What is a model of type theory?

1 Substitution calculus

We present a formal system, which at the same time can be thought of describing the syntax of basic dependent type theory, with explicit substitutions and a name-free (de Bruijn index) presentation, and defining what is a model of type theory.

We get in this way a system of combinators for wrinting terms in dependent type theory. The system of combinators we obtain is actually the same as the one used for describing cartersian closed category [4]. There has been other systems of combinators which can be used instead [3, 5], but the one we used here, given in [2] has the advantage of also being a name-free presentation of the substitution calculus formulation of type theory.

A model is given by a collection of contexts. If Γ, Δ are context we have a collection $\Delta \rightarrow \Gamma$ of substitutions from Δ to Γ. We have a substitution $1: \Gamma \rightarrow \Gamma$ and a composition operator $\sigma \delta: \Theta \rightarrow \Gamma$ if $\delta: \Theta \rightarrow \Delta$ and $\sigma: \Delta \rightarrow \Gamma$. Furthermore we should have

$$
\sigma 1=1 \sigma=\sigma \quad(\theta \sigma) \delta=\theta(\sigma \delta)
$$

One way to express this would be that contexts form a category with substitutions as morphisms. This would be misleading however and it is better to think of this structure as an equational structure with dependent sort (more precisely, as a model of a generalized algebraic theory [1]).

If Γ is a context we have a collection of types over Γ. We write $\Gamma \vdash A$ to express that A is a type over Γ. If $\Gamma \vdash A$ and $\sigma: \Delta \rightarrow \Gamma$ we should have $\Delta \vdash A \sigma$. Furthermore

$$
A 1=A \quad(A \sigma) \delta=A(\sigma \delta)
$$

If $\Gamma \vdash A$ we also have a collection of elements of type A. We write $\Gamma \vdash a: A$ to express that a is an element of type A. If $\Gamma \vdash a: A$ and $\sigma: \Delta \rightarrow \Gamma$ we should have $\Delta \vdash a \sigma: A \sigma$. Furthermore

$$
a 1=a \quad(a \sigma) \delta=a(\sigma \delta)
$$

We have a context extension operation: if $\Gamma \vdash A$ then we have a new context $\Gamma . A$. Furthermore there is a projection $\mathrm{p}: \Gamma . A \rightarrow \Gamma$ and a special element $\Gamma . A \vdash \mathrm{q}: A \mathrm{p}$. If $\sigma: \Delta \rightarrow \Gamma$ and $\Gamma \vdash A$ and $\Delta \vdash a: A \sigma$ we have an extension operation $(\sigma, a): \Delta \rightarrow \Gamma . A$. We should have

$$
\begin{array}{cr}
\mathrm{p}(\sigma, a)=\sigma & \mathrm{q}(\sigma, a)=a \\
(\sigma, a) \delta=(\sigma \delta, a \delta) & (\mathrm{p}, \mathrm{q})=1
\end{array}
$$

If $\Gamma \vdash a: A$ we write $[a]=(1, a): \Gamma \rightarrow \Gamma . A$. Thus if $\Gamma . A \vdash B$ and $\Gamma \vdash a: A$ we have $\Gamma \vdash B[a]$. If furtermore $\Gamma . A \vdash b: B$ we have $\Gamma \vdash b[a]: B[a]$. Models are usually presented by giving a class of special maps (fibrations), in our case they are the maps $\mathrm{p}: \Gamma . A \rightarrow \Gamma$, and the elements are the sections of these fibrations, in our case the maps $[a]: \Gamma \rightarrow \Gamma . A$ determined by an element $\Gamma \vdash a: A$.

2 Type system with dependent product

We suppose furthermore one operation $\Pi A B$ such that $\Gamma \vdash \Pi A B$ if $\Gamma \vdash A$ and $\Gamma . A \vdash B$. We should have $(\Pi A B) \sigma=\Pi(A \sigma)\left(B \sigma^{+}\right)$where $\sigma^{+}=(\sigma \mathrm{p}, \mathrm{q})$. We have an abstraction operation λb such that $\Gamma \vdash \lambda b: \Pi A B$ if $\Gamma . A \vdash b: B$. We have an application operation such that $\Gamma \vdash \operatorname{app}(c, a): B[a]$ if $\Gamma \vdash a: A$ and $\Gamma \vdash c: \Pi A B$. These operations should satisfy the equations

$$
\operatorname{app}(\lambda b, a)=b[a], \quad c=\lambda\left(\operatorname{app} c^{+}\right), \quad(\lambda b) \sigma=\lambda\left(b \sigma^{+}\right), \quad \operatorname{app}(c, a) \sigma=\operatorname{app}(c \sigma, a \sigma)
$$

where we write $c^{+}=(c \mathbf{p}, \mathbf{q})$ and $\sigma^{+}=(\sigma \mathbf{p}, \mathbf{q})$.

Figure 1: Rules of basic type theory

$$
\begin{aligned}
& \frac{\Gamma \vdash}{1: \Gamma \rightarrow \Gamma} \quad \frac{\sigma: \Delta \rightarrow \Gamma \quad \delta: \Theta \rightarrow \Delta}{\sigma \delta: \Theta \rightarrow \Gamma} \\
& \frac{\Gamma \vdash A \quad \sigma: \Delta \rightarrow \Gamma}{\Delta \vdash A \sigma} \quad \frac{\Gamma \vdash t: A \quad \sigma: \Delta \rightarrow \Gamma}{\Delta \vdash t \sigma: A \sigma} \\
& \digamma \quad \frac{\Gamma \vdash \Gamma \vdash A}{\Gamma \cdot A \vdash} \quad \frac{\Gamma \vdash A}{\mathrm{p}: \Gamma \cdot A \rightarrow \Gamma} \quad \frac{\Gamma \vdash A}{\Gamma \cdot A \vdash \mathrm{q}: A \mathrm{p}} \\
& \frac{\sigma: \Delta \rightarrow \Gamma \quad \Gamma \vdash A \quad \Delta \vdash u: A \sigma}{(\sigma, u): \Delta \rightarrow \Gamma . A} \\
& \sigma 1=\sigma \quad 1 \sigma=\sigma \quad(\sigma \delta) \nu=\sigma(\delta \nu) \\
& (\sigma, u) \delta=(\sigma \delta, u \delta) \quad \mathrm{p}(\sigma, u)=\sigma \quad \mathrm{q}(\sigma, u)=u \\
& (p, q)=1
\end{aligned}
$$

3 Universe

To define a model of type theory with one universe, we assume that we have a special type $\Gamma \vdash U$ such that $U \sigma=U$ and $\Gamma \vdash A$ whenever $\Gamma \vdash A: U$. Furthermore we assume that $\Gamma \vdash \Pi A B: U$ whenever $\Gamma \vdash A: U$ and $\Gamma . A \vdash B: U$.

4 Equations

All equations we have been using can be grouped together in the equations of C-monoid [4]. There are the following equations of a monoid with a special constants \mathbf{p}, \mathbf{q}, app and operations (x, y) and λx

$$
\begin{gathered}
(x y) z=x(y z) \\
\mathrm{p}(x, y)=x \quad \mathrm{q}(x, y)=y \quad(x, y) z=(x z, y z) \quad 1=(\mathrm{p}, \mathrm{q}) \\
\mathrm{app}(\lambda x, y)=x[y] \quad(\lambda x) y=\lambda\left(x y^{+}\right) \quad 1=\lambda \mathrm{app}
\end{gathered}
$$

where we define $[y]=(1, y)$ and $x^{+}=(x \mathbf{p}, \mathbf{q})$. We have $x^{+}(y, z)=(x y, z)$ and $x^{+} y^{+}=(x y)^{+}$and $x^{+}[y]=(x, y)$.

We can also describe a model of type theory with dependent sums. We should have $\Gamma \vdash \Sigma A B$ if $\Gamma \vdash A$ and $\Gamma . A \vdash B$. If $\sigma: \Delta \rightarrow \Gamma$ we should have $(\Sigma A B) \sigma=\Sigma(A \sigma)\left(B \sigma^{+}\right)$. If $\Gamma \vdash a: A$ and $\Gamma \vdash b: B[a]$ we should have $\Gamma \vdash(a, b): \Sigma A B$. We require the equation $(a, b) \sigma=a \sigma, b \sigma$. We ask also for two operations $\Gamma \vdash \mathrm{p} c: A$ and $\Gamma \vdash \mathrm{q} c: B[\mathrm{p} c]$ if $\Gamma \vdash c: \Sigma A B$ and the equations $\mathrm{p}(a, b)=a$ and $\mathrm{q}(a, b)=b$.

5 Set-theoretic Model

Here is an example of a model. We take the collection of context to be the collection of all sets. If Γ is a set then $\Gamma \vdash A$ means that A is a family of sets indexed over the set Γ. If $\rho: \Gamma$ then $A \rho$ is a set. If $\sigma: \Delta \rightarrow \Gamma$ we define the family $\Delta \vdash A \sigma$ by the equation $(A \sigma) \rho=A(\sigma \rho)$. We can then check the equations $A 1=A$ and $(A \sigma) \delta=A(\sigma \delta)$.

We define $\Gamma \vdash a: A$ to mean that a is a section of the family A. If $\rho: \Gamma$ we have $a \rho: A \rho$. If $\sigma: \Delta \rightarrow \Gamma$ we define $a \sigma$ by the equation $(a \sigma) \rho=a(\sigma \rho)$. We can then check the equations $a 1=a$ and $(a \sigma) \delta=a(\sigma \delta)$. Indeed we have $(a 1) \rho=a(1 \rho)=a \rho$ and $((a \sigma) \delta) \rho=(a \sigma)(\delta \rho)=a(\sigma(\delta \rho))=a((\sigma \delta) \rho)$.

If $\Gamma \vdash A$ we define $\Gamma . A$ to be the set of pairs ρ, u with $\rho: \Gamma$ and $u: A \rho$. We can then define p by the equation $\mathrm{p}(\rho, u)=\rho$ and q by the equation $\mathrm{q}(\rho, u)=u$.

If $\sigma: \Delta \rightarrow \Gamma$ and $\Gamma \vdash A$ and $\Delta \vdash a: A \sigma$ we define the extension operation $(\sigma, a): \Delta \rightarrow \Gamma . A$ by the equation $(\sigma, a) \rho=\sigma \rho, a \rho$.

If $\Gamma \vdash A$ and $\Gamma . A \vdash B$ we define $\Gamma \vdash \Pi A B$. If $\rho: \Gamma$ then $(\Pi A B) \rho$ is the set of elements

$$
w: \prod_{u: A \rho} B(\rho, u)
$$

If $\Gamma . A \vdash b: B$ we define $\Gamma \vdash \lambda b: \Pi A B$ by the equation $\operatorname{app}((\lambda b) \rho, u)=b(\rho, u)$ for $\rho: \Gamma$ and $u: A \rho$. If $\Gamma \vdash a: A$ and $\Gamma \vdash c: \Pi A B$ we define $\Gamma \vdash \operatorname{app}(c, a): B[a]$ by the equation app $(c, a) \rho=\operatorname{app}(c \rho, a \rho)$ for $\rho: \Gamma$. We can then check

$$
\operatorname{app}(\lambda b, a) \rho=\operatorname{app}((\lambda b) \rho, a \rho)=b(\rho, a \rho)=b[a] \rho
$$

which shows that the model validates the equality $\Gamma \vdash \operatorname{app}(\lambda b, a)=b[a]: B[a]$.

6 Presheaf model

If \mathcal{C} is any small category, the presheaf model of type theory over \mathcal{C} can be described as follows.
We write X, Y, Z, \ldots the objects of \mathcal{C} and f, g, h, \ldots the maps of \mathcal{C}. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we write $g f$ the composition of f and g. We write $1_{X}: X \rightarrow X$ or simply $1: X \rightarrow X$ the identity map of X. Thus we have $(f g) h=f(g h)$ and $1 f=f 1=f$.

A context is interpreted by a presheaf Γ : for any object X of \mathcal{C} we have a set $\Gamma(X)$ and if $f: Y \rightarrow X$ we have a map $\rho \longmapsto \rho f, \Gamma(X) \rightarrow \Gamma(Y)$. This should satisfy $\rho 1=\rho$ and $(\rho f) g=\rho(f g)$ for $f: Y \rightarrow X$ and $g: Z \rightarrow Y$.

A type $\Gamma \vdash A$ over Γ is given by a set $A \rho$ for each $\rho: \Gamma(X)$. Furthermore if $f: Y \rightarrow X$ we have $\rho f: \Gamma(Y)$ and we can consider the set $A \rho f$. We should have a map $u \longmapsto u f, A \rho \rightarrow A \rho f$ which should satisfy $u 1=u$ and $(u f) g=u(f g)$.

An element $\Gamma \vdash a: A$ is interpreted by a family $a \rho: A \rho$ such that $(a \rho) f=a(\rho f)$ for any $\rho: \Gamma(X)$ and $f: Y \rightarrow X$.

This can be seen as a concrete description of what is respectively a fibration and a section of this fibration.

If $\Gamma \vdash A$ we can define a new presheaf $\Gamma . A$ by taking $(\rho, u):(\Gamma . A)(X)$ to mean $\rho: \Gamma(X)$ and $u: A \rho$. We define $(\rho, u) f=\rho f, u f$.

If we have a map $\sigma: \Delta \rightarrow \Gamma$ and $\Gamma \vdash A$ we define $\Delta \vdash A \sigma$ by $(A \sigma) \rho=A \sigma \rho$.
We can interpret dependent products $\Gamma \vdash \Pi A B$ and sums $\Gamma \vdash \Sigma A B$ if we have $\Gamma \vdash A$ and $\Gamma . A \vdash B$. For $\rho: \Gamma(X)$ we define $(u, v):(\Sigma A B) \rho$ to mean $u: A \rho$ and $v: B(\rho, u)$. We define $(u, v) f=u f, v f$ for $f: Y \rightarrow X$. On the other hand an element of (ПAB) ρ is a family w indexed by $h: Y \rightarrow X$ with

$$
w h: \prod_{u: A \rho h} B(\rho h, u)
$$

and such that $\operatorname{app}(w h, u) g=\operatorname{app}(w h g, u g)$ if $h: Y \rightarrow X$ and $g: Z \rightarrow Y$. We define then $(w h) f=w(h f)$. We write $w=w 1$.

We can interpret $\Gamma \vdash \lambda t: \Pi A B$ whenever $\Gamma . A \vdash t: B$ and $\Gamma \vdash \operatorname{app}(v, u): B[u]$ if $\Gamma \vdash u: A$ and $\Gamma \vdash v: \Pi A B$. Here we write $[u]$ the map $\Gamma \rightarrow \Gamma . A$ defined by $[u] \rho=\rho, u \rho$. If $\rho: \Gamma(X)$ and $f: Y \rightarrow X$ we define $\operatorname{app}((\lambda t) \rho f, a)=t(\rho f, a): B(\rho f, a)$ for $a: A \rho f$. We take $\operatorname{app}(v, u) \rho=\operatorname{app}(v \rho, u \rho): B(\rho, u \rho)$. We can then check that we have

$$
\operatorname{app}(\lambda t, u) \rho=t(\rho, u \rho)=t[u] \rho: B(\rho, u \rho)
$$

if $\Gamma . A \vdash t: B$ and $\Gamma \vdash u: A$ and $\rho: \Gamma(X)$, which shows that the model validates the conversion rule $\Gamma \vdash \operatorname{app}(\lambda t, u)=t[u]: B[u]$.

References

[1] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32 (1986), no. 3, 209-243.
[2] P. Dybjer. Internal Type Theory.
[3] Th. Ehrhrard. Une sémantique catégorique des types dépendents. PhD thesis, Université Paris VII, 1988.
[4] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge studies in advanced mathematics 7, 1986.
[5] E. Ritter. Categorical Abstract Machines for Higher-Order Typed Lambda Calculi, PhD Thesis, Trinity College, Cambridge, 1992.

