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Notes from discarded attempts:
1. Jan. 21, 2012 Without distinguishing types and terms whose type is a universe (i.e.
without El constructor ) and without type cumulativity necessarily leads to a system where
a. one has to introduce explicit functions going both ways between the types represented
by a term of Un and its image in Un+1 together with additional reduction rules for making
these functions strict isomorphisms,
b. one will have a proliferation of non-equal but strictly isomorphic types sometimes having
the same universe level as for example X → Y and X → j Y for X : Un+1, Y : Un.
2. Jan. 27, 2012. In a system with T- and o-expressions one can not restrict oneself to forall
operators acting only between terms of the same universe level since it leads to the loss of
confluence for the reduction related to the interaction of forall and j and the reduction
related to the interaction of two j’s.
3. The introduction of resizing rules rr0 and rr1 leads naturally to a situation where defi-
nitional equality is no more determined as combination of ≡A with the equivalence relation
generated by reductions. While reductions and associated notion of non-reducible terms
(which exist conjecturally) remain, two non-reducible terms may be definitionally equal in a
”non-trivial” way.
4. An example of a derivable term E with a sub-term f such that replacing f be f ′ which
is connected to f by an object of Idff ′ makes the resulting term E[f ′/f ] non-derivable.
One takes f : Bool →

∑
t : U , [El](T ) (where U is a universe) given by f(true) = (T0, a),

f(false) = (T0, b). Then E = Id T0, [pr2](f true), [pr2](f false). If f ′ is a function con-
nected by an object of Id to f and such that [pr1](f ′ true) is not definitionally equal to T0

then E[f ′/f ] is not derivable. There should be even more elementary examples.
5. Aug. 17, 2012. Started to re-write the specification using the definition of a type system
based on four classes of sentences: ”contexts”, T-terms equalities in a context, judgements
and o-terms equalities in a type in a context.

Contents

1 Introduction 4

2 Universe contexts 7

3 System TS0 8
3.1 TS0-terms and the typing function . . . . . . . . . . . . . . . . . . . . . . . 8

1



3.2 Equivalence relations ≡A and ∼A on TS0-terms . . . . . . . . . . . . . . . . 12
3.3 Derivation trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Derivation rules of TS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 TS0(UC,FV) are type systems . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Abbreviations, conventions and definitions 24
4.1 Reducibility relation on TS0 terms . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Local confluence for general terms of TS0 . . . . . . . . . . . . . . . . . . . 29

5 Adding the unit pt - system TS2 34
5.1 TS2 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Equivalence relations ≡A and ∼A on TS2-terms . . . . . . . . . . . . . . . . 35
5.3 Derivation rules of TS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Construction of the eliminator for Pt . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Reducibility relation on TS2 terms . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Local confluence for general terms of TS2 . . . . . . . . . . . . . . . . . . . 36

6 Adding dependent sums - system TS1 36
6.1 TS1 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Equivalence relations ≡A and ∼A on TS1-terms . . . . . . . . . . . . . . . . 38
6.3 Derivation rules of TS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Reducibility relation on TS1 terms . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Local confluence for general terms of TS1 . . . . . . . . . . . . . . . . . . . 40

7 Adding pairwise disjoint unions - system TS3 46
7.1 TS3 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Equivalence relations ≡A and ∼A on TS3-terms . . . . . . . . . . . . . . . . 47
7.3 Reducibility relation on TS3 terms . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Local confluence for general terms of TS3 . . . . . . . . . . . . . . . . . . . 48
7.5 Derivation rules of TS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Adding the empty type - system TS4 50
8.1 TS4 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 Equivalence relations ≡A and ∼A on TS4-terms . . . . . . . . . . . . . . . . 51

2



8.3 Reducibility relation on TS4 terms . . . . . . . . . . . . . . . . . . . . . . . 51
8.4 Local confluence for general terms of TS4 . . . . . . . . . . . . . . . . . . . 51
8.5 Derivation rules of TS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Adding generalized W -types - system TS5 51
9.1 TS5 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.2 Equivalence relations ≡A and ∼A on TS5-terms . . . . . . . . . . . . . . . . 53
9.3 Reducibility relation on TS5 terms . . . . . . . . . . . . . . . . . . . . . . . 53
9.4 Recursive equality in TS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.5 Local confluence for general terms of TS5 . . . . . . . . . . . . . . . . . . . 54
9.6 Derivation rules of TS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10 Datatypes 55
10.1 Natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11 Adding the identity types - system TS6 56
11.1 TS6 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.2 Equivalence relations ≡A and ∼A on TS6-terms . . . . . . . . . . . . . . . . 57
11.3 Reducibility relation on TS6 terms . . . . . . . . . . . . . . . . . . . . . . . 57
11.4 Local confluence for general terms of TS6 . . . . . . . . . . . . . . . . . . . 57
11.5 Derivation rules of TS6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

12 Adding resizing rules RR0 and RR1 - system TS7 59
12.1 TS7 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.2 Equivalence relations ≡A and ∼A on TS7-terms . . . . . . . . . . . . . . . . 60
12.3 Reducibility relation on TS7 terms . . . . . . . . . . . . . . . . . . . . . . . 60
12.4 Local confluence for general terms of TS7 . . . . . . . . . . . . . . . . . . . 62
12.5 Derivation rules of TS7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
12.6 Main meta-theorems and conjectural meta-theorems for TS6 . . . . . . . . . 66
12.7 Main conjectural meta-theorems for TS0 . . . . . . . . . . . . . . . . . . . . 67

13 Appendix A. Complete list of derivation rules 69

14 Appendix B. Complete list of reductions 72

3



15 Adding the natural numbers - system TS5 76
15.1 TS5 terms and typing function . . . . . . . . . . . . . . . . . . . . . . . . . 76
15.2 Equivalence relations ≡A and ∼A on TS5-terms . . . . . . . . . . . . . . . . 77
15.3 Reducibility relation on TS5 terms . . . . . . . . . . . . . . . . . . . . . . . 77
15.4 Local confluence for general terms of TS5 . . . . . . . . . . . . . . . . . . . 78
15.5 Derivation rules of TS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1 Introduction

We will work on the semi-syntactic level with named variables. We have three classes of
variables - o-variables which can be substituted by o-expressions (see below), T-variables
which can be substituted by T-expressions (see below) and u-level variables. Semi-syntactic
means here that we are going to define expressions or pre-terms as planar trees with vertices
marked either by a name of a variable or by a u-level expression (see below) or by a sequence
of the form (S;x1, . . . , xn) where S is a special symbol (from the given set of allowed special
symbols), n ≥ 0 and x1, . . . , xn are names of o-variables. The occurrences of variables
named in the node label in the nodes below are considered to be bound. All expressions are
considered up to α-equivalence i.e. the renaming of bound variables and since the problems
related to the possible conflict of variable names are the usual ones we ignore them in this
exposition.
This level of formalization is an intermediate one between the syntactic (linear) presentation
of expressions on the one hand and nameless presentation (using some version of de Brujin
indexes) on the other. The choice of a particular syntactic representation which is necessary
at the level of the user interface and of a particular nameless representation which is necessary
for the internal manipulation of expressions by the system can vary and are left for the next
stage of concretization.
We describe several systems here by starting with the simplest one and later adding more and
more features. Common to all the systems defined in this paper is that they are fully universe
polymorphic. In particular there is a class of expressions which are called u-level expressions
which are used to specify the level of universes and which can contain u-variables. They also
come with their own concept of equality ≡A modulo a given set of universe constraints A.
Note that what we describe at each step is not an individual type system but a family of type
systems parametrized by ”universe contexts” - the lists of permitted universe variables and
required constraints between these variables and by lists of T-variables. To each universe
context and a list of T-variables there corresponds a type system in the sense of ?? and in
particular a contextual category.
We will also discuss transformations between universe contexts and lists of type variables
which lead to functors between the corresponding contextual categories or, on the more
practical level, to automatic translations of definitions, theorems and proofs built in one
universe context and with one list of type variables into similar objects built in another
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universe context and/or with another list of type variables.
In each of the systems we define first terms, T-terms and o-terms. These are expressions
which satisfy certain simple local conditions. For a given universe context and a sequence
of T-variables, the derivable terms of the corresponding type system which ”denote” types
will always be T-terms and the derivable terms which ”denote” objects of types will always
be o-terms. The concepts of contexts as sequences of the form (x1 : E1, . . . , xn : En) where
Ei is a T-term with free o-variables from the set {x1, . . . , xi−1} and judgements as sequences
of the form (x1 : E1, . . . , xn : En; o : T ) where (E1, . . . , Ei) is a context, T is a T-expression
with free o-variables from {x1, . . . , xn} and o is an o-expression with free o-variables from
{x1, . . . , xn} are standard.
The terms are introduced in such a way that for any context Γ = (x1 : E1, . . . , xn : En) and
any o-term o with free variables from {x1, . . . , xn} there is an easily computable T-term τΓ(o)
which in the case when both the Γ and o are derivable gives a canonical form for the type
of o. To have this typing function defined on all o-terms we had to introduce some unusual
features into the syntax. For example evaluation node in our system is a quantifier of the
form [ev;x](o1, o2, T ) where T is the target type of the function o1 and x is the ”dependent
variable” in T . For derivable terms this extra arguments can be reconstructed from the other
data. Whether it makes sense to keep those arguments in the implementations or not is a
question which should be considered separately.
We further consider the equivalence relation ∼A on terms. It is based on another important
concept of essential and non-essential nodes and sub-terms of a term. Two terms E1 and E2

are ∼A equivalent if the expressions Ess(E1) and Ess(E2) obtained from E1 and E2 by the
removal of all non-essential sub-expressions are ≡A equivalent.
Both ≡A and ∼A are shown to be decidable and in practice are expected to be very easily
decidable i.e. to have low complexity of the decision procedure.
The next structure which we define for each type system is the set of reduction rules which are
also defined on all terms. The reduction rules depend on the universe context and especially
on the set of universe constraints of this context A and we denote the transitive version of
reducibility relative to A by ≻A and the transitive reflexive version by ⪰A. We only consider
reductions which occur at the essential nodes of a term. While our reduction rules can be
equally applied to non-essential nodes it is not clear whether that such an extended notion
has any practical uses.
Definitional equality of a given type system is the third member of a sequence of equivalence
relation ≡A, ∼A and finally d

=A. As mentioned above, the relation ≡A is the relation of
equality between u-level subexpressions which was mentioned above. The relation ∼A is
≡A between the essential sub-expressions of the corresponding terms. Finally, definitional
equality is defined as the equivalence relation generated by ⪰A and ∼A.
To verify that our reduction rules are consistent we show local confluence (i.e. confluence of
two one step reductions) in each system modulo ∼A i.e. for E ≻A E1 and E ≻A E2 where
both reductions are one-step ones we show the existence of E ′

1 and E ′
2 such that E1 ⪰A E ′

1,
E2 ⪰A E ′

2 and E1 ∼A E ′
1. The confluence holds in most cases for general terms but in some

exceptional cases it is expected to hold only for derivable terms.
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We then describe the derivation rules in the context/judgement form. A slight difference
between our form for derivation rules and the usual ones is that the rules for the formation of
new type expressions are written directly as rules for adding a new component to a context
i.e. we write Γ, x : T▷ where one would usually write Γ ⊢ T : Type.
For practical implementation of a type system in the style in which Coq is written one has
to be able to deal with a situation when a user-written proof tactic produces a term whose
correctness needs to be verified by an independent type-checker. Since the derivation steps
of such a term are not supplied by the tactic there must be an algorithm which, given a
context Γ or a judgement Γ ⊢ t : T is able to determined whether or not the context or the
judgement is derivable.
(???) There is a more or less obvious algorithm of this sort for each of our type systems. The
correctness and termination properties of these algorithms depend on a number of properties
of each system which are usually summed up under the name of meta-theory. We prove some
of these theorems and formulate others as conjectures for the future work. This choice is a
consequences of three circumstances. Firstly, one can start to work on the implementation of
a proof assistant based on the systems introduced here having just the syntax and the type
checking algorithms. Secondly, the consistency of the proposed type systems can be verified
by model construction which does not require most of the meta-theory results. Thirdly, due
to the relative complexity of even the first of our type systems it appears to be unreasonable
to try to prove more complex meta-theorems ”by hand” and one should probably start by
formalizing the definitions we give in one of the accepted proof assistants such as Coq and
then proceed to giving formal proof of the meta-theorems. (???)
The last system (called simply TS) described here represents the first layer of the system
which I hope will eventually be implemented in the new proof assistant. The second layer
is formed by ”quasi-constructive” features such as functional extensionality, ctf-terms and
univalence axiom. The difference here lies in the nature of the algorithms which are required
for computations in the fully constructive first layer and quasi-constructive second. We
expect that an appropriate version of strong normalization holds for TS and that any object of
type N (natural numbers) which is in the normal form is a numeral. Therefore, computation
on terms of this layer can be done by a normalization algorithm.
The property that any object of type N normalizes to a numeral is known to become false
when one adds quasi-constructive features. However, it is expected that a weaker property
which is still sufficient for computation holds. Namely, it is expected that there is a termi-
nating algorithm which, given a derivable object o of type N (in any context) which uses
quasi-constructive features, produces a derivable object o′ of the same type which is build
without the use of these features and an object of the identity type between o and o′. This
property should generalize to other ”datatypes”.
On notations and conventions: If E is a labelled tree, S is a branch of E and S ′ is another
labelled tree we write E[S ′/S] for the labelled tree obtained by the direct substitution of the
branch S ′ instead of S. If E, S are expressions with free variables from a set Fv and x ∈ Fv
we write E[S/x] for the expression obtained by the substitution of all the occurrences of x
by S with a possible renaming of bound variables such as to avoid name conflicts.
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We will write a⃗ for a sequence a1, . . . , an and let dim(⃗a) denote the number of items in the
sequence.
We assume three alphabets for variables one for u-level variables, one for T-variables and
one for o-variables. Unless otherwise indicated variables named x, y, z (with or without
diacritics) are o-variables, variables named X,Y, Z (with or without diacritics) and the ones
named p, q, r are u-level variables (see below). The letters i, j, k, l,m, n are reserved for
numerals (e.g. in indexes).
We write [L](B1, . . . , Bn) for a labelled (planar i.e. with ordered branches) tree with the
root node labelled by L and branches B1, . . . , Bn. We also abbreviate [L]([L′](B1, . . . , Bn))
as [L][L′](B1, . . . , Bn).
We will use the following lemma which holds for systems of expressions with any choice of
labels:

Lemma 1.0.1 [sublemma] Let E, o1, o2 be expressions with free variables from a set F . Let
x, y ∈ F where x ̸= y. Assume that o1 does not depend on y. Then one has (E[o2/y])[o1/x] =
(E[o1/x])[o2[o1/x]/y].

Proof: Easy induction by the depth of E with the cases when E = [x], E = [y] and
E = [L](B1, . . . , Bn) where L ̸= x, y to be considered separately.

2 Universe contexts

Definition 2.0.2 [d21a] A u-level expression is either a numeral or a u-level variable or
an expression of the form M + n where M is a u-level expression and n is a numeral or an
expression of the form max(M1,M2) where M1,M2 are two u-level expressions.

Note that u-level expressions are exactly ”linear” function of u-level variables in the tropical
(max-plus) semi-ring.

Definition 2.0.3 [d21b] Let Fu be a finite set. A subset A of NFu is called admissible if it
is defined by a system of equations of the form Mi = Ni where Mi, Ni are u-level expressions
in variables from Fu.

Lemma 2.0.4 [uld] Let A be an admissible subset of Fu and M,N are u-level expressions
with variables from Fu. Then the condition ”for all n⃗ ∈ A one has M(n⃗) = N(n⃗)” is
decidable.

Proof: The condition considered in the lemma can be expressed in Presburger arithmetic
which is decidable. For a further discussion see [?].

Since M(n⃗) ≥ N(n⃗) is equivalent to M(n⃗) = max(M(n⃗), N(n⃗)), Lemma 2.0.4 implies that
conditions of the form ”for all n⃗ ∈ A one has M(n⃗) ≥ N(n⃗)” is also decidable.
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Remark 2.0.5 Note also that any u-level expression can be re-written in the form M =
max(n0, u1+n1, . . . , ul +nl) where ui are u-level variables and ni ∈ N. By choosing a linear
ordering on Fu and replacing max(u + n, u + n′) by u +max(n, n′) we can further assume
that in our representation ui < ui+1 according to our ordering. This effectively provides us
with a normal form of a u-level expression.
However as will be seen below we will be mostly interested in equality of u-level expressions
not on the whole of NFu but on a given admissible subset of NFu.

Definition 2.0.6 [uc] A universe context UC is a pair (Fu,A) where Fu is a finite sequence
of u-level variables and A an admissible domain in NFu.

3 System TS0

We first describe the system TS0 which has only elements related to universes and dependent
products and later add the elements related to other constructions.

3.1 TS0-terms and the typing function

Definition 3.1.1 [d01] The following labels are permitted in the expressions of TS0 : names
of o-variables, names of T-variables, u-level expressions, U , El, (

∏
;x), u, j, (ev;x), (λ; x),

(forall; x).

Definition 3.1.2 [d02] We distinguish three classes of expressions:

1. u-level expressions,

2. T-expressions are the ones with the root node [X] where X is the name of a T-variable,
[U ], [El] or [

∏
; x],

3. o-expressions are the ones with the root [x] where x is the name of an o-variable, [u],
[j], [ev;x], [λ;x] or [forall; x].

Definition 3.1.3 [d03] A TS0-term is a T-expression or an o-expression (with labels from
the set described in Definition 3.1.1) which satisfies the following conditions:

1. any node of the form [M ] where M is a u-level expression has valency 0 (i.e. is a leaf),

2. any node of the form [X] where X is the name of a T-variable has valency 0 (i.e. is a
leaf),

3. any node of the form [U ] has valency 1 and its only branch is a node labelled by a
u-level expression,
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4. any node of the form [El] has valency 1 with its only branch being an o-expression,

5. any node of the form [
∏
; x] has valency 2, both of its branches are T-expressions and

the first branch does not contain [x],

6. any node of the form [x] where x the name of an o-variable has valency 0 (i.e. is a
leaf),

7. any node of the form [u] has valency 1 and its only branch is a node labelled by a u-level
expression,

8. any node of the form [j] has valency 2 and both of its branches are nodes labelled by
u-level expressions,

9. any node of the form [ev;x] has valency 3 its first two branches are o-expressions which
do not contain [x] and the third branch is a T-expression,

10. any node of the form [λ;x] has valency 2, its first branch is a T-expression which does
not contain [x] and its second branch is an o-expression,

11. any node of the form [forall;x] has valency 4, its first two branches are nodes labelled
by u-level expressions and last two branches are o-expressions and the third branch does
not contain [x].

We define o-terms as terms which are o-expression and T-terms as terms which are T-
expressions. Intuitively, T-terms correspond to types and o-terms correspond to objects of
types.
For x ∈ Fv (resp. X ∈ FV ) we will often write x instead of [x] (resp. X instead
of [X]). We will abbreviate [U ][M ] as UM , [u][M ] as uM , [j]([M1], [M2]) as jM1,M2 and
[forall;x]([M1], [M2], o1, o2) as [forallM1,M2 ;x](o1, o2).

Definition 3.1.4 [d04] Let E be a TS0-term. A node is called non-essential if it belongs
to the subexpression T of a subexpression of the form [ex;x](o1, o2, T ). Otherwise a node is
called essential. A subexpression is called non-essential (resp. essential) if its root node is
non-essential (resp. essential).
For a term E we let Ess(E) denote the subexpression of E (which is not a term anymore)
which is obtained by removing all non-essential subexpressions from E

Note that the root node of any term is essential, therefore Ess(E) is always non-empty and
therefore an expression.

Remark 3.1.5 There is a similarity in our description of TS0 to the description of the
Calculus of Constructions which is given in [2]. In [2], T-terms are the ones which start with
[
∏
; x], [Prop] (analog of our U0) or [Proof ] (analog of our [El]) and o-terms are the ones

which start with [x], [λ; x], [App] (the analog of our [ev;x] - see remark below) or [∀; x]. The
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later is an analog of our [forall0,0; x] and [forall1,0;x] which in the case of CC coincide due
to the impredicativity of Prop. For the same reason the first node of [∀; x] is a T-term which
is analogous to [El](o1) in [forallM,0](o1, o2) with M = 0, 1.
It should be easy to describe a subset of TS0-terms which can be directly mapped to CC-
terms while preserving all the main constructions.

Remark 3.1.6 In our description the evaluation node [ev;x] is a quantifier i.e. it bounds
a variable. This is due to the fact that we want to include the target type of function being
evaluated as the third branch of the evaluation expression and this type may include, in
dependent cases, an additional variable. This allows us to define the typing function on all
terms before we proceed to the notions of definitional equality and derivable.
It might also be convenient to have our third argument of evaluation present on the level
of implementations as an implicit argument. While, due to the expected properties of nor-
malization in the system, it can always be inferred up do definitional equality from other
arguments, this inference may require computation which can be avoided by providing an
explicit value of this argument.

We let TS0 denote the set of TS0-terms and TT0 and oT0 denote the subsets of T-terms
and o-terms.
According to the general rule stated above, variable x appearing under the nodes [

∏
, x],

[ev;x], [λ, x] and [forall;x] is called bound. Variables which are not bound are called free. We
will write TS0(Fu, FV, Fv), TT0(Fu, FV, Fv) and oT0(Fu, FV, Fv) for the sets of terms,
T-terms and o-terms respectively with u-level variables from the set Fu, free T-variables
from the set FV and free o-variables from the set Fv.

Lemma 3.1.7 [l02] One has:

1. Any branch of a TS0-term is a TS0-term or a u-level expression,

2. For E ∈ TS0(Fu, FV, Fv) (resp. TT0(Fu, FV, Fv), oT0(Fu, FV, Fv)), X ∈ FV
and o ∈ oT0(Fu, FV, Fv) one has E[o/x] ∈ TS0(Fu, FV, Fv) ( resp. E[o/x] ∈
TT0(Fu, FV, Fv), E[o/x] ∈ oT0(Fu, FV, Fv)),

3. For E ∈ TS0(Fu, FV, Fv) (resp. TT0(Fu, FV, Fv), oT0(Fu, FV, Fv)), x ∈ Fv
and o ∈ oT0(Fu, FV, Fv) one has E[o/x] ∈ TS0(Fu, FV, Fv) ( resp. E[o/x] ∈
TT0(Fu, FV, Fv), E[o/x] ∈ oT0(Fu, FV, Fv)).

Proof: Straightforward.

The correctness of the following definition follows from Lemma 3.1.7(3).

Definition 3.1.8 [dtau0] For any finite set Fv and any function Γ : Fv → TT0(Fu, FV, Fv)
we define the typing function τ = τΓ : oT0(Fu, FV, Fv) → TT0(Fu, FV, Fv) relative to Γ
inductively (by induction on the number of nodes in the term) as follows:
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1. For x ∈ Fv, τ([x]) = Γ(x),

2. τ([uM ]) = UM+1,

3. τ([jM1,M2 ]) = [
∏
; x](UM1 ,UM2),

4. τ([ev; x](o1, o2, T )) = T [o2/x],

5. τ([λ;x](T, o)) = [
∏
;x](T, τ∆(o)) where ∆ is the function on on Fv ⨿ {x} which equals

Γ on Fv and T on x.

6. τ([forallM1,M2 ; x](o1, o2)) = Umax(M1,M2).

Proposition 3.1.9 [tausub0] Let Γ : Fv → TT0(Fu, FV, Fv) be a function, o, s ∈
oT0(Fu, FV, Fv) and x ∈ Fv. Assume that the following conditions hold:

1. s does not depend on x,

2. Γ(x) does not depend on x,

3. τΓ(s) = Γ(x).

Then one has
(τΓ(o))[s/x] = τΓ[s/x](o[s/x])

where Γ[s/x] is the function x′ 7→ Γ(x′)[s/x].

Proof: Let us proceed by induction on the depth of o. We have to consider the various
options for the structure of o listed in Definition 3.1.8.

1. o = [x′] for x′ ∈ Fv. We have two sub-cases

(a) if x′ ̸= x we have

(τΓ(o))[s/x] = (τΓ([x
′]))[s/x] = τΓ[s/x]([x

′]) = τΓ[s/x](o[s/x])

where the middle equality holds by definition of Γ[s/x],
(b) if x′ = x we have

(τΓ(o))[s/x] = (τΓ([x])[s/x] = (Γ(x))[s/x] = Γ(x)

where the last equality holds by condition (2) of the proposition and

τΓ[s/x](o[s/x]) = τΓ[s/x](s) = τΓ(s)

where the last equality holds by condition (1) of the proposition. Together with
condition (3) these equalities imply the assertion of the proposition for o = [x].

2. o = [uM ]. Then τΓ(o)[s/x] = UM+1 = τΓ[s/x](o[s/x]).

11



3. o = [jM1,M2 ]. Then τΓ(o)[s/x] = [
∏
; y](UM1 ,UM2) = τΓ[s/x](o[s/x]).

4. o = [ev; y](o1, o2, T ). Then

τΓ(o)[s/x] = (T [o2/y])[s/x]

and
τΓ[s/x](o[s/x]) = (T [s/x])[(o2[s/x])/y]

Since s does not depend on y these two expressions are equal by Lemma 1.0.1.

5. o = [λ; y](T, o′). We have

(τΓ(o))[s/x] = ([
∏

; y](T, τ∆(o
′)))[s/x] = [

∏
; y](T [s/x], τ∆(o

′)[s/x])

and

τΓ[s/x](o[s/x]) = τΓ[s/x]([λ; y](T [s/x], o
′[s/x])) = [

∏
; y](T [s/x], τ∆′(o′[s/x]))

where ∆′ equals Γ[s/x] on Fv and T [s/x] on y. Therefore, ∆′ = ∆[s/x]. The conditions
(1)-(3) still hold for ∆ and the depth of o′ is strictly less than the depth of o. Therefore
by the inductive assumption τ∆(o

′)[s/x] = τ∆[s/x](o
′[s/x]).

6. o = [forallM1,M2 ; y](o1, o2). We have τΓ(o)[s/x] = Umax(M1,M2) and

τΓ[s/x](o[s/x]) = τΓ[s/x]([forallM1,M2 ; y](o1[s/x], o2[s/x])) = Umax(M1,M2).

3.2 Equivalence relations ≡A and ∼A on TS0-terms

[sim0] Let UC = (Fu,A) be a universe context and FV a sequence of T-variables. In this
section we define two simple equivalence relations on TS0-terms with u-variables from Fu
and T-variables from FV which depend on A. Recall that we always consider expressions
up to the α-equivalence (renaming of bound variables).
For E ∈ TS0(Fu, FV, Fv) and an element n⃗ ∈ NFu we write E[n⃗] for the TS0-term obtained
by evaluating all of the u-level expressions in E on n⃗.

Definition 3.2.1 [dequivA0] Define an equivalence relation ≡A on TS0(Fu, FV, Fv) for
all Fv by the condition that E1 ≡A E2 iff for all n⃗ ∈ A one has E1[n⃗] = E2[n⃗].

Lemma 3.2.2 [lequivA0] The equivalence relation ≡A is decidable.

Proof: It follows immediately from Lemma 2.0.4.

Note that E1 ≡∅ E2 iff E1 and E2 differ only in their u-level subexpressions.
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Lemma 3.2.3 [equivsub01] In the notations used above let E,E ′ ∈ TS0(Fu, FV, Fv) and
E ≡A E ′ then one has:

1. for x ∈ Fv and s ∈ oT0(Fu, FV, Fv) one has E[s/x] ≡A E ′[s/x],

2. for X ∈ FV and T ∈ TT0(Fu, FV, Fv) one has E[T/X] ≡A E ′[T/X].

Proof: Straightforward by induction on the number of nodes in E and E ′.

Lemma 3.2.4 [equivsub02] Let E be an term of the form E = [L](B1, . . . , Bn). Suppose
further that for each i = 1, . . . , n one has Bi ≡A B′

i. Then E ≡A [L](B′
1, . . . , B

′
n).

Proof: Straightforward.

Lemma 3.2.5 [redsub03] In the notations used above let E ∈ TS0(Fu, FV, Fv) then one
has:

1. Let s, s′ ∈ oT0(Fu, FV, Fv) such that s ≡A s′ and x ∈ Fv, then E[s/x] ≡A E[s′/x].

2. Let T, T ′ ∈ TT0(Fu, FV, Fv) such that T ≡A T ′ and X ∈ FV , then E[T/X] ≡A
E[T ′/x].

Proof: Straightforward.

Definition 3.2.6 [dsimA0] Define an equivalence relation ∼A on TS0(Fu, FV, Fv) for all
Fv by the condition that E ∼A E ′ iff Ess(E) ≡A (′)

Lemma 3.2.7 [Beqdec0] The equivalence relation ∼A is decidable.

Proof: Follows easily from Lemma 3.2.2.

Lemma 3.2.8 [simsub01] In the notations used above let E,E ′ ∈ TS0(Fu, FV, Fv) and
E ∼A E ′ then one has:

1. for x ∈ Fv and s ∈ oT0(Fu, FV, Fv) one has E[s/x] ∼A E ′[s/x],

2. for X ∈ FV and T ∈ TT0(Fu, FV, Fv) one has E[T/X] ∼A E ′[T/X].

Proof: Straightforward.

Lemma 3.2.9 [simsub02] Let E be an term of the form E = [L](B1, . . . , Bn). Suppose
further that for each i = 1, . . . , n one has Bi ∼A B′

i. Then E ∼A [L](B′
1, . . . , B

′
n).
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Proof: Straightforward.

Lemma 3.2.10 [simsub03] In the notations used above let E ∈ TS0(Fu, FV, Fv) then one
has:

1. Let s, s′ ∈ oT0(Fu, FV, Fv) such that s ∼A s′ and x ∈ Fv, then E[s/x] ∼A E[s′/x].

2. Let T, T ′ ∈ TT0(Fu, FV, Fv) such that T ∼A T ′ and X ∈ FV , then E[T/X] ∼A
E[T ′/x].

Proof: Straightforward.

3.3 Derivation trees

Notes:

Definition 3.3.1 [cuttingsrface] For a rooted tree E a ”cutting surface” S is a set of
vertices such that the path from each leave of the tree to the root passes through exactly one
vertex in S.

For example the sets of all leaves or the set consisting only of the root are cutting surfaces.

Definition 3.3.2 [csdepth] A depth of a rooted tree E relative to a cutting surface S is the
maximal distance (number of edges one has to cross) from elements of S to the root of the
tree.

For example the depth of a tree relative to S = {root} is 0 and the depth relative to the set
of all leaves is the depth of the tree.

Lemma 3.3.3 [surface] Let S be any subset of vertices of a rooted tree E such that the
path from any leaf to the root passes through at least one element of S. Let further S0 be the
subset of S which is defined by the condition that v ∈ S0 if an only if v ∈ S and the path
from v to the root does not contain any other elements of S. Then S0 is a cutting surface.

Proof: For any leaf l of E let S(l) be the set of elements of S which lie on the path from
l to the root. Then S(l) ∩ S0 consists of exactly one element, namely the element in S(l)
which is closest to the root.

Given two cutting surfaces S1, S2 we say that S1 ≥ S2 if the path from any element of
S1 to the root contains an element of S2. We will write inf(S1, S2) for the cutting surface
constructed according to Lemma 3.3.3 from the set of vertices S1∪S2. Note that inf(S1, S2)
is indeed the greatest lower bound of the set {S1, S2}.
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1. Each derivation tree is rooted and each branch of a derivation tree is a derivation tree.

2. Each derivation tree defines a derivable sentence. In particular there are five kinds
of derivation trees - the ones which define four kinds of sentences and the ones which
define u-level expressions.

3. Each vertex of a derivation tree is labelled by the (number or name of) the corre-
sponding derivation rule. The kind of the branch corresponding to a given vertex is
completely determined by the label of the vertex.

4. Each derivation rule defines the following data structure:

(a) the number of premises (each premise being a sentence),
(b) the kind of each of the premises,
(c) a ”pattern matching” condition which the premises should satisfy.

5. The correctness of a derivation tree is determined by the condition that at every vertex
the number and kinds of branches are the ones which are prescribed by the label and
that the corresponding pattern matching condition holds.

3.4 Derivation rules of TS0

As was mentioned in the introduction the systems which we described are not type systems
but families of type systems parametrized by universe contexts and sequences of T-variables.
We are going to describe now the derivation rules for sentences of the type system TS0UC,FV

associated with a given universe context UC = (Fu,A) and a sequence of T-variables FV .
The description is given in the usual type-theoretic notation. It is assumed that new names
of variables which appear in the derivation rules do not conflict with the previously existing
ones. Everywhere below we use the letter M with or without diacritics to denote a u-level
expression in variables from Fu. The letter Γ with or without diacritics is used to denote a
derivable context. By l(Γ) we denote the ”length” of Γ i.e. l(x1 : T1, . . . , xn : Tn) = n.
According to [3] a type system over a system of expressions is given by sets of derivable
sentences of four kinds. In the sequent notation the sentences of each of the four kinds have
the form

Γ▷
Γ ⊢ o : T

Γ ⊢ T = T ′

Γ ⊢ o = o′ : T

Derivable sentences are those which can be obtained by the derivation rules given below.
Since precise derivation trees for sentences are going to be important to us it is convenient
to have relatively small number of different derivation rules. Normally, one would include

Γ▷
Γ, x : UM▷
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as a family of derivation rules one for each well-formed u-level expression M . This is however
inconvenient in particular because different u-level expressions can be equivalent and we do
not want to deal with equivalence relations on the set of the derivation rules. Because of that
we include in our consideration a fifth class of sentences which we write simply as M with the
meaning of such a sentence being that M is a well-formed u-level expression in variables from
Fu. From the abstract point of view it means that our four classes of derivable sentences
are actually defined by an inductive procedure which also involves a fifth class but later the
fifth class is not considered as a part of the resulting type system.
Note that even with this addition we actually have infinitely many derivation rules due to
the issue with the ”rule”

Γ, x : T,Γ′▷
Γ, x : T,Γ′ ⊢ x : T

which is actually a family of infinitely many derivation rules parametrized by natural numbers
i with i = l(Γ) being a condition of the rule.

1. for each u ∈ Fu

u

2.
M

M + 1

3.
M1 M2

max(M1,M2)

4.

▷
5. for each X ∈ FV ,

Γ▷
Γ, x : X▷

6. for each i ∈ N
Γ, x : T,Γ′ ▷ where l(Γ) = i

Γ, x : T,Γ′ ⊢ x : T

7.
Γ, x : T ▷ Γ, x : T ′ ▷ T ∼A T ′

Γ ⊢ T
d
= T ′

8.
Γ ⊢ T1

d
= T2

Γ ⊢ T2
d
= T1

9.
Γ ⊢ T1

d
= T2 Γ ⊢ T2

d
= T3

Γ ⊢ T1
d
= T3
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10.
Γ ⊢ o : T Γ ⊢ o′ : T o ∼A o′

Γ ⊢ o
d
= o′ : T

11.
Γ ⊢ o1

d
= o2 : T

Γ ⊢ o2
d
= o1 : T

12.
Γ ⊢ o1

d
= o2 : T Γ ⊢ o2

d
= o3 : T

Γ ⊢ o1
d
= o3 : T

13.
Γ ⊢ o : T Γ ⊢ T

d
= T ′

Γ ⊢ o : T ′

14.
Γ ⊢ o

d
= o′ : T Γ ⊢ T

d
= T ′

Γ ⊢ o
d
= o′ : T ′

15.
Γ▷ M

Γ, x : UM▷

16.
Γ▷ M

Γ ⊢ uM : UM+1

17.
Γ ⊢ o : UM

Γ, x : [El](o)▷

18.
Γ▷ M

Γ ⊢ [El](uM)
d
= UM

19.
Γ ⊢ o

d
= o′ : UM

Γ ⊢ [El](o)
d
= [El](o′)

20.
Γ ⊢ o : UM Γ ⊢ o′ : UM Γ ⊢ [El](o)

d
= [El](o′)

Γ ⊢ o
d
= o′ : UM

21.
Γ, x : T1, y : T2▷

Γ, y : [
∏
;x](T1, T2)▷
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22.
Γ ⊢ T1

d
= T ′

1 Γ, x : T1 ⊢ T2
d
= T ′

2

Γ ⊢ [
∏
;x](T1, T2)

d
= [

∏
;x](T ′

1, T
′
2)

23.
Γ, x : T1 ⊢ o : T2

Γ ⊢ [λ;x](T1, o) : [
∏
;x](T1, T2)

24.
Γ ⊢ T1

d
= T ′

1 Γ, x : T1 ⊢ o
d
= o′ : T2

Γ ⊢ [λ;x](T1, o)
d
= [λ;x](T ′

1, o
′) : [

∏
;x](T1, T2)

25.
Γ ⊢ f : [

∏
; x](T1, T2) Γ ⊢ o : T1

Γ ⊢ [ev;x](f, o, T2) : T2[o/x]

26.
Γ ⊢ T1

d
= T ′

1

Γ, x : T1 ⊢ T2
d
= T ′

2

Γ ⊢ f
d
= f ′ : [

∏
;x](T1, T2)

Γ ⊢ o
d
= o′ : T1

Γ ⊢ [ev; x](f, o, T2)
d
= [ev;x](f ′, o′, T ′

2) : T2[o/x]

27.
Γ ⊢ o1 : T1 Γ, x : T1 ⊢ o2 : T2

Γ ⊢ [ev; y]([λ; x](T1, o2), o1, T2)
d
= o2[o1/x] : T2[o1/x]

28.
Γ ⊢ f : [

∏
; x](T1, T2)

Γ ⊢ [λ; x](T1, [ev; y](f, x, T2[y/x]))
d
= f : [

∏
;x](T1, T2)

29.
Γ▷ M1 M2 M1 ≤A M2

Γ ⊢ jM1,M2 : [
∏
;x](UM1 ,UM2)

30.
Γ ⊢ o : UM1 M2 M1 ≤A M2

Γ ⊢ [El][ev;x](jM1,M2 , o,UM2)
d
= [El](o)

31.
Γ ⊢ o1 : UM1 Γ, x : [El](o1) ⊢ o2 : UM2

Γ ⊢ [forallM1,M2 ;x](o1, o2) : Umax(M1,M2)

32.
Γ ⊢ o1 : UM1 Γ, x : [El](o1) ⊢ o2 : UM2

Γ ⊢ [El][forallM1,M2 ; x](o1, o2)
d
= [

∏
;x]([El](o1), [El](o2))
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3.5 TS0(UC,FV) are type systems

[ts0aretypesystems] Given a system of expressions such as the one given by TS0 terms
relative to a given universe context UC = (Fu,A) and a sequence of T-variables FV one
defines a type system over this system of expressions as four classes of sentences of the forms
Γ▷, Γ ⊢ o : T , Γ ⊢ T = T ′ and Γ ⊢ o = o′ : T which satisfy a number of technical conditions
listed in [3]. In this section we will show that these conditions hold for the classes of derivable
sentences of TS0.
In what follows we fix a universe context UC and a sequence of T-variables FV and consider
all the notions relative to this context and this sequence.

Lemma 3.5.1 [dertree] Any derivation tree for sequent of one of the following forms:

Γ,Γ′▷

Γ,Γ′ ⊢ o : T

Γ,Γ′ ⊢ T = T ′

Γ,Γ′ ⊢ o = o′ : T

has (a unique) smallest cutting surface whose elements represent contexts of the form Γ▷
and u-level expressions. There is at least one element representing Γ▷ in this cutting surface.

Proof: It is easy to see from the shape of the derivation rules that there can be no cutting
surface for any of the four main kinds of sentences which contains only u-level expressions.
Therefore the second assertion of the lemma is automatically satisfied.
Since the the greatest lower bound of any two cutting surfaces is defined and is contained (as
a subset) in the union of these surfaces, it is sufficient to show that that in each of the four
cases for any derivation tree there exists at least one cutting surface satisfying the conditions
of the lemma.
We proceed by induction on the depth of the derivation tree.
Looking at the derivation rules we see that each of the premises for any derivation rule for
a context of the form Γ,Γ′▷ where Γ′ is non-empty has either the same form or of the form
Γ,Γ′ ⊢ o : T or equals Γ▷.
Each of the premises for any derivation rule for a judgement of the form Γ,Γ′ ⊢ o : T is
either of the same form or of the form Γ,Γ′ ⊢ T = T ′, or of the form Γ,Γ′▷ where Γ′ is
non-empty or equals Γ▷.
Each of the premises for any derivation rule for a judgement of the form Γ,Γ′ ⊢ T = T ′ is
either of the same form or of the form Γ,Γ′ ⊢ o : T , or of the form Γ,Γ′ ⊢ o = o′ : T , or of
the form Γ,Γ′▷ where Γ′ is non-empty or equals Γ▷.
Each of the premises for any derivation rule for a judgement of the form Γ,Γ′ ⊢ o : T is
either of the same form or of the form Γ,Γ′ ⊢ T = T ′, or of the form Γ,Γ′ ⊢ o = o′ : T , or of
the form Γ,Γ′▷ where Γ′ is non-empty or equals Γ▷.
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Combining these properties of our derivation rules with the induction on the depth of the
derivation tree we obtain the assertion of the lemma.

Remark 3.5.2 Note that the assertion of Lemma 3.5.1 is not tautological and really depends
on the form of the derivation rules which one chooses in the definition of a type system. For
example, if we included the rule

Γ▷
Γ, x : X ⊢ x : X

for X ∈ FV into our list of the generating derivation rules then Lemma 3.5.1 would become
false. Indeed then one would have a derivation tree for x : X ⊢ x : X which has only one
edge terminating in the empty context ▷ and in particular no vertices corresponding to the
context x : X▷.

Definition 3.5.3 [derdepthgamma] For a sentence of one of the forms listed in Lemma
3.5.1 we define its derivation depth relative to Γ as the minimum over all its derivation trees
of the depth of this tree relative to the cutting surface defined in Lemma 3.5.1.

Note that the derivation depth relative to Γ is 0 only for Γ▷. Note also that for any sentence
of the form considered in Lemma 3.5.1 whose derivation depth relative to Γ is greater than
0 there exists a derivation rule which generates this sentence such that all its premises are
again of the same form and their derivation depth relative to Γ is strictly less than of the
original sentence.
As an immediate corollary of Lemma 3.5.1 we get the following result.

Lemma 3.5.4 [dertree0] For any derivable sequent of one of the following forms

Γ,Γ′▷

Γ,Γ′ ⊢ o : T

Γ,Γ′ ⊢ T = T ′

Γ,Γ′ ⊢ o = o′ : T

the sequent Γ▷ is derivable.

Lemma 3.5.5 [dertree1] One has the following derivation rules:

1.
Γ, x1 : T1 ▷ Γ,Γ′▷

Γ, x1 : T1,Γ′▷

2.
Γ, x1 : T1 ▷ Γ,Γ′ ⊢ o : T

Γ, x1 : T1,Γ′ ⊢ o : T
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3.
Γ, x1 : T1 ▷ Γ,Γ′ ⊢ T = T ′

Γ, x1 : T1,Γ′ ⊢ T = T ′

4.
Γ, x1 : T1 ▷ Γ,Γ′ ⊢ o = o′ : T

Γ, x1 : T1,Γ′ ⊢ o = o′ : T

Proof: We prove that for any derivable sentence St of one of the four main kinds which
starts with Γ the sentence obtained from St by replacing Γ with Γ, x : T is derivable if
Γ, x : T▷ itself is derivable. We proceed by induction on the derivation depth of S relative
to Γ. We now have to consider case by case each of the generating derivation rule families
which produce a sentence of a main kind. Since Γ, x : T▷ is derivable we may assume that
Γ′ is nonempty or that S of the three later kinds. The verification is straightforward.

Remark 3.5.6 The key to the validity of the proof of Lemma 3.5.5 is that for any of the
derivation rules one of the following possibilities holds:

1. the product sentence of the derivation rule is of the three later kinds and changing its
context part Γ with Γ, x : T both in the product and in the premises again produces a
derivation rule,

2. the product sentence is of the first kind i.e. of the form Γ▷ where Γ = Γ1,Γ2 with
l(Γ2) ≤ 1 and replacing Γ1 with Γ1, x : T both in the product and in the premises
again produces a derivation rule.

These conditions would not hold if we had a generating derivation rule with the product of
the form Γ1,Γ2▷ where l(Γ2) > 1 and Γ2 does not directly appear in the premise e.g. a rule
such as

Γ▷ M

Γ, x : UM , o : [El](x)▷
or if we had a generating derivation rule with the product of one of the three later kinds of
the form Γ0,Γ1 ⊢ J where Γ1 is nonempty and does not directly appear in the premises e.g.
a rule such as

Γ ⊢ f : [
∏
;x](T1, T2)

Γ, y : T1 ⊢ [ev;x](f, y, T2) : T2[y/x]

Lemma 3.5.7 [dertree2] One has the following derivation rules:

1.
Γ,Γ′′ ▷ Γ,Γ′▷

Γ,Γ′,Γ′′▷

2.
Γ,Γ′′ ▷ Γ,Γ′ ⊢ a : T

Γ,Γ′,Γ′′ ⊢ a : T

21



3.
Γ,Γ′′ ▷ Γ,Γ′ ⊢ T = T ′

Γ,Γ′,Γ′′ ⊢ T = T ′

4.
Γ,Γ′′ ▷ Γ,Γ′ ⊢ o = o′ : T

Γ,Γ′,Γ′′ ⊢ o = o′ : T

Proof: By induction on the length of Γ′′ using Lemma 3.5.5.

Lemma 3.5.8 [dertree3] One has the following derivation rules:

Γ ⊢ a : S Γ, x : S,Γ′▷
Γ,Γ′[a/x]▷

Γ ⊢ a : S Γ, x : S,Γ′ ⊢ o : T

Γ,Γ′[a/x] ⊢ o[a/x] : T [a/x]

Γ ⊢ a : S Γ, x : S,Γ′ ⊢ T = T ′

Γ,Γ′[a/x] ⊢ T [a/x] = T ′[a/x]

Γ ⊢ a : S Γ, x : S,Γ′ ⊢ o = o′ : T

Γ,Γ′[a/x] ⊢ o[a/x] = o′[a/x] : T [a/x]

Proof: ???

Lemma 3.5.9 [dertree4] One has the following derivation rules:

Γ ⊢ o : T

Γ, x : T▷

Γ ⊢ T = T ′

Γ, x : T▷
Γ ⊢ o = o′ : T

Γ ⊢ o : T

Proof: ???

Lemma 3.5.10 [dertree5] One has the following derivation rules:

1.
Γ ⊢ T = T ′ Γ, x : T,Γ′▷

Γ, x : T ′,Γ′▷

2.
Γ ⊢ T = T ′ Γ, x : T,Γ′ ⊢ o : S

Γ, x : T ′,Γ′ ⊢ o : S
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3.
Γ ⊢ T = T ′ Γ, x : T,Γ′ ⊢ S = S ′

Γ, x : T ′,Γ′ ⊢ S = S ′

4.
Γ ⊢ T = T ′ Γ, x : T,Γ′ ⊢ o = o′ : S

Γ, x : T ′,Γ′ ⊢ o = o′ : S

Proof: ??? By the induction on the derivation depth of Γ, x : T,Γ′▷ and Γ, x : T,Γ′ ⊢ a : T ′′

relative to Γ, x : T▷. If the derivation depth is 0 then we are in the first case and the
assertion is obvious. For the inductive step consider the derivation rules one by one. There
are three cases to be considered for the first reduction rule. The other reduction rules are
straightforward.

Lemma 3.5.11 [dertree6] One has the following derivation rule:

Γ ⊢ T = T ′ Γ ⊢ o = o′ : T

Γ ⊢ o = o′ : T ′

Proof: ???

Lemma 3.5.12 [dertree7] One has the following derivation rules:

1.
Γ ⊢ a = a′ : S Γ, x : S,Γ′, y : T▷

Γ,Γ′[a/x] ⊢ T [a/x] = T [a′/x]

2.
Γ ⊢ a = a′ : S Γ, x : S,Γ′ ⊢ o : T

Γ,Γ′[a/x] ⊢ o[a/x] = o[a′/x] : T [a/x]

Proof: ???

Recall from [3] that subsets in the sets of all contexts and judgements in a given system of
expressions form a type system i.e. define a contextual subcategory in the contextual category
defined by the underlying system of expressions iff they satisfy the following conditions:

▷
x1 : E1, . . . , xn : En▷

x1 : E1, . . . , xn−i : En−i▷
(i ≤ n)

x1 : E1, . . . , xn : En ⊢ t : T

x1 : E1, . . . , xn : En, x : T▷ (n ≥ 0)

x1 : E1, . . . , xn : En ⊢ t : T x1 : E1, . . . , xi : Ei, y : F▷
x1 : E1, . . . , xi : Ei, y : F, xi+1 : Ei+1, . . . , xn : En ⊢ t : T

, i = 0, . . . , n
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x1 : E1, . . . , xn : En ⊢ t : T x1 : E1, . . . , xi : Ei ⊢ r : Ei+1

x1 : E1, . . . , xi : Ei, xi+2 : Ei+2[r/xi+1], . . . , xn : En[r/xi+1] ⊢ t[r/xi+1] : T [r/xi+1]

i = 0, . . . , n− 1

x1 : E1, . . . , xn : En▷
x1 : E1, . . . , xn : En ⊢ xn : En

Combining the lemmas proved above we get the following result.

Theorem 3.5.13 [mainth1] For any given universe context UC and a sequence of T-
variables FV the derivable sentences form a type system.

Lemma 3.5.14 [lm1] Let Γ, x : [El](o)▷ be a derivable context. Then there exists a u-level
expression M such that Γ ⊢ o : UM is derivable.

Proof: There is a unique derivation rule which produces contexts of the form Γ, x : [El](o)▷
and the premise of this rule is of the form Γ ⊢ o : UM .

Theorem 3.5.15 [th1] Let Γ, x : T▷ be a derivable context. Then there is a derivable
context of the form Γ, x : [El](o)▷ such that [El](o) ⪰A T and all the reductions involved
are from the following list: Elforall, Eltotal, Elcoprod, Elpaths.

Proof: By induction on the derivation depth of Γ, x : T▷ relative to Γ. Since T is a
T-term it has one of the following forms [El](o), [

∏
; x](T1, T2), [

∑
;x](T1, T2), [⨿](T1, T2),

[Id](T, o1, o2). If T = [El](o) we take T ′ = T .
If T = [

∏
; x](T1, T2) then Γ, x : T1, y : T2▷ is derivable as the premise of the only derivation

rule which generates [
∏
;x]-terms. By Lemma 12.6.3(1), Γ, x : T1▷ is also derivable. By

induction there are derivable contexts Γ, x : T1, y : [El](o2)▷ and Γ, x : [El](o1)▷ such that
[El](o1) ≻A T1 and [El](o2) ≻A T2 through reductions from the list in the conditions of the
theorem. We then take o = [forallM1,M2 ;x](o1, o2) and apply Lemma ??.
The cases of [

∑
; x] and [⨿](T1, T2) are similar to the case of [

∏
;x]. Finally the case of [Id]

is similar with the use of Lemma 12.6.3(2) instead of Lemma 12.6.3(1).

4 Abbreviations, conventions and definitions

[abb0] In order to make our definitions more readable we introduce the following conventions.
We write them here in the context of TS0 terms but they will be applied in the same way
to the terms of the other systems considered in this paper.
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1. Let E ∈ TS0(Fu, FV, Fv) where Fu(u1, . . . , uk), FV = (X1, . . . , Xm). Let Fu′ =
(u′

1, . . . , u
′
k′), FV ′ = (X ′

1, . . . , X
′
m′) and Fv′ = (x′

1, . . . , x
′
n). Let M1, . . . ,Mk be u-level

expressions in variables from Fu′ and T1, . . . , Tm ∈ TT (Fu′, FV ′, Fv). We will then
write

EM1 . . .Mk T1 . . . Tm

for
E ′ = E[M1/u1, . . . ,Mk/uk, T1/X1, . . . , Tm/Xm]

considered as an element of TS0(Fu′, FV ′, Fv).

2. We will write
∏

x : T1, T2 for [
∏
; x](T1, T2) and λx : T1, o1 for [λ;x](T1, o1). When

Y does not depend on x we will write X → Y for
∏

x : X,Y . We will also write∏
(x1 : T1) . . . (xn : Tn), T for∏

x1 : T1,
∏

x2 : T2, . . . ,
∏

xn : Tn, T

and X1 → . . . → Xn for X1 → (X2 → . . . (Xn−1 → Xn) . . .).

3. We will write ∗t for [El](t)

4. Let Γ be a context. We will write fa for [ev; x](f, a, T2) if τΓ(f) =
∏

x : T1, T2. Note
that = here means the equality of expressions (up to the α-equivalence). In particular
T2 is well defined (again up to the α-equivalence) by this condition as the second branch
of τΓ(f).

5. We will write:

Def. D(u1, . . . , uk;A)(X1, . . . , Xm : Type)(x1 : T1) . . . (xn : Tn) := T

where D is a name (identifier) and T ∈ TT0(Fu, {X1, . . . , Xm}, {x1, . . . , xn}) to signify
the assertion that the context

x1 : T1, . . . , xn : Tn, x : T▷

is derivable in TS0 relative to the universe context (u1, . . . , uk;A) and the sequence of
T-variables (X1, . . . , Xm) and that we will use D as a notation for the term T .
???Proofs of such assertions should be provided where necessary wince they will form
the basis for our annotation language.

6. We will write:

Def. D(u1, . . . , uk;A)(X1, . . . , Xm : Type)(x1 : T1) . . . (xn : Tn) := o : T

where D is a name (identifier) and

T ∈ TT0({u1, . . . , uk}, {X1, . . . , Xm}, {x1, . . . , xn})

o ∈ TT0({u1, . . . , uk}, {X1, . . . , Xm}, {x1, . . . , xn})
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to signify the assertion that the judgement

x1 : T1, . . . , xn : Tn ⊢ o : T

is derivable in TS0 relative to the universe context (u1, . . . , uk;A) and the sequence of
T-variables (X1, . . . , Xm) and that we will use D as the notation for the term λ(x1 :
T1) . . . (xn : Tn)o.
??? Note on proofs of such assertions in the annotation language.
Similarly we will write

Def. D(u1, . . . , uk;A)(X1, . . . , Xm : Type)(x1 : T1) . . . (xn : Tn) := o

for

Def. D(u1, . . . , uk;A)(X1, . . . , Xm : Type)(x1 : T1) . . . (xn : Tn) := o : τΓ(o)

where Γ = (x1 : T1, . . . , xn : Tn).

7. We will write

Th. D(u1, . . . , uk;A)(X1, . . . , Xm : Type)(x1 : T1) . . . (xn : Tn) : T

where D is a name (identifier) and

T ∈ TT0(Fu, {X1, . . . , Xm}, {x1, . . . , xn})

o ∈ TT0(Fu, {X1, . . . , Xm}, {x1, . . . , xn})

To signify that there is a derivable judgement of the form

x1 : T1, . . . , xn : Tn ⊢ o : T

in TS0 relative to to the universe context (u1, . . . , uk;A) and the sequence of T-variables
(X1, . . . , Xm) and that we will use D as the notation for o.
???? Unlike Def. which is verified mechanically Th. requires a proof i.e. an actual
construction of o. We will nevertheless use this notation below without providing an
explicit form of o in some cases when we know that such an o can be constructed from
existing Coq proofs but writing it explicitly would take to much space.

8. We will use {. . .} instead of (. . .) for arguments of definitions which can be uniquely
reconstructed under the assumption that the definition produces a derivable context
or judgement. Such arguments need not be specified in definition ”applications”. We
will also use obvious abbreviations of the notations introduced above in cases when
k,m or n equals 0 or when A is an empty set of conditions.
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4.1 Reducibility relation on TS0 terms

Definition 4.1.1 [drd0] Let UC = (Fu,A) be universe context and FV a sequence of T-
variables. Define a relation ≻A on TS0(Fu, FV, Fv) for each Fv as the transitive closure
of the union of the following reduction relations:

1. Elu-reduction. An essential subterm of the form [El][uM ] reduces to UM .

2. Elj-reduction. An essential subterm of the form [El][ev; y]([jM1,M2 ], o, T ) reduces to
[El](o),

3. Elforall-reduction. An essential subterm of the form [El][forallM1,M2 ; x](o1, o2) reduces
to [

∏
; x]([El](o1), [El](o2)),

4. jMM-reduction. An essential subterm of the form [jM1,M2 ] such that M1 ≡A M2, reduces
to [λ; x](UM1 , [x]) where x is a new, relative to the whole term, name of a variable,

5. beta-reduction. An essential subterm of the form [ev; z]([λ;x](T1, o1), o2, T2) reduces to
o1[o2/x],

6. jj-reduction. An essential subterm of the form [ev; z]([jM ′
2,M3

], [ev; y]([jM1,M2 ], o1, T1), T2)
such that M ′

2 ≡A M2 reduces to [ev; z]([jM1,M3 ], o1, T2),

7. eta-reduction. An essential subterm of the form [λ;x](X, [ev; y](f, [x], Y )) where f does
not depend on x reduces to f .

8. forallj-reductions:

(a) forallja-reduction. An essential subterm of the form

[forallM1,M2 ;x]([ev; z]([jM0,M ′
1
], o1, T ), o2)

such that M ′
1 ≡A M1, reduces to

[ev; z]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ;x](o1, o2),Umax(M1,M2))

(b) foralljb-reduction. An essential subterm of the form

[forallM1,M3 ;x](o1, [ev; z]([jM2,M ′
3
], o2, T ))

such that M ′
3 ≡A M3 reduces to

[ev; z]([jmax(M1,M2),max(M1,M3)], [forallM1,M2 ;x](o1, o2),Umax(M1,M3))

Remark 4.1.2 One verifies easily that a reduction of a TS0-term is again a TS0-term and
that reductions preserve the subsets of T-terms and o-terms.

Let ⪰A be the transitive and reflexive closure of ≻A.

27



Lemma 4.1.3 [redsub01] In the notations used above let E,E ′ ∈ TS0(Fu, FV, Fv) and
E ≻A E ′ then one has:

1. for x ∈ Fv and s ∈ oT0(Fu, FV, Fv) one has E[s/x] ≻A E ′[s/x],

2. for X ∈ FV and T ∈ TT0(Fu, FV, Fv) one has E[T/X] ≻A E ′[T/X].

Proof: It is sufficient to consider one step reductions. Of all reductions of Definition 4.1.1
the only non-trivial case is that of the beta-reduction. It follows from Lemma 1.0.1.

Lemma 4.1.4 [redsub02] Let E be an term of the form E = [L](B1, . . . , Bn) and suppose
that Bi are essential if and only if i ∈ I. Suppose further that for each i ∈ I one has
Bi ⪰A B′

i and let B′
i = Bi for i /∈ I. Then E ⪰A [L](B′

1, . . . , B
′
n).

Proof: Straightforward.

In the following lemma we let E[s′/x]ess[s/x]ness denote the expression obtained by the
substitution of s′ for all essential occurrences of x and s for all non-essential occurrences of
x and use the notation for the substitutions of T-variables.

Lemma 4.1.5 [redsub03] In the notations used above let E ∈ TS0(Fu, FV, Fv) then one
has:

1. Let s, s′ ∈ oT0(Fu, FV, Fv) such that s ≻A s′ and x ∈ Fv, then

E[s/x] ⪰A E[s′/x]ess[s/x]ness

2. Let T, T ′ ∈ TT0(Fu, FV, Fv) such that T ≻A T ′ and X ∈ FV , then

E[T/X] ⪰A E[T ′/x]ess[T/x]ness

Proof: Straightforward by induction on the number of nodes in E using Lemma 4.1.4.

Lemma 4.1.6 [lequivsimred0] In the notations used above let E ⪰A E ′ and F ≡A E
(resp. F ∼A E). Then there is an term F ′ such that F ⪰A F ′ and F ′ ≡A E ′ (resp.
F ′ ∼A E ′).

Proof: It follows easily from the fact that all our reducibility conditions are invariant under
both ≡A and ∼A.

Remark 4.1.7 Note that the analog of Lemma 4.1.6 with F ′ ≡A E ′ does not hold. Indeed,
in the case of β-reduction the substitution may produce a term with many copies of the
same u-level expression and replacing some but not all of these copies by an equivalent
u-level expression may produce F ′ which can not be obtained by reduction of any F .

28



4.2 Local confluence for general terms of TS0

The following theorem asserts ”local” confluence for one step reductions except for one special
case. The confluence in this special case is expected to hold for derivable terms (see below).

Theorem 4.2.1 [lc0] Let UC = (Fu,A) be a universe context and FV a sequence of
T-variables. Let E ∈ TS0(Fu, FV, Fv). Let further E ≻A E1 and E ≻A E2 be two one-
step reductions. Then there exists a TS0-terms E ′

1, E ′
2 from TS0(Fu, FV, Fv) such that

E1 ⪰A E ′
1, E2 ⪰A E ′

2 and E ′
1 ∼A E ′

2 unless E1 is obtained by eta-reduction of a subterm
of the form [λ; x](T1, [ev; y]([λ; z](T2, o), [x], T3)) to [λ; z](T2, o) and E2 is obtained by beta-
reduction of this subterm at the node [ev; y] to [λ;x](T1, o[x/z]). In this cases confluence is
expected for derivable terms (see below).

Proof: It is sufficient to consider the case when the first reduction is relative to subterm
S = E i.e. occurs at the root.

1. Elu-reduction at the root. E = [El][uM ]. Then no other reductions may occur in E
and therefore there are no confluence issues.

2. Elj-reduction at the root. E = [El][ev; y]([jM1,M2 ], o, T ) and

E1 = [El](o).

If the second reduction occurs inside o or T then the statement is obvious. It remains
to consider possible second reductions occurring at the ”exposed” nodes [El], [ev; y]
and [jM1,M2 ]. This leads to the following actual cases:

(a) jMM-reduction at [jM1,M2 ]. Then M1 ≡A M2,

E1 = [El](o) = E ′
1

E2 = [El][ev; y]([λ; x](UM1 , [x]), o, T ) ≻ [El](o) = E ′
2

(b) jj-reduction at [ev; y]. Then o = [ev; z]([jM0,M ′
1
], o′, T ′) where M ′

1 ≡A M1 and

E1 = [El][ev; z]([jM0,M ′
1
], o′, T ′) ≻ [El](o′) = E ′

1

E2 = [El][ev; y]([jM0,M2 ], o
′, T ) ≻ [El](o′) = E ′

2

3. Elforall-reduction at the root. E = [El][forallM1,M2 ;x](o1, o2) and

E1 = [
∏

;x]([El](o1), [El](o2)).

Exposed nodes where second reduction may occur are [El] and [forallM1,M2 ; x] with
the following actual cases:
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(a) forallja-reduction at [forallM1,M2 ; x]. Then o1 = [ev; z]([jM0,M ′
1
], o′1, T

′) where
M ′

1 ≡A M1 and

E1 = [
∏

;x]([El][ev; z]([jM0,M ′
1
], o′1, T

′), [El](o2)) ≻

[
∏

;x]([El](o′1), [El](o2)) = E ′
1

E2 = [El][ev; z]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ; x](o
′
1, o2),Umax(M1,M2)) ≻

[El][forallM0,M2 ;x](o
′
1, o2) ≻ [

∏
;x]([El](o′1), [El](o2)) = E ′

2

(b) foralljb-reduction at [forallM1,M2 ;x]. Then o2 = [ev; z](jM3,M ′
2
, o′2, T

′) where M ′
2 ≡A

M2 and
E1 = [

∏
; x]([El](o1), [El][ev; z](jM3,M ′

2
, o′2, T

′)) ≻

[
∏

;x]([El](o1), [El](o′2)) = E ′
1

E2 = [El][ev; z]([jmax(M1,M3),max(M1,M2)], [forallM1,M3 ; x](o1, o
′
2),Umax(M1,M2)) ≻

[El][forallM1,M3 ;x](o1, o
′
2) ≻ [

∏
;x]([El](o1), [El](o′2)) = E ′

2

4. jMM-reduction at the root. E = [jM1,M2 ] such that M1 ≡A M2 and

E1 = [λ;x](UM1 , [x])

There are exposed nodes where second reduction may occur.

5. beta-reduction at the root. E = [ev; z]([λ; x](T1, o1), o2, T2) and

E1 = o1[o2/x].

Exposed nodes where second reduction may occur are [ev; z] and [λ;x] with the only
actual case of the eta-reduction at [λ; x](X, Y ). Then Y = [ev; y](o, [x], T ) where o
does not depend on x and

E1 = [ev; y](o, o2, T [o2/x]) = E ′
1

E2 = [ev; z](o, o2, T2) = E ′
2

6. jj-reduction at the root. E = [ev; z]([jM ′
2,M3

], [ev; y]([jM1,M2 ], o, T ), T
′) such that M ′

2 ≡A
M2 and

E1 = [ev; z]([jM1,M3 ], o, T
′)

Exposed nodes where second reduction may occur are [ev; z], [jM ′
2,M3

], [ev; y] and
[jM1,M2 ] with the following actual cases:

(a) jMM-reduction at [jM ′
2,M3

]. Then M ′
2 ≡A M3 and

E1 = [ev; z]([jM1,M3 ], o, T
′) = E ′

1

E2 = [ev; z]([λ;x](UM ′
2
, [x]), [ev; y]([jM1,M2 ], o, T ), T

′) ≻
[ev; y]([jM1,M2 ], o, T ) = E ′

2
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(b) jj-reduction at [ev; y]. Then o = [ev; t]([jM0,M ′
1
], o′, T ) where M ′

1 ≡A M1 and

E1 = [ev; z]([jM1,M3 ], [ev; t]([jM0,M ′
1
], o′, T ), T ′) ≻

[ev; z]([jM0,M3 ], o
′, T ′) = E ′

1

E2 = [ev; z]([jM ′
2,M3

], [ev; y]([jM0,M2 ], o
′, T ), T ′) ≻

[ev; z]([jM0,M3 ], o
′, T ′) = E ′

2

(c) jMM-reduction at [jM1,M2 ]. Then M1 ≡A M2 and

E1 = [ev; z]([jM1,M3 ], o, T ) = E ′
1

E2 = [ev; z]([jM ′
2,M3

], [ev; y]([λ;x](UM1 , [x]), o, T
′), T ) ≻

[ev; z]([jM ′
2,M3

], o, T ) = E ′
2

7. eta-reduction at the root. E = [λ;x](T1, [ev; y](o, [x], T2)) such that o does not depend
on x and

E1 = o

Exposed nodes where second reduction may occur are [λ;x] and [ev; y] with the only
actual case being beta-reduction at [ev; y]. This is the exceptional case from the con-
dition of the theorem.

8. forallj-reductions at the root:

(a) forallja-reduction at the root. E = [forallM1,M2 ; x]([ev; z]([jM0,M ′
1
], o1, T ), o2) such

that M ′
1 ≡A M1 and

E1 = [ev; z]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ; x](o1, o2),Umax(M1,M2))

Exposed nodes where second reduction may occur are [forallM1,M2 ; x], [ev; z] and
[jM0,M ′

1
] with the following actual cases:

i. foralljb-reduction at [forallM1,M2 ;x]. Then o2 = [ev; z′]([jM3,M ′
2
], o′2, T

′) where
M ′

2 ≡A M2 and
E1 = [ev; z]([jmax(M0,M2),max(M1,M2)],

[forallM0,M2 ;x](o1, [ev; z
′]([jM3,M ′

2
], o′2, T

′)),Umax(M1,M2)) ≻
[ev; z]([jmax(M0,M2),max(M1,M2)],

[ev; z′]([jmax(M0,M3),max(M0,M ′
2)
], [forallM0,M3 ;x](o1, o

′
2),Umax(M0,M ′

2)
),

Umax(M1,M2)) ≻
[ev; z]([jmax(M0,M3),max(M1,M2)], [forallM0,M3 ; x](o1, o

′
2),Umax(M1,M2)) = E ′

1

E2 = [ev; z′]([jmax(M1,M3),max(M1,M2)],

[forallM1,M3 ; x]([ev; z]([jM0,M ′
1
], o1, T ), o

′
2),Umax(M1,M2)) ≻

[ev; z′]([jmax(M1,M3),max(M1,M2)],

[ev; z]([jmax(M0,M3),max(M1,M3)], [forallM0,M3 ;x](o1, o
′
2),Umax(M1,M3)),

Umax(M1,M2)) ≻
[ev; z′]([jmax(M0,M3),max(M1,M2)], [forallM0,M3 ;x](o1, o

′
2),Umax(M1,M2)) = E ′

2
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ii. jj-reduction at [ev; z]. Then o1 = [ev; z′]([jM3,M ′
0
], o′1, T

′) where M ′
0 ≡A M0

and
E1 = [ev; z]([jmax(M0,M2),max(M1,M2)],

[forallM0,M2 ;x]([ev; z
′]([jM3,M ′

0
], o′1, T

′), o2),Umax(M1,M2)) ≻
[ev; z]([jmax(M0,M2),max(M1,M2)],

[ev; z′]([jmax(M3,M2),max(M0,M2)], [forallM3,M2 ;x](o
′
1, o2),Umax(M0,M2)),

Umax(M1,M2)) ≻
[ev; z]([jmax(M3,M2),max(M1,M2)], [forallM3,M2 ; x](o

′
1, o2),Umax(M1,M2)) = E ′

1

E2 = [forallM1,M2 ; x]([ev; z]([jM3,M ′
1
], o′1, T ), o2) ≻

[ev; z]([jmax(M3,M2),max(M1,M2)], [forallM3,M2 ; x](o
′
1, o2),Umax(M1,M2)) = E ′

2

iii. jMM-reduction at [jM0,M ′
1
]. Then M0 ≡A M ′

1 and

E1 = [ev; z]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ;x](o1, o2),Umax(M1,M2)) ≻

[ev; z]([λ;x](Umax(M0,M2), [x]), [forallM0,M2 ; x](o1, o2),Umax(M1,M2)) ≻
[forallM0,M2 ;x](o1, o2) = E ′

1

E2 = [forallM1,M2 ;x]([ev; x]([λ; x](UM0 , [x]), o1, T ), o2) ≻
[forallM1,M2 ;x](o1, o2) = E ′

2

(b) foralljb-reduction at the root. E = [forallM1,M3 ; x](o1, [ev; z]([jM2,M ′
3
], o2, T )) such

that M ′
3 ≡A M3 and

E1 = [ev; z]([jmax(M1,M2),max(M1,M3)], [forallM1,M2 ;x](o1, o2),Umax(M1,M3)),

Exposed nodes where second reduction may occur are [forallM1,M3 ; x], [ev; z] and
[jM2,M ′′

3
] with the following actual cases:

i. forallja-reduction at [forallM1,M3 ;x]. Then o1 = [ev; z′]([jM0,M ′
1
], o′1, T

′) where
M ′

1 ≡A M1 and
E1 = [ev; z]([jmax(M1,M2),max(M1,M3)],

[forallM1,M2 ;x]([ev; z
′]([jM0,M ′

1
], o′1, T

′), o2),Umax(M1,M3)) ≻
[ev; z]([jmax(M1,M2),max(M1,M3)],

[ev; z′]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ;x](o
′
1, o2),Umax(M0,M2)),

Umax(M1,M3)) ≻
[ev; z]([jmax(M0,M2),max(M1,M3)], [forallM0,M2 ; x](o

′
1, o2),Umax(M1,M3)) = E ′

1

E2 = [ev; z′]([jmax(M0,M3),max(M1,M3)],

[forallM0,M3 ;x](o
′
1, [ev; z]([jM2,M ′

3
], o2, T ),Umax(M1,M3)) ≻

[ev; z′]([jmax(M0,M3),max(M1,M3)],

[ev; z]([jmax(M0,M2),max(M0,M3)], [forallM0,M2 ;x](o
′
1, o2),Umax(M0,M3)),

Umax(M1,M3)) ≻
[ev; z′]([jmax(M0,M2),max(M1,M3)], [forallM0,M2 ;x](o

′
1, o2),Umax(M1,M3)) = E ′

2
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ii. jj-reduction at [ev; z]. Then o2 = [ev; z′]([jM0,M ′
2
], o′2, T

′) where M ′
2 ≡A M2

and
E1 = [ev; z]([jmax(M1,M2),max(M1,M3)],

[forallM1,M2 ;x](o1, [ev; z
′]([jM0,M ′

2
], o′2, T

′)),Umax(M1,M3)) ≻

[ev; z]([jmax(M1,M2),max(M1,M3)],

[ev; z′]([jmax(M1,M0),max(M1,M2)], [forallM1,M0 ;x](o1, o
′
2),Umax(M1,M2)),

Umax(M1,M3)) ≻

[ev; z]([jmax(M1,M0),max(M1,M3)], [forallM1,M0 ; x](o1, o
′
2),Umax(M1,M3)) = E ′

1

E2 = [forallM1,M3 ; x](o1, [ev; z]([jM0,M ′
3
], o′1, T )) ≻

[ev; z]([jmax(M1,M0),max(M1,M3)], [forallM1,M0 ; x](o1, o
′
2),Umax(M1,M3)) = E ′

2

iii. jMM-reduction at [jM2,M ′
3
]. Then M2 ≡A M ′

3 and

E1 = [ev; z]([jmax(M1,M2),max(M1,M3)], [forallM1,M2 ;x](o1, o2),Umax(M1,M3)) ≻

[ev; z]([λ;x](Umax(M1,M2), [x]), [forallM1,M2 ; x](o1, o2),Umax(M1,M3)) ≻

[forallM1,M2 ;x](o1, o2) = E ′
1

E2 = [forallM1,M3 ;x](o1, [ev;x]([λ;x](UM2 , [x]), o2, T )) ≻

[forallM1,M3 ;x](o1, o2) = E ′
2
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5 Adding the unit pt - system TS2

5.1 TS2 terms and typing function

Definition 5.1.1 [d21] The following labels are permitted in the expressions of TS2 - the
labels permitted in TS1, Pt, pt and tt.

The notions of u-level expressions, T- and o- terms in TS2 are defined as follows:

Definition 5.1.2 [d22]

1. expressions with the root node caring a TS1-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 6.1.3,

2. expressions with the root of the form [Pt] are T-expressions,

3. expressions with the root of the form [pt] or [tt] are o-expressions.

Definition 5.1.3 [d23] A TS2-term is a TS2-expression such that:

1. any node caring one of the TS1-labels satisfies the conditions of Definition 6.1.3,

2. any node of the form [Pt] has valency 0,

3. any node of the form [pt] has valency 0,

4. any node of the form [tt] has valency 0.

Definition 5.1.4 [d24] A node in TS2 term is called non-essential if it satisfies the condi-
tions of Definition 6.1.4. The same applies to the definition of essential nodes, essential and
non-essential subexpressions and of Ess(E) is extended to TS2-terms in the obvious way.

We let TS2 denote the set of TS2-terms and TT2 and oT2 denote the subsets of T-terms
and o-terms. The obvious analog of Lemma 3.1.7 holds for TS1-expressions. We extend to
TS2 the abbreviations introduced for TS1-expressions.

Definition 5.1.5 [dtau2] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS2 as follows:

1. the value of τΓ on an o-term whose root node carries a TS1-label is computed according
to the rules of Definition 6.1.5.

2. τΓ([pt]) = U0,

3. τΓ([tt]) = Pt.

We have the obvious analog of Proposition 3.1.9 for TS2.
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5.2 Equivalence relations ≡A and ∼A on TS2-terms

The relations ≡A and ∼A are extended to TS2-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

5.3 Derivation rules of TS2

The derivation rules for contexts and judgements of TS2 are the derivation rules for TS1
together with the following additional ones:

Γ▷
Γ, x : Pt▷

Γ▷
Γ ⊢ tt : Pt

Γ ⊢ o : Pt

Γ ⊢ o = tt : Pt

Γ▷
Γ ⊢ pt : U0

Γ▷
Γ ⊢ [El](pt) = Pt

5.4 Construction of the eliminator for Pt

Γ, x : Pt, y : T ▷ Γ ⊢ o : T [tt/x]

Γ ⊢ [ptr; x](o, T ) : [
∏
;x](Pt, T )

Remark 5.4.1 [unitpos] The obvious idea to introduce pt not through the eliminators
[ptr,M ] but by the condition that Pt has one distinguished term tt and any other term a ̸= tt
reduces to tt leads to a system without confluence since

[pair; x]([pr1; y](Pt, T, c), [pr2; y](Pt, c, T ), T [x/y])

reduces both to c and to [pair; x](tt, [pr2; y](Pt, c, T ), T [x/y]) and these two terms can not
be reduced to a common term (cf. [1][Exercise p.88]). Of the other reductions which are
supported by the univalent model namely:

[
∏

;x](Pt, T ) ≻A T [
∏

; x](T, P t) ≻A Pt

[
∑

; x](Pt, T ) ≻A T [
∑

;x](T, P t) ≻A T

the first two lead to derivable terms whose types are changed by β-reduction:

1. o = [ev;x]([λ; y](Pt, o1), o2, T2) ≻ o1[o2/y] = o′ where o1 : [
∏
;x](T1, T2), o2 : T1 and

τΓ(o) = T2[o2/x], τΓ(o′) = [
∏
; x](T1, T2).
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2. o = [ev;x]([λ; y](T1, o1), o2, P t) ≻ o1[o2/y] = o′ where o1 : T2, o2 : [
∏
; y](T1, T2) and

τΓ(o) = Pt, τΓ(o′) = T2[o2/y].

and the other two seem to lead to similar problems with sum-related reductions.

5.5 Reducibility relation on TS2 terms

Definition 5.5.1 [drd2] Let UC = (Fu,A) be universe context and FV a sequence of T-
variables. Define a relation ≻A on TS2(Fu, FV, Fv) for any Fv as the transitive closure of
the union of the following reduction relations:

1. Reductions of Definition 6.4.1.

2. iotapt-reduction. An essential subterm of the form [ev; x]([ptr; y](o, T ), tt, T
′) where

T [x/y] ∼A T ′ reduces to o.

The obvious analogs of Lemmas 4.1.3-4.1.6 hold for TS2.

5.6 Local confluence for general terms of TS2

The local confluence theorem for TS2 has exactly the same form as Theorem 6.5.1 and the
same proof since there are no non-trivial confluence dependencies between the new reduction
rule of Definition 5.5.1 and the reduction rules of Definition 6.4.1.

6 Adding dependent sums - system TS1

6.1 TS1 terms and typing function

Definition 6.1.1 [d11] The following labels are permitted in the expressions of TS1 - the
labels permitted in TS0, (

∑
;x), (pair; x), (pr1;x), (pr2;x), (total; x).

The notions of u-level expressions, T- and o- terms in TS1 are defined as follows:

Definition 6.1.2 [d12]

1. expressions with the root node caring a TS0-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 3.1.2,

2. expressions with the root of the form [
∑

;x] are T-expressions,

3. expressions with the root node of the form [pair; x], [pr1;x], [pr2;x] and [total;x] are
o-expressions.
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Definition 6.1.3 [d13] A TS1-term is a TS1-expression such that:

1. any node caring one of the TS0-labels satisfies the conditions of Definition 3.1.3,

2. any node of the form [
∑

;x] has valency 2, both its branches are T-expressions and the
first one does not contain [x],

3. any node of the form [pair; x] has valency 3, its first two branches are o-expressions
which do not contain [x] and the third branch a T-expression,

4. any node of the form [pr1;x] has valency 3, its first branch is a T-expression which
does not contain on [x], its second branch a T-expression and the third branch an
o-expression,

5. any node of the form [pr2;x] has valency 3, its first branch is a T-expression which
does not contain on [x], its second branch a T-expression and the third branch an
o-expression,

6. any node of the form [total; x] has valency 4 and its first two branches are u-level
expressions and the last two are o-expressions of which the first one does not contain
[x].

Definition 6.1.4 [d14] A node in TS1 term is called non-essential if it satisfies the con-
ditions of Definition 3.1.4 or if it belongs to the subexpression T1 of a subexpression of the
form [pr1;x](T1, T2, o) or if it belongs to subexpression T1 of a subexpression of the form
[pr2;x](T1, T2, o). The definition of essential nodes, essential and non-essential subexpres-
sions and of Ess(E) is extended to TS1-terms in the obvious way.

We let TS1 denote the set of TS1-terms and TT1 and oT1 denote the subsets of T-terms and
o-terms. The obvious analog of Lemma 3.1.7 holds for TS1-expressions. We extend to TS1
the abbreviations introduced for TS0-expressions and abbreviate [total;x](M1,M2, o1, o2) to
[total;x]M1,M2(o1, o2) and [

∑
;x](T1, T2) to

∑
x : T1, T2. We also write T1×T2 for

∑
x : T1, T2

when T2 does not depend on x and use the notation
∑

(x1 : T1) . . . (xn : Tn), T for
∑

x1 :
T1,

∑
x2 : T2, . . . ,

∑
x : Tn, T . We will write [pair; x](T2, o1, o2) for [pair;x](τΓ(o1), T2, o1, o2).

Definition 6.1.5 [dtau1] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS1 as follows:

1. the value of τΓ on an o-term whose root node carries a TS0-label is computed according
to the rules of Definition 3.1.8.

2. τΓ([pair; x](o1, o2, T )) = [
∑

;x](τΓ(o1), T ),

3. τΓ([pr1;x](T1, T2, o)) = T1,

4. τΓ([pr2;x](T1, T2, o)) = T2[[pr1;x](T1, T2, o)/x],
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5. τΓ([total;x]M1,M2(o1, o2)) = Umax(M1,M2).

Remark 6.1.6 As is seen from Definition 6.1.5 it is not necessary to include T2 into the
pr1 expressions and, therefore, not necessary to make pr1 into a quantifier in order to define
τΓ.The reason for the inclusion of T2 into pr1 lies in the proof of Theorem 6.5.1 below.
Without this information it is impossible to define reductions on TS1-terms in a way which
preserves (local) confluence. A particular case of the problem can be seen in the case of
iotatotal2-reduction at the root combined with etatotal-reduction at pair. See proof of
Theorem 6.5.1.

We have the obvious analog of Proposition 3.1.9 for TS1.

6.2 Equivalence relations ≡A and ∼A on TS1-terms

[sim1] The relations ≡A and ∼A are extended to TS1-terms in the obvious way. We also
have obvious analogs of all the statements of Section 3.2.

6.3 Derivation rules of TS1

The derivation rules for contexts and judgements of TS1 are the derivation rules for TS0
together with the following additional ones:

Γ, x : T1, y : T2▷
Γ, y : [

∑
;x](T1, T2)

Γ, x : T1, y : T2 ▷ Γ ⊢ o1 : T1 Γ ⊢ o2 : T2[o1/x]

Γ ⊢ [pair; x](o1, o2, T2) : [
∑

; x](T1, T2)

Γ ⊢ a : [
∑

; x](T1, T2)

Γ ⊢ [pr1;x](T1, T2, a) : T1

Γ ⊢ a : [
∑

; x](T1, T2)

Γ ⊢ [pr2;x](T1, T2, a) : T2[[pr1;x](T1, T2, a)/x]

Γ, x : T1, y : T2 ▷ Γ ⊢ o1 : T1 Γ ⊢ o2 : T2[o1/x]

Γ ⊢ [pr1;x′](T1, T2[x′/x], [pair;x](o1, o2, T2)) = o1 : T1

Γ, x : T1, y : T2 ▷ Γ ⊢ o1 : T1 Γ ⊢ o2 : T2[o1/x]

Γ ⊢ [pr2;x′](T1, T2[x′/x], [pair; x](o1, o2, T2)) = o2 : T2[o1/x]

Γ ⊢ a : [
∑

; x](T1, T2)

Γ ⊢ [pair; x]([pr1;x′](T1, T2[x′/x], a), [pr2;x′](T1, T2[x′/x], a), T2) = a : [
∑

;x](T1, T2)
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Γ ⊢ o1 : UM1 Γ, x : [El](o1) ⊢ o2 : UM2

Γ ⊢ [totalM1,M2 ;x](o1, o2) : Umax(M1,M2)

Γ ⊢ o1 : UM1 Γ, x : [El](o1) ⊢ o2 : UM2

Γ ⊢ [El][totalM1,M2 ; x](o1, o2) = [
∑

;x]([El](o1), [El](o2))

Γ, x : Pt, y : T▷
Γ ⊢ [

∑
;x](Pt, T ) = T [tt/x]

Γ, x : Pt ⊢ o : UM

Γ ⊢ [total0,M ;x](pt, o) = o[tt/x] : UM

Γ, x : T▷
Γ ⊢ [

∑
; x](T, P t) = T

Γ ⊢ o : UM

Γ ⊢ [totalM,0; x](o, pt) = o : UM

Γ, x : Pt, y : T▷
Γ ⊢ [

∏
; x](Pt, T ) = T [tt/x]

Γ, x : Pt ⊢ o : UM

Γ ⊢ [forall0,M ;x](pt, o) = o[tt/x] : UM

Γ, x : T▷
Γ ⊢ [

∏
; x](T, P t) = Pt

Γ ⊢ o : UM

Γ ⊢ [prodM,0; x](o, pt) = pt : UM

Remark 6.3.1 [sumelim] Note that our derivation and reduction rules for the dependent
sum allow one to define ”eliminators” which one would have if one introduced dependent
sums as particular cases of inductive definitions as it is done in Coq. For Γ, x : T1, y : T2▷
the eliminator for the corresponding dependent sum is a family of terms IM of type (we use
the standard abbreviation → for non-dependent product)

[
∏

;P ](([
∑

;x](T1, T2) → UM),

[
∏

; s0]([
∏

; s1](T1, [
∏

; s2](T2, [ev; a](P, [pair;x](s1, s2, T2),UM))),

[
∏

; c]([
∑

;x](T1, T2), [ev; a](P, c,UM))))

which one defines as
[λ;P ](([

∑
; x](T1, T2) → UM),

39



[λ; s0]([
∏

; s1](T1, [
∏

; s2](T2, [ev; a](P, [pair;x](s1, s2, T2),UM))),

[λ; c]([
∑

;x](T1, T2), [ev; s2]([ev; s1](P, [pr1](c, T1),) , [pr2;x](T1, c, T2)),_)))

which is well-typed since [pair;x]([pr1](T1, c), [pr2;x](T1, c, T2)) =A c.

6.4 Reducibility relation on TS1 terms

[red1]

Definition 6.4.1 [drd1] Let UC = (Fu,A) be universe context and FV a sequence of
T-variables. Define a relation ≻A on TS1(Fu, FV, Fv) for each Fv as the union of the
transitive closures of the following reduction relations:

1. Reductions of Definition 4.1.1.

2. Eltotal-reduction. An essential subterm of the form [El][totalM1,M2 ; x](o1, o2) reduces
to [

∑
; x]([El](o1), [El](o2)).

3. iotatotal1-reduction. An essential subterm of the form [pr1;x](T1, T2, [pair; y](o1, o2, T
′
2))

such that T2[y/x] ∼A T ′
2 reduces to o1.

4. iotatotal2-reduction. An essential subterm of the form [pr2;x](T1, T2, [pair; y](o1, o2, T
′
2))

such that T2[y/x] ∼A T ′
2 reduces to o2.

5. etatotal-reduction. An essential subterm of the form

[pair; x]([pr1; y](T ′
1, T

′
2, a

′), [pr2; y](T ′′
1 , T

′′
2 , a

′′), T2)

such that a′ ∼A a′′ and T ′
2[x/y] ∼A T2 ∼A T ′′

2 [x/y] reduces to a′.

6. totalj-reductions:

(a) totalja-reduction. An essential subterm of the form

[totalM1,M2 ; x]([ev; z]([jM0,M ′
1
], o1, T ), o2)

such that M ′
1 ≡A M1, reduces to

[ev; z]([jmax(M0,M2),max(M1,M2)], [totalM0,M2 ;x](o1, o2),Umax(M1,M2))

(b) totaljb-reduction. An essential subterm of the form

[totalM1,M3 ; x](o1, [ev; z]([jM2,M ′
3
], o2, T ))

such that M ′
3 ≡A M3 reduces to

[ev; z]([jmax(M1,M2),max(M1,M3)], [totalM1,M2 ;x](o1, o2),Umax(M1,M3))
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Remark 6.4.2 [etatotal1] The condition that T ′
2[x/y] ≡A T2 is does not follow automati-

cally for derivable terms. Indeed, if a term is derivable then one would expect that T ′
2[o1/y]

is convertible to T2[o1/x] which does not imply that T ′
2[x/y] is convertible to T2.

Let ⪰A be the transitive and reflexive closure of ≻A. The obvious analogs of Lemmas
4.1.3-4.1.6 hold for TS1.

6.5 Local confluence for general terms of TS1

Theorem 6.5.1 [lc1] Let UC = (Fu,A) be a universe context and FV a sequence of
T-variables. Let E ∈ TS1(Fu, FV, Fv). Let further E ≻A E1 and E ≻A E2 be two one-
step reductions. Then there exists a TS1-terms E ′

1, E ′
2 from TS1(Fu, FV, Fv) such that

E1 ⪰A E ′
1, E2 ⪰A E ′

2 and E ′
1 ∼A E ′

2 unless the exceptional case of Theorem 4.2.1 occurs.

Proof: It is sufficient to consider the case when the first reduction is relative to subterm
S = E i.e. occurs at the root. It is further sufficient to consider cases when one of the two
reductions belongs to the list of new items in Definition 6.4.1.

1. Elj-reduction at the root. E = [El][ev; y]([jM1,M2 ], o, T ) and

E1 = [El](o).

No new exposed nodes where second reduction may occur compared to TS0.

2. Elforall-reduction at the root. E = [El][forallM1,M2 ;x](o1, o2) and

E1 = [
∏

;x]([El](o1), [El](o2)).

No new exposed nodes where second reduction may occur compared to TS0.

3. jMM-reduction at the root. E = [jM1,M2 ] such that M1 ≡A M2 and

E1 = [λ;x](UM1 , [x])

No new exposed nodes where second reduction may occur compared to TS0.

4. beta-reduction at the root. E = [ev; z]([λ; x](T1, o1), o2, T2) and

E1 = o1[o2/x].

No new exposed nodes where second reduction may occur compared to TS0.

5. jj-reduction at the root. E = [ev; z]([jM ′
2,M3

], [ev; y]([jM1,M2 ], o, T ), T
′) such that M ′

2 ≡A
M2 and

E1 = [ev; z]([jM1,M3 ], o,UM3)

No new exposed nodes where second reduction may occur compared to TS0.
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6. eta-reduction at the root. E = [λ;x](T1, [ev; y](o, [x], T2)) such that o does not depend
on x and

E1 = o

No new exposed nodes where second reduction may occur compared to TS0.

7. forallj-reductions at the root:

(a) forallja-reduction at the root. E = [forallM1,M2 ; x]([ev; z]([jM0,M ′
1
], o1, T ), o2) such

that M ′
1 ≡A M1 and

E1 = [ev; z]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ; x](o1, o2),Umax(M1,M2))

No new exposed nodes where second reduction may occur compared to TS0.
(b) foralljb-reduction at the root. E = [forallM1,M3 ; x](o1, [ev; z]([jM2,M ′

3
], o2, T )) such

that M ′
3 ≡A M3 and

E1 = [ev; z]([jmax(M1,M2),max(M1,M3)], [forallM1,M2 ;x](o1, o2),Umax(M1,M3)),

No new exposed nodes where second reduction may occur compared to TS0.

8. Eltotal-reduction at the root. E = [El][totalM1,M2 ; x](o1, o2) and

E1 = [
∑

;x]([El](o1), [El](o2)).

The node where second reduction may occur is [totalM1,M2 ; x] with the following actual
cases:

(a) totalja-reduction at [totalM1,M2 ;x]. Then o1 = [ev; z]([jM0,M ′
1
], o′1, T ) where M ′

1 ≡A
M1 and

E1 = [
∑

; x]([El][ev; z]([jM0,M ′
1
], o′1, T ), [El](o2)) ≻

[
∑

;x]([El](o′1), [El](o2)) = E ′
1

E2 = [El][ev; z]([jmax(M0,M2),max(M1,M2)], [totalM0,M2 ;x](o
′
1, o2),Umax(M1,M2)) ≻

[El][totalM0,M2 ;x](o
′
1, o2) ≻ [

∑
; x]([El](o′1), [El](o2)) = E ′

2

(b) foralljb-reduction at [totalM1,M2 ;x]. Then o2 = [ev; z](jM3,M ′
2
, o′2, T ) where M ′

2 ≡A
M2 and

E1 = [
∑

;x]([El](o1), [El][ev; z](jM3,M ′
2
, o′2, T )) ≻

[
∑

;x]([El](o1), [El](o′2)) = E ′
1

E2 = [El][ev; z]([jmax(M1,M3),max(M1,M2)], [totalM1,M3 ;x](o1, o
′
2),Umax(M1,M2)) ≻

[El][forallM1,M3 ;x](o1, o
′
2) ≻ [

∑
;x]([El](o1), [El](o′2)) = E ′

2
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9. iotatotal1-reduction at the root. E = [pr1;x](T1, T2, [pair; y](o1, o2, T
′′′
2 )) where T2[y/x] ∼A

T ′′′
2 and

E1 = o1.

The exposed node where second reduction may occur is [pair; y] with the only actual
case being

(a) etatotal-reduction at [pair; y]. Then

E = [pr1;x](T1, T2, [pair; y]([pr1; z
′](T ′

1, T
′
2, a

′), [pr2; z′′](T ′′
1 , T

′′
2 , a

′′)), T ′′′
2 ))

where a′ ∼A a′′ and T ′
2[y/z

′] ∼A T ′′′
2 ∼A T ′′

2 [y/z
′′]. Then

E1 = [pr1; z′](T ′
1, T

′
2, a

′)

E2 = [pr1;x](T1, T2, a
′)

10. iotatotal2-reduction at the root. E = [pr2;x](T1, T2, [pair; y](o1, o2, T
′′′
2 )) where T2[y/x] ∼A

T ′′′
2 and

E1 = o2.

The exposed node where second reduction may occur is [pair; y] with the only actual
case being

(a) etatotal-reduction at [pair; y]. Then

E = [pr2;x](T1, T2, [pair; y]([pr1; z
′](T ′

1, T
′
2, a

′), [pr2; z′′](T ′′
1 , T

′′
2 , a

′′)))

where a ≡A a′ and T ′
2[y/z

′] ∼A T ′′′
2 ∼A T ′′

2 [y/z
′′]. Then

E1 = [pr2; z′′](T ′′
1 , T

′′
2 , a

′′)

E2 = [pr2; z](T ′
1, T

′
2, a

′)

11. etatotal-reduction at the root. E = [pair; x]([pr1; y](T ′
1, T

′
2, a

′), [pr2; y](T ′′
1 , T

′′
2 , a

′′), T2)
where a ∼A a′, T ′

2[x/y] ∼A T2 ∼A T ′′
2 [x/y] and

E1 = a.

The exposed nodes where second reduction may occur are [pr1; y] and [pr2; y] the
actual cases being

(a) iotatotal1-reduction at [pr1; y]. Then

E = [pair;x]([pr1; y](T ′
1, T

′
2, [pair; z

′](o′1, o
′
2, T

′′′
2 )), [pr2; y](T ′′

1 , T
′′
2 , [pair; z

′′](o′′1, o
′′
2, T

′′′′
2 )), T2)

where o′1 ∼A o′′1, o′2 ∼A o′′2, T ′′′
2 [z′′/z′] ∼A T ′′′′

2 , T ′
2[z

′/y] ∼A T ′′′
2 and

E1 = [pair; z′](o′1, o
′
2, T

′′′
2 ) = E ′

1

E2 = [pair;x](o′1, [pr2; y](T
′′
1 , T

′′
2 , [pair; z

′′](o′′1, o
′′
2, T

′′′′
2 )), T2) ≻A

≻A [pair;x](o′1, o
′′
2, T2) = E ′

2
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(b) iotatotal2-reduction at [pr2; y]. Then

E = [pair;x]([pr1; y](T ′
1, T

′
2, [pair; z

′](o′1, o
′
2, T

′′′
2 )), [pr2; y](T ′′

1 , T
′′
2 , [pair; z

′′](o′′1, o
′′
2, T

′′′′
2 )), T2)

where o′1 ∼A o′′1, o′2 ∼A o′′2, T ′′′
2 [z′′/z′] ∼A T ′′′′

2 , T ′′
2 [z

′′/y] ∼A T ′′′′
2 and

E1 = [pair; z′](o′1, o
′
2, T

′′′
2 ) = E ′

1

E2 = [pair;x]([pr1; y](T ′
1, T

′
2, [pair; z

′](o′1, o
′
2, T

′′′
2 )), o′′2, T2) ≻A

≻A [pair;x](o′1, o
′′
2, T2) = E ′

2

12. totalj-reductions at the root:

(a) totalja-reduction at the root. E = [totalM1,M2 ;x]([ev; z]([jM0,M ′
1
], o1, T ), o2) such

that M ′
1 ≡A M1 and

E1 = [ev; z]([jmax(M0,M2),max(M1,M2)], [totalM0,M2 ;x](o1, o2),Umax(M1,M2))

Exposed nodes where second reduction may occur are [totalM1,M2 ;x], [ev; z] and
[jM0,M ′

1
] with the following actual cases:

i. totaljb-reduction at [totalM1,M2 ;x]. Then o2 = [ev; z′]([jM3,M ′
2
], o′2, T

′) where
M ′

2 ≡A M2 and
E1 = [ev; z]([jmax(M0,M2),max(M1,M2)],

[totalM0,M2 ;x](o1, [ev; z
′]([jM3,M ′

2
], o′2, T

′)),Umax(M1,M2)) ≻

[ev; z]([jmax(M0,M2),max(M1,M2)],

[ev; z′]([jmax(M0,M3),max(M0,M ′
2)
], [totalM0,M3 ; x](o1, o

′
2),Umax(M0,M ′

2)
),

Umax(M1,M2)) ≻

[ev; z]([jmax(M0,M3),max(M1,M2)], [totalM0,M3 ; x](o1, o
′
2),Umax(M1,M2)) = E ′

1

E2 = [ev; z′]([jmax(M1,M3),max(M1,M2)],

[totalM1,M3 ;x]([ev; z]([jM0,M ′
1
], o1, T ), o

′
2),Umax(M1,M2)) ≻

[ev; z′]([jmax(M1,M3),max(M1,M2)],

[ev; z]([jmax(M0,M3),max(M1,M3)], [totalM0,M3 ;x](o1, o
′
2),Umax(M1,M3)),

Umax(M1,M2)) ≻

[ev; z′]([jmax(M0,M3),max(M1,M2)], [totalM0,M3 ;x](o1, o
′
2),Umax(M1,M2)) = E ′

2

ii. jj-reduction at [ev; z]. Then o1 = [ev; z′]([jM3,M ′
0
], o′1, T

′) where M ′
0 ≡A M0

and
E1 = [ev; z]([jmax(M0,M2),max(M1,M2)],

[totalM0,M2 ;x]([ev; z
′]([jM3,M ′

0
], o′1, T

′), o2),Umax(M1,M2)) ≻

[ev; z]([jmax(M0,M2),max(M1,M2)],

[ev; z′]([jmax(M3,M2),max(M0,M2)], [totalM3,M2 ; x](o
′
1, o2),Umax(M0,M2)),
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Umax(M1,M2)) ≻

[ev; z]([jmax(M3,M2),max(M1,M2)], [totalM3,M2 ; x](o
′
1, o2),Umax(M1,M2)) = E ′

1

E2 = [totalM1,M2 ; x]([ev; z]([jM3,M ′
1
], o′1, T ), o2) ≻

[ev; z]([jmax(M3,M2),max(M1,M2)], [totalM3,M2 ; x](o
′
1, o2),Umax(M1,M2)) = E ′

2

iii. jMM-reduction at [jM0,M ′
1
]. Then M0 ≡A M ′

1 and

E1 = [ev; z]([jmax(M0,M2),max(M1,M2)], [totalM0,M2 ;x](o1, o2),Umax(M1,M2)) ≻

[ev; z]([λ;x](Umax(M0,M2), [x]), [totalM0,M2 ;x](o1, o2),Umax(M1,M2)) ≻

[totalM0,M2 ;x](o1, o2) = E ′
1

E2 = [totalM1,M2 ;x]([ev; x]([λ; x](UM0 , [x]), o1, T ), o2) ≻

[totalM1,M2 ;x](o1, o2) = E ′
2

(b) totaljb-reduction at the root. E = [totalM1,M3 ; x](o1, [ev; z]([jM2,M ′
3
], o2, T )) such

that M ′
3 ≡A M3 and

E1 = [ev; z]([jmax(M1,M2),max(M1,M3)], [totalM1,M2 ; x](o1, o2),Umax(M1,M3)),

Exposed nodes where second reduction may occur are [totalM1,M3 ;x], [ev; z] and
[jM2,M ′

3
] with the following actual cases:

i. totalja-reduction at [totalM1,M3 ;x]. Then o1 = [ev; z′]([jM0,M ′
1
], o′1, T

′) where
M ′

1 ≡A M1 and
E1 = [ev; z]([jmax(M1,M2),max(M1,M3)],

[totalM1,M2 ;x]([ev; z
′]([jM0,M ′

1
], o′1, T

′), o2),Umax(M1,M3)) ≻

[ev; z]([jmax(M1,M2),max(M1,M3)],

[ev; z′]([jmax(M0,M2),max(M1,M2)], [totalM0,M2 ; x](o
′
1, o2),Umax(M0,M2)),

Umax(M1,M3)) ≻

[ev; z]([jmax(M0,M2),max(M1,M3)], [totalM0,M2 ; x](o
′
1, o2),Umax(M1,M3)) = E ′

1

E2 = [ev; z′]([jmax(M0,M3),max(M1,M3)],

[totalM0,M3 ;x](o
′
1, [ev; z]([jM2,M ′

3
], o2, T

′),Umax(M1,M3)) ≻

[ev; z′]([jmax(M0,M3),max(M1,M3)],

[ev; z]([jmax(M0,M2),max(M0,M3)], [totalM0,M2 ;x](o
′
1, o2),Umax(M0,M3)),

Umax(M1,M3)) ≻

[ev; z′]([jmax(M0,M2),max(M1,M3)], [totalM0,M2 ;x](o
′
1, o2),Umax(M1,M3)) = E ′

2
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ii. jj-reduction at [ev; z]. Then o2 = [ev; z′]([jM0,M ′
2
], o′2, T

′) where M ′
2 ≡A M2

and
E1 = [ev; z]([jmax(M1,M2),max(M1,M3)],

[totalM1,M2 ;x](o1, [ev; z
′]([jM0,M ′

2
], o′2, T

′)),Umax(M1,M3)) ≻

[ev; z]([jmax(M1,M2),max(M1,M3)],

[ev; z′]([jmax(M1,M0),max(M1,M2)], [totalM1,M0 ; x](o1, o
′
2),Umax(M1,M2)),

Umax(M1,M3)) ≻

[ev; z]([jmax(M1,M0),max(M1,M3)], [totalM1,M0 ; x](o1, o
′
2),Umax(M1,M3)) = E ′

1

E2 = [totalM1,M3 ; x](o1, [ev; z]([jM0,M ′
3
], o′1, T

′)) ≻

[ev; z]([jmax(M1,M0),max(M1,M3)], [totalM1,M0 ; x](o1, o
′
2),Umax(M1,M3)) = E ′

2

iii. jMM-reduction at [jM2,M ′
3
]. Then M2 ≡A M ′

3 and

E1 = [ev; z]([jmax(M1,M2),max(M1,M3)], [totalM1,M2 ;x](o1, o2),Umax(M1,M3)) ≻

[ev; z]([λ;x](Umax(M1,M2), [x]), [totalM1,M2 ;x](o1, o2),Umax(M1,M3)) ≻

[totalM1,M2 ;x](o1, o2) = E ′
1

E2 = [totalM1,M3 ;x](o1, [ev;x]([λ;x](UM2 , [x]), o2, T
′)) ≻

[totalM1,M3 ;x](o1, o2) = E ′
2

7 Adding pairwise disjoint unions - system TS3

7.1 TS3 terms and typing function

Definition 7.1.1 [d31] The following labels are permitted in the expressions of TS3 - the
labels permitted in TS2, ⨿, coprod, ii1, ii2 and [sum; x], [⨿;x1, x2].

The notions of u-level expressions, T- and o- terms in TS3 are defined as follows:

Definition 7.1.2 [d32]

1. expressions with the root node caring a TS2-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 5.1.2,

2. expressions with the root of the form ⨿ and [⨿;x1, x2] are T-expressions,

3. expressions with the root of the form coprod, ii1, ii2 and sum. are o-expressions.

Definition 7.1.3 [d33] A TS3-term is a TS3-expression such that:
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1. any node caring one of the TS2-labels satisfies the conditions of Definition 5.1.3,

2. any node of the form [⨿] has valency 2 and its two branches are T-expressions,

3. any node of the form [⨿;x1, x2] has valency 5, its first four branches are T-expressions
and the fifth branch is an o-expression, its first, second and fifths branches do not
depend on x1, x2, its third branch does not depend on x2 and its fourth branch does not
depend on x1,

4. any node of the form [coprod] has valency 4, its first two branches are u-level expressions
and the last two branches are o-expressions,

5. any node of the form [ii1] has valency 3 and its first two branches are T-expressions
and the third one is an o-expression,

6. any node of the form [ii2] has valency 3 and its first two branches are T-expressions
and the third one is an o-expression.

7. any node of the form [sum;x] has valency 6, its first two branches are T-expressions
next three are o-expressions all of which do not contain x and the last branch is a
T-expression.

Definition 7.1.4 [d34] A node in TS3 term is called non-essential if it satisfies the condi-
tions of Definition 6.1.4. The same applies to the definition of essential nodes, essential and
non-essential subexpressions and of Ess(E) is extended to TS3-terms in the obvious way.

We let TS3 denote the set of TS3-terms and TT3 and oT3 denote the subsets of T-terms
and o-terms. The obvious analog of Lemma 3.1.7 holds for TS3-expressions. We extend to
TS3 the abbreviations introduced for TS2-expressions, abbreviate [coprod](M1,M2, o1, o2) as
[coprodM1,M2 ](o1, o2) and write T1 ⨿ T2 for [⨿](T1, T2).

Definition 7.1.5 [dtau3] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS3 as follows:

1. the value of τΓ on an o-term whose root node carries a TS2-label is computed according
to the rules of Definition 5.1.5.

2. τΓ([coprodM1,M2 ](o1, o2)) = Umax(M1,M2),

3. τΓ([ii1](T1, T2, o)) = [⨿](T1, T2),

4. τΓ([ii2](T1, T2, o)) = [⨿](T1, T2),

5. τΓ([sum;x](T1, T2, s1, s2, o, S)) = S[o/x].

We have the obvious analog of Proposition 3.1.9 for TS3.
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7.2 Equivalence relations ≡A and ∼A on TS3-terms

The relations ≡A and ∼A are extended to TS1-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

7.3 Reducibility relation on TS3 terms

Definition 7.3.1 [drd3] Let UC = (Fu,A) be universe context and FV a sequence of T-
variables. Define a relation ≻A on TS3(Fu, FV, Fv) for any Fv as the transitive closure of
the union of the following reduction relations:

1. Reductions of Definition 5.5.1.

2. Elcoprod-reduction. An essential subterm of the form [El][coprodM1,M2 ](o1, o2) reduces
to [⨿]([El](o1), [El](o2)).

3. amalg-reductions.

(a) amalg1-reduction. An essential sub term of the form

[⨿; x1, x2](T1, T2, S1, S2, [ii1](T
′
1, T

′
2, o))

such that T1 ∼A T ′
1 and T2 ∼A T ′

2 reduces to S1[o/x1].
(b) amalg1-reduction. An essential sub term of the form

[⨿; x1, x2](T1, T2, S1, S2, [ii2](T
′
1, T

′
2, o))

such that T1 ∼A T ′
1 and T2 ∼A T ′

2 reduces to S2[o/x2].

4. sum-reductions.

(a) sum1-reduction. An essential subterm of the form

[sum; x](T1, T2, s1, s2, [ii1](T
′
1, T

′
2, o))

such that T1 ∼A T ′
1 and T2 ∼A T ′

2 reduces to [ev;x](s1, o, [⨿](T1, T2)).
(b) sum2-reduction. An essential subterm of the form

[sum; x](T1, T2, s1, s2, [ii2](T
′
1, T

′
2, o))

such that T1 ∼A T ′
1 and T2 ∼A T ′

2 reduces to [ev;x](s2, o, [⨿](T1, T2)).

5. coprodj-reductions:

(a) coprodj1-reduction. An essential subterm of the form

[coprodM1,M2 ]([ev; z]([jM0,M ′
1
], o1, T ), o2)

where M1 ≡A M ′
1 reduces to

[ev; z]([jmax(M0,M2),max(M1,M2)], [coprodM0,M2 ](o1, o2),Umax(M1,M2))
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(b) coprodj2-reduction. An essential subterm of the form

[coprodM1,M3 ](o1, [ev; z]([jM2,M ′
3
], o2, T ))

where M3 ≡A M ′
3 reduces to

[ev; z]([jmax(M1,M2),max(M1,M3)], [coprodM1,M2 ](o1, o2),Umax(M1,M3))

The obvious analogs of Lemmas 4.1.3-4.1.6 hold for TS3.

7.4 Local confluence for general terms of TS3

There are eight new confluence situations associated with disjoint union. They are:

1. Elcoprod-reduction at the root with:

(a) coprodj1-reduction at [coprod].
(b) coprod2-reduction at [coprod].

2. coprodj1-reduction at the root with:

(a) coprodj2-reduction at [coprod].
(b) jj-reduction at [ev; z].
(c) jMM-reduction at [j].

3. coprodj2-reduction at the root with:

(a) coprodj1-reduction at [coprod].
(b) jj-reduction at [ev; z].
(c) jMM-reduction at [j].

which are handled in exactly the same way as similar confluence situations for [forall] and
[total].

7.5 Derivation rules of TS3

The derivation rules for contexts and judgements of TS3 are the derivation rules for TS2
together with the following additional ones:

Γ ⊢ o1 : UM1 Γ ⊢ o1 : UM2

Γ ⊢ [coprodM1,M2 ] : Umax(M1,M2)

Γ, x1 : T1 ▷ Γ, x2 : T2▷
Γ, x : [⨿](T1, T2)▷
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Γ ⊢ a : [⨿](T1, T2)
Γ, x1 : T1, s1 : S1▷
Γ, x2 : T2, s2 : S2▷

Γ, s : [⨿;x1, x2](T1, T2, S1, S2, a)▷

Γ ⊢ o1 : T1 Γ, x2 : T2▷
Γ ⊢ [ii1](T1, T2, o1) : [⨿](T1, T2)

Γ, x1 : T1 ▷ Γ ⊢ o2 : T2

Γ ⊢ [ii2](T1, T2, o2) : [⨿](T1, T2)

Γ, x : [⨿](T1, T2), y : S ▷ Γ ⊢ s1 : [
∏
;x1](T1, S[[ii1](T1, T2, x1)/o])

Γ ⊢ s2 : [
∏
;x2](T2, S[[ii2](T1, T2, x2)/o])

Γ ⊢ o : [⨿](T1, T2)

Γ ⊢ [sum; x](T1, T2, s1, s2, o, S) : S[o/x]

8 Adding the empty type - system TS4

8.1 TS4 terms and typing function

Definition 8.1.1 [d41] The following labels are permitted in the expressions of TS4 - the
labels permitted in TS3, empty, emptyr.

The notions of u-level expressions, T- and o- terms in TS4 are defined as follows:

Definition 8.1.2 [d42]

1. expressions with the root node caring a TS3-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 7.1.2,

2. expressions with the root of the form [empty] and [emptyr] are o-expressions,

Definition 8.1.3 [d43] A TS4-term is a TS4-expression such that:

1. any node caring one of the TS3-labels satisfies the conditions of Definition 7.1.3,

2. any node of the form [empty] has valency 0,

3. any node of the form [emptyr] has valency 2, its first branch is a T-expression and its
second branch an o-expression.

Definition 8.1.4 [d44] A node in TS4 term is called non-essential if it satisfies the condi-
tions of Definition 6.1.4. The same applies to the definition of essential nodes, essential and
non-essential subexpressions and of Ess(E) is extended to TS4-terms in the obvious way.
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We let TS4 denote the set of TS4-terms and TT4 and oT4 denote the subsets of T-terms
and o-terms. The obvious analog of Lemma 3.1.7 holds for TS4-expressions. We extend to
TS4 the abbreviations introduced for TS3-expressions and also abbreviate [El][empty] as ∅.

Definition 8.1.5 [dtau4] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS4 as follows:

1. the value of τΓ on an o-term whose root node carries a TS3-label is computed according
to the rules of Definition 7.1.5.

2. τΓ([empty]) = U0,

3. τΓ([emptyr](T, o) = T

We have the obvious analog of Proposition 3.1.9 for TS3.

8.2 Equivalence relations ≡A and ∼A on TS4-terms

The relations ≡A and ∼A are extended to TS1-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

8.3 Reducibility relation on TS4 terms

There are no new reductions for TS4 compared to TS3. The obvious analogs of Lemmas
4.1.3-4.1.6 hold for TS4.

8.4 Local confluence for general terms of TS4

There are no new confluence situations for TS4 compared with TS3.

8.5 Derivation rules of TS4

The derivation rules for contexts and judgements of TS4 are the derivation rules for TS3
together with the following additional ones:

Γ▷
Γ ⊢ empty : U0

Γ, x : T ▷ Γ ⊢ o : ∅
Γ ⊢ emptyr(T, o) : T

This derivations rules show in particular correctness of the following definition

Def. fromempty(T : Type) := λx : ∅, [emptyr](T, x) :
∏

x : ∅, T
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9 Adding generalized W -types - system TS5

9.1 TS5 terms and typing function

Definition 9.1.1 [d51] The following labels are permitted in the expressions of TS5 - the
labels permitted in TS4, [IC; x, y, z], [c;x, y, z], [ICr;x, y, z, x

′, v], [ic;x, y, z].

The notions of u-level expressions, T- and o- terms in TS5 are defined as follows:

Definition 9.1.2 [d52]

1. expressions with the root node caring a TS4-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 8.1.2,

2. expressions with the root of the form [IC; x, y, z] are T-expressions,

3. expressions with the root of the form [c; x, y, z], [ICr; x, y, z, x
′, v] and [ic; x, y, z] are

o-expressions.

Definition 9.1.3 [d53] A TS5-term is a TS5-expression such that:

1. any node caring one of the TS4-labels satisfies the conditions of Definition 7.1.3,

2. any node of the form [IC;x, y, z] has valency 5, its first branch, third and fourth
branches are T-expressions and second and fifths branches are o-expressions, the first
and second branch do not depend on x, y, z, the third branch does not depend on y, z
and the fourth branch does not depend on z,

3. any node of the form [c;x, y, z] has valency 7 with the same conditions on the first five
branches as for [IC;x, y, z], the sixth and seventh branches are o-expressions which do
not depend on x, y and z,

4. any node of the form [ICr;x, y, z, x
′, v] has valency 8 with the same conditions on the

first five branches as for [IC; x, y, z] and additional condition that they do not depend
on x′, v, its sixth and eighths branches are o-expressions, its seventh branch is a T-
expression, the sixth and eighths branches do not depend on x, y, z, x′, v, the seventh
branch does not depend on x, y, z,

5. any node of the form [ic;x, y, z] has valency 8, its first three branches are u-level
expressions and the last five branches are o-expressions, the fourth and fifth branches
do not depend on x, y, z, the sixth branch does not depend on y, z and the seventh
branch does not depend on z.

Definition 9.1.4 [d54] A node in TS5 term is called non-essential if it satisfies the condi-
tions of Definition 6.1.4. The same applies to the definition of essential nodes, essential and
non-essential subexpressions and of Ess(E) is extended to TS5-terms in the obvious way.
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We let TS5 denote the set of TS5-terms and TT5 and oT5 denote the subsets of T-terms
and o-terms. The obvious analog of Lemma 3.1.7 holds for TS5-expressions. We extend to
TS5 the abbreviations introduced for TS4-expressions.

Definition 9.1.5 [dtau5] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS5 as follows:

1. the value of τΓ on an o-term whose root node carries a TS4-label is computed according
to the rules of Definition 8.1.5.

2. τΓ([c;x, y, z](A, a,B,D, q, b, f)) = [IC;x, y, z](A, a,B,D, q),

3. τΓ([ICr; x, y, z, x
′, v](A, a,B,D, q, i, S, t)) = S[a/x′, i/v],

4. τΓ([ic;x, y, z](M1,M2,M3, oA, a, oB, oD, q)) = Umax(M1,M2,M3).

We have the obvious analog of Proposition 3.1.9 for TS5.

9.2 Equivalence relations ≡A and ∼A on TS5-terms

The relations ≡A and ∼A are extended to TS5-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

9.3 Reducibility relation on TS5 terms

Definition 9.3.1 [drd5] Let UC = (Fu,A) be universe context and FV a sequence of T-
variables. Define a relation ≻A on TS5(Fu, FV, Fv) for all Fv as the transitive closure of
the union of the following reduction relations:

1. Reductions of Definition 7.3.1.

2. Elic-reduction. An essential sub term of the form [El][ic;x, y, z](M1,M2,M3, oA, a, oB, oD, q)
reduces to [IC; x, y, z]([El](oA), a, [El](oB), [El](oD), q).

3. ICiota-reduction. An essential subterm of the form

[ICr;x, y, z, x
′, v](A, a,B,D, [c; x, y, z](A′, a′, B′, D′, q, b, f), S, t)

where A ∼A A′, a ∼A a′, B ∼A B′ and D ∼A D′ reduces to

t a b f [λ; d](D[a/x, b/y], [ICr;x, y, z, x
′, v](A, q[a/x, b/y, d/z], B,D, q, (f d)))

The obvious analogs of Lemmas 4.1.3-4.1.6 hold for TS5.
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9.4 Recursive equality in TS5

In the following two rules we use the notation qd = q[a/x, b/y, z/d].

Γ, x : A, y : B, z : D ⊢ q : A
Γ, a : A, i : [IC;x, y, z](A, a,B,D, q), t1 : T1▷
Γ, a : A, i : [IC;x, y, z](A, a,B,D, q), t2 : T2▷
(Γ, a : A, b : B[a/x], d : D[a/x, b/y], i : [IC; x, y, z](A, qd,B,D, q) ⊢ T1[qd/a] =A T2[qd/a]) ⇒

(Γ, a : A, i : [IC; x, y, z](A, a,B,D, q) ⊢ T1 =A T2)

Γ, a : A, i : [IC;x, y, z](A, a,B,D, q) ⊢ T1 =A T2

Γ, x : A, y : B, z : D ⊢ q : A
Γ, a : A, i : [IC;x, y, z](A, a,B,D, q) ⊢ f : T
Γ, a : A, i : [IC;x, y, z](A, a,B,D, q) ⊢ g : T
(Γ, a : A, b : B[a/x], d : D[a/x, b/y], i : [IC; x, y, z](A, qd,B,D, q) ⊢ f [qd/a] =A g[qd/a]) ⇒

(Γ, a : A, i : [IC;x, y, z](A, a,B,D, q) ⊢ f =A g)

Γ, a : A, i : [IC;x, y, z](A, a,B,D, q) ⊢ f =A g

9.5 Local confluence for general terms of TS5

There are no new confluence situations for TS5 compared with TS5.

9.6 Derivation rules of TS5

The derivation rules for contexts and judgements of TS5 are the derivation rules for TS4
together with the following additional ones:

Γ ⊢ a : A Γ, x : A, y : B, z : D ⊢ q : A

Γ, w : [IC; x, y, z](A, a,B,D, q)▷

Γ ⊢ oA : UM1 Γ ⊢ a : [El](oA)
Γ, x : [El](oA) ⊢ oB : UM2

Γ, x : [El](oA), y : [El](oB) ⊢ oD : UM3

Γ, x : [El](oA), y : [El](oB), z : [El](oD) ⊢ q : [El](oA)

Γ ⊢ [ic; x, y, z](oA, a, oB, oD, q) : Umax(M1,M2,M3)

Γ ⊢ a : A Γ, x : A, y : B, z : D ⊢ q : A Γ ⊢ b : B[a/x] Γ ⊢ f : [
∏
; z′](D[a/x, b/y], ICqa)

Γ ⊢ [c; x, y, z](A, a,B,D, q, b, f) : [IC; x, y, z](A, a,B,D, q)

where
ICqa := [IC; x, y, z](A, q[a/x, b/y, z′/z], B,D, q)
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and
Γ ⊢ a : A
Γ, x : A, y : B, z : D ⊢ q : A
Γ ⊢ i : [IC; x, y, z](A, a,B,D, q)
Γ, x′ : A, v : ICx′, s : S▷
Γ ⊢ t :

∏
(x′ : A)(y′ : B[x′/x])(w : [

∏
; z′](D[x′/x, y′/y], ICq′)),

[
∏
; d](D[x′/x, y′/y], S[q[x′/x, y′/y, d/z]/x′, (w d)/v]) → S[(cx′y′w)/v]

Γ ⊢ [ICr; x, y, z, x′, v](A, a,B,D, q, i, S, t) : S[a/x′, i/v]

where
ICx′ := [IC; x, y, z](A, x′, B,D, q)

ICq′ := [IC; x, y, z](A, q[x′/x, y′/y, z′/z], B,D, q)

cx′y′w := [c;x, y, z](A, x′, B,D, q, y′, w)

Remark 9.6.1 Our inductive type [IC; x, y, z](A, a,B,D, q) corresponds to the following
inductive definition in Coq:
Inductive IC(A:Type)(a:A)(B:A->Type)(D:forall x:A, ( B x -> Type ))(q:forall x:A, forall
y:B x, forall z: D x y, A):= c: forall b:B a, forall f : (forall d: D a b, IC A (q a b d) B D q),
IC A a B D q .
with [ICr; . . .] being a direct analog of the eliminator ICr and the reduction rule the direct
analog of the iota-reduction for this inductive type.

10 Datatypes

The basic constructions of TS5 allow one to define various ”datatypes” i.e. types with
associated eliminators and computation rules which in Coq are introduced by strictly positive
inductive definitions without pseudo-parameters. In this section we consider only natural
numbers and binary trees but it should be possible to write down a simple algorithm which
would translate a general strictly positive inductive definition without pseudo-parameters
into the language of TS5.

10.1 Natural numbers

The object of type U0 corresponding to natural numbers is defined as follows:

Def. nat := [ic; x, y, z](oA, tt, oB, oD, tt) : U0

where
oA := pt oB := [coprod0,0](pt, pt)

oD := [sum; y′](Pt, P t, (λ z′ : Pt, empty), (λ z′ : Pt, pt), y,U0)
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We will write N for [El](nat). The two standard constructors for N are defined as:

Def. O := [c;x, y, z](A, tt, B,D, tt, [ii1](Pt, P t, tt), (fromempty N)) : N

Def. S := λn : N, [c; x, y, z](A, tt, B,D, tt, [ii2](Pt, P t, tt), (λ t : Pt, n)) : N → N
where

A := [El](oA) = Pt B := [El](oB) = Pt⨿ Pt D = [El](oD)

The eliminator associated with natural numbers is defined as:

[natr; v](v : N, v′ : T▷)(oO : T [O/v])(oS :
∏

(v : N)(y : T ), T [(S v)/v])(n : N) :=

= [ICr;x, y, z, x
′, v](A, tt, B,D, tt, n, T, t) : T [n/v]

where

t :
∏

(x′ : Pt)(y′ : Pt⨿ Pt)(w : D[y′/y] → N)(s :
∏

d : D[y′/y], T [(w d)/v]),

T ([c; x, y, z](A, x′, B,D, tt, y′, w)/v)

using eliminators for Pt and Pt ⨿ Pt we see that it is sufficient to describe t tt [ii1](tt) and
t tt [ii2](tt) whose types are

t tt [ii1](tt) :
∏

(w : ∅ → N)(s :
∏

d : ∅, T [(w d)/v]), T ([c; x, y, z](A, tt, B,D, tt, [ii1](tt), w)/v)

and

t tt [ii2](tt) :
∏

(w : Pt → N)(s :
∏

d : Pt, T [(w d)/v]), T ([c; x, y, z](A, tt, B,D, tt, [ii2](tt), w)/v)

= λ(x : Pt)(y : Pt⨿Pt)(w :
∏

z′ : D,N)(s :
∏

d : D,T [w d/v]), [sum; y′](Pt, P t, f1, f2, y, (
∏

(d : D[y′/y])(v′ : N), T ))

11 Adding the identity types - system TS6

11.1 TS6 terms and typing function

Definition 11.1.1 [d61] The following labels are permitted in the expressions of TS6 - the
labels permitted in TS5, Id, paths, refl, [J ; x, e].

The notions of u-level expressions, T- and o- terms in TS6 are defined as follows:

Definition 11.1.2 [d62]

1. expressions with the root node caring a TS5-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 15.1.2,
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2. expressions with the root of the form [Id] are T-expressions,

3. expressions with the root of the form [paths], [relf ] and [J ; x, e] are o-expressions,

Definition 11.1.3 [d63] A TS6-term is a TS6-expression such that:

1. any node caring one of the TS5-labels satisfies the conditions of Definition 15.1.3,

2. any node of the form [Id] has valency 3, its first branch is a T-expression and the last
two branches are o-expressions,

3. any node of the form [paths] has valency 4, its first branch is a u-level expression and
the following three branches are o-expressions,

4. any node of the form [refl] has valency 2, its first branch is a T-expression and its
second branch is an o-expression,

5. any node of the form [J ; x, e] has valency 6, its first branch is a T-expression, the
following 4 branches are o-expressions all of them do not contain x, e and the last
branch is a T-expression.

Definition 11.1.4 [d64] A node in TS6 term is called non-essential if it satisfies the condi-
tions of Definition 6.1.4. The same applies to the definition of essential nodes, essential and
non-essential subexpressions and of Ess(E) is extended to TS6-terms in the obvious way.

We let TS6 denote the set of TS6-terms and TT6 and oT6 denote the subsets of T-terms
and o-terms. The obvious analog of Lemma 3.1.7 holds for TS6-expressions. We extend
to TS6 the abbreviations introduced for TS5-expressions, abbreviate [paths](M, t, o1, o2) as
[pathsM ](t, o1, o2), [Id](T, o1, o2) as Id T o1 o2 and write Id x y for Id τΓ(x) x y and refl o for
[refl](τΓ(o), o).

Definition 11.1.5 [dtau6] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS6 as follows:

1. the value of τΓ on an o-term whose root node carries a TS5-label is computed according
to the rules of Definition 15.1.5.

2. τΓ([pathsM ](t, o1, o2)) = UM ,

3. τΓ([refl](T, o)) = [Id](T, o, o),

4. τΓ([J ;x, e](T, a, b, q, i, S)) = S[o1/x, o2/y, o3/e]

We have the obvious analog of Proposition 3.1.9 for TS6.
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11.2 Equivalence relations ≡A and ∼A on TS6-terms

The relations ≡A and ∼A are extended to TS1-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

11.3 Reducibility relation on TS6 terms

Definition 11.3.1 [drd6] Let UC = (Fu,A) be universe context and FV a sequence of
T-variables. Define a relation ≻A on TS6(Fu, FV, Fv) for all Fv as the transitive closure
of the union of the following reduction relations:

1. Reductions of Definition 7.3.1.

2. Elpaths-reduction An essential subterm of the form [El][pathsM ](t, o1, o2) reduces to
[Id]([El](t), o1, o2),

3. pathsj-reduction An essential subterm of the form [pathsM2 ]([ev;x]([jM1,M ′
2
], t, ), o1, o2)

such that M2 ≡A M ′
2 reduces to [ev;x]([jM1,M ′

2
], [pathsM1 ](t, o1, o2),M

′
2),

4. Jiota-reduction. An essential subterm of the form [J ;x, e](T, a, a′, q, [refl](T ′, a′′), S)
such that a ∼A a′ ∼A a′′ and T ∼A T ′ reduces to q,

The obvious analogs of Lemmas 4.1.3-4.1.6 hold for TS6.

11.4 Local confluence for general terms of TS6

There are the following new confluence situations in TS6 compared with TS5:

1. Elpaths-reduction at the root and pathsj-reduction at [paths],

2. pathsj-reduction at the root and

(a) jj-reduction at [ev;x],
(b) jMM-reduction at [j].

These cases are dealt with in the same way as similar cases for [forall], [total] etc.

11.5 Derivation rules of TS6

The derivation rules for contexts and judgements of TS6 are the derivation rules for TS5
together with the following additional ones:

Γ ⊢ t : UM Γ ⊢ o1 : [El][t] Γ ⊢ o2 : [El][t]

Γ ⊢ [pathsM ](t, o1, o2) : UM
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Γ ⊢ o1 : T Γ ⊢ o2 : T

Γ, y : [Id](T, o1, o2)▷

Γ ⊢ o : T

Γ ⊢ [refl](T, o) : [Id](T, o, o)

Γ ⊢ a : T
Γ, x : T, e : [Id](T, a, x), z : S▷
Γ ⊢ q : S[a/x, [refl](T, a)/e]

Γ ⊢ b : T
Γ ⊢ i : [Id](T, a, b)

Γ ⊢ [J ;x, e](T, a, b, q, i, S) : S[b/x, i/e]
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12 Adding resizing rules RR0 and RR1 - system TS7

In order to introduce the resizing rules we will need the folioing definitions:

1. Def. Iscontr(X : Type) :=
∑

x : X,
∏

y : X, Id y x

2. Def. Hfiber{X, Y : Type}(f : X → Y )(y : Y ) :=
∑

x : X, Id (f x) y

3. Def. Isweq{X Y Type}(f : X → Y ) :=
∏

y : Y, Iscontr(Hfiber f y)

4. Def. Weq(X Y : Type) :=
∑

f : X → Y, Isweq f

5. Def. Isaprop(X : Type) :=
∏

x : X,
∏

x′ : X, Iscontr(Id x x′)

6. Def. Isaset(X : Type) :=
∏

x : X,
∏

x′ : X, Isaprop(Id x x′)

7. Def. idfun(X : Type) := λx : X, x

8. Th. idisweq(X : Type) : Isweq X

9. Def. idweq(X : Type) := [pair; f ](Isweq f, idfunX, idisweq X) : WeqX X

12.1 TS7 terms and typing function

Definition 12.1.1 [d71] The following labels are permitted in the expressions of TS7 - the
labels permitted in TS6, rr0, rr1.

The notions of u-level expressions, T- and o- terms in TS7 are defined as follows:

Definition 12.1.2 [d72]

1. expressions with the root node caring a TS5-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 11.1.2,

2. expressions with the root of the form rr0 and rr1 are o-expressions,

Definition 12.1.3 [d73] A TS7-term is a TS7-expression such that:

1. any node caring one of the TS6-labels satisfies the conditions of Definition 11.1.3,

2. any node of the form [rr0] has valency 5, its first two branches are u-level expressions
and the last three are o-expressions,

3. any node of the form [rr1] has valency 3, its first branch is an u-level expression and
the last two branches are o-expressions,
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Definition 12.1.4 [d74] A node in TS7 term is called non-essential if it satisfies the con-
ditions of Definition 6.1.4 or if it belongs to the subexpression t or e of a subexpression of the
form [rr0](M1,M2, s, t, e) or if it belongs to subexpression p of a subexpression of the form
[rr1](M,a, p).
The definition of essential nodes, essential and non-essential subexpressions and of Ess(E)
is extended to TS6-terms in the obvious way.

We let TS7 denote the set of TS7-terms and TT7 and oT7 denote the subsets of T-terms and
o-terms. The obvious analog of Lemma 3.1.7 holds for TS7-expressions. We extend to TS7
the abbreviations introduced for TS6-expressions and also abbreviate [rr0](M2,M1, s, t, e) as
[rr0M2,M1 ](s, t, e) and [rr1](M,a, p) as [rr1M ](a, p).

Definition 12.1.5 [dtau7] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS7 as follows:

1. the value of τΓ on an o-term whose root node carries a TS6-label is computed according
to the rules of Definition 11.1.5.

2. τΓ([rr0M2,M1 ](s, t, e)) = UM1,

3. τΓ([rr1M ](a, p)) = U0,

We have the obvious analog of Proposition 3.1.9 for TS7.

12.2 Equivalence relations ≡A and ∼A on TS7-terms

The relations ≡A and ∼A are extended to TS7-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

12.3 Reducibility relation on TS7 terms

Definition 12.3.1 [drd7] Let UC = (Fu,A) be universe context and FV a sequence of
T-variables. Define a relation ≻A on TS7(Fu, FV, Fv) for all Fv as the transitive closure
of the union of the following reduction relations:

1. Reductions of Definition 11.3.1.

2. Elrr0-reduction. An essential subterm of the form [El][rr0M2,M1 ](s, t, e) reduces to
[El](s).

3. forallrr0a-reduction. An essential subterm S = [forallM1,M2 ;x]([rr0M3,M ′
1
](s, t, e), o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M3 reduces to

[rr0max(M3,M2),max(M1,M2)]([forallM3,M2 ;x](s, o2), S, idweq S)
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4. forallrr0b-reduction. An essential subterm S = [forallM1,M2 ;x](o1, [rr0M3,M ′
2
](s, t, e))

such that M2 ≡A M ′
2 and M ′

2 ≤A M3 reduces to
[rr0max(M1,M3),max(M1,M2)]([forallM1,M3 ;x](o1, s), S, idweq S)

5. totalrr0a-reduction. An essential subterm S = [totalM1,M2 ;x]([rr0M3,M ′
1
](s, t, e), o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M3 reduces to
[rr0max(M3,M2),max(M1,M2)]([totalM3,M2 ;x](s, o2), S, idweq S)

6. totalrr0b-reduction. An essential subterm S = [totalM1,M2 ;x](o1, [rr0M3,M ′
2
](s, t, e))

such that M2 ≡A M ′
2 and M ′

2 ≤A M3 reduces to
[rr0max(M1,M3),max(M1,M2)]([totalM1,M3 ;x](o1, s), S, idweq S)

7. coprodrr0a-reduction. An essential subterm S = [coprodM1,M2 ]([rr0M3,M ′
1
](s, t, e), o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M3 reduces to
[rr0max(M3,M2),max(M1,M2)]([coprodM3,M2 ](s, o2), S, idweq X)

8. coprodrr0b-reduction. An essential subterm S = [coprodM1,M2 ](o1, [rr0M3,M ′
2
](s, t, e))

such that M2 ≡A M ′
2 and M ′

2 ≤A M3 reduces to
[rr0max(M1,M3),max(M1,M2)]([coprodM1,M3 ](o1, s), S, idweq S)

9. pathsrr0-reduction. An essential subterm S = [pathsM1 ]([rr0M2,M ′
1
](s, t, e), o1, o2) such

that M1 ≡A M ′
1 and M ′

1 ≤A M2 reduces to
[rr0M2,M1 ]([pathsM2 ](s, o1, o2), S, idweq S)

10. rr1rr0-reduction. An essential subterm of the form [rr1M ](a, p) reduces to
[rr0M,0](a, [rr1M ](a, p), idweq [rr1M ](a, p)).

11. jrr0j-reduction. An essential subterm of the form jM ′
1,M3

[rr0M2,M1 ](s, t, e) such that
M ′

1 ≡A M1 and M1 ≤A M2 ≤A M3 reduces to jM2,M3 s.

12. jrr0rr0-reduction. An essential subterm of the form jM ′
1,M2

[rr0M3,M1 ](s, t, e) such that
M ′

1 ≡A M1 and M1 ≤A M2 ≤A M3 reduces to [rr0M3,M2 ](s, jM1,M2 t, e).

13. rr0jj-reduction. An essential subterm of the form [rr0M2,M1 ]((jM0,M ′
2
s), t, e) such that

M2 ≡A M ′
2 and M0 ≤A M1 ≤A M2 reduces to jM0,M1 s.

14. rr0jrr0-reduction. An essential subterm of the form [rr0M3,M1 ]((jM2,M ′
3
s), t, e) such that

M3 ≡A M ′
3 and M0 ≤A M1 ≤A M2 reduces to [rr0M2,M1 ](s, t, e).

15. rr0rr0-reduction. An essential subterm of the form [rr0M2,M1 ]([rr0M3,M ′
2
](s, t2, e2), t1, e1)

such that M2 ≡A M ′
2 and M1 ≤A M2 ≤A M3 reduces to [rr0M3,M1 ](s, t1, e1).

16. rr0MM-reduction. An essential subterm of the form [rr0M,M ′ ](s, t, e) such that M ≡A
M ′ reduces to s.

The obvious analogs of Lemmas 4.1.3-4.1.6 hold for TS7.
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12.4 Local confluence for general terms of TS7

There are, if I have not missed anything, 91 new confluence cases related to the addition of
resizing rules RR0 and RR1. We consider them below by naming the corresponding root
reduction and the reduction at an exposed essential sub-term. The proofs in all cases seem
to be straightforward.

1. Elj-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

2. Elforall-reduction at the root.

(a) forallrr0a.
(b) forallrr0b.

3. jj-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

4. forallja-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

5. foralljb-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

6. Eltotal-reduction at the root.

(a) totalrr0a.
(b) totalrr0b.

7. totalja-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

8. totaljb-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.
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9. Elcoprod-reduction at the root.

(a) coprodrr0a.
(b) coprodrr0b.

10. coprodja-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

11. coprodjb-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

12. Elpaths-reduction at the root.

(a) pathsrr0.

13. pathsj-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.

14. Elrr0-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

15. forallrr0a/forallrr0b-reductions at the root.

16. forallrr0a-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

17. forallrr0b-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.
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18. totalrr0a/totalrr0b-reductions at the root.

19. totalrr0a-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

20. totalrr0b-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

21. coprodrr0a/coprodrr0b-reductions at the root.

22. coprodrr0a-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

23. coprodrr0b-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

24. pathsrr0-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM.

25. jrr0j-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.

65



(c) rr0rr0.
(d) rr0MM.

26. jrr0rr0-reduction at the root.

(a) jrr0j.
(b) rr0jj.
(c) rr0jrr0.
(d) rr0rr0.
(e) rr0MM.

27. rr0jj-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.
(c) rr0jrr0.
(d) rr0MM.

28. rr0jrr0-reduction at the root.

(a) jrr0j.
(b) jrr0rr0.
(c) rr0jj.
(d) rr0MM.

29. rr0rr0-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
(d) rr0MM(a).
(e) rr0MM(b).

30. rr0MM-reduction at the root.

(a) rr0jj.
(b) rr0jrr0.
(c) rr0rr0.
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12.5 Derivation rules of TS7

1.
Γ ⊢ s : UM2 Γ ⊢ t : UM1 M1 ≤A M2 Γ ⊢ e : Weq ∗ s ∗ t

Γ ⊢ [rr0M2,M1 ](s, t, e) : UM1

2.
Γ ⊢ a : UM Γ ⊢ p : Isaprop ∗ a

Γ ⊢ [rr1](a, p) : U0

12.6 Main meta-theorems and conjectural meta-theorems for TS6

In what follows we fix a universe context UC and a sequence of T-variables FV and consider
all the notions relative to this context and this sequence.

Lemma 12.6.1 [lm000] In TS6 one has:

1. Any derivation tree for a context of the form Γ,Γ′▷ has a rooted sub-tree whose leaves
are contexts of the form Γ▷.

2. Any derivation tree for a judgement of the form Γ,Γ′ ⊢ o : T has a rooted sub-tree
whose leaves are contexts of the form Γ.

Proof: Induction on the length of the derivation tree. In the first case if Γ′ is empty then
there is nothing to prove. Looking at the derivation rules we see that the premises for any
derivation rule for a context of the form Γ,Γ′▷ where Γ′ is non-empty has either the same
form or of the form Γ,Γ′ ⊢ o : T or equals Γ▷. The premises for any derivation rule for a
judgement of the form Γ,Γ′ ⊢ o : T is either of the same form or of the form Γ,Γ′▷ where Γ′

is non-empty or equals Γ▷.

Definition 12.6.2 [d000] For a context of the form Γ,Γ′▷ or a judgement of the form
Γ,Γ′ ⊢ o : T the derivation depth relative to Γ is the minimum over all derivation trees of
the depth of the smallest sub-tree with all leaves equal Γ▷.

Note that the derivation depth relative to Γ is 0 only for Γ▷. Note also that for any context
or judgement of the form considered in Definition 12.6.2 there exists a derivation rule which
produce this context or judgement such that all the premises are again of the same form and
their derivation depth relative to Γ is strictly less than for the original context or judgement.

Lemma 12.6.3 [lm00] One has:

1. Let x1 : T1, . . . , xn : Tn▷ be a derivable context in TS6. Then for any i ≤ n the context
x1 : T1, . . . , xi : Ti▷ is derivable.
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2. Let x1 : T1, . . . , xn : Tn ⊢ o : T be a derivable judgement in TS6. Then for any i ≤ n
the context x1 : T1, . . . , xi : Ti▷ is derivable.

Proof: The statements:

1. Let x1 : T1, . . . , xn : Tn▷ be a derivable context in TS6 of derivation depth ≤ N . Then
for any i ≤ n the context x1 : T1, . . . , xi : Ti▷ is derivable.

2. Let x1 : T1, . . . , xn : Tn ⊢ o : T be a derivable judgement in TS6 of derivation depth
≤ N . Then for any i ≤ n the context x1 : T1, . . . , xi : Ti▷ is derivable.

are immediately provable by induction on N from the form of the derivation rules.

12.7 Main conjectural meta-theorems for TS0

Let us fix a universe context UC = (Fu,A) and a sequence of T-variables FV .

Definition 12.7.1 [bnd] A term E is said to be bounded relative to A if there exists d ∈ N
such that for any sequence of the form E ≻A E1 ≻A E2 ≻A . . . ≻A En one has n ≤ d. The
smallest d satisfying this property is called the reduction depth of E.

Definition 12.7.2 [nf] A term E ′ is said to be a normal form of a term E relative to A if
there is a sequence of the form E ≻A E1 ≻A . . . ≻A Ed = E ′ and the reduction depth of E ′

is 0. A term is said to be in the normal form if it is a normal form of itself.

In our system there is no chance for the actual uniqueness of the normal form. Instead the
normal form of derivable terms (see below) is expected to be unique up to ≡A.

Definition 12.7.3 [derivable] A T-term T is called derivable (relative to UC) if there is a
derivable context of the form Γ, x : T▷. An o-term o is called derivable if there is a derivable
judgement of the form Γ ⊢ o : T .

Conjecture 1 [c1] If E is a derivable term then any subterm of E is derivable.

Conjecture 2 [c5] If Γ ⊢ o : T is derivable then Γ ⊢ o : τΓ(o) is derivable.

Conjecture 3 [c2] If E is a derivable term and E ≻A E ′ then E ′ is derivable.

Conjecture 4 [c3] If E is a derivable term, E ≻A E1, E ≻A E2 then there exist E ′
1, E ′

2

such that E ′
1 ≡A E ′

2 and E1 ⪰A E ′
1, E2 ⪰A E ′

2.

Conjecture 5 [c4] If A ̸= ∅ and E is a derivable term then E is bounded.
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The following pre-theorems are theorems modulo the conjectures stated above.

Pretheorem 12.7.4 [pt1] Let A ̸= ∅, E be a derivable term and E ⪰A E1, E ≻A E2 then
there exist E ′

1, E ′
2 such that E ′

1 ≡A E ′
2 and E1 ⪰A E ′

1, E2 ⪰A E ′
2.

Proof: ???

Pretheorem 12.7.5 [pt2] Let A ̸= ∅ and E be a derivable term. Then E has a normal
form N(E) and for any two normal fors N1(E), N2(E) of E one has N1(E) ≡A N2(E).

Proof: ???

Definition 12.7.6 [deq] Let A ̸= ∅ and E, E ′ be derivable terms. We say that E =A E ′ if
for normal forms N(E), N(E ′) of E and E ′ respectively one has N(E) ≡A N(E ′).

Note that our pre-theorems imply that if A ̸= ∅ then =A is a decidable equivalence relation
on derivable terms.
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13 Appendix A. Complete list of derivation rules

1.

▷
2.

Γ

Γ, x : X ▷ for X ∈ FV

3.
Γ, x : T,Γ′▷

Γ, x : T,Γ′ ⊢ x : T

4.
Γ ⊢ o : T Γ, x : T ′ ▷ T ≻A T ′

Γ ⊢ o : T ′

5.
Γ ⊢ o : T Γ, x : T ′ ▷ T ′ ≻A T

Γ ⊢ o : T ′

6.
Γ ⊢ o : T T ∼A T ′

Γ ⊢ o : T ′

7.
Γ, x : T, x′ : T ′▷

Γ, x′′ : [
∏
; x](T, T ′)▷

8.
Γ ⊢ o : UM

Γ, x : [El](o)▷

9.
Γ▷

Γ ⊢ uM : UM+1

10.
Γ, x : T1 ⊢ o : T2

Γ ⊢ [λ;x](T1, o) : [
∏
;x](T1, T2)

11.
Γ ⊢ o1 : [

∏
; x](T1, T2) Γ ⊢ o2 : T1

Γ ⊢ [ev; x](o1, o2, T2) : T2[o2/x]

12.
Γ▷ M1 ≤A M2

Γ ⊢ [jM1,M2 ] : [
∏
; x](UM1 ,UM2)

13.
Γ ⊢ o1 : UM1 Γ, x : [El](o1) ⊢ o2 : UM2

Γ ⊢ [forallM1,M2 ;x](o1, o2) : Umax(M1,M2)
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14.
Γ, x : T1, y : T2▷

Γ, y : [
∑

; x](T1, T2)▷

15.
Γ, x : T1, y : T2 ▷ Γ ⊢ o1 : T1 Γ ⊢ o2 : T2[o1/x]

Γ ⊢ [pair;x](o1, o2, T2) : [
∑

; x](T1, T2)

16.
Γ ⊢ a : [

∑
;x](T1, T2)

Γ ⊢ [pr1;x](T1, T2, a) : T1

17.
Γ ⊢ a : [

∑
;x](T1, T2)

Γ ⊢ [pr2;x](T1, T2, a) : T2[[pr1;x](T1, T2, a)/x]

18.
Γ ⊢ o1 : UM1 Γ, x : [El](o1) ⊢ o2 : UM2

Γ ⊢ [totalM1.M2 ;x](o1, o2) : Umax(M1,M2)

19.
Γ▷

Γ ⊢ pt : U0

20.
Γ▷

Γ ⊢ tt : Pt

21.
Γ, x : Pt, y : T ▷ Γ ⊢ o : T [tt/x]

Γ ⊢ [ptr; x](o, T ) : [
∏
;x](Pt, T )

22.
Γ ⊢ o1 : UM1 Γ ⊢ o1 : UM2

Γ ⊢ [coprodM1,M2 ](o1, o2) : Umax(M1,M2)

23.
Γ, x1 : T1 ▷ Γ, x2 : T2▷

Γ, x : [⨿](T1, T2)▷

24.
Γ ⊢ o1 : T1 Γ, x2 : T2▷

Γ ⊢ [ii1](T1, T2, o1) : [⨿](T1, T2)

25.
Γ, x1 : T1 ▷ Γ ⊢ o2 : T2

Γ ⊢ [ii2](T1, T2, o2) : [⨿](T1, T2)

26.

Γ, x : [⨿](T1, T2), y : S ▷ Γ ⊢ s1 : [
∏
; x1](T1, S[[ii1](T1, T2, x1)/o])

Γ ⊢ s2 : [
∏
; x2](T2, S[[ii2](T1, T2, x2)/o])

Γ ⊢ o : [⨿](T1, T2)

Γ ⊢ [sum;x](T1, T2, s1, s2, o, S) : S[o/x]
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27.
Γ▷

Γ ⊢ empty : U0

28.
Γ, x : T ▷ Γ ⊢ o : ∅
Γ ⊢ emptyr(T, o) : T

29.
Γ▷

Γ ⊢ nat : U0

30.
Γ▷

Γ ⊢ O : N
31.

Γ▷
Γ ⊢ S : [

∏
;x](N,N)

32.

Γ, x : N, y : T ▷ Γ ⊢ o1 : T [O/x]
Γ ⊢ o2 : [

∏
;x](N, [

∏
; y](T, T [[ev; z](S, x,N)/x]))

Γ ⊢ n : N

Γ ⊢ [natr;x](o1, o2, n, T ) : T [n/x]

33.
Γ ⊢ t : UM Γ ⊢ o1 : [El][t] Γ ⊢ o2 : [El][t]

Γ ⊢ [pathsM ](t, o1, o2) : UM

34.
Γ ⊢ o1 : T Γ ⊢ o2 : T

Γ, y : [Id](T, o1, o2)▷

35.
Γ ⊢ o : T

Γ ⊢ [refl](T, o) : [Id](T, o, o)

36.
Γ ⊢ a : T

Γ, x : T, e : [Id](T, a, x), z : S▷
Γ ⊢ q : S[a/x, [refl](T, a)/e]

Γ ⊢ b : T
Γ ⊢ i : [Id](T, a, b)

Γ ⊢ [J ;x, e](T, a, b, q, i, S) : S[b/x, i/e]

37.
Γ ⊢ s : UM2 Γ ⊢ t : UM1 M1 ≤A M2 Γ ⊢ e : Weq ∗ s ∗ t

Γ ⊢ [rr0M2,M1 ](s, t, e) : UM1

38.
Γ ⊢ a : UM Γ ⊢ p : Isaprop ∗ a

Γ ⊢ [rr1M ](a, p) : U0
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14 Appendix B. Complete list of reductions

1. Elforall-reduction.

[El][forallM1,M2 ;x](o1, o2) ≻A [
∏

;x]([El](o1), [El](o2))

2. Eltotal-reduction.

[El][totalM1,M2 ;x](o1, o2) ≻A [
∑

; x]([El](o1), [El](o2))

3. Elcoprod-reduction.

[El][coprodM1,M2 ](T1, T2) ≻A [⨿]([El](o1), [El](o2))

4. Elpaths-reduction.

[El][pathsM ](t, o1, o2) ≻A [Id]([El](t), o1, o2)

5. Elj-reduction
[El][ev; y]([jM1,M2 ], o, T ) ≻A [El](o)

6. jMM-reduction.

[jM1,M2 ] ≻A [λ;x](UM1 , [x]) iff M1 ≡A M2

7. beta-reduction.
[ev; z]([λ; x](T1, o1), o2, T2) ≻A o1[o2/x]

8. jj-reduction.

[ev; z]([jM ′
2,M3

], [ev; y]([jM1,M2 ], o1, T ), T
′) ≻A [ev; z]([jM1,M3 ], o1, T

′)

iff M ′
2 ≡A M2

9. eta-reduction.

[λ;x](T1, [ev; y](o, [x], T2)) ≻A o iff f and T do not depend on x

10. forallja-reduction.

[forallM1,M2 ;x]([ev; z]([jM0,M ′
1
], o1, T ), o2) ≻A

[ev; z]([jmax(M0,M2),max(M1,M2)], [forallM0,M2 ; x](o1, o2),Umax(M1,M2))

iff M ′
1 ≡A M1

73



11. foralljb-reduction.

[forallM1,M3 ;x](o1, [ev; z]([jM2,M ′
3
], o2, T )) ≻A

[ev; z]([jmax(M1,M2),max(M1,M3)], [forallM1,M2 ; x](o1, o2),Umax(M1,M3))

iff M ′
3 ≡A M3

12. iotatotal1-reduction.

[pr1; y](T1, T2, [pair;x](o1, o2, T
′
2)) ≻A o1 iff T2[y/x] ∼A T ′

2

13. iotatotal2-reduction.

[pr2;x](T1, T
′
2, [pair; y](o1, o2, T

′
2)) ≻A o2 iff T2[y/x] ∼A T ′

2

14. etatotal-reduction.

[pair; x]([pr1; y](T ′
1, T

′
2, o

′), [pr2; y](T ′′
1 , T

′′
2 , o

′′), T2) ≻A o′

iff o ≡A o′ and T ′
2[x/y] ∼A T2 ∼A T ′′

2 [x/y]

15. totalja-reduction.
[totalM1,M2 ]([ev; z]([jM0,M ′

1
], o1, T ), o2) ≻A

[ev; z]([jmax(M0,M2),max(M1,M2)], [totalM0,M2 ; x](o1, o2),Umax(M1,M2))

iff M ′
1 ≡A M1

16. totaljb-reduction.
[totalM1,M3 ](o1, [ev; z]([jM2,M ′

3
], o2, T )) ≻A

[ev; z]([jmax(M1,M2),max(M1,M3)], [totalM1,M2 ; x](o1, o2),Umax(M1,M3))

iff M ′
3 ≡A M3

17. iotapt-reduction.

[ev; x]([ptr; y](o;T ), tt, T
′) ≻A o iff T ′ ∼A T [x/y]

18. sum1-reduction.

[sum;x](T1, T2, s1, s2, [ii1](T
′
1, T

′
2, o)) ≻A [ev; x](s1, o, [⨿](T1, T2))

19. sum2-reduction.

[sum;x](T1, T2, s1, s2, [ii2](T
′
1, T

′
2, o)) ≻A [ev; x](s2, o, [⨿](T1, T2))
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20. coprodja-reduction.

[coprodM1,M2 ]([ev; z]([jM0,M1 ], o1, T ), o2) ≻A

[ev; z]([jmax(M0,M2),max(M1,M2)], [coprodM0,M2 ](o1, o2),Umax(M1,M2))

iff M1 ≡A M ′
1

21. coprodjb-reduction.

[coprodM1,M3 ](o1, [ev; z]([jM2,M ′
3
], o2, T )) ≻A

[ev; z]([jmax(M1,M2),max(M1,M3)], [coprodM1,M2 ](o1, o2),Umax(M1,M3))

iff M3 ≡A M ′
3

22. natO-reduction.
[natr;x](o1, o2, O, T ) ≻A o1

23. natS-reduction.

[natr;x](o1, o2, [ev; y](S, n,N), T ) ≻A [ev; x]([ev; y](o2, n,N), [natr; x](o1, o2, n, T ), T )

24. pathsj-reduction.

[pathsM2 ]([ev;x]([jM1,M ′
2
], t, T ), o1, o2) ≻A [ev; x]([jM1,M ′

2
], [pathsM1 ](t, o1, o2), T )

iff M2 ≡A M ′
2

25. Jiota-reduction.

[J ; x, e](T, a, a′, q, [refl](T ′, a′′), S) ≻A q iff a ≡A a′ ≡A a′′ and T ∼A T ′

26. Elrr0-reduction.
[El][rr0M2,M1 ](s, t, e) ≻A [El](s)

27. forallrr0a-reduction.

S = [forallM1,M2 ;x]([rr0M3,M ′
1
](s, t, e), o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M3 reduces to

[rr0max(M3,M2),max(M1,M2)]([forallM3,M2 ;x](s, o2), S, idweq S)

28. forallrr0b-reduction.

S = [forallM1,M2 ;x](o1, [rr0M3,M ′
2
](s, t, e))

such that M2 ≡A M ′
2 and M ′

2 ≤A M3 reduces to

[rr0max(M1,M3),max(M1,M2)]([forallM1,M3 ;x](o1, s), S, idweq S)
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29. totalrr0a-reduction.

S = [totalM1,M2 ;x]([rr0M3,M ′
1
](s, t, e), o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M3 reduces to

[rr0max(M3,M2),max(M1,M2)]([totalM3,M2 ;x](s, o2), S, idweq S)

30. totalrr0b-reduction.

S = [totalM1,M2 ;x](o1, [rr0M3,M ′
2
](s, t, e))

such that M2 ≡A M ′
2 and M ′

2 ≤A M3 reduces to

[rr0max(M1,M3),max(M1,M2)]([totalM1,M3 ;x](o1, s), S, idweq S)

31. coprodrr0a-reduction.

S = [coprodM1,M2 ]([rr0M3,M ′
1
](s, t, e), o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M3 reduces to

[rr0max(M3,M2),max(M1,M2)]([coprodM3,M2 ](s, o2), S, idweq X)

32. coprodrr0b-reduction.

S = [coprodM1,M2 ](o1, [rr0M3,M ′
2
](s, t, e))

such that M2 ≡A M ′
2 and M ′

2 ≤A M3 reduces to

[rr0max(M1,M3),max(M1,M2)]([coprodM1,M3 ](o1, s), S, idweq S)

33. pathsrr0-reduction.

S = [pathsM1 ]([rr0M2,M ′
1
](s, t, e), o1, o2)

such that M1 ≡A M ′
1 and M ′

1 ≤A M2 reduces to

[rr0M2,M1 ]([pathsM2 ](s, o1, o2), S, idweq S)

34. rr1rr0-reduction.

[rr1M ](a, p) ≻A [rr0M,0](a, [rr1M ](a, p), idweq [rr1M ](a, p))

35. jrr0j-reduction.
jM ′

1,M3
[rr0M2,M1 ](s, t, e) ≻A jM2,M3 s

iff M ′
1 ≡A M1 and M1 ≤A M2 ≤A M3
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36. jrr0rr0-reduction.

jM ′
1,M2

[rr0M3,M1 ](s, t, e) ≻A [rr0M3,M2 ](s, jM1,M2 t, e)

iff M ′
1 ≡A M1 and M1 ≤A M2 ≤A M3

37. rr0jj-reduction.
[rr0M2,M1 ]((jM0,M ′

2
s), t, e) ≻A jM0,M1 s

iff M2 ≡A M ′
2 and M0 ≤A M1 ≤A M2

.

38. rr0jrr0-reduction.

[rr0M3,M1 ]((jM2,M ′
3
s), t, e) ≻A [rr0M2,M1 ](s, t, e)

iff M3 ≡A M ′
3 and M0 ≤A M1 ≤A M2

39. rr0rr0-reduction.

[rr0M2,M1 ]([rr0M3,M ′
2
](s, t2, e2), t1, e1) ≻A [rr0M3,M1 ](s, t1, e1)

iff M2 ≡A M ′
2 and M1 ≤A M2 ≤A M3

40. rr0MM-reduction.
[rr0M,M ′ ](s, t, e) ≻A s iff M ≡A M ′

15 Adding the natural numbers - system TS5

15.1 TS5 terms and typing function

Definition 15.1.1 [d51] The following labels are permitted in the expressions of TS5 - the
labels permitted in TS4, nat, O, S, natr.

The notions of u-level expressions, T- and o- terms in TS5 are defined as follows:

Definition 15.1.2 [d52]

1. expressions with the root node caring a TS4-label is an u-level expression, o-expression
or a T-expression according to the rules of Definition 8.1.2,

2. expressions with the root of the form [nat], O, S and [natr; x] are o-expressions,

Definition 15.1.3 [d53] A TS5-term is a TS5-expression such that:

1. any node caring one of the TS4-labels satisfies the conditions of Definition 7.1.3,
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2. any node of the form [nat] has valency 0,

3. any node of the form [O] has valency 0,

4. any node of the form [S] has valency 0,

5. any node of the form [natr] has valency 4, its first three branches are o-expressions
which do not contain x and the fourth branch a T-expression.

Definition 15.1.4 [d54] A node in TS5 term is called non-essential if it satisfies the condi-
tions of Definition 6.1.4. The same applies to the definition of essential nodes, essential and
non-essential subexpressions and of Ess(E) is extended to TS5-terms in the obvious way.

We let TS5 denote the set of TS5-terms and TT5 and oT5 denote the subsets of T-terms
and o-terms. The obvious analog of Lemma 3.1.7 holds for TS5-expressions. We extend to
TS5 the abbreviations introduced for TS4-expressions and also abbreviate [El][nat] as N.

Definition 15.1.5 [dtau5] Under the assumptions of Definition 3.1.8 we extend the typing
function τΓ to o-terms of TS5 as follows:

1. the value of τΓ on an o-term whose root node carries a TS4-label is computed according
to the rules of Definition 8.1.5.

2. τΓ([nat]) = U0,

3. τΓ([O]) = N,

4. τΓ([S]) = [
∏
;x](N,N),

5. τΓ([natr; x](o1, o2, o3, T )) = T .

We have the obvious analog of Proposition 3.1.9 for TS5.

15.2 Equivalence relations ≡A and ∼A on TS5-terms

The relations ≡A and ∼A are extended to TS1-terms in the obvious way. We also have
obvious analogs of all the statements of Section 3.2.

15.3 Reducibility relation on TS5 terms

Definition 15.3.1 [drd5] Let UC = (Fu,A) be universe context and FV a sequence of
T-variables. Define a relation ≻A on TS5(Fu, FV, Fv) for all Fv as the transitive closure
of the union of the following reduction relations:

1. Reductions of Definition 7.3.1.
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2. natO-reduction. An essential subterm of the form [natr;x](o1, o2, O, T ) reduces to o1,

3. natS-reduction. An essential subterm of the form [natr; x](o1, o2, [ev; y](S, n,N), T )
reduces to [ev; x]([ev; y](o2, n,N), [natr;x](o1, o2, n, T ), T ).

The obvious analogs of Lemmas 4.1.3-4.1.6 hold for TS5.

15.4 Local confluence for general terms of TS5

There are no new confluence situations for TS5 compared with TS5.

15.5 Derivation rules of TS5

The derivation rules for contexts and judgements of TS5 are the derivation rules for TS4
together with the following additional ones:

Γ▷
Γ ⊢ nat : U0

Γ▷
Γ ⊢ O : N

Γ▷
Γ ⊢ S : [

∏
;x](N,N)

Γ, x : N, y : T ▷ Γ ⊢ o1 : T [O/x]
Γ ⊢ o2 : [

∏
;x](N, [

∏
; y](T, T [[ev; z](S, x,N)/x]))

Γ ⊢ n : N

Γ ⊢ [natr;x](o1, o2, n, T ) : T [n/x]
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