
What is a model of type theory?

1 Substitution calculus

We present a formal system, which at the same time can be thought of describing the syntax of basic
dependent type theory, with explicit substitutions and a name-free (de Bruijn index) presentation, and
defining what is a model of type theory.

We get in this way a system of combinators for wrinting terms in dependent type theory. The system
of combinators we obtain is actually the same as the one used for describing cartersian closed category
[4]. There has been other systems of combinators which can be used instead [3, 5], but the one we used
here, given in [2] has the advantage of also being a name-free presentation of the substitution calculus
formulation of type theory.

A model is given by a collection of contexts. If Γ,∆ are context we have a collection ∆ → Γ of
substitutions from ∆ to Γ. We have a substitution 1 : Γ→ Γ and a composition operator σδ : Θ→ Γ if
δ : Θ→ ∆ and σ : ∆→ Γ. Furthermore we should have

σ1 = 1σ = σ (θσ)δ = θ(σδ)

One way to express this would be that contexts form a category with substitutions as morphisms. This
would be misleading however and it is better to think of this structure as an equational structure with
dependent sort (more precisely, as a model of a generalized algebraic theory [1]).

If Γ is a context we have a collection of types over Γ. We write Γ ` A to express that A is a type over
Γ. If Γ ` A and σ : ∆→ Γ we should have ∆ ` Aσ. Furthermore

A1 = A (Aσ)δ = A(σδ)

If Γ ` A we also have a collection of elements of type A. We write Γ ` a : A to express that a is an
element of type A. If Γ ` a : A and σ : ∆→ Γ we should have ∆ ` aσ : Aσ. Furthermore

a1 = a (aσ)δ = a(σδ)

We have a context extension operation: if Γ ` A then we have a new context Γ.A. Furthermore there
is a projection p : Γ.A→ Γ and a special element Γ.A ` q : Ap. If σ : ∆→ Γ and Γ ` A and ∆ ` a : Aσ
we have an extension operation (σ, a) : ∆→ Γ.A. We should have

p(σ, a) = σ q(σ, a) = a

(σ, a)δ = (σδ, aδ) (p, q) = 1

If Γ ` a : A we write [a] = (1, a) : Γ → Γ.A. Thus if Γ.A ` B and Γ ` a : A we have Γ ` B[a]. If
furtermore Γ.A ` b : B we have Γ ` b[a] : B[a]. Models are usually presented by giving a class of special
maps (fibrations), in our case they are the maps p : Γ.A→ Γ, and the elements are the sections of these
fibrations, in our case the maps [a] : Γ→ Γ.A determined by an element Γ ` a : A.

2 Type system with dependent product

We suppose furthermore one operation Π A B such that Γ ` Π A B if Γ ` A and Γ.A ` B. We should
have (Π A B)σ = Π (Aσ) (Bσ+) where σ+ = (σp, q). We have an abstraction operation λb such that
Γ ` λb : Π A B if Γ.A ` b : B. We have an application operation such that Γ ` app(c, a) : B[a] if
Γ ` a : A and Γ ` c : Π A B. These operations should satisfy the equations

app(λb, a) = b[a], c = λ(app c+), (λb)σ = λ(bσ+), app(c, a)σ = app(cσ, aσ)

where we write c+ = (cp, q) and σ+ = (σp, q).

1



Figure 1: Rules of basic type theory

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

`
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆→ Γ.A

σ1 = σ 1σ = σ (σδ)ν = σ(δν)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

(p, q) = 1

3 Universe

To define a model of type theory with one universe, we assume that we have a special type Γ ` U such
that Uσ = U and Γ ` A whenever Γ ` A : U . Furthermore we assume that Γ ` Π A B : U whenever
Γ ` A : U and Γ.A ` B : U .

4 Equations

All equations we have been using can be grouped together in the equations of C-monoid [4]. There are
the following equations of a monoid with a special constants p, q, app and operations (x, y) and λx

(xy)z = x(yz) x1 = 1x = x

p(x, y) = x q(x, y) = y (x, y)z = (xz, yz) 1 = (p, q)

app(λx, y) = x[y] (λx)y = λ(xy+) 1 = λ app

where we define [y] = (1, y) and x+ = (xp, q). We have x+(y, z) = (xy, z) and x+y+ = (xy)+ and
x+[y] = (x, y).

We can also describe a model of type theory with dependent sums. We should have Γ ` Σ A B if
Γ ` A and Γ.A ` B. If σ : ∆ → Γ we should have (Σ A B)σ = Σ (Aσ) (Bσ+). If Γ ` a : A and
Γ ` b : B[a] we should have Γ ` (a, b) : Σ A B. We require the equation (a, b)σ = aσ, bσ. We ask also
for two operations Γ ` pc : A and Γ ` qc : B[pc] if Γ ` c : Σ A B and the equations p(a, b) = a and
q(a, b) = b.

5 Set-theoretic Model

Here is an example of a model. We take the collection of context to be the collection of all sets. If Γ
is a set then Γ ` A means that A is a family of sets indexed over the set Γ. If ρ : Γ then Aρ is a set.
If σ : ∆ → Γ we define the family ∆ ` Aσ by the equation (Aσ)ρ = A(σρ). We can then check the
equations A1 = A and (Aσ)δ = A(σδ).

We define Γ ` a : A to mean that a is a section of the family A. If ρ : Γ we have aρ : Aρ. If σ : ∆→ Γ
we define aσ by the equation (aσ)ρ = a(σρ). We can then check the equations a1 = a and (aσ)δ = a(σδ).
Indeed we have (a1)ρ = a(1ρ) = aρ and ((aσ)δ)ρ = (aσ)(δρ) = a(σ(δρ)) = a((σδ)ρ).

2



If Γ ` A we define Γ.A to be the set of pairs ρ, u with ρ : Γ and u : Aρ. We can then define p by the
equation p(ρ, u) = ρ and q by the equation q(ρ, u) = u.

If σ : ∆ → Γ and Γ ` A and ∆ ` a : Aσ we define the extension operation (σ, a) : ∆ → Γ.A by the
equation (σ, a)ρ = σρ, aρ.

If Γ ` A and Γ.A ` B we define Γ ` Π A B. If ρ : Γ then (Π A B)ρ is the set of elements

w :
∏
u:Aρ

B(ρ, u)

If Γ.A ` b : B we define Γ ` λb : Π A B by the equation app((λb)ρ, u) = b(ρ, u) for ρ : Γ and u : Aρ. If
Γ ` a : A and Γ ` c : Π A B we define Γ ` app(c, a) : B[a] by the equation app(c, a)ρ = app(cρ, aρ) for
ρ : Γ. We can then check

app(λb, a)ρ = app((λb)ρ, aρ) = b(ρ, aρ) = b[a]ρ

which shows that the model validates the equality Γ ` app(λb, a) = b[a] : B[a].

6 Presheaf model

If C is any small category, the presheaf model of type theory over C can be described as follows.
We write X,Y, Z, . . . the objects of C and f, g, h, . . . the maps of C. If f : X → Y and g : Y → Z we

write gf the composition of f and g. We write 1X : X → X or simply 1 : X → X the identity map of
X. Thus we have (fg)h = f(gh) and 1f = f1 = f .

A context is interpreted by a presheaf Γ: for any object X of C we have a set Γ(X) and if f : Y → X
we have a map ρ 7−→ ρf, Γ(X) → Γ(Y ). This should satisfy ρ1 = ρ and (ρf)g = ρ(fg) for f : Y → X
and g : Z → Y .

A type Γ ` A over Γ is given by a set Aρ for each ρ : Γ(X). Furthermore if f : Y → X we have
ρf : Γ(Y ) and we can consider the set Aρf . We should have a map u 7−→ uf, Aρ→ Aρf which should
satisfy u1 = u and (uf)g = u(fg).

An element Γ ` a : A is interpreted by a family aρ : Aρ such that (aρ)f = a(ρf) for any ρ : Γ(X)
and f : Y → X.

This can be seen as a concrete description of what is respectively a fibration and a section of this
fibration.

If Γ ` A we can define a new presheaf Γ.A by taking (ρ, u) : (Γ.A)(X) to mean ρ : Γ(X) and u : Aρ.
We define (ρ, u)f = ρf, uf.

If we have a map σ : ∆→ Γ and Γ ` A we define ∆ ` Aσ by (Aσ)ρ = Aσρ.
We can interpret dependent products Γ ` Π A B and sums Γ ` Σ A B if we have Γ ` A and Γ.A ` B.

For ρ : Γ(X) we define (u, v) : (Σ A B)ρ to mean u : Aρ and v : B(ρ, u). We define (u, v)f = uf, vf for
f : Y → X. On the other hand an element of (Π A B)ρ is a family w indexed by h : Y → X with

wh :
∏
u:Aρh

B(ρh, u)

and such that app(wh, u)g = app(whg, ug) if h : Y → X and g : Z → Y . We define then (wh)f = w(hf).
We write w = w1.

We can interpret Γ ` λt : Π A B whenever Γ.A ` t : B and Γ ` app(v, u) : B[u] if Γ ` u : A and
Γ ` v : Π A B. Here we write [u] the map Γ→ Γ.A defined by [u]ρ = ρ, uρ. If ρ : Γ(X) and f : Y → X
we define app((λt)ρf, a) = t(ρf, a) : B(ρf, a) for a : Aρf . We take app(v, u)ρ = app(vρ, uρ) : B(ρ, uρ).
We can then check that we have

app(λt, u)ρ = t(ρ, uρ) = t[u]ρ : B(ρ, uρ)

if Γ.A ` t : B and Γ ` u : A and ρ : Γ(X), which shows that the model validates the conversion rule
Γ ` app(λt, u) = t[u] : B[u].

3



References

[1] J. Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic 32
(1986), no. 3, 209–243.

[2] P. Dybjer. Internal Type Theory.

[3] Th. Ehrhrard. Une sémantique catégorique des types dépendents. PhD thesis, Université Paris VII,
1988.

[4] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge studies in
advanced mathematics 7, 1986.

[5] E. Ritter. Categorical Abstract Machines for Higher-Order Typed Lambda Calculi, PhD Thesis,
Trinity College, Cambridge, 1992.

4


