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Abstract

By means of a countermodel we show that the homotopy equivalence of fibers of a Kan fibration cannot
be proved constructively.

A simplicial set (= functor ∆op → Set) is given by a collection of sets Xn with maps u 7−→ uf, Xn →
Xm for all monotone f : [m] → [n]. This definition makes sense in any presheaf model. We shall work
with a truncated version and have only two sets X0, X1 with maps d0, d1 : X1 → X0 and s : X0 → X1

such that d0(s(x)) = d1(s(x)) = x for all x ∈ X0. We write e : a → a′ if e is in X1 and d0(e) = a′ and
d1(e) = a. This truncation simplifies the presentation and actually provides a stronger counterexample,
which will be further strengthened in that we start from a Kan fibration with explicit filling operators.

We call a truncated simplicial set C1, C0, d0, d1, s an explicit Kan graph, or Kan graph for short, if it
has the following filling operation: for all a, b, c in C0 and e : a→ b and f : a→ c there exists g : b→ c.
This element g is supposed to be given as a function, the filler, of a, b, c, e, f . Note the symmetry in e, b
and f, c. Also the fillers in conditions (3) and (4) below are meant to be explicit.

Definition 0.1 Any Kan fibration E → ∆1 with explicit filling operators, can be described in the
truncated version by the following data:

1. Two Kan graphs A0, A1 and B0, B1 (A is the fiber over 0 and B the fiber over 1), with their
respective maps di : A1 → A0 and di : B1 → B0 and s : A0 → A1 and s : B0 → B1 (no confusion
will arise from using the same notation).

2. A set G and two maps d0 : G → A0 and d1 : G → B0. Again we write e : a → b if e is in G such
that d0(e) = a and d1(e) = b.

3. The following filling conditions: for all a in A0 there exist b in B0 and e : a → b in G and for all
b in B0 there exists a a in A0 and e : a → b. Thus G represents the liftings of 01 ∈ ∆1[1] to the
(truncated) fibers A and B.

4. The following (tricky) filling conditions: for all a in A0, b in B0, c in A0 + B0 and e : a → b in G
and f : a→ c in A1 + G, there exists g : c→ b in G + B1; for all a in A0, b in B0, c in A0 + B0 and
e : a→ b in G and f : c→ b in G + B1, there exists g : a→ c in A1 + G. (Very tricky indeed, the
Kan graph property of A and B follows from these!)

Now that we have expressed in an explicit way what is a truncated Kan fibration over ∆1, we formulate
the homotopy of the fibers in terms of the data above.

Proposition 0.2 Given a truncated Kan fibration as in Definition 0.1, there exist f0 : A0 → B0, g0 :
B0 → A0 and f1 : A1 → B1, g1 : B1 → A1 such that:

1. for all a in A0 there exists u : a→ g0(f0(a)) in A1

2. for all b in B0 there exists v : b→ f0(g0(b)) in B1

3. we have f0(di(u)) = di(f1(u)) for all u in A1 (i = 0, 1)

4. we have g0(di(v)) = di(g1(u)) for all v in B1 (i = 0, 1)

5. (crucial condition) we have f1(s(a)) = s(f0(a)) for all a ∈ A0 and g1(s(b)) = s(g0(b)) for all b ∈ B0
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Proof. (Classical) We use condition (3) in Definition 0.1 on G to define f0 and g0 such that for all a in
A0 there exists u : a→ f0(a) in G and for all b in B0 there exists v : g0(b)→ b in G.

Before we continue defining f1 and g1, let us verify clauses (1) and (2). Let a ∈ A0 and consider
u : a→ f0(a) and v : g0(f0(a))→ f0(a) in G. By condition (4) in Definition 0.1 we get (1). In a similar
way (2) can be verified.

To define f1, let u be in A1. We distinguish between u degenerate or not. If u is degenerate, i.e.,
equal to s(a) for some a in A0 (alternatively: u = s(d0(u))), define

f1(u) := s(f0(a))

Otherwise, consider u : a → a′. By condition (4) in Definition 0.1, taking b = f0(a) and c = a′, we can
find an edge w : a′ → f0(a) in G, and then using condition (4) in Definition 0.1 a second time, we can
find an edge f0(a) → f0(a′), which satisfies (3). In a similar way one defines g1 satisfying (4). Both f1

and g1 satisfy (5) per construction.

Notice the use of case distinction on u in A1 (v in B1) being degenerate or not. There is actually an
alternative proof where we use decidability of equality on A0 (and B0): if d0(u) = d1(u) (d0(v) = d1(v))
then f1(u) = s(d0(u)) (g1(v) = s(d0(v))).

The next result is that some use of classical logic is essential in this argument, by an appeal to the
soundness of Kripke semantics for intuitionistic logic.

Proposition 0.3 The previous proposition does not hold in the Kripke model over the poset 0 6 1 6 2.

Proof. The intuition is that a set X in the model evolves over time as X(0) → X(1) → X(2). We can
interpret the transition map X(i)→ X(j) as adding new elements or equating elements. The following
table shows A0, A1, B0, B1, G changing over time. (As presheaves, time should be reversed.)

Day A0 A1 G B1 B0

0 {a, a′} {s(a), s(a′)} {w : a→b, w′ : a′→b′} {s(b), s(b′), z : b→b, z′ : b′→b′} {b, b′}
1 +{u : a→a′, u′ : a′→a} +{x : a→b′, x′ : a′→b} +{v : b→b′, v′ : b′→b}
2 {a=a′} {u=u′=s(a)=s(a′)} {x=x′=w=w′} {z=v=v′=z′ , s(b)=s(b′)} {b=b′}

Table 1: Three days in the life of A0, A1, G,B1, B0 (only what changes)

In words, the table shows how edges are added from day 0 to day 1. From day 1 to day 2, A0 collapses
to one point with all edges degenerated; also B0 collapses to one point, but the edges z, v, z′v′ collaps
into one non-degenerated self-loop; G collapses to one edge.

All preconditions are now satisfied in the Kripke sense, but there is no way to define f0, f1, g0, g1

satisfying the required properties. Indeed, the function f0(0) has to be a 7−→ b, a′ 7−→ b′ or a 7−→
b′, a′ 7−→ b. In both cases, we have to have f1(1) sending u to v or v′. But then there is a problem for
defining f1(2) which has to send s(a) both to s(b) and to v = v′, see the diagram below.

We thank Peter Lumsdaine and Mike Shulman for the edges z, z′ that were initially missing.

u s(a) s(a) s(a)

A1(0) //

f1(0)

��

A1(1) //

f1(1)

��

A1(2)

f1(2)

��

A1(0) //

f1(0)

��

A1(1) //

f1(1)

��

A1(2)

f1(2)

��
B1(0) // B1(1) // B1(2) B1(0) // B1(1) // B1(2)

v or v′ v = v′ s(b) s(b)
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