What is a model of type theory?

1 Substitution calculus

We present a formal system, which at the same time can be thought of describing the syntax of basic dependent type theory, with *explicit substitutions* and a *name-free* (de Bruijn index) presentation, and defining what is a model of type theory.

We get in this way a system of combinators for wrinting terms in dependent type theory. The system of combinators we obtain is actually the same as the one used for describing cartersian closed category [4]. There has been other systems of combinators which can be used instead [3, 5], but the one we used here, given in [2] has the advantage of also being a name-free presentation of the substitution calculus formulation of type theory.

A model is given by a collection of *contexts*. If Γ, Δ are context we have a collection $\Delta \to \Gamma$ of *substitutions* from Δ to Γ . We have a substitution $1 : \Gamma \to \Gamma$ and a composition operator $\sigma\delta : \Theta \to \Gamma$ if $\delta : \Theta \to \Delta$ and $\sigma : \Delta \to \Gamma$. Furthermore we should have

$$\sigma 1 = 1\sigma = \sigma \qquad (\theta\sigma)\delta = \theta(\sigma\delta)$$

One way to express this would be that contexts form a category with substitutions as morphisms. This would be misleading however and it is better to think of this structure as an equational structure with dependent sort (more precisely, as a model of a generalized algebraic theory [1]).

If Γ is a context we have a collection of *types over* Γ . We write $\Gamma \vdash A$ to express that A is a type over Γ . If $\Gamma \vdash A$ and $\sigma : \Delta \to \Gamma$ we should have $\Delta \vdash A\sigma$. Furthermore

$$A1 = A$$
 $(A\sigma)\delta = A(\sigma\delta)$

If $\Gamma \vdash A$ we also have a collection of *elements of type A*. We write $\Gamma \vdash a : A$ to express that a is an element of type A. If $\Gamma \vdash a : A$ and $\sigma : \Delta \to \Gamma$ we should have $\Delta \vdash a\sigma : A\sigma$. Furthermore

$$a1 = a$$
 $(a\sigma)\delta = a(\sigma\delta)$

We have a *context extension operation*: if $\Gamma \vdash A$ then we have a new context $\Gamma.A$. Furthermore there is a projection $\mathbf{p} : \Gamma.A \to \Gamma$ and a special element $\Gamma.A \vdash \mathbf{q} : A\mathbf{p}$. If $\sigma : \Delta \to \Gamma$ and $\Gamma \vdash A$ and $\Delta \vdash a : A\sigma$ we have an extension operation $(\sigma, a) : \Delta \to \Gamma.A$. We should have

$$\mathbf{p}(\sigma, a) = \sigma \qquad \mathbf{q}(\sigma, a) = a$$
$$(\sigma, a)\delta = (\sigma\delta, a\delta) \qquad (\mathbf{p}, \mathbf{q}) = 1$$

If $\Gamma \vdash a : A$ we write $[a] = (1, a) : \Gamma \to \Gamma.A$. Thus if $\Gamma.A \vdash B$ and $\Gamma \vdash a : A$ we have $\Gamma \vdash B[a]$. If furthermore $\Gamma.A \vdash b : B$ we have $\Gamma \vdash b[a] : B[a]$. Models are usually presented by giving a class of special maps (fibrations), in our case they are the maps $\mathbf{p} : \Gamma.A \to \Gamma$, and the elements are the sections of these fibrations, in our case the maps $[a] : \Gamma \to \Gamma.A$ determined by an element $\Gamma \vdash a : A$.

2 Type system with dependent product

We suppose furthermore one operation $\Pi A B$ such that $\Gamma \vdash \Pi A B$ if $\Gamma \vdash A$ and $\Gamma A \vdash B$. We should have $(\Pi A B)\sigma = \Pi (A\sigma) (B\sigma^+)$ where $\sigma^+ = (\sigma \mathbf{p}, \mathbf{q})$. We have an abstraction operation λb such that $\Gamma \vdash \lambda b : \Pi A B$ if $\Gamma A \vdash b : B$. We have an application operation such that $\Gamma \vdash \mathsf{app}(c, a) : B[a]$ if $\Gamma \vdash a : A$ and $\Gamma \vdash c : \Pi A B$. These operations should satisfy the equations

$$\mathsf{app}(\lambda b, a) = b[a], \qquad c = \lambda(\mathsf{app}\ c^+), \qquad (\lambda b)\sigma = \lambda(b\sigma^+), \qquad \mathsf{app}(c, a)\sigma = \mathsf{app}(c\sigma, a\sigma)$$

where we write $c^+ = (c\mathbf{p}, \mathbf{q})$ and $\sigma^+ = (\sigma \mathbf{p}, \mathbf{q})$.

Figure 1: Rules of basic type theory

$$\begin{array}{ccc} \frac{\Gamma \vdash}{1:\Gamma \to \Gamma} & \frac{\sigma:\Delta \to \Gamma & \delta:\Theta \to \Delta}{\sigma \delta:\Theta \to \Gamma} \\ \frac{\Gamma \vdash A & \sigma:\Delta \to \Gamma}{\Delta \vdash A \sigma} & \frac{\Gamma \vdash t:A & \sigma:\Delta \to \Gamma}{\Delta \vdash t \sigma:A \sigma} \\ \overline{\vdash} & \frac{\Gamma \vdash \Gamma \vdash A}{\Gamma.A \vdash} & \frac{\Gamma \vdash A}{\mathsf{p}:\Gamma.A \to \Gamma} & \frac{\Gamma \vdash A}{\Gamma.A \vdash \mathsf{q}:A\mathsf{p}} \\ \frac{\sigma:\Delta \to \Gamma & \Gamma \vdash A & \Delta \vdash u:A \sigma}{(\sigma,u):\Delta \to \Gamma.A} \end{array}$$

 $\sigma 1 = \sigma \qquad 1\sigma = \sigma \qquad (\sigma\delta)\nu = \sigma(\delta\nu)$ $(\sigma, u)\delta = (\sigma\delta, u\delta) \qquad \mathsf{p}(\sigma, u) = \sigma \qquad \mathsf{q}(\sigma, u) = u$ $(\mathsf{p}, \mathsf{q}) = 1$

3 Universe

To define a model of type theory with one universe, we assume that we have a special type $\Gamma \vdash U$ such that $U\sigma = U$ and $\Gamma \vdash A$ whenever $\Gamma \vdash A : U$. Furthermore we assume that $\Gamma \vdash \Pi A B : U$ whenever $\Gamma \vdash A : U$ and $\Gamma A \vdash B : U$.

4 Equations

All equations we have been using can be grouped together in the equations of *C*-monoid [4]. There are the following equations of a monoid with a special constants $\mathbf{p}, \mathbf{q}, \mathbf{app}$ and operations (x, y) and λx

$$\begin{aligned} (xy)z &= x(yz) & x1 = 1x = x \\ \mathsf{p}(x,y) &= x & \mathsf{q}(x,y) = y & (x,y)z = (xz,yz) & 1 = (\mathsf{p},\mathsf{q}) \\ & \mathsf{app}(\lambda x,y) = x[y] & (\lambda x)y = \lambda(xy^+) & 1 = \lambda \text{ app} \end{aligned}$$

where we define [y] = (1, y) and $x^+ = (xp, q)$. We have $x^+(y, z) = (xy, z)$ and $x^+y^+ = (xy)^+$ and $x^+[y] = (x, y)$.

We can also describe a model of type theory with *dependent sums*. We should have $\Gamma \vdash \Sigma A B$ if $\Gamma \vdash A$ and $\Gamma A \vdash B$. If $\sigma : \Delta \to \Gamma$ we should have $(\Sigma A B)\sigma = \Sigma (A\sigma) (B\sigma^+)$. If $\Gamma \vdash a : A$ and $\Gamma \vdash b : B[a]$ we should have $\Gamma \vdash (a, b) : \Sigma A B$. We require the equation $(a, b)\sigma = a\sigma, b\sigma$. We ask also for two operations $\Gamma \vdash pc : A$ and $\Gamma \vdash qc : B[pc]$ if $\Gamma \vdash c : \Sigma A B$ and the equations p(a, b) = a and q(a, b) = b.

5 Set-theoretic Model

Here is an example of a model. We take the collection of context to be the collection of all sets. If Γ is a set then $\Gamma \vdash A$ means that A is a family of sets indexed over the set Γ . If $\rho : \Gamma$ then $A\rho$ is a set. If $\sigma : \Delta \to \Gamma$ we define the family $\Delta \vdash A\sigma$ by the equation $(A\sigma)\rho = A(\sigma\rho)$. We can then check the equations A1 = A and $(A\sigma)\delta = A(\sigma\delta)$.

We define $\Gamma \vdash a : A$ to mean that a is a section of the family A. If $\rho : \Gamma$ we have $a\rho : A\rho$. If $\sigma : \Delta \to \Gamma$ we define $a\sigma$ by the equation $(a\sigma)\rho = a(\sigma\rho)$. We can then check the equations a1 = a and $(a\sigma)\delta = a(\sigma\delta)$. Indeed we have $(a1)\rho = a(1\rho) = a\rho$ and $((a\sigma)\delta)\rho = (a\sigma)(\delta\rho) = a(\sigma(\delta\rho)) = a((\sigma\delta)\rho)$.

If $\Gamma \vdash A$ we define ΓA to be the set of pairs ρ, u with $\rho : \Gamma$ and $u : A\rho$. We can then define **p** by the equation $\mathbf{p}(\rho, u) = \rho$ and **q** by the equation $\mathbf{q}(\rho, u) = u$.

If $\sigma : \Delta \to \Gamma$ and $\Gamma \vdash A$ and $\Delta \vdash a : A\sigma$ we define the extension operation $(\sigma, a) : \Delta \to \Gamma A$ by the equation $(\sigma, a)\rho = \sigma\rho, a\rho$.

If $\Gamma \vdash A$ and $\Gamma A \vdash B$ we define $\Gamma \vdash \Pi A B$. If $\rho : \Gamma$ then $(\Pi A B)\rho$ is the set of elements

$$w:\prod_{u:A
ho} B(
ho,u)$$

If $\Gamma A \vdash b : B$ we define $\Gamma \vdash \lambda b : \Pi A B$ by the equation $\operatorname{\mathsf{app}}((\lambda b)\rho, u) = b(\rho, u)$ for $\rho : \Gamma$ and $u : A\rho$. If $\Gamma \vdash a : A$ and $\Gamma \vdash c : \Pi A B$ we define $\Gamma \vdash \operatorname{\mathsf{app}}(c, a) : B[a]$ by the equation $\operatorname{\mathsf{app}}(c, a)\rho = \operatorname{\mathsf{app}}(c\rho, a\rho)$ for $\rho : \Gamma$. We can then check

$$\mathsf{app}(\lambda b, a)\rho = \mathsf{app}((\lambda b)\rho, a\rho) = b(\rho, a\rho) = b[a]\rho$$

which shows that the model validates the equality $\Gamma \vdash \mathsf{app}(\lambda b, a) = b[a] : B[a]$.

6 Presheaf model

If \mathcal{C} is any small category, the presheaf model of type theory over \mathcal{C} can be described as follows.

We write X, Y, Z, ... the objects of C and f, g, h, ... the maps of C. If $f : X \to Y$ and $g : Y \to Z$ we write gf the composition of f and g. We write $1_X : X \to X$ or simply $1 : X \to X$ the identity map of X. Thus we have (fg)h = f(gh) and 1f = f1 = f.

A context is interpreted by a presheaf Γ : for any object X of C we have a set $\Gamma(X)$ and if $f: Y \to X$ we have a map $\rho \mapsto \rho f$, $\Gamma(X) \to \Gamma(Y)$. This should satisfy $\rho 1 = \rho$ and $(\rho f)g = \rho(fg)$ for $f: Y \to X$ and $g: Z \to Y$.

A type $\Gamma \vdash A$ over Γ is given by a set $A\rho$ for each $\rho : \Gamma(X)$. Furthermore if $f : Y \to X$ we have $\rho f : \Gamma(Y)$ and we can consider the set $A\rho f$. We should have a map $u \longmapsto uf$, $A\rho \to A\rho f$ which should satisfy u1 = u and (uf)g = u(fg).

An element $\Gamma \vdash a : A$ is interpreted by a family $a\rho : A\rho$ such that $(a\rho)f = a(\rho f)$ for any $\rho : \Gamma(X)$ and $f : Y \to X$.

This can be seen as a concrete description of what is respectively a fibration and a section of this fibration.

If $\Gamma \vdash A$ we can define a new presheaf ΓA by taking $(\rho, u) : (\Gamma A)(X)$ to mean $\rho : \Gamma(X)$ and $u : A\rho$. We define $(\rho, u)f = \rho f, uf$.

If we have a map $\sigma : \Delta \to \Gamma$ and $\Gamma \vdash A$ we define $\Delta \vdash A\sigma$ by $(A\sigma)\rho = A\sigma\rho$.

We can interpret dependent products $\Gamma \vdash \Pi A B$ and sums $\Gamma \vdash \Sigma A B$ if we have $\Gamma \vdash A$ and $\Gamma A \vdash B$. For $\rho : \Gamma(X)$ we define $(u, v) : (\Sigma A B)\rho$ to mean $u : A\rho$ and $v : B(\rho, u)$. We define (u, v)f = uf, vf for $f : Y \to X$. On the other hand an element of $(\Pi A B)\rho$ is a family w indexed by $h : Y \to X$ with

$$wh: \prod_{u:A
ho h} B(
ho h, u)$$

and such that app(wh, u)g = app(whg, ug) if $h: Y \to X$ and $g: Z \to Y$. We define then (wh)f = w(hf). We write w = w1.

We can interpret $\Gamma \vdash \lambda t : \Pi \land B$ whenever $\Gamma . A \vdash t : B$ and $\Gamma \vdash \mathsf{app}(v, u) : B[u]$ if $\Gamma \vdash u : A$ and $\Gamma \vdash v : \Pi \land B$. Here we write [u] the map $\Gamma \to \Gamma . A$ defined by $[u]\rho = \rho, u\rho$. If $\rho : \Gamma(X)$ and $f : Y \to X$ we define $\mathsf{app}((\lambda t)\rho f, a) = t(\rho f, a) : B(\rho f, a)$ for $a : A\rho f$. We take $\mathsf{app}(v, u)\rho = \mathsf{app}(v\rho, u\rho) : B(\rho, u\rho)$. We can then check that we have

$$\mathsf{app}(\lambda t, u)\rho = t(\rho, u\rho) = t[u]\rho : B(\rho, u\rho)$$

if $\Gamma A \vdash t : B$ and $\Gamma \vdash u : A$ and $\rho : \Gamma(X)$, which shows that the model validates the conversion rule $\Gamma \vdash \mathsf{app}(\lambda t, u) = t[u] : B[u].$

References

- J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32 (1986), no. 3, 209–243.
- [2] P. Dybjer. Internal Type Theory.
- [3] Th. Ehrhrard. Une sémantique catégorique des types dépendents. PhD thesis, Université Paris VII, 1988.
- [4] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge studies in advanced mathematics 7, 1986.
- [5] E. Ritter. Categorical Abstract Machines for Higher-Order Typed Lambda Calculi, PhD Thesis, Trinity College, Cambridge, 1992.