m+1 (Γ
′
1, T

′, sn+1Γ
′
2).

Proceed by induction on m− n = l(Γ2). For l(Γ2) = 0 the assertion is obvious. Let (Γ1, T▷) ∼n+1

(Γ′
1, T

′▷) and (Γ1,Γ2, S▷) ∼m (Γ′
1,Γ

′
2, S

′▷). The later condition is equivalent to (Γ1,Γ2▷) ∼m
(Γ′

1,Γ
′
2▷) and (Γ1,Γ2 ⊢ S = S′). By the inductive assumption we have (Γ1, T, sn+1Γ2) ∼m+1

(Γ′
1, T

′, sn+1Γ
′
2). By (5a) we conclude that (Γ1, T, sn+1Γ2 ⊢ sn+1S = sn+1S

′). Therefore by defini-
tion of ∼m+1 we have (Γ1, T, sn+1Γ2, sn+1S) ∼m+1 (Γ

′
1, T

′, sn+1Γ
′
2, sn+1S

′).

(2) Given (Γ1, T▷) ∼n+1 (Γ
′
1, T

′▷) and (Γ1,Γ2 ⊢ o : S) ≃m+1 (Γ
′
1,Γ

′
2 ⊢ o′ : S′) we have to show that

(Γ1, T, sn+1Γ2 ⊢ sn+1o : sn+1S) ≃m+2 (Γ
′
1, T

′, sn+1Γ
′
2 ⊢ sn+1o

′ : sn+1S
′). We have (Γ1,Γ2, S) ∼m+1

(Γ′
1,Γ

′
2, S

′) and (Γ1,Γ2 ⊢ o = o′ : S). By (5b) we get (Γ1, T, sn+1Γ2 ⊢ sn+1o = sn+1o
′ : sn+1S).

By (1) of this lemma we get (Γ1, T, sn+1Γ2, sn+1S) ∼m+2 (Γ′
1, T

′, sn+1Γ
′
2, sn+1S

′) and therefore by
definition of ≃ we get (Γ1, T, sn+1Γ2 ⊢ sn+1o : sn+1S) ≃m+2 (Γ

′
1, T

′, sn+1Γ
′
2 ⊢ sn+1o

′ : sn+1S
′).

(3) Given (Γ1 ⊢ r : T) ≃n+1 (Γ′
1 ⊢ r′ : T ′) and (Γ1, T,Γ2▷) ∼m+1 (Γ′

1, T
′,Γ′

2▷) we have to show
that

(Γ1, dn+1(Γ2[r/n+ 1])) ∼m (Γ′
1, dn+1(Γ

′
2[r

′/n+ 1])).

Proceed by induction on m − n = l(Γ2). For l(Γ2) = 0 the assertion follows directly from the
definitions. Let (Γ1 ⊢ r : T) ≃n+1 (Γ

′
1 ⊢ r′ : T ′) and (Γ1, T,Γ2, S▷) ∼m (Γ′

1, T
′,Γ′

2, S
′▷). The later

condition is equivalent to (Γ1, T,Γ2▷) ∼m (Γ′
1, T

′,Γ′
2▷) and (Γ1, T,Γ2 ⊢ S = S′). By the inductive

assumption we have (Γ1, dn+1(Γ2[r/n + 1])) ∼m (Γ′
1, dn+1(Γ

′
2[r

′/n + 1])). It remains to show that
(Γ1, dn+1(Γ2[r/n + 1]) ⊢ dn+1(S[r/n + 1]) = dn+1(S

′[r′/n + 1])). By (2d) it is sufficient to show
that (Γ1, dn+1(Γ2[r/n + 1]) ⊢ dn+1(S[r/n + 1]) = dn+1(S

′[r/n + 1])) and (Γ1, dn+1(Γ2[r/n + 1]) ⊢
dn+1(S

′[r/n+ 1]) = dn+1(S
′[r′/n+ 1])). The first relation follows directly from (6a). To prove the

second one it is sufficient by (7a) to show that (Γ1, T,Γ2, S
′▷) which follows from our assumption

through (2c) and (2a).

(4) Given (Γ1 ⊢ r : T) ≃n+1 (Γ
′
1 ⊢ r′ : T ′) and (Γ1, T,Γ2 ⊢ o : S) ≃m+2 (Γ

′
1, T

′,Γ′
2 ⊢ o′ : S′) we have

to show that

(Γ1, dn+1(Γ2[r/n+ 1]) ⊢ dn+1(o[r/n+ 1]) : dn+1(S[r/n+ 1])) ≃m+1

(Γ′
1, dn+1(Γ

′
2[r

′/n+ 1]) ⊢ dn+1(o
′[r′/n+ 1]) : dn+1(S

′[r′/n+ 1])).

or equivalently that (Γ1, dn+1(Γ2[r/n+1]), dn+1(S[r/n+1])) ∼m+1 (Γ
′
1, dn+1(Γ

′
2[r

′/n+1]), dn+1(S
′[r′/n+

1])) and (Γ1, dn+1(Γ2[r/n + 1]) ⊢ dn+1(o[r/n + 1]) = dn+1(o
′[r′/n + 1]) : dn+1(S[r/n + 1])). The

24

first statement follows from part (3) of the lemma. To prove the second statement it is sufficient by
(3d) to show that (Γ1, dn+1(Γ2[r/n+1]) ⊢ dn+1(o[r/n+1]) = dn+1(o

′[r/n+1]) : dn+1(S[r/n+1]))
and (Γ1, dn+1(Γ2[r/n + 1]) ⊢ dn+1(o

′[r/n + 1]) = dn+1(o
′[r′/n + 1]) : dn+1(S[r/n + 1])). The first

assertion follows directly from (6b). To prove the second one it is sufficient in view of (7b) to show
that (Γ1, T,Γ2 ⊢ o′ : S) which follows conditions (3c) and (3a).

(5) Given (Γ, T) ∼n+1 (Γ
′, T ′) we need to show that (Γ, T ⊢ (n+1) : T) ≃n+2 (Γ

′, T ′ ⊢ (n+1) : T ′)
or equivalently that (Γ, T, T) ∼n+2 (Γ, T ′, T ′) and (Γ, T ⊢ (n+ 1) = (n+ 1) : T). The second part
follows from (3b). To prove the first part we need to show that (Γ, T ⊢ T = T ′). This follows from
our assumption by (5a).

Definition 4.7 [2009.11.4.def1] Let S, ▷ and TS be as above. Let further (C, p) be a category
with a universe structure. A closed model of TS with values in (C, p) is a C-structure morphism

M : TS → CC(C, p)

which is compatible with ▷ i.e. such that the following conditions hold:

1. if (E1, . . . , En) ∈ Ob(TS), i = 1, . . . , n and E′
i ∈ S({x1, . . . , xi−1}) is such that Ei ▷ E

′
i then

M(E1, . . . , En) =M(E1, . . . , E
′
i, . . . , En),

2. if (f1, . . . , fm) ∈ HomTS((E1, . . . , En), (T1, . . . , Tm)), i = 1, . . . ,m and f ′i ∈ S({1, . . . , n}) is
such that fi ▷ f

′
i then

M((f1, . . . , fm); (E1, . . . , En); (T1, . . . , Tm)) =M((f1, . . . , f
′
i , . . . , fm); (E1, . . . , En); (T1, . . . , Tm)

3. if (E1, . . . , En), (T1, . . . , Tm) ∈ Ob(TS), (f1, . . . , fm) ∈ S({1, . . . , n})m, i = 1, . . . , n and E′
i ∈

S({1, . . . , i− 1}) is such that Ei ▷ E
′
i then

M((f1, . . . , fm); (E1, . . . , En); (T1, . . . , Tm)) =M((f1, . . . , fm); (E1, . . . , E
′
i, . . . , En); (T1, . . . , Tm))

4. if (E1, . . . , En), (T1, . . . , Tm) ∈ Ob(TS), (f1, . . . , fm) ∈ S({1, . . . , n})m, i = 1, . . . ,m and
T ′
i ∈ S({1, . . . , i− 1}) is such that Ti ▷ T

′
i then

M((f1, . . . , fm); (E1, . . . , En); (T1, . . . , Tm)) =M((f1, . . . , fm); (E1, . . . , En); (T1, . . . , T
′
i , . . . , Tm))

... are called the subset of type sequents and the subset of term sequents of a type system. By
Lemma 2.3 they uniquely determine the type system.

Elements of Seq0 are called contexts and elements of Seq1 are called judgements. Proposition 3.1
shows that for any type system TS and any (E1, . . . , En, t, T) in Seq1(TS) the sequence (E1, . . . , En)
is in Seq0 i.e. the first part of a judgement should be a valid context.

One also often uses the notation E1, E2, . . . , En ⊢ T : Type which is equivalent to E1, E2, . . . , En, T▷.
The meaning assigned to these subsets is as follows:

1. E1, E2, . . . , En▷ means that E1 is a well formed closed type expression and for i > 1,
Ei(1, . . . , i − 1) is a well formed type expression in the context where variables 1, . . . , i − 1
have types E1, . . . , Ei−1 respectively,

2. E1, E2, . . . , En ⊢ t : T means that E1, E2, . . . , En, T▷ and in the context where variables
1, . . . , n are of the types E1, . . . En respectively, t(1, . . . , n) is a well formed term expression
of type T (1, . . . , n).

25

3 C-structures defined by universes in 1-categories

C-structures CC(C, p).

Definition 0.8 [2009.11.1.def1] Let C be a (level 1) category. A universe on C is a morphism
p : Ũ → U together with a mapping which assigns to any morphism f : X → U in C a pull-back
square

(X, f)
Q(f)−−−→ Ũ

p(X,f)

y yp
X

f−−−→ U

In what follows we will write (X, f1, . . . , fn) for (. . . ((X, f1), f2) . . . , fn).

Let C be a 1-category, p a universe on C and pt a final object of C. For such a triple define a
C-structure CC = CC(C, p) as follows. Objects of CC are sequences of the form (F1, . . . , Fn)
where F1 ∈ HomC(pt, U) and Fi+1 ∈ HomC((pt, F1, . . . , Fi), U). Morphisms from (G1, . . . , Gn) to
(F1, . . . , Fm) are given by

HomCC((G1, . . . , Gn), (F1, . . . , Fm)) = HomC((pt,G1, . . . , Gn), (pt, F1, . . . , Fm))

and units and compositions are defined as units and compositions in C such that the mapping
(F1, . . . , Fn) → (pt, F1, . . . , Fn) is a full embedding of the underlying category of CC to C. The
image of this embedding consists of objects X for which the canonical morphism X → pt is a
composition of morphisms which are (canonical) pull-backs of p. We will denote this embedding
by int.

The final object of CC is the empty sequence (). The map ft sends (F1, . . . , Fn) to (F1, . . . , Fn−1).
The canonical morphism p(F1,...,Fn) is the projection

p((pt,F1,...,Fn−1),Fn) : ((pt, F1, . . . , Fn−1), Fn)→ (pt, F1, . . . , Fn−1)

For an object (F1, . . . , Fm+1) and a morphism f : (G1, . . . , Gn) → (F1, . . . , Fm) the canonical
pull-back square is of the form

[2009.10.26.eq3]

(G1, . . . , Gn, Fm+1f)
q(f)−−−→ (F1, . . . , Fm+1)

pG

y ypF
(G1, . . . , Gn)

f−−−→ (F1, . . . , Fm)

(14)

where int(pF) = p((pt, F1, . . . , Fn−1), Fn), int(pG) = p((pt,G1, . . . , Gn−1), Fm+1 ◦ f) and q(f)
is the morphism such that pF q(f) = fpG and Q(Fm+1)int(q(f)) = Q(Fm+1f). The unity and
composition axioms for the canonical squares follow immediately from the unity and associativity
axioms for compositions of morphisms in C.

Let (C, p, pt) and (C′, p′, pt′) be two sets of data as above. Let Φ : C → C′ be a functor which takes
distinguished squares in C to pull-back squares in C′ and such that Φ(pt)→ pt′ is an isomorphism,
let further ϕ : Φ(U)→ U ′, ϕ̃ : Φ(Ũ)→ Ũ ′ be two morphisms such that

Φ(Ũ)
ϕ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

ϕ−−−→ U ′

26

is a pull-back square. Denote by ψ the isomorphism ψ : pt′ → Φ(pt).

Define a functor H = H(Φ, ϕ, ϕ̃) from CC(C, p) to CC(C′, p′) as follows. We define by induction
on n objects H(F1, . . . , Fn) ∈ CC(C′, p′) and isomorphisms

ψ(F1,...,Fn) : int
′(H(F1, . . . , Fn))→ Φ(int(F1, . . . Fn))

where int and int′ are the canonical functors CC(C, p)→ C and CC(C′, p′)→ C′ respectively.

For n = 0 we set H(pt) = pt and ψ() = ψ. For n > 0 let

(F ′
1, . . . , F

′
n−1) = H(F1, . . . , Fn−1)

and let Fn : int(F1, . . . , Fn−1)→ U . Define F ′
n as the composition

[2009.10.26.eq5]F ′
n : int′(F ′

1, . . . , F
′
n−1)

ψ(F1,...,Fn−1)−→ Φ(int(F1, . . . , Fn−1))
Φ(Fn)→ Φ(U)

ϕ→ U ′ (15)

and let H(F1, . . . , Fn) = (F ′
1, . . . , F

′
n−1, F

′
n). Then

int′(H(F1, . . . , Fn)) = (int′(H(F1, . . . , Fn)), F
′
n)

To define
ψ(F1,...,Fn) : int

′(H(F1, . . . , Fn))→ Φ(int(F1, . . . , Fn))

observe that by our conditions on ϕ, ϕ̃ and Φ the squares of the diagram

Φ(int(F1, . . . , Fn))
Φ(Q(Fn))−−−−−−→ Φ(Ũ) −−−→ Ũ ′y y y

Φ(int(F1, . . . , Fn−1))
Φ(Fn)−−−→ Φ(U)

ϕ−−−→ U ′

are pull-back. Therefore there is a unique morphism ψ(F1,...,Fn) such that the diagram

[2009.10.26.eq2]

int′(H(F1, . . . , Fn))
ψ(F1,...,Fn)−−−−−−−→ Φ(int(F1, . . . , Fn))

ϕ̃Φ(Q(Fn))−−−−−−−→ Ũ ′y y y
int′(H(F1, . . . , Fn−1))

ψ(F1,...,Fn−1)−−−−−−−−→ Φ(int(F1, . . . , Fn−1))
ϕΦ(Fn)−−−−→ U ′

(16)

commutes and

[2009.10.26.eq7]ϕ̃Φ(Q(Fn))ψ(F1,...,Fn) = Q(ϕΦ(Fn)ψ(F1,...,Fn−1)) (17)

and this morphism is an isomorphism.

To define H on morphism we use the fact that morphisms ψ(F1,...,Fn) are isomorphisms and for
f : (F1, . . . , Fn)→ (G1, . . . , Gm) we set

[2009.10.26.eq6]H(f) = ψ−1
(G1,...,Gm)Φ(f)ψ(F1,...,Fn) (18)

The fact that this construction gives a functor i.e. satisfies the unity and composition axioms is
straightforward.

27

It remains to verify that this morphism respects the rest of the C-structure. It is clear that it
respects the length function and the ft maps. The fact that it takes the canonical projections to
canonical projections is equivalent to the commutativity of the left hand side square in (16).

Consider a canonical square of the form (14). Its image is a square of the form

[2009.10.26.eq4]

(G′
1, . . . , G

′
n, G

′
n+1)

H(q(f))−−−−−→ (F ′
1, . . . , F

′
m+1)

H(pG)

y yH(pF)

(G′
1, . . . , G

′
n)

H(f)−−−→ (F ′
1, . . . , F

′
m)

(19)

We already know that the vertical arrows are canonical projections. Therefore, in order to prove
that (19) is a canonical square in CC(C′, p′) we have to show that G′

n+1 = F ′
m+1int(H(f)) and

[2009.10.26.eq8]Q(F ′
m+1)int(H(q(f))) = Q(F ′

m+1int(H(f))) (20)

By (15) we have
G′
n+1 = ϕΦ(Fm+1f)ψ(G1,...,Gn)

F ′
m+1 = ϕΦ(Fm+1)ψ(F1,...,Fm)

and by (18)
int(H(f)) = ψ−1

(F1,...,Fm)Φ(f)ψ(G1,...,Gn)

int(H(q(f))) = ψ−1
(F1,...,Fm+1)

Φ(q(f))ψ(G1,...,Gn,Fm+1f)

Therefore the relation G′
n+1 = F ′

m+1int(H(f)) follows immediately and the relation (20) follows by
application of (17).

Our construction of H shows that if Φ is a full embedding and ϕ and ϕ̃ are isomorphisms then
H is an isomorphism of C-structures. This implies in particular that considered up to a canon-
ical isomorphism CC(C, p) depends only on the equivalence class of the pair (C, p) i.e. that our
construction maps pairs (C, p) which are of h-level 3 to C-structures which are at the set level.

Let us describe now an inverse construction which shows that any C-structure is isomorphic to a C-
structure of the form CC(C, p). Let CC be a C-structure. Denote by PreShv(CC) the 1-category
of contravariant functors from the category underlying CC to Sets.

Let Ty be the functor which takes an object Γ ∈ CC to the set

Ty(Γ) = {Γ′ ∈ CC | ft(Γ′) = Γ}

and a morphism f : ∆→ Γ to the map Γ′ 7→ f∗Γ′. It is a functor due to the composition and unity
axioms for f∗. Let Tm be the functor which takes an object Γ to the set

Tm(Γ) = {s ∈ C̃C | ft ∂(s) = Γ}

and a morphism f : ∆ → Γ to the map s 7→ f∗(s). Let further p : Tm → Ty be the morphism
which takes s to ∂(s). It is well defined as a morphisms of families of sets and forms a morphism
of presheaves since ∂(f∗(s)) = f∗(∂(s)).

Proposition 0.9 [2009.12.28.prop1] For any C-structure CC there is a natural isomorphism

CC = CC(PreShv(CC), p)

28

Proof: We start with the key lemma. (In what follows we identify objects of CC with the corre-
sponding representable presheaves and, for a presheaf F and an object Γ, we identify morphisms
Γ→ F in PreShv(CC) with F (Γ)).

Lemma 0.10 [2009.12.28.l1] Let Γ′ ∈ Ob(CC) and let Γ = ft(Γ′). Then the square

Γ′ δΓ′−−−→ Tm

pΓ′

y yp
Γ

Γ′
−−−→ Ty

is a pull-back square.

Proof: We have to show that for any ∆ ∈ CC the obvious map

[2009.12.28.eq2]Hom(∆,Γ′)→ Hom(∆,Γ)×Ty(∆) Tm(∆) (21)

is a bijection. Let f1, f2 : ∆ → Γ′ be two morphisms such that their images under (21) coincide
i.e. such that pΓ′f1 = pΓ′f2 and f∗1 (δΓ′) = f∗2 (δ

′
Γ). These two conditions are equivalent to saying,

in the notation introduced above, that ft(f1) = ft(f2) and sf1 = sf2 . This implies that f1 = f2
i.e. that (21) is injective. Let f : ∆ → Γ be a morphism and s ∈ Tm(∆) a section such that
ft(∂(s)) = f∗(Γ′). Then the composition q(f,Γ′)s is a morphism f ′ : ∆→ Γ′ such that pΓ′f ′ = f .
We also have

(f ′)∗(δΓ′) = s∗q(f,Γ′)∗(δΓ′) = s

which proves that (21) is surjective.

To construct the required isomorphism we now choose a universe structure on p such that the
pull-back squares associated with morphisms from representable objects are squares (21). The
isomorphism is now obvious.

Definition 0.11 [2009.12.27.def1] Let CC be a C-structure. A closed model of CC is a collection
of data of the following form:

1. A 1-category C,

2. a universe p : Ũ → U in C and a final object pt of C,

3. a C-structure morphism CC → CC(C, p).

The following proposition shows that any ”model” of a C-structure can be viewed as a closed model.

Proposition 0.12 [2009.12.27.prop1] Let C be a 1-category, CC be a C-structure and M :
CC → C a functor such that M(ptCC) is a final object of C and M maps distinguished squares of
CC to pull-back squares of C. Then there exists a universe pM : ŨM → UM in PreShv(C) and a
C-structure morphism M ′ : CC → CC(PreShv(C), pM) such that the square

CC
M−−−→ CyM ′

y
CC(PreShv(C), pM)

int−−−→ PreShv(C)

29

where the right hand side vertical arrow is the Yoneda embedding, commutes up to a canonical
isomorphism.

Proof: We will write p : Ũ → U instead of pM : ŨM → UM . Set

Ũ = ⨿Γ∈CC>0M(Γ) U = ⨿Γ∈CC>0M(ft(Γ)) p = ⨿Γ∈CC>0M(pΓ)

Let pt be final object of PreShv(C). Set M ′(ptCC) = pt.

....

Π-universes in lcc categories. Recall that a (level 1) category C is called a lcc (locally Cartesian
closed) category if it has fiber products and all the over-categories C/X have internal Hom-objects.

Definition 0.13 [2009.10.27.def1] Let C be an lcc category and let pi : Ũi → Ui, i = 1, 2, 3 be
three morphisms in C. A Π-structure on (p1, p2, p3) is a Cartesian square of the form

[Pisq1]

HomU1
(Ũ1, U1 × Ũ2)

P̃−−−→ Ũ3

p′2

y yp3
HomU1

(Ũ1, U1 × U2)
P−−−→ U3

(22)

such that p′2 is the natural morphism defined by p2. A Π-structure on p : Ũ → U is a Π-structure
on (p, p, p).

Remark 0.14 A Π-structure on (p1, p2, p3) corresponds to the rule

Γ, X : U1, f : X → U2▷
Γ, X : U1, f : X → U2 ⊢

∏
x : X.ev(f, x) : U3

Let C be as above, p : Ũ → U and let (P̃ , P) be a Π-structure on (p, p, p). Let us construct a
structure of Π-C-structure on CC = CC(C, p).

We start by recalling some level 1 constructions in C.

Lemma 0.15 [2009.11.24.l5] Consider a pair of pull back squares

[2009.11.24.eq3]

I2
F̃1−−−→ Ũ1

q1

y yp1
I1

F1−−−→ U1

I3
F̃2−−−→ Ũ2

q2

y yp2
I2

F2−−−→ U2

(23)

Then there exists a unique morphism fF1,F2 : I1 → HomU1
(Ũ1, U1 × U2) such that its composition

with the natural morphism to U1 is F1 and the composition of its adjoint

ev ◦ (fF1,F2 ×U1 Ũ1) : I2 = I1 ×U1 Ũ1 → U1 × U2

with the projection to U2 is F2.

30

Proof: Follows immediately from the definition of internal Hom-objects.

Lemma 0.16 [2009.11.24.l3] In the notation of Lemma 0.15 let

J2
ϕ2−−−→ I2y yq1

J1
ϕ1−−−→ I1

J3
ϕ3−−−→ I3y yq2

J2
ϕ2−−−→ I2

be two pull-back squares. Then fF1ϕ1,F2ϕ2 = fF1,F2 ◦ ϕ1.

Proof: Straightforward.

Let p1 : Ũ1 → U1, p2 : Ũ2 → U2 be a pair of morphisms in an lcc C. Consider a pull-back square of
the form

[2009.11.24.eq4]

Fam2(p1, p2) −−−→ Ũ2

p12

y yp2
HomU1

(Ũ1, U1 × U2)×U1 Ũ1
pr◦ev−−−→ U2

(24)

where
ev : HomU1

(Ũ1, U1 × U2)×U1 Ũ1 → U1 × U2

is the canonical morphism.

Then for any two pull-back squares as in Lemma 0.15, the morphism fF1,F2 defines factorizations
of the pull-back squares (23) of the form

I2
fF1,F2

×U1
Ũ1−−−−−−−−→ HomU1

(Ũ1, U1 × U2)×U1 Ũ1
pr−−−→ Ũ1

q1

y y yp1
I1

fF1,F2−−−−→ HomU1
(Ũ1, U1 × U2) −−−→ U1

and
I3 −−−→ Fam2(p1, p2) −−−→ Ũ2

q2

y yp12 yp2
I2

fF1,F2
×U1

Ũ1−−−−−−−−→ HomU1
(Ũ1, U1 × U2)×U1 Ũ1

pr◦ev−−−→ U2

respectively and joining the left hand side squares of these diagrams we get a diagram with pull-back
squares of the form

I3 −−−→ Fam2(p1, p2)

q2

y yp12
I2

fF1,F2
×U1

Ũ1−−−−−−−−→ HomU1
(Ũ1, U1 × U2)×U1 Ũ1

q1

y ypr
I1

fF1,F2−−−−→ HomU1
(Ũ1, U1 × U2)

31

Let
g : HomU1

(Ũ1, U1 × Ũ2)×U1 Ũ1 → Fam2(p1, p2)

be the morphism overHomU1
(Ũ1, U1×U2)×U1Ũ1 whose composition with the projection Fam2(p1, p2)→

Ũ2 equals pr ◦ ẽv where

ẽv : HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1 → U1 × Ũ2

is the canonical morphism.

Lemma 0.17 [2009.11.24.l2] The pair

(HomU1
(Ũ1, U1 × Ũ2)→ HomU1

(Ũ1, U1 × U2), g)

is universal for (p12, pr).

Proof: For a given w : Z → HomU1
(Ũ1, U1 × U2), a morphism Z → HomU1

(Ũ1, U1 × Ũ2) over

HomU1
(Ũ1, U1 × U2) is the same as a morphism Z ×U1 Ũ1 → Ũ2 such that the adjoint of its

composition with p2 : Ũ2 → U2 is w.

A morphism from Z to the universal pair for p12 overHomU1
(Ũ1, U1×U2) is a morphism Z×U1 Ũ1 →

Ũ2 whose composition with p2 is (pr ◦ ev) ◦ (w ×U1 IdŨ1
) which coincides with the condition that

the composition of its adjoint with p2 is w. This can be also seen from the diagram

Fam2(p1, p2) −−−→ Ũ2

p12

y yp2
HomU1

(Ũ1, U1 × Ũ2)×U1 Ũ1 −−−→ HomU1
(Ũ1, U1 × U2)×U1 Ũ1

pr◦ev−−−→ U2y ypr
HomU1

(Ũ1, U1 × Ũ2) −−−→ HomU1
(Ũ1, U1 × U2)

Lemma 0.18 [2009.11.24.l4] For two pull back squares as in (23), consider a pull-back square of
the form

R(F1, F2) −−−→ HomU1
(Ũ1, U1 × Ũ2)y y

I1
fF1,F2−−−−→ HomU1

(Ũ1, U1 × U2)

and the morphism
gF1,F2 : R(F1, F2)×I1 I2 → I3

whose composition with the morphism I3 → Ũ2 coincides with the composition

R(F1, F2)×I1 I2 = R(F1, F2)×U1 Ũ1 → HomU1
(Ũ1, U1 × Ũ2)×U1 Ũ1

pr◦ev→ Ũ2

Then (R(F1, F2), gF1,F2) is a universal pair for (q1, q2).

32

Proof: It follows from Lemma 0.17 and the fact that in a lcc a pull-back of a universal pair is a
universal pair.

Let us now construct a Π-C-structure on CC = CC(C, p). Let n ≥ 2 and (F1, . . . , Fn) ∈ CC. Denote
(pt, F1, . . . , Fn−2) by I. Then we have two morphisms Fn−1 : I → U and Fn : (I, Fn−1)→ U .

Applying Lemma 0.15 to the corresponding pull-back squares we get a morphism

fFn−1,Fn : I → HomU (Ũ , U × U)

Set Π(F1, . . . , Fn) = (I, P ◦ fFn−1,Fn) = (F1, . . . , Fn−2, P ◦ fFn−1,Fn). Since the square (22) is a

pull-back square there is a unique morphism Π(F1, . . . , Fn) → HomU (Ũ , U × Ũ) such that the
diagram

Π(F1, . . . , Fn) −−−→ HomU (Ũ , U × Ũ)
P̃−−−→ Ũy y y

I
fFn−1,Fn−−−−−−→ HomU (Ũ , U × U)

P−−−→ U

commutes and the composition of the two upper arrows is Q(fFn−1,Fn). The left hand side square
in this diagram is automatically a pull-back square. Applying to this square Lemma 0.18 we obtain
a morphism

eval(F1,...,Fn) : (I, Fn−1, (P ◦ fFn−1,Fn) ◦ pr)→ (I, Fn−1, Fn)

over (I, Fn−1) (where pr : (I, Fn−1)→ I is the projection).

The fact that this construction satisfies the first condition of Definition 1.2 follows from Lemma
0.16. The fact that it satisfies the second condition of this definition follows from Lemma 0.18.

Σ-universes in lcc categories.

Definition 0.19 [2009.10.27.def2] Let C be an lcc category and pi : Ũi → Ui, i = 1, 2, 3 be three
morphisms in C. A Σ-structure on (p1, p2, p3) is a diagram of the form

Ũ2 ←−−− Fam•(U1, U2) −−−→ Ũ3

p2

y y
U2

prU2
eval

←−−−−− Ũ1 ×U1 HomU1
(Ũ1, U1 × U2)

yp3ypr
HomU1

(Ũ1, U1 × U2)
Σ−−−→ U3

such that p′2 is the natural morphism defined by p2, eval is the canonical evaluation morphism

and both the square and the vertical rectangle are Cartesian. A Σ-structure on p : Ũ → U is a
Σ-structure on (p, p, p).

A Σ-structure on (p1, p2, p3) corresponds to the rule

Γ, X : U1, f : X → U2▷
Γ, X : U1, f : X → U2 ⊢

∑
x : X.ev(f, x) : U3

33

Definition 0.20 [2009.11.2.def1] Let C be an lcc category and p : Ũ → U be a morphism. A
Prop-structure on p is a collection of data of the following form:

1. two pull-back squares

P −−−→ Ũy yp
pt −−−→ U

P̃ −−−→ Ũ

p0

y yp
P −−−→ U

2. a Π-structure on (p, p0, p0).

A Prop-structure on p corresponds to the rules:

x : P▷ x : P, y : x▷
Γ, f : X → P▷

Γ, f : X → P ⊢
∏
x : X.ev(f, x) : P

4 Universes in the category of simplicial sets

1 Well-ordered morphisms of simplicial sets

Let X, Y be simplicilal sets. A well-ordered morphism p : Y → X is a pair which consists of a
morphism Y → X (also denoted by p) and of a function which assigns to each n ≥ 0 and each
σ ∈ Xn a well-ordering on p−1(σ) ⊂ Yn.

Note that there is a unique well-ordering on any isomorphism but, for example, the morphism
pt ⨿ pt → pt has uncountably many well-orderings since ptn = pt for all n and we require no
compatibility conditions for well orderings of the fibers over different simplexes of the target.

If p : Y → X, p′ : Y ′ → X are two well-ordered morphisms then we define a standard isomorphism
from Y to Y ′ over X as an isomorphism over X such that for each n ≥ 0 and each σ ∈ Xn

the bijection p−1(σ) → (p′)−1(σ) is order-preserving. Since there is at most one order-preserving
bijection between two well-ordered sets, there is at most one standard isomorphism between two
well-ordered simplicial sets over X.

Let WOM(X,< α) be the set of standard isomorphism classes of well-ordered simplicial sets
p : Y → X over X such that for each n ≥ 0 and each σ ∈ Xn the fiber p−1(σ) has cardinality < α.
For any f : X ′ → X the pull-back p′ : Y ′ = X ′ ×X Y → X ′ of a well-ordered morphism has a
natural well-ordering which makes WOM(X,< α) into a functor from ∆opSets to Sets.

Consider WOM(∆n, < α). These sets depend on ∆n functorially and therefore define a simplicial

set WOM(< α). Let W̃OM(∆n, < α) be the set of pairs p : Y → ∆n, s ∈ Yn where p ∈
WOM(∆n, < α) and s ∈ p−1(σn) where σn is the non-degenerate n-simplex of ∆n. These sets also

depend on ∆n functorially and define a simplicial set W̃OM(< α).

Since p−1(σ) carries a well-ordering the natural projection W̃OM(< α) → WOM(< α) carries a
natural well-ordering.

Proposition 1.1 [2009.12.10.pr1] The morphism W̃OM(< α) → WOM(< α) is a universal
well-ordered morphism with fibers of cardinality < α. In particular, WOM(< α) represents the
functor WOM(−, < α).

34

Proof: Straightforward.

Note that WOM(< α) is obviously a contractible Kan simplicial set for any α > 0.

Let us consider now the sub-objectWOF (< α) ofWOM(< α) which classifies well-ordered Kan fi-

brations whose fibers have cardinality < α and let W̃OF (< α)→WOF (< α) be the corresponding
universal fibration.

The idea of the proof of the following result and in general the idea to use minimal fibrations is
due to A. Bousfield and reached me through Peter May and Rick Jardine.

Proposition 1.2 [2009.12.8.prop1] Let α be an infinite cardinal. Then the simplicial setWOF (<
α) is Kan.

Proof: One can easily see that it is sufficient to show that for any horn inclusion Λnk → ∆n and
any Kan fibration p : B → Λnk there exists a pull-back square of the form

[2009.12.8.eq1]

B −−−→ C

p

y yq
Λnk −−−→ ∆n

k

(25)

where q is a Kan fibration whose fibers have cardinality < α. By Quillen’s Lemma ([8]) there is

a factorization of p of the form B
p′→ B′ p

′′
→ Λnk where p′ is a trivial fibration and p′′ is a minimal

fibration. Since trivial fibrations are surjective, both p′ and p′′ have fibers of cardinality < α. By
[5, Cor. 11.7, p.45] the fibration p′′ is isomorphic to a fibration F × Λnk → Λnk where F is a Kan
simplicial set. Together with Lemma 1.4 it shows that there is a diagram of the form

B −−−→ C

p′
y yq′

F × Λnk −−−→ F ×∆ny y
Λnk −−−→ ∆n

with pull-back squares such that q′ is a trivial fibration with fibers of cardinality < α. The external
square of this diagram has the required form (25).

Lemma 1.3 [2009.12.11.l1] Let α be an infinite cardinal. Let p : Y → X be a map of simplicial
sets such that for each n ≥ 0, x ∈ Xn one has |p−1(x) ∩ Y nd

n | < α where Y nd
n is the subset of

non-degenate simplexes in Yn. Then for each n ≥ 0, σ ∈ Xn one has |p−1(x)| < α.

Proof: Since for any surjection s the map s∗ : Xm → Xn is an inclusion and there are only finitely
many surjections of the form [n] → [m] (where [n] = {0, . . . , n}) there exists only finitely many
pair-wise distinct pairs (xi, si) where x1, . . . , xd ∈ Xmi and s : [n]→ [mi] is a surjection, such that
s∗i (xi) = x.

Consider the map
[2009.12.11.eq1]⨿i s∗i : ⨿i(p−1(xi) ∩ Y nd

mi
)→ p−1(x) (26)

35

If y ∈ p−1(x) then there exists s : [n] → [m] and y′ ∈ Y nd
m such that s∗(y′) = y. Then s∗p(y′) =

p s∗(y′) = x and therefore s = si for i = 1, . . . , d. We conclude that the map (26) is surjective and
therefore |p−1(x)| < α.

Lemma 1.4 [2009.12.8.l4] Let α > ℵ0 be an cardinal. Let j : A→ X be a cofibration (monomor-
phism) and p : B → A be a trivial Kan fibration with fibers of cardinality < α. Then there exists a
pull-back square of the form

[2009.12.8.eq2]

B −−−→ Y

p

y yq
A

j−−−→ X

(27)

such that q is a trivial Kan fibration with fibers of cardinality < α.

Proof: Define inductively squares

[2009.12.8.eq3]

B −−−→ Bi

p

y ypi
A

j−−−→ X

(28)

setting p0 = p and defining Bi+1 by the push-out square of the form

[2009.12.11.eq2]

⨿n ⨿Qn,i ∂∆
n −−−→ Biy y

⨿n ⨿Qn,i ∆
n −−−→ Bi+1

(29)

where Qn,i is the set of commutative squares of the form

∂∆n −−−→ Biy y
∆n −−−→ X

such that its base simplex i.e. the simplex corresponding to the map ∆n → X does not belong to
A.

Since for such a map f one has f−1(A) ⊂ ∂∆n the squares (28) are pull-back squares. Define Y as
colimBi. Then one verifies easily that (27) is a pull-back square and q is a fibration. Let us show
that the fibares of q have cardinality < α. Since α > ℵ0 it is sufficient to show that, assuming that
the fibers of Bi → X are of cardinality < α, the fibers of Bi+1 are. The squares (29) show that for
each n and x ∈ Xn the fiber p−1

i+1(x) ∩ (Bi+1)
nd
n is of the form (p−1

i (x) ∩ (Bi)
nd
n) ⨿Q(n, i;x) where

Q(n, i;x) is the subset in Q(n, i) which consists of squares whose base simplex ∆n → X is x. It
remains to observe that the number of such squares is < αn+1 and to apply Lemma 1.3.

The category ∆opSets is a topos and in particular an lcc. The relative internal Hom-objects in
∆opSets can be explicitly described as follows.

Lemma 1.5 [2009.12.8.l5] Let p1 : E1 → B, p2 : E2 → B be morphisms of simplicial sets.
Consider the simplicial set H(p1, p2) whose set of n-simplexes is the set of pairs of the form (f, f̃)
where f : ∆n → B and f̃ : f∗(p1)→ p2 is a morphism over B.

36

Let H(p1, p2)→ B be the morphism ev : (f, f̃) 7→ f and let H(p1, p2)×B E1 → E2 be the morphism
which sends ((f, f̃), σ) to f̃(σ). Then (H(p1, p2), ev) is an internal Hom-object from E1 to E2 over
B.

Lemma 1.6 [2009.12.8.l6] Let p1 : E1 → B, p2 : E2 → B be Kan fibrations. Then H(p1, p2)→ B
is a Kan fibration.

Proof: It follows immediately from definitions and the fact that for a fibration p1 : E1 → B and
an anodyne morphism A→ X over B, the morphism A×B E1 → X ×B E1 is anodyne.

Lemma 1.7 [2009.12.9.l1] Let p1 : E1 → B, p2 : E2 → B be Kan fibrations and f : E1 → E2

a morphism over B which is a weak equivalence. Then for any g : B′ → B the pull-back f ′ :
B′ ×B E1 → B′ ×B E2 is a weak equivalence.

Proof: Using the factorization of f into a trivial cofibration and a trivial fibration and the fact that
the pull-back of a trivial fibration is a trivial fibration we may assume that f is a trivial cofibration.
A trivial cofibration between two fibrant objects (in the category over B) is a homotopy equivalence
and the pull-back of a homotopy equivalence is a homotopy equivalence.

Lemma 1.8 [2009.12.9.l3] Let p1 : E1 → B, p2 : E2 → B be Kan fibrations and f : E1 → E2

a morphism over B. Suppose that for any n ≥ 0 and any simplex σ : ∆n → B the pull-back
fσ : ∆n ×B E1 → ∆n ×B E2 is a weak equivalence. Then f is a weak equivalence.

Proof: Replacing p1, p2 by minimal fibrations we may assume that p1, p2 are minimal. Then our
condition implies that fσ is an isomorphism for each σ and therefore is an isomorphism globally.

Let p1, p2 be Kan fibrations as above. Consider the internal Hom-object H(p1, p2). A morphism
f : A → H(p1, p2) defines a morphism pr(f) : A → B and a morphism fib(f) : A ×B E1 →
A×B E2. Let Eq(p1, p2)n be the subset of simplexes σ : ∆n → H(p1, p2) such that fib(σ) is a weak
equivalence. Lemma 1.7 implies that these subsets form a simplicial subset in H(p1, p2) which we
denote by Eq(p1, p2) or EqB(p1, p2).

Lemma 1.9 [2009.12.9.l2] Let p1, p2 be Kan fibrations as above and f : A → H(p1, p2) a mor-
phism. The fib(f) is a weak equivalence if and only if Im(f) ⊂ Eq(p1, p2).

Proof: Straightforward using Lemmas 1.7 and 1.8.

Lemma 1.10 [2009.12.9.l4] Let p1, p2 be Kan fibrations as above, f : E1 → E2 a morphism over
B and b ∈ B. Assume that B is connected and that p−1

1 (b) → p−1
2 (b) is a weak equivalence. Then

f is a weak equivalence.

Proof: In view of Lemma 1.8 we may assume that B = ∆n. Since the pull-back of a weak
equivalence along a fibration is a weak equivalence and b : ∆0 → ∆n is a weak equivalence, we
conclude that p−1

1 (b) → E1 and p−1
2 (b) → E2 are weak equivalences. Therefore, if fb : p

−1
1 (b) →

p−1
2 (b) is a weak equivalence then so is f .

37

Lemma 1.11 [2009.12.9.l5] Let p1, p2 be Kan fibrations as above. Then Eq(p1, p2) is a union of
connected components of H(p1, p2) i.e. if (A, a) is a connected pointed simplicial set and f : A →
H(p1, p2) a morphism such that f(a) ∈ Eq(p1, p2) then Im(f) ⊂ Eq(p1, p2).

Proof: Follows immediately from Lemma 1.10.

Let p : E → B be a fibration. Let p1 : E × B → B × B and p2 : B × E → B × B be the obvious
projections. Consider the space H(p1, p2) over B × B. The natural isomorphism p−1

1 (∆(B)) =
p−1
2 (∆(B)) where ∆ is the diagonal defines a morphism B → H(p1, p2) over B × B which, by

Lemma 1.9, takes values in Eq(p1, p2). Let us denote this morphism by mmp : B → Eq(p1, p2).

Definition 1.12 [2009.12.9.def1] A Kan fibration p : E → B is called univalent if the morphism
mmp : B → Eq(p1, p2) defined above is a weak equivalence.

Theorem 1.13 [2009.12.9.th1] The Kan fibration

pfib : W̃OF (< α)→WOF (α)

is univalent.

Proof: Let E = W̃OF (< α) and B =WOF (< α). Let P1 : E×B → B×B, P2 : B×E → B×B
be the projections. Proposition 1.1 implies easily that the space H(P1, P2) represents the functor
which sends X into the set of (standard isomorphism classes of) triples of the form p1 : Y1 → X,
p2 : Y2 → X, f : Y1 → Y2 where p1, p2 are well ordered Kan fibrations with fibers of cardinality
< α and f is a morphism over X. The subspace Eq(P1, P2) classifies triples such that f is a weak
equivalence.

Consider now the morphism r : B → Eq(P1, P2) → B × B
pr2→ B. To prove the theorem it is

sufficient to show that the composition Eq(P1, P2)→ B → Eq(P1, P2) is homotopic to the identity.
This composition represents the functor morphism which sends (p1, p2, f) to (p2, p2, id).

Applying Lemma 1.14 to the universal equivalence of fibrations over Eq(P1, P2) and using the axiom
of choice we construct the required homotopy.

Lemma 1.14 [2009.12.11.l3] Let p1 : Y1 → X, p2 : Y2 → X be two Kan fibrations and f : Y1 →
Y2 be a morphism over X which is a weak equivalence. Then there exists a fibration q : Z → X×∆1

and a morphism F : Z → Y2 ×∆1 over X such that the fiber of F over X × {0} is isomorphic to
f and the fiber over X × {1} is isomorphic to IdY2.

In addition if α > ℵ0 is a cardinal and the fibers of p1 and p2 have cardinality < α then we can
choose q such that its fibers have cardinality < α.

Proof: Let Y1
p′1→ Y ′

1

p′′1→ X, Y2
p′2→ Y ′

2

p′′2→ X be factorizations of p1 and p2 such that p′i is a trivial
fibration and p′′i a minimal fibration which exist by [8]. If s1 is a section of p′1 (which exist since all
simplicial sets are cofibrant) then p′2f s is a weak equivalence between two minimal fibrations over
X and therefore an isomorphism. Let us denote it by f ′ : Y ′

1 → Y ′
2 .

38

Applying Lemma 1.4 to the trivial fibration p′1 ⨿ p′2 : Y1 ⨿ Y2 → Y ′
1 ⨿ Y ′

2 and monomorphism
j = (i0 f

′ ⨿ i1) : Y ′
1 ⨿ Y ′

2 → Y ′
2 ×∆1 we obtain a pull-back square of the form

Y1 ⨿ Y2
k−−−→ Z

p′1⨿p′2

y yq
Y ′
1 ⨿ Y ′

2
j−−−→ Y ′

2 ×∆1

Consider now the square

Y1 ⨿ Y2
i0 f⨿i1−−−−→ Y2 ×∆1

k

y yp′2×Id
Z −−−→

q
Y ′
2 ×∆1

Let us show that it commutes. (The following argument was supplied by Thomas Streicher). It
clearly commutes on the Y2 summand. On the Y1 summand the corresponding maps are (up to
inclusions into Y ′

2 × ∆1) of the form f ′ ◦ p′1 and p′2 ◦ f . Note that a priory it is not clear that
f ′ ◦ p′1 = p′2 ◦ f . However these two maps are homotopic since in the homotopy category over X,
the morphism p′1 and therefore its section s1 are isomorphisms and therefore s1 ◦ p′1 is homotopic
to the identity. On the other hand Y ′

2 is a minimal fibration over X and any two morphisms with
values in this simplicial set which are homotopic and coincide after projection to X are equal.

Since k is a cofibration (monomorphism) and p′2 × Id is a trivial fibration, there is a morphism
F : Z → Y2 ×∆1 which splits this square into two commutative triangles. One verifies easily that
the pair (Z,F) satisfies the conditions of the lemma.

Let p′ : E → B, p : Ũ → U be two Kan fibrations. For a simplicial set X denote by HInd(p′, p)(X)
the set of pairs (f̃ , f) where f̃ : E ×X → Ũ , f : B ×X → Ũ are morphisms such that the square

[2009.12.23.eq1]

E ×X f̃−−−→ Ũ

p′×IdX
y yp

B ×X f−−−→ U

(30)

is a homotopy pull-back square i.e. such that p ◦ f̃ = f ◦ (p′ × IdX) and the obvious morphism
E ×X → (B ×X)×U Ũ is a weak equivalence. Since p′ and p are fibrations, the composition of a
homotopy pull-back square of the form (30) with a pull-back square

E ×X ′ −−−→ E ×Xy y
B ×X ′ −−−→ B ×X

defined by any morphism f : X ′ → X, is a homotopy pull-back square. Therefore HInd(p′, p)(−)
is a contravariant functor on ∆opSets and Lemma 1.8 implies easily that it is represented by the
simplicial set HInd(p′, p) whose set of n-simplexes is HInd(p′, p)(∆n).

Proposition 1.15 [2009.12.23.prop1] A Kan fibration p : Ũ → U such that U is a Kan sim-
plicial set is univalent if and only if for any Kan fibration p′ : E → B, (HInd(p′, p) ̸= ∅) ⇒
(HInd(p′, p) is contractible).

39

Proof: Let p′ : E → B be a Kan fibration such that HInd(p′, p) ̸= ∅ i.e. such that there exists a
pull-back square of the form

E −−−→
f̃

Ũ

p

y y
B −−−→

f
U

Let X be a simplicial set. Then a morphism X → HInd(p′, p) is given by a pair of a morphism
fX : B ×X → U and a weak equivalence E ×X → (B ×X)fX ×p Ũ over B ×X. The morphism

E × X → B × X is canonically isomorphic to the projection (B × X)f◦prB ×p Ũ → B × X.
Therefore, morphisms X → HInd(p′, p) correspond to morphisms B ×X → Eq(p× IdU , IdU × p)
whose composition with Eq(p× IdU , IdU × p)

pEq→ U × U pr2→ U equals f ◦ prB : B ×X → B
f→ U .

Since U is assumed to be a Kan simplicial set the morphism pr2 ◦ pEq is a Kan fibration. If p is
univalent it is a trivial Kan fibration and from the previous description of HInr(p′, p) we conclude
that for any cofibration X ⊂ Y and a morphism F = (f̃ , f) : X → HInt(p′, p) there exists an
extension of F to Y i.e. that HInt(p′, p)→ pt is a trivial Kan fibration.

To prove the other implication consider the case when B = pt. Then our considerations show that
HInd(p′, p) is isomorphic to the fiber of pr2 ◦ pEq over f(pt) ∈ U0. Since any Kan fibrations with
contractible fibers is a trivial Kan fibration we conclude that the required implication holds.

2 Well-ordered simplicial sets

We consider a triple (ST, ST ′,M) where ST , ST ′ are ZF-like set-theories and M is a model of ST
and ST ′. These data defines ”the set of all ST sets” as an ST ′-set. Similarly, these data provides
an unambiguous definition for objects such as ”the set of isomorphism classes of simplicial sets”
etc.

Our first step is to choose a convenient set-level model of the 1-category of simplicial sets.

Definition 2.1 [2009.12.8.def1] A well-ordered simplicial set is a simplicial set (Xn)n≥0 together
with well orderings ≺ on each of Xn.

Note that the well orderings on Xn are note assumed to be compatible with the boundary or
degeneracy maps. By a morphism between two well-ordered simplicial sets we will mean a morphism
between the corresponding simplicial sets without any regard for orderings. A morphism which
preserves well-orderings on each of Xn will be called a standard morphism.

The standard facts about well-ordered sets imply that there is at most one standard isomorphism
between any two well-ordered simplicial sets. Therefore, we may consider a set level model C of
∆opSets where Ob(C) is the set of standard isomorphism classes of well-ordered simplicial sets and
Mor(X,Y) is the set of all morphisms from X to Y . The uniqueness of standard isomorphisms
implies that the composition of morphisms is well defined.

For well-ordered simplicial sets X, Y denote by X × Y the well-ordered simplicial set whose terms
Xn × Yn are well-ordered with respect to the lexicographical ordering such that the projection to
X (but not to Y) is a standard morphism.

40

For f : X ′ → X and p : Y → X define the standard pull-back square

f∗(Y, p)
q(f,Y,p)−−−−−→ Y

pf

y yp
X ′ f ′−−−→ X

setting f∗(Y, p) to be the subset in X ′ × Y defined by the usual equations with the induced well-
ordering.

One verifies easily the following results.

Lemma 2.2 [2009.12.8.l1] For any p the morphism pf is standard and p : Y → X is standard if
and only if Id∗X(p) = p.

Lemma 2.3 [2009.12.8.l2] For any p : Y → X and g : X ′′ → X ′, f : X ′ → X one has
(fg)∗(p) = g∗f∗(p), q(fg, Y, p) = q(g, f∗(p), pf)q(f, Y, p) and pfg = (pf)g.

Note that q(f, Y, p) need not be standard even if both p and f are standard (consider e.g. the case
when X = pt).

In what follows we choose a well-ordering on the sets ∆n
i and consider the standard simplexes as

objects of C with respect to this ordering.

5 Type theoretic constructs in terms of C-structures

1 Π-C-structures

The notion of a Π-C-structure is equivalent to the notion of a contextual category with products
of families of types from [9]. We use the name Π-C-structures to emphasize the fact that we are
dealing here with an additional structure on a C-structure rather than with a property of such an
object.

Let us recall first the following definition.

Definition 1.1 [2009.11.24.def2] Let C be a 1-category. Let g : Z → Y , f : Y → X be a pair of
morphisms such that for any U → X a fiber product U ×X Y exists. A pair

(w :W → X,h :W ×X Y → Z)

such that g ◦ h = pr is called a universal pair for (f, g) if for any U → X the map

HomX(U,W)→ HomY (U ×X Y, Z)

of the form u 7→ h ◦ (u× IdY) is a bijection.

If a universal pair exists then it is easily seen to be unique up to a canonical isomorphism. We denote
such a pair by (Π(g, f), eg,f : Π(g, f)×X Y → Z). Note that if f ′ : Y → X and pr : Y ′ ×X Y → Y
is the projection then

(Π(pr, f), pr′ ◦ epr,f : Π(g, f)×X Y → Y ′) = (HomX(Y, Y
′), ev : HomX(Y, Y

′)×X Y → Y ′)

so that relative internal Hom-objects are particular cases of universal pairs.

41

Definition 1.2 [2009.11.24.def1] A Π-C-structure is a C-structure CC together with additional
data of the form

1. for each Y ∈ Ob(CC)≥2 an object Π(Y) ∈ Ob(CC) such that ft(Π(Y)) = ft2(Y),

2. for each Y ∈ Ob(CC)≥2 a morphism eval : T (ft(Y),Π(Y)) = p∗ft(Y)(Π(Y))→ Y over ft(Y),

such that

(i) for any f : Z → ft2(Y) one has f∗(Π(Y)) = Π(f∗(Y)) and f∗(evalY) = evalf∗(Y),

(ii) (Π(Y), evalY)) is a universal pair for (pY , pft(Y)).

Let us now prove that this definition can be re-written in a less compact but purely equational
form. As before let us write Bn for Ob(CC)n, B̃n for Õb(CC)n etc.

The C-structure is completely determined by the sets Bn, B̃n+1, n ≥ 0 and maps ∂ : B̃n+1 → Bn+1,
ft : Bn+1 → Bn, δ : Bn → B̃n+1 and the maps Tn+1, T̃n+1, Sn+1, S̃n+1 considered above.

Suppose now that we are given a Π-C-structure. Then we have maps

1. Π : Bn+2 → Bn+1, n ≥ 0,

2. λ : B̃n+2 → B̃n+1, n ≥ 0,

3. ev : (B̃n+1)∂ ×ft (Bn+2)Π ×∂ (B̃n+1)→ B̃n+1, n ≥ 0

as follows. The map Π is the map from Definition 1.2. Since (Π(Y), evalY) is a universal pair for
(pY , pft(Y)) the mapping

ϕY : {f ∈ B̃n+1 | ∂(f) = Π(Y)} → {s ∈ B̃n+2 | ∂(s) = Y }

given by the formula
ϕY (f) = evalY ◦ T̃ (ft(Y), f)

is a bijection. One defines λY as the inverse to this bijection.

The map ev sends a triple (r, Y, f) such that ∂(r) = ft(Y) and ∂(f) = Π(Y) to

ev(r, Y, f) = S̃(r, eval ◦ T̃ (ft(Y), f))

as partially illustrated by the following diagram:

Y ←−−− S(r, Y)

pY

y y
p∗ft(Y)(Π(Y)) −−−→ ft(Y) ←−−−

r
ft2(Y)y y

Π(Y)
pΠ(Y)−−−→ ft2(Y)

42

Lemma 1.3 [2009.11.30.l1] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y) and f ∈ B̃(Π(Y)).
Then one has

g∗(ϕY (f), i+ 2) = ϕg∗(Y,i+2)(g
∗(f, i+ 1))

Proof: Let h1 = q(g, ft(Y), i+ 1), h2 = q(g, ft(Y), i+ 2). Then one has

g∗(ϕY (f), i+ 2) = h∗1(ϕY (f)) = h∗1(evalY ◦ T̃ (ft(Y), f)) = h∗1(evalY) ◦ h∗1(T̃ (ft(Y), f))

= evalh∗1(Y)p
∗
g∗(ft(Y),i+1)(h

∗
2(f)) = ϕh∗1(Y)(h

∗
2(f)) = ϕg∗(Y,i+2)(g

∗(f, i+ 1)).

As an immediate corollary of Lemma 1.3 we have:

Lemma 1.4 [2009.11.30.l2] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y) and r ∈ B̃(Y). Then
one has

g∗(λ(r), i+ 1) = λ(g∗(r, i+ 2)).

Lemma 1.5 [2009.11.30.l3] Let n ≥ i ≥ 0, Y ∈ Bn+2, g : Z → fti+2(Y), r ∈ B̃(ft(Y)) and
f ∈ B̃(Π(Y)). Then one has

g∗(ev(r, Y, f), i+ 1) = ev(g∗(r, i+ 2), g∗(Y, i+ 2), g∗(f, i+ 1))

Proof: Let h1 = q(g, ft(Y), i+ 1), h2 = q(g, ft(Y), i+ 2). Then one has:

g∗(ev(r, Y, f), i+ 1) = h∗2(S̃(r, eval ◦ T̃ (ft(Y), f))) = h∗2(r
∗(eval ◦ T̃ (ft(Y), f))) =

= (h∗2(r))
∗h∗1(eval ◦ T̃ (ft(Y), f))) = (h∗2(r))

∗(h∗1(eval) ◦ h∗1p∗ft(Y)(f)) =

= (g∗(r, i+ 2))∗(eval ◦ p∗g∗(ft(Y),i+1)(h
∗
2(f))) = ev(g∗(r, i+ 2), g∗(Y, i+ 2), g∗(f, i+ 1)).

Proposition 1.6 [2009.11.29.prop1] Let CC = (Bn, B̃n, ft, ∂, δ) be a C-structure. Let further
(Π, eval) be a Π-structure on CC. Then the maps Π, λ, ev defined by this structure satisfy the
following conditions:

1. for Y ∈ Bn+2 one has

(a) ftΠ(Y) = ft2(Y),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y), T (Z,Π(Y)) = Π(T (Z, Y)),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1(Y), S(t,Π(Y)) = Π(S(t, Y)),

2. for s ∈ B̃n+2 one has

(a) ∂ λ(s) = Π ∂(s),

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1 ∂(s), T̃ (Z, λ(s)) = λ(T̃ (Z, s)),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1 ∂(s), S̃(t, λ(s)) = λ(S̃(t, s)),

3. for r ∈ B̃n+1, Y ∈ Bn+2 and f ∈ B̃n+1 such that ∂(r) = ft(Y) and ∂(f) = Π(Y) one has

(a) ∂(ev(r, Y, f)) = S(r, Y),

43

(b) for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti+1(Y),

T̃ (Z, ev(r, Y, f)) = ev(T̃ (Z, r), T (Z, Y), T̃ (Z, f)),

(c) for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti+1(Y),

S̃(t, ev(r, Y, f)) = ev(S̃(t, r), S(t, Y), S̃(t, f)),

4. for r ∈ B̃n+1, s ∈ B̃n+2 such that ft(∂(s)) = ∂(r)

ev(r, ∂ s, λ(s)) = S̃(r, s)

(β-reduction),

5. for Y ∈ Bn+2, f ∈ B̃n+1 such that ∂(f) = Π(Y),

[2009.11.30.oldeq1]λ(ev(δft(Y), T (ft(Y), Y), T̃ (ft(Y), f))) = f (31)

(η-reduction).

Proof: (1a) Follows from Definition 1.2(1). (1b) Follows from Definition 1.2(i) applied to f =
q(pZ , ft

2(Y), i− 1). (1c) Follows from Definition 1.2(i) applied to f = q(t, ft2(Y), i− 1).

(2a) Follows from the definition of λ. (2b) Follows from Lemma 1.4 applied to pZ . (2c) Follows
from Lemma 1.4 applied to t.

(3a) Follows from the definition of ev. (3b) Follows from Lemma 1.5 applied to pZ . (3c) Follows
from Lemma 1.5 applied to t.

(4) One has

ev(r, ∂ s, λ(s)) = r∗(eval ◦ (p∗ft(Y)(λ(s)))) = r∗(ϕY (s)) = r∗(s) = S̃(r, s).

(5) Let T1 = T (ft(Y), ft(Y)) and T2 = T (ft(Y), Y). Then

ev(δft(Y), T (ft(Y), Y), T̃ (ft(Y), f)) = δ∗ft(Y)(evalT2 ◦ p
∗
T1(p

∗
ft(Y)(f))) =

= δ∗ft(Y)(evalT2) ◦ δ
∗
ft(Y)p

∗
T1p

∗
ft(Y)(f) = evalδ∗

ft(Y)
(T2) ◦ p

∗
ft(Y)(f) = evalY ◦ p∗ft(Y)(f) = ϕY (f)

which implies (31) by definition of λ.

The converse to Proposition 1.6 holds as well. Let CC = (Bn, B̃n, ft, ∂, δ) be a C-structure and let

1. Π : Bn+2 → Bn+1, n ≥ 0,

2. λ : B̃n+2 → B̃n+1, n ≥ 0,

3. ev : (B̃n+1)∂ ×ft (Bn+2)Π ×∂ (B̃n+1)→ B̃n+1, n ≥ 0

be maps satisfying the conclusion of Proposition 1.6. For each Y ∈ B̃n+2 define a morphism

evalY : T (ft(Y),Π(Y))→ Y

by the formula
evalY = q(pZ , Y) ◦ ev(p∗Z(δft(Y)), T2(Z, Y), δZ)

where Z = p∗ft(Y)(Π(Y)).

44

Proposition 1.7 [2009.11.30.prop2] Under the assumption made above the morphisms evalY
are well defined and (Π, eval) is a Π-structure on CC.

Proof: Let us show that evaY is well defined. This requires us to check the following conditions:

1. ft2(Y) = ft(Π(Y)), therefore Z is defined,

2. ft(Z) = ft∂(δft(Y)) since ft(Z) = ft(Y), therefore p∗Z(δft(Y)) is defined,

3. ft2(Z) = ft2(Y), therefore T2(Z, Y) is defined,

4. ∂(p∗Z(δft(Y)))) = p∗Zp
∗
ft(Y)(ft(Y)), ft(T2(Z, Y)) = T2(Z, ft(Y)) = p∗Zp

∗
ft(Y)(ft(Y)),

5. ∂(δZ) = p∗Z(Z) = p∗Zp
∗
ft(Y)(Π(Y)) = ΠT2(Z,Y), therefore ev = ev(p∗Z(δft(Y)), T2(Z, Y), δZ) is

defined,

6.
∂(ev) = (p∗Z(δft(Y)))

∗(T2(Z, Y)) = (p∗Z(δft(Y)))
∗T (Z, T (ft(Y), Y)) =

= (p∗Z(δft(Y)))
∗(pZ)

∗((pft(Y))
∗(Y, 2), 2) = (p∗Z(δft(Y)))

∗q(pZ , p
∗
Y (ft(Y)))∗(pft(Y))

∗(Y, 2) =

= (p∗Z(δft(Y)))
∗q(pZ , p

∗
Y (ft(Y)))∗q(pft(Y), ft(Y))∗(Y) =

= (q(pft(Y), ft(Y))q(pZ , p
∗
Y (ft(Y)))p∗Z(δft(Y)))

∗(Y) = p∗Z(Y)

and q(pZ , Y) : p∗Z(Y) → Y . Therefore evalY is defined and is a morphism from Z to Y as
required by Definition 1.2(2).

We leave the verification of the conditions (i) of (ii) of Definition 1.2 for the later, more mechanized
version of this paper.

2 Impredicative Π-universe structures.

Definition 2.1 [2009.12.04.def1] Let CC = (B, B̃, . . . ,Π, . . .) be Π-C-structure. An impredica-
tive Π-universe structure on CC is a collection of data of the form

1. an object Ω̃ ∈ B2,

2. for any n ≥ 0, Y ∈ Bn+1, g : Y → ft(Ω̃) a morphism πΩ(g) : ft(Y)→ ft(Ω̃),

such that the following conditions hold

(i) for any g as above πΩ(g)
∗(Ω̃) = π(g∗(Ω̃)),

(ii) for any g as above and h : Z → ft(Y) one has

πΩ(g) ◦ h = πΩ(g ◦ q(h, Y))

45

The sequent presentation of an impredicative Π-structure looks as follows. Given an impredicative
Π-universe (Ω̃, πΩ) denote by Ω the object ft(Ω̃). Note that for any Y ∈ Bn and Z ∈ B1 the
mapping which sends s ∈ B̃n+1(Tn(Y,Z)) to s◦q(pY,n, Z) defines a bijection ϕY : B̃n+1(Tn(Y, Z))→
HomCC(Y, Z).

For any n ≥ 0, Y ∈ Bn+1, s ∈ B̃n+2(Tn+1(Y,Ω)) define ΠΩ(s) ∈ B̃n+1(Tn(ft(Y),Ω)) by the formula

ΠΩ(s) = ϕ−1
ft(Y)(πΩ(ϕY (g))).

One verifies immediately that the conditions of Definition 2.1 imply that

1. S(ΠΩ(s), Tn(ft(Y), Ω̃)) = Π(S(s, Tn+1(Y, Ω̃))),

2. for n+ 1 ≥ i ≥ 1, Z ∈ Bn+2−i such that ft(Z) = fti(Y), T̃ (Z,ΠΩ(s)) = ΠΩ(T̃ (Z, s)),

3. for n+ 1 ≥ i ≥ 1, t ∈ B̃n+1−i such that ∂(t) = fti(Y), S̃(t,ΠΩ(s)) = ΠΩ(S̃(t, s)).

Conversely one has:

Proposition 2.2 [2009.12.4.prop1] Let CC = (B, B̃, . . . ,Π, . . .) be Π-C-structure. Let Ω̃ ∈ B2,
Ω = ft(Ω̃) and

ΠΩ : (Bn+1)Tn+1(−,Ω) ×∂ (B̃n+2)→ B̃n+1

be maps satisfying conditions (1),(2),(3) listed above. Then they correspond to a unique impredica-
tive Π-structure on CC.

3 Predicative Π-universe structures.

Definition 3.1 [2009.12.1def4] Let CC = (B, B̃, . . . ,Π, . . .) be Π-C-structure. A predicative Π-
universe structure on CC is a collection of data of the form

1. an object Ω̃ ∈ B2,

2. for any f : X → ft(Ω̃), g : f∗(Ω̃)→ ft(Ω) a morphism ΠΩ(f, g) : X → ft(Ω̃),

such that the following conditions hold

(i) for any f, g as above ΠΩ(f, g)
∗(Ω̃) = Π(g∗(Ω̃)),

(ii) for any f, g as above and h : Z → X one has

ΠΩ(f, g) ◦ h = ΠΩ(f ◦ h, g ◦ q(h, f∗(Ω̃)))

Note that any impredicative universe structure defines a predicative universe structure by the
formula Π(f, g) = Π(g).

The sequent representation of a predicative Π-universe structure looks as follows.

Proposition 3.2 [2009.12.4.prop2] Let CC = (B, B̃, . . . ,Π, . . .) be Π-C-structure. Any predica-
tive Π-universe structure on CC is uniquely determined by a collection of data of the form

1. an object Ω̃ ∈ B2 (we will write Ω for ft(Ω̃)),

2. a morphism ΠΩ : Π(T2(Ω̃, ft(Ω̃)))→ ft(Ω̃),

which satisfies the following conditions.

46

6 The system of Coq

The goal of these notes is to collect the material needed to prove that the system of inductive
constructors and reductions supported by the Coq proof assistant is compatible with the univalent
interpretation of type theory. For information about inductive definitions in Coq see [10], [2][p.77]
(good notations) and [7].

1 A type system CIC0

We start with a subset of current Coq system with a simplified universe structure which we call
CIC0. Namely, we will only allow for two universes Prop and Type0 = Type(0) with Prop ⊂
Type0 and Prop : Type0 but without Type0 : Type0. We only allow universal quantification
over expressions which type to Type0 and our Prop is impredicative i.e. the product of any
family of members of Prop again types to Prop. We will also use slightly different syntax in our
description. We will use

∏
and λ and most notably we will make the evaluation explicit and having

three arguments the first of which is the domain of the function to be evaluated. This allows one
to have unambiguous η-reduction.

For simplicity of notation we will use named free variables (instead of the free variables being always
named by natural numbers as in Proposition 3.1). We will also use ”vector notation” writing x⃗ : E⃗
for x1 : E1, . . . , xn : En etc. and write Γ to denote any valid context. To distinguish the names of
variables and constructors (including constants) from the symbols which denote expressions we will
use bold face for the former (except for

∏
, λ etc. where no ambiguity is possible). Since writing

out the three-argument evaluation expressions would make the text very hard to read we will often
write ev(f, x⃗) instead of ev(X1, . . . , ev(Xi, . . . , ev(X1, f, x1), . . . , xi), . . . , xn) where Xi is the type
of xi.

Remark 1.1 [2010.08.08.rem1] Note that if one does not include the substitution rules of Propo-
sition 3.1 explitly, the context and judgement formation rules should be such that the variables
introduced by a context ”above the line” can appear in the expressions ”below the line” either
among the context variables or among the bounded variables of the expressions. If a variable in-
troduced in a context ”above the line” appears in an expression below the line as a free variable
such a rule will be unstable under the substitution of this variable by an expression.

The basic context and judgement formation rules in CIC0 are as follows.

Basic rules

x1 : E1, . . . ,xn : En▷
x1 : E1, . . . ,xn : En ⊢ xi : Ei

i = 1, . . . , n

The universe structure

Γ▷
Γ,T : Type0▷

Γ ⊢ T : Type0

Γ, t : T▷
Γ▷

Γ,P : Prop▷
Γ ⊢ P : Prop

Γ,p : P ⊢

47

Γ▷
Γ ⊢ Prop : Type0

Γ ⊢ P : Prop

Γ ⊢ P : Type0

Underlying λ-calculus

Γ, t1 : T1, t2 : T2▷
Γ, t3 :

∏
t1 : T1.T2▷

Γ ⊢ T1 : Type0 Γ, t1 : T1 ⊢ T2 : Type0

Γ ⊢
∏

t1 : T1.T2 : Type0

Γ, t1 : T1 ⊢ T2 : Prop

Γ ⊢
∏

t1 : T1.T2 : Prop

Γ, t1 : T1 ⊢ t2 : T2

Γ ⊢ λ t1 : T1.t2 :
∏

t1 : T1.T2

Γ ⊢ f :
∏

t1 : T1.T2 Γ ⊢ t : T1
Γ ⊢ ev(T1, f, t) : T2[t/t1]

β − reduction : ev(T1, λ t1 : T1.t2, t)↘ t2[t/t1] η − reduction : λ t1 : T1.ev(T1, f, t1)↘ f

Note that the β- and η-reductions are defined on the level of the system of expressions.

Inductive types (Ia)

Γ▷
Γ ⊢ ∅ : Prop

Γ, t : T ▷ Γ ⊢ x : ∅
Γ ⊢ ϵ(x, T) : T

(resp.
Γ ⊢ T : Type0 Γ ⊢ x : ∅

Γ ⊢ ϵ(x, T) : T
)

Γ, t1 : T1▷ Γ, t2 : T2▷
Γ, t : ⨿(T1, T2)▷ (resp.

Γ ⊢ T1 : Type0 Γ ⊢ T2 : Type0

Γ ⊢ ⨿(T1, T2) : Type0
)

Inductive types (II)

What follows is just an explicit form of a general inductive construction of the CIC with additional
restrictions on the ”sizes” of the relevant type expressions and with the condition that in the
constructors all the non-recursive components are grouped together and placed in front of the
”recursive” ones. The input (”above the line”) data for a general inductive definition in a context
Γ▷ looks as follows:

48

1. integers: na ≥ 0 (the number of ”pseudo-parametrs”) and nc ≥ 0 (the number of construc-
tors),

2. for each i = 1, . . . , nc and integer nd(i) ≥ 0,

3. a valid context (Γ,a1 : A1, . . . ,ana : Ana▷)

4. for each i = 1, . . . , nc a valid context of the form (Γ, b⃗(i) : B⃗i▷), such that each B
(i)
j types to

Type0 in the context where it is defined,

5. for each i = 1, . . . , nc and each j = 1, . . . , na a valid judgement of the form

(Γ, b⃗(i) : B(i) ⊢ m(i)
j : Aj [m

(i)
1 /a1, . . . ,m

(i)
j−1/aj−1]),

6. for each i = 1, . . . , nc and each j = 1, . . . , nd(i) a valid context of the form (Γ, b⃗(i) : B⃗(i), d⃗(i),j :

D⃗(i),j▷), such that each expression D
(i),j
k types to Type0 in the context where it is defined,

7. for each i = 1, . . . , nc, j = 1, . . . , nd(i) and k = 1, . . . , na a valid judgement of the form

(Γ, b⃗(i) : B(i), d⃗(i),j : D⃗(i),j ⊢ q(i),jk : Aj [q
(i),j
1 /a1, . . . , q

(i),j
k−1/ak−1])

For simplicity of notation we will write simply A,B,D, q and m for a⃗ : A⃗, (b⃗(1) : B⃗(1)), . . . , (b⃗(nc) :
B⃗(nc)) etc. To further simplify the matter we will write BID (”Basic Input Data”) for the sequence
(na;nc;nd(1), . . . , nd(nc);A;B;D; q;m) which has to be included in the notation for every object
generated by the inductive construction.

The output consists of the following objects:

1. A valid judgement of the form (Γ ⊢ IT(BID) :
∏

a⃗ : A⃗.Type0). Note that the expression
IT(BID) bounds the variables a1, . . . ,ana, b⃗

(i) and d⃗(i),j .

2. For each i = 1, . . . , nc a valid judgement of the form

Γ ⊢ c(i, BID) :
∏

b⃗(i) : B⃗(i),∏
z
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ev(IT(BID), q⃗ (i),1)),

. . . ,∏
z(i),nd

(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ev(IT(BID), q⃗ (i),nd
(i)
)),

ev(IT(BID), m⃗(i))

where each c(i, BID) again bounds all of the variables a1, . . . , ana, b⃗
(i) and d⃗(i),j .

3. A valid judgement of the form

Γ ⊢ rect(a⃗r, r, BID) : Trect(a⃗r, r, BID)

where
Trect(a⃗r, r, BID) :=

=
∏

P :
(∏

a⃗r : A⃗, ev(IT(BID), a⃗r)→ Type0
)
,

49

(RC(1)− > . . .− > RC(nc)− >
∏

a⃗r : A⃗,
∏

r : ev(IT(BID), a⃗r), ev(ev(P, a⃗r), r))

and
RC(i) =

∏
b⃗(i) : B⃗(i),∏

z
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ev(IT(BID), q⃗ (i),1)),∏

y
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ev(ev(P, q⃗ (i),1), ev(z

(i)
1 , d⃗(i),1))),

. . .∏
z
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ev(IT(BID), q⃗ (i),nd
(i)
)),∏

y
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ev(ev(P, q⃗ (i),nd
(i)
), ev(z

(i)

nd(i)
, d⃗(i),nd(i)))),

ev(ev(P, m⃗(i)), ev(ev(c(i, BID), b⃗(i)), z⃗ (i))).

4. The constructions IT, c and rect satisfy the following reduction rule which is called ι-
reduction:

Note that with the previous definition (which we will call P -definition) one can not use inductive
elimination to define functions from inductive types to ”large types”. E.g. given a type expression
T there is no way to define a function f : nat− > Type0 such that f n = Tn.

Alternatively we can define the Q-form of inductive constructions as follows. The input data is the
same. The output data is of the form:

1. A valid judgement of the form (Γ ⊢ IT(BID) :
∏

a⃗ : A⃗.Type0).

2. For each i = 1, . . . , nc a valid judgement of the form

Γ ⊢ c(i, BID) :
∏

b⃗(i) : B⃗(i),∏
z
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ev(IT(BID), q⃗ (i),1)),

. . . ,∏
z
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ev(IT(BID), q⃗ (i),nd
(i)
)),

ev(IT(BID), m⃗(i))

3. For any valid context of the form

(Γ, a⃗r : A⃗, r : ev(IT(BID), a⃗r),x : Q▷)

a valid judgement of the form

Γ ⊢ rect(a⃗r, r, Q,BID) : TrectQ(a⃗r, r, Q,BID)

where
TrectQ(a⃗r, r, Q,BID) :=

RCQ(1)− > . . .− > RCQ(nc)− >
∏

a⃗r : A⃗,
∏

r : ev(IT(BID), a⃗r), Q

50

and
RCQ(i) =

∏
b⃗(i) : B⃗(i),∏

z
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ev(IT(BID), q⃗ (i),1)),∏

y
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, Q[q⃗ (i),1/a⃗r, ev(z

(i)
1 , d⃗(i),1)/r]),

. . .∏
z
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ev(IT(BID), q⃗ (i),nd
(i)
)),∏

y
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , Q[q⃗ (i),nd
(i)
/a⃗r, ev(z

(i)

nd(i)
, d⃗(i),nd(i))/r]),

Q[m⃗(i)/a⃗r, ev(ev(c(i, BID), b⃗(i)), z⃗ (i))/r].

4. The constructions IT, c and rect satisfy the following ι-reduction rule:

Finally, there is the following R-form of inductive constructions which is stronger than the previous
two. The input data is the same but without the restriction on B and D to be small. The output
data is of the form:

1. A valid context of the form (Γ, a⃗r : A⃗, r : ITR(a⃗r, BID)▷),

2. For each i = 1, . . . , nc a valid judgement of the form

Γ ⊢ c(i, BID) :
∏

b⃗(i) : B⃗(i),∏
z
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ITR(BID)[q⃗ (i),1/a⃗r]),

. . . ,∏
z
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ITR(BID)[q⃗ (i),nd
(i)
/a⃗r]),

ITR(BID)[m⃗(i)/a⃗r]

3. For any valid context of the form

(Γ, a⃗r : A⃗, r : ITR(BID),x : Q▷)

a valid judgement of the form

Γ ⊢ rect(a⃗r, r, Q,BID) : TrectR(a⃗r, r, Q,BID)

where
TrectR(a⃗r, r, Q,BID) :=

RCQ(1)− > . . .− > RCQ(nc)− >
∏

a⃗r : A⃗,
∏

r : ITR(BID), Q

and
RCQ(i) =

∏
b⃗(i) : B⃗(i),∏

z
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, ITR(BID)[q⃗ (i),1/a⃗r]),∏

y
(i)
1 : (

∏
d⃗(i),1 : D⃗(i),1, Q[q⃗ (i),1/a⃗r, ev(z

(i)
1 , d⃗(i),1)/r]),

51

. . .∏
z
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , ITR(BID)[q⃗ (i),nd
(i)
/a⃗r]),∏

y
(i)

nd(i)
: (
∏

d⃗(i),nd(i) : D⃗(i),nd(i) , Q[q⃗ (i),nd
(i)
/a⃗r, ev(z

(i)

nd(i)
, d⃗(i),nd(i))/r]),

Q[m⃗(i)/a⃗r, ev(ev(c(i, BID), b⃗(i)), z⃗ (i))/r].

4. The constructions ITR, c and rect satisfy the following ι-reduction rule:

In the case of R-form we also have an extra rule which says that if B and D are small (type to
Type0) then (Γ, a⃗r : A⃗ ⊢ ITR(a⃗r, BID) : Type0) is a valid judgement.

The Coq syntax for an inductive definition with these input data and values in a sort s (where
s = Prop, Set or Type) would look as follows:

Inductive X : forall a⃗ : A⃗, s := c(1) : C(1) | . . . |c(nc) : C(nc).

Where

C(i) := forall b⃗(i) : B⃗(i),

forall z
(i)
1 : (forall d⃗

(i)
1 : D⃗

(i)
1 , X q⃗

(i)
1), . . . , forall z

(i)

nd(i)
: (forall d⃗

(i)

nd(i)
: D⃗

(i)

nd(i)
, X q⃗

(i)

nd(i)
),

X m⃗(i).

We will use below the notation C(i) for the direct analog of this expression in CIC0 as well. To
write this analog explicitly one has to replace all ”forall w : W,” with ”

∏
w : W.” and write

our three-arguments ev(. . . , . . . , . . .) wherever applications occur. For example, X m⃗(i) will look as
follows:

ev(X, m⃗(i)) = ev(Ana[m
(i)
1 /a1, . . . ,m

(i)
na−1/ana−1], . . . , ev(Aj [m

(i)
1 /a1, . . . ,m

(i)
j−1/aj−1], . . .

. . . , ev(A1, X,m
(i)
1), . . . ,m

(i)
j), . . .m(i)

na)

Example 1.2 The following list gives the form of our BID for some of the inductive constructions
which are often used in Coq.

1. To define natural numbers nat one takes na = 0, nc = 2, nd(1) = 0, nd(2) = 1, B⃗(1) = ()

(empty sequence), B⃗(2) = (), D⃗
(2)
1 = ().

2. To define binary trees one takes na = 0, nc = 2, nd(1) = 0, nd(2) = 2, B⃗(1) = (), B⃗(2) = (),

D⃗
(2)
1 = (), D⃗

(2)
2 = ().

3. Given (Γ ⊢ T : Type0) one defines the equality types for T using the input data of the form
na = 2, nc = 1, nd(1) = 0, A⃗ = (t1 : T, t2 : T), B⃗(1) = (t : T), m⃗(1) = (t, t).

4. Given (Γ ⊢ T1 : Type0) and (Γ, t1 : T1 ⊢ T2 : Type0) one defines the dependent sum
(in the standard notation

∑
t1 : T1.T2) using the input data na = 0, nc = 1, nd(1) = 0,

B⃗(1) = (t1 : T1, t2 : T2).

5. empty, unit, unions.

52

2 Representing inductive definitions in Coq as combinations of elementary ones

In Coq an inductive definition with parameters is just a combination of an inductive definition
without parameters in a wider context with the dependent product and abstraction. For a detailed
translation see Appendix A. In what follows we will discuss only inductive definitions of the basic
Calculus of Inductive Constructions as described in [10], [7] and [2, pp.77-80].

Recall, that in the notation of CIC one writes (a : A) for what in Coq is forall a : A, and in the
standard type-theoretic notation

∏
a : A. and [a : A] for what in Coq is fun a : A => and in the

standard type-theoretic notation λa : A. .

A general expression for an inductive type in a context Γ is of the form I(X : A⃗ s){C(1), . . . , C(nc)}
where A⃗ s is an ”arity” i.e. a valid type expression in Γ of the form

(⃗a : A⃗)s = (a1 : A1) . . . (ana : Ana)s

where s is a sort and each C(k) is a type expression defined in the context Γ, X : A⃗ s which has the
form of a ”type of constructor expression” (cf. [2, p.77]).

In Coq inductive type of the form I(X : A⃗ s){C(1), . . . , C(nc)} is introduced using the following
syntax:

Inductive X: forall a 1:A 1, forall a 2:A 2, ... ,forall a na:A na, s := cc 1 : C 1 | ... | cc nc : C nc .

Lemma 2.1 [2010.1.19.l2] Any type of constructor expression C in variable X of type A⃗ s can
be written in a unique way in the form:

C = (z1,1 : (d⃗ : D⃗1,1)X q⃗1,1) . . . (z1,nd1 : (d⃗ : D⃗1,nd1)X q⃗1,nd1)(b1 : B1)

(z2,1 : (d⃗ : D⃗2,1)X q⃗2,1) . . . (z2,nd2 : (d⃗ : D⃗2,nd2)X q⃗2,nd2)(b2 : B2)

.

(bnb : Bnb)(znb,1 : (d⃗ : D⃗nb,1)X q⃗nb,1) . . . (znb,ndnb
: (d⃗ : D⃗nb,ndnb

)X q⃗nb,ndnb
)X m⃗

where Bi, D⃗i,j, q⃗i,j and m⃗ do not depend on X i.e. can be defined in a context which does not
contain X.

Since zk,l can only appear in a context which contains X we get the following observation:

Lemma 2.2 [2010.1.14.l1] In a type of constructor expression of the form given above D⃗i,j, q⃗i,j,
m⃗ and Bi do not depend on zk,l.

The dependencies between different sub-terms of C can be visualized by the following diagram:

[2010.1.14.eq1]

(Γ, B1, . . . , Bi, D⃗i,1), . . . , (Γ, B1, . . . , Bi, D⃗i,ndi) (Γ, D⃗1,1), . . . , (Γ, D⃗1,nd1)y y
. . . −−−−−→ (Γ, B1, . . . , Bi) −−−−−→ . . . −−−−−→ (Γ)

(32)

The sequences q⃗i,j correspond to morphisms (Γ, B1, . . . , Bi, D⃗i,j)→ (Γ, A⃗) over Γ and the sequence

m⃗ to a morphism (Γ, B⃗)→ (Γ, a⃗ : A⃗) over Γ.

53

Due to the structure of the dependencies diagram (32), the expression

[2010.1.21.eq2]C ′ = (⃗b : B⃗)(z1,1 : (d⃗ : D⃗1,1)X q⃗1,1) . . . (znb,ndnb
: (d⃗ : D⃗nb,ndnb

)X q⃗nb,ndnb
)X m⃗

(33)
is well formed in (Γ, X : A⃗ s) and there is a canonical bijection between the terms of type C and
terms of type C ′.

The inductive machinery of Coq defines for any collection of contexts of the form

[2010.1.21.eq1](Γ, a⃗ : A⃗, s), (Γ, X : A⃗ s, C(1) : s′′), . . . (Γ, X : A⃗ s, C(nc) : s′′) (34)

where C(k) are of the form described above, a term I = I(X : A⃗ s){C(1), . . . , C(nc)} of type (⃗a : A⃗)s
in Γ, a sequence of terms c(k) of types C(k)[I/X] for k = 1, . . . , nc in Γ and , for each ”admissible”
sort s′ a ”recursor” term Irec (again in Γ). The type of this term is

[2010.1.17.eq1]Irec : (Q : (⃗a : A⃗)(r : I a⃗)s′)(f1 : ∆{I/X,C(1), Q, c(1)/c}) . . .

. . . (fnc : ∆{I/X,C(nc), Q, c(nc)/c})(⃗a : A⃗)(r : I a⃗)Q a⃗ r. (35)

where for C of the form given above and defined for a variable X, ∆{X,C,Q, c} is the type
expression in the context (Γ, X : (⃗a : A⃗)s,Q : (⃗a : A⃗)(r : X a⃗)s′, c : C) of the form:

(z1,1 : (d⃗ : D⃗1,1)X q⃗1,1)(y1,1 : (d⃗ : D⃗1,1)Q q⃗1,1(z1,1 d⃗)) . . . (z1,nd1 : (d⃗ : D⃗1,nd1)X q⃗1,nd1)

(y1,nd1 : (d⃗ : D⃗1,nd1)Q q⃗1,nd1(z1,nd1 d⃗))(b1 : B1)

(z2,1 : (d⃗ : D⃗2,1)X q⃗2,1)(y2,1 : (d⃗ : D⃗2,1)Q q⃗2,1(z2,1 d⃗)) . . . (z2,nd2 : (d⃗ : D⃗2,nd2)X q⃗2,nd2)

(y2,nd2 : (d⃗ : D⃗2,nd2)Q q⃗2,nd2(z2,nd2 d⃗))(b2 : B2)

. . .

(bnb : Bnb)(znb,1 : (d⃗ : D⃗nb,1)X q⃗nb,1)(ynb,1 : (d⃗ : D⃗nb,1)Q q⃗nb,1(znb,1 d⃗)) . . .

(znb,ndnb
: (d⃗ : D⃗nb,ndnb

)X q⃗nb,ndnb
)(ynb,ndnb

: (d⃗ : D⃗nb,ndnb
)Q q⃗nb,ndnb

(znb,ndnb
d⃗))

Qm⃗ (c z1,1 . . . z1,nd1 b1 z2,1 . . . z2,nd2 b2 . . . bnb znb,1 . . . znb,ndnd
)

([2, p.78] uses the notation ∆{I,X,Ck, Q, c} for ∆{I/X,C(k), Q, c}). Because of the structure of
the dependency diagram (32) the expression

∆′{X,C,Q, c} = (⃗b : B⃗)(z1,1 : (d⃗ : D1,1)X q⃗1,1)(y1,1 : (d⃗ : D⃗1,1)Q q⃗1,1(z1,1 d⃗)) . . .

. . . (znb,ndnb
: (d⃗ : Dnb,ndnb

)X q⃗nb,ndnb
)(ynb,ndnb

: (d⃗ : D⃗nb,ndnb
)Q q⃗nb,ndnb

(znb,ndnb
d⃗))

(Qm⃗ (c′ b⃗ z1,1 . . . znb,ndnb
))

where c′ is the term of C ′ corresponding to c, is a well defined type expression and its terms are in
a canonical bijection with the terms of ∆{X,C,Q, c}. For a term f of ∆{X,C,Q, c} we will denote
by f ′ the corresponding term of ∆′{X,C,Q, c} (note that our ∆′{. . .} is not to be confused with
∆′[. . .] used in [2, p.79]). We will also write I ′rec for the term of the type

(Q : (⃗a : A⃗)(r : I a⃗)s′)(f ′1 : ∆
′{I/X,C(1), Q, c(1)/c}) . . .

. . . (f ′nc : ∆
′{I/X,C(nc), Q, c(nc)/c})(⃗a : A⃗)(r : I a⃗)Q a⃗ r.

corresponding to Irec.

54

The data produced by an inductive definition satisfies the ι-reduction(s). For an inductive definition
of the form given above and expressed in the form of (definitional) equalities in the context

(Γ, Q : (⃗a : A⃗)(r : I a⃗)s′,

f ′1 : ∆
′{I/X,C(1), Q, c(1) /c}, . . . , f ′nc : ∆′{I/X,C(nc), Q, c(nc)/c},

b⃗ : B⃗, z1,1 : (d⃗ : D⃗1,1) I q⃗1,1, . . . , znb,ndnb
: (d⃗ : D⃗nb,ndnb

) I q⃗nb,ndnb
)

(i.e. using the ordering of variables bi and zi,j corresponding to C ′ and ∆′) they take the following
form (for i = 1, . . . , nc):

[2010.1.19.eq1]I ′rec Q f⃗ ′ m⃗ (c′(i) b⃗ z⃗) =

= f ′i b⃗ z0,1 ([d⃗ : D⃗0,1] (I
′
rec Q f⃗

′ q⃗0,1 (z0,1d⃗))) . . .

. . . znb,ndnb
([d⃗ : D⃗nb,ndnb

] (I ′rec Q f⃗
′ q⃗nb,ndnb

(znb,ndnb
d⃗))). (36)

Let us consider inductive constructions in Coq of the following particular forms (following the
syntax of Coq we write Type for any sort, note that several occurrences of Type in the same
expression may actually refer to different sorts):

Inductive unit : Type := tt:unit.

Inductive Sum (T:Type) (Pf:T-> Type) : Type := pair: (forall t:T, forall x: Pf t, Sum T Pf).

Sum rect: forall (T : Type) (Pf : T -> Type) (P : Sum T Pf -> Type), (forall (t : T) (x : Pf
t), P (pair T Pf t x)) -> forall s : Sum T Pf, P s

Inductive emptytype : Type := .

Inductive Union (T1:Type) (T2:Type) : Type := ii1: T1 -> Union T1 T2 | ii2: T2 -> Union T1
T2.

Union rect: forall (T1 T2 : Type) (P : Union T1 T2 -> Type), (forall t : T1, P (i1 T1 T2
t)) -> (forall t : T2, P (i2 T1 T2 t)) -> forall u : Union T1 T2, P u

Inductive Eq (T:Type): T -> T-> Type := ideq: forall t:T, eq T t t .

Eq rect: forall (T : Type) (P : forall t t0 : T, Eq T t t0 -> Type), (forall t : T, P t t (ideq
T t)) -> forall (y y0 : T) (m : Eq T y y0), P y y0 m

Inductive IC(A:Type)(B:Type)(Df:B->Type)(q:forall b:B, forall d: Df b, A)(m:forall b:B, A) : A
-> Type :=
cic: forall b:B, ((forall d: Df b, IC A B Df q m (q b d)) -> IC A B Df q m (m b)).

IC rect: forall (A B : Type) (Df : B -> Type) (q : forall b : B, Df b -> A) (m : B -> A) (P
: forall a : A, IC A B Df q m a -> Type), (forall (b : B) (i : forall d : Df b, IC A B Df q m
(q b d)), (forall d : Df b, P (q b d) (i d)) -> P (m b) (cic A B Df q m b i)) -> forall (y : A)
(i : IC A B Df q m y), P y i

Inductive IP0(B:Type)(Df:B->Type) : Type :=
cip0: forall b:B, ((forall d: Df b, IP0 B Df) -> IP0 B Df).

55

Inductive IP(A:Type)(Bf:forall a:A,Type)(Df:forall a:A, forall b: Bf a, Type)(q: forall a:A, forall
b: Bf a, forall d: Df a b, A) (a:A): Type :=
cip: forall b: Bf a, forall f: (forall d: Df a b, (IP A Bf Df q (q a b d))), (IP A Bf Df q a).

IP rect: forall (A : Type) (Bf : A -> Type) (Df : forall a : A, Bf a -> Type) (q : forall (a :
A) (b : Bf a), Df a b -> A) (P : forall a : A, IP A Bf Df q a -> Type), (forall (a : A) (b : Bf
a) (f : forall d : Df a b, IP A Bf Df q (q a b d)), (forall d : Df a b, P (q a b d) (f d)) -> P a
(cip A Bf Df q a b f)) -> forall (a : A) (i : IP A Bf Df q a), P a i

Let us show how to construct an interpretation of Coq in itself which transforms any inductive def-
inition into a sequence of definitions of forms unit, Sum, emptytype, Union, Eq and IP. Definitions
of the form IC will be used for an intermediate step in the construction.

Given any context of the form Γ, x⃗ : T⃗ where x⃗ = (x1, . . . , xn) and T⃗ = T1, . . . , Tn we can form a
new context Γ, x : Σ(x⃗ : T⃗) where Σ(x⃗ : T⃗) is defined by repeated application of the construction
Sum such that for n = 1 we have Σ(x : T) = T and for n > 1,

Σ(x⃗ : T⃗) = SumT1 (funx1 : T1 => Σ((x2, . . . , xn) : (T2, . . . , Tn)))

For n = 0 we set Σ(x⃗ : T⃗) = unit.

Similarly given a sequence of contexts of the form Γ, xi : Ti where i = 1, . . . , n we can define a
context Γ, x : ⨿iTi where for n = 1 we have ⨿T = T and for n > 1,

⨿iTi = UnionT1 (⨿iTi+1)

For n = 0 we set ⨿iTi = emptytype.

Given any arity A⃗ s of the form (⃗a : A⃗)s define A as Σ (⃗a : A⃗) and As as (a : A)s. Given any C of
the form given above let us define the following:

B = Σ(⃗b : B⃗)

(in the context Γ),
D′
i,j = Σ(d⃗ : D⃗′

i,j)

in the context Γ, b : B where D⃗′
i,j are obtained from D⃗i,j by replacing b1 : B1, . . . , bi : Bi with the

corresponding projections of b : B and

D′ = ⨿i,jD′
i,j

also in the context Γ, b : B. The sequences q⃗i,j define a function qf : (Γ, b : B, d′ : D′)→ (Γ, a : A)
over Γ and the sequence m⃗ defines a function mf : (Γ, b : B)→ (Γ, a : A) over Γ.

Suppose now that we have a sequence of type of constructor expressions C(1), . . . , C(nc) in a variable
X of arity A⃗ s. Denote by B(k), D

′(k), qf (k),mf (k) where k = 1, . . . , nc the objects defined above
which correspond to the expression C(k). Let us do the groupings again. Set BB = ⨿kB(k).
Then there are functions of the form Df (k) : BB → Type such that for b : Bj , j ̸= k one has
Df (k)ijb = ∅ and for b : Bk one has Df (k)ikb = D

′(k). Set DD = ⨿kDf (k)b such that we have
a valid context (Γ, bb : BB, dd : DD). The morphisms qf (k) and mf (k) define now morphisms
qf : (Γ, bb : BB, dd : DD) → (Γ, a : A) and mf : (Γ, bb : BB) → (Γ, a : A) over Γ which we
represent by terms Γ ⊢ q : (bb : BB)(dd : DD)A and Γ ⊢ m : BB → A.

56

This construction provides for any inductive definition I(X : A⃗ s){C⃗} of the form permitted in Coq
a set-up consisting of valid contexts and sequents of the form:

[2010.1.18.eq2](Γ, a : A), (Γ, bb : BB, dd : DD)

(Γ ⊢ q : (bb : BB)(dd : DD)A), (Γ ⊢ m : BB → A) (37)

where BB, DD, q and m are expressions which use only the dependent sum and disjoint union
constructions and the original expressions A⃗ and C⃗. If q′ :

∑
((bb, dd) : (BB,DD))− > A is adjoint

to q then our data can be shows in the form of a diagram:∑
((bb, dd) : (BB,DD))

q′−−−→ A

pr1

y
BB

m

y
A

When na = 0 i.e. A = unit we can ignore q and m and we obtain the diagram∑
((bb, dd) : (BB,DD))

pr1→ BB

Proposition 2.3 [2010.1.18.prop1] Let I(X : A⃗ s){C⃗} be a valid inductive definition in Coq in
a context Γ.

If na > 0, consider the type I = IC ABB (fun bb : BB => DD) q m where A,BB,DD, q and
m are defined based on A⃗ s and C⃗ as explained above. Then there is a term expression based on
ICrectABB (fun bb : BB => DD) q m of type (35) in Γ and this expression satisfies the same
reduction rules as (35).

If na = 0, consider the type I = IP0BB (fun bb : BB => DD). Then there is a term expression
based on IP0rectBB (fun bb : BB => DD) of type (35) in Γ and this expression satisfies the same
reduction rules as (35).

Example 2.4 [2010.8.4.ex1]Let us consider the construction described above in the case of the
standard definition of natural numbers:

Inductive nat : Type := O : nat | S : nat -> nat.

We have s = Type, A = unit, nc = 2,

C(1) = nat B(1) = unit D(1) = emptytype

C(2) = (z
(2)
0,1 : nat)nat B(2) = unit D(2) = unit

When we group C(1) and C(2) together we get:

BB = Unionunit unit

The explicit forms for Df1 = Df (1) and Df2 = Df (2) in Coq are:

57

Fixpoint Df1 (bb:BB) Type :=
match bb:BB with
ii1 tt1 => emptytype |
ii2 tt2 => emptytype
end.

Fixpoint Df2 (bb:BB) Type :=
match bb:BB with
ii1 tt1 => unit |
ii2 tt2 => emptytype
end.

and DD (in the context (Γ, bb:B)) is of the form Union (Df1 bb) (Df2 bb). Therefore, our
construction would replace the usual definition of nat by

Definition nat’:= IP0 BB (fun bb:BB => Union (Df1 bb) (Df2 bb)).

which is equivalent to the one of the form

nat’ : Type := (Union nat’ unit) -> nat’.

Proposition 2.3 can be informally summarized by saying that the procedure described above allows
one to express any inductive definition of Coq as a combination of a number of dependent sums,
dependent products and a single inductive definition of the form IC.

We will show now how to transform, using eq, a definition of the form IC into an equivalent (in the
sense clarified by Proposition 2.5 below) inductive definition of the form IP.

Consider a set-up of the form (37). In the context Γ, a : A define B′ = Σ b : B, eq Aa (mb).
Consider the term sequent

(Γ, a : A, b′ : B′, d′ : D[(pr1 b′)/b] ⊢ q (pr1 b′) d′ : A)

This sequent is of the form which can serve as an input for the construction of IP. Set

I = IP A Bf ′ Df ′ q′

where Bf ′ = (fun a => B′), Df ′ = (fun a => (fun b′ => D[(pr1 b′)/b])) and q′ = (fun a =>
(fun b′ => (fun d′ => a (pr1 b′) d′))).

Proposition 2.5 [2010.1.25.prop1] In the notations introduced above, there exists a term ex-
pression in Γ based on IPrect A Bf ′ Df ′ q′ which has the same type as ICrect A B (fun b : B =>
D) q m and satisfies the same ι-reduction property.

3 Interpretations of inductive definitions in lccc’s

To get started let is consider an interpretation [-] of the calculus of construction (with some uni-
verses) in a lccc C which is compatible with dependent products.

We start by interpreting dependent sums (which can be seen in Coq as inductive definitions
with one strictly positive constructor) in the usual way. After they are interpreted we can al-
ways replace an expression of the form (x1 : T1)(x2 : T2)....(xn : Tn)Tn+1 by (x : (

∑
x1 :

58

T1, . . . ,
∑
xn−1Tn−1, Tn))Tn+1 i.e. to replace all sequences of dependent products by a single de-

pendent product parametrized by a dependent sum.

We also interpret inductive definitions with several constructors of the form Ti → I where Ti’s do
not depend on I as disjoint unions.

Using this reduction and also identifications of Prop and Set with subtypes of Type we may
assume that a general inductive definition is of the form X = Ind(X : A → Type){C1, . . . , Cn}
where Ci = (zi : Bi)Xmi, X is not present in mi and Bi is a dependent sum of the form

[2009.1.8.eq1]Bi =
∑

zi,0 : Bi,0,
∑

zi,1 : Bi,1,
∑

. . . , Bi,ni (38)

where Bi,j does not depend on X or is of the form (yi,j : Di,j)X qi,j where Di,j and qi,j do not
depend on X.

Presumably, these conditions imply in particular that if Bi,j = (yi,j : Di,j)X qi,j and k > j then
Bi,k does not depend on zi,j . Therefore, we can collect all the terms Bi,j which do not depend on
X into Bi,0 and assume that for j > 0 the term Bi,j is of the form (yi,j : Di,j)X qi,j . Note that
these terms do not depend on each other for various j1, j2 > 0.

Suppose we have already interpreted everything ”before” this definition. By passing to the slice
category we may assume that we work in an empty context. Then [Bi,0] is an object of C and each of
the [Di,j] is a family of objects over [Bi,0]. Let Ei,j =

∑
zi,0 : Bi,0, Di,j . Then [pi,j] : [Ei,j]→ [Bi,0]

is the map whose fibers give this family and [qi,j] can be seen as a morphism [qi,j] : [Ei,j]→ A.

Let Tot(X) =
∑
a : A,Xa. Then [Tot(X)] is an object over [A] and = the object [Bi] as an object

over [Bi,0] is
∏
j [pi,j]∗[qi,j]

∗([Tot(X)]/[A]). By taking disjoint union of the types Ei,j for j > 0
we may collect them into one type Ei and the maps pi,j and qi,j into two maps pi : Ei → Bi,0,
qi : Ei → A.

Since mi does not depend on X it means in particular that, as a function Bi → A it only depends
on zi,0 i.e. that mi is a function Bi,0 → A. Summing things up we find that each constructor Ci
defines three morphisms pi : Ei → Bi,0, qi : Ei → A and mi : Bi,0 → A of which pi is a ”display
map” (i.e. the canonical morphism Ei → ft(Ei)):

Ei
qi−−−→ Aypi

A ←−−−
mi

Bi,0

and forX : A→ Type, a term ci of type Ci(X) is a morphism (pi)∗(qi)
∗(Tot(X)/A)→ (mi)

∗(Tot(X)/A).

We conclude that an interpretation of such a term is a morphism

[pi]∗[qi]
∗([Tot(X)]/[A])→ [mi]

∗([Tot(X)]/[A])

or equivalently by adjunction a morphism of the form

[mi]#[pi]∗[qi]
∗([Tot(X)])→ [Tot(X)]

over [A]. We can further collect these morphisms together for different i setting

E = ⨿iEi B = ⨿iBi,0 q = ⨿iqi p = ⨿ipi m = ⨿imi

and define a functor F (X ′) = [m]#[p]∗[q]
∗(X ′) from C/[A] to itself.

An inductive definition introduces the following data:

59

1. an object I such that ft(I) = A,

2. a morphism cX : p∗q
∗(I)→ m∗(I) over A,

3. a mapping which assigns to any pair (P, cP) where P is an object such that ft(P) = I and
cP : p∗q

∗(I)→ m∗(P), a section s : I → P of pP such that m∗(s) cX = cP (p∗q
∗(s)).

It is not difficult to show now that an initial algebra for F provides an interpretation for I with all of
its recursors. However, in the case of the univalent models this is not a satisfactory interpretation
since for a fibration X ′ → [A] the morphism F (X ′) → [A] needs not be a fibration unless [m]
happened to be a fibration.

In order to overcome this difficulty one re-writes any inductive definition as a combination of
dependent sums, disjoint unions, equivalence types and IP constructions as explained above. A
univalent (compatible with the equivalence axiom) interpretation of dependent sums, disjoint unions
and equivalence types is known. We obtain a univalent interpretation of IP types using [1, Th.
5.6] since the IP construction can be interpreted as the initial algebra of a functor which takes Kan
fibrations to Kan fibrations and which depends on its parameters in a way which respects weak
equivalences.

References

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In In Pro-
ceedings of Foundations of Software Science and Computation Structures, 2003.

[2] Frédéric Blanqui. Type theory and rewritting. In Ph. D. Thesis, pages 1–139. Orsay, 2001.

[3] John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl.
Logic, 32(3):209–243, 1986.

[4] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.

[5] Peter May. Simplicial objects in algebraic topology. Van Nostrand, 1968.

[6] E. Palmgren and S. J. Vickers. Partial horn logic and Cartesian categories. Ann. Pure Appl.
Logic, 145(3):314–353, 2007.

[7] Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and properties. In
Typed lambda calculi and applications (Utrecht, 1993), volume 664 of Lecture Notes in Comput.
Sci., pages 328–345. Springer, Berlin, 1993.

[8] Daniel G. Quillen. The geometric realization of a Kan fibration is a Serre fibration. Proc.
Amer. Math. Soc., 19:1499–1500, 1968.

[9] Thomas Streicher. Semantics of type theory. Progress in Theoretical Computer Science.
Birkhäuser Boston Inc., Boston, MA, 1991. Correctness, completeness and independence re-
sults, With a foreword by Martin Wirsing.

[10] B. Werner. Une thorie des constructions inductives. In Thse de Doctorat, 1994.

60

