
On Setoid Models of Type Theory
(work in progress)

Erik Palmgren
Department of Mathematics

Stockholm University

October 11, 2012 1

1Part of this material was presented at the logic seminar in Stockholm
March, 2012.

1 / 50

Models of type theory

Models of type theory

One standard framework for interpreting dependent type theory is a
category with attributes (Cartmell) or equivalently category with families
(Dybjer).

This modeling usually takes place in set theory.

An important example is Hofmann’s model (Hofmann 1997), which is
built from the syntax and judgements of intensional type theory, and
is used to translate proofs in extensional type theory into proofs in the
intensional theory.

However, it is of interest to do the modeling in type theory itself, e.g.
for the purpose of formal verification, and for foundational reasons.
Some work has been done by Dybjer 1995 and onwards.

2 / 50

Models of type theory

Models of type theory

One standard framework for interpreting dependent type theory is a
category with attributes (Cartmell) or equivalently category with families
(Dybjer).

This modeling usually takes place in set theory.

An important example is Hofmann’s model (Hofmann 1997), which is
built from the syntax and judgements of intensional type theory, and
is used to translate proofs in extensional type theory into proofs in the
intensional theory.

However, it is of interest to do the modeling in type theory itself, e.g.
for the purpose of formal verification, and for foundational reasons.
Some work has been done by Dybjer 1995 and onwards.

2 / 50

Models of type theory

Models of type theory

One standard framework for interpreting dependent type theory is a
category with attributes (Cartmell) or equivalently category with families
(Dybjer).

This modeling usually takes place in set theory.

An important example is Hofmann’s model (Hofmann 1997), which is
built from the syntax and judgements of intensional type theory, and
is used to translate proofs in extensional type theory into proofs in the
intensional theory.

However, it is of interest to do the modeling in type theory itself, e.g.
for the purpose of formal verification, and for foundational reasons.
Some work has been done by Dybjer 1995 and onwards.

2 / 50

Models of type theory

Definition

1. A category with attributes (cwa) consists of the data

(a) A category C with a terminal object 1.
This is the called the category of contexts and substitutions.

(b) A functor T : Cop // Set.
This functor is intended to assign to each context Γ a set T (Γ) of
types in the context and tells how substitutions act on these types.
For f : B // Γ and σ ∈ T (Γ) we write

σ{f } for T (f)(σ).

(c) For each σ ∈ T (Γ), an object Γ.σ in C and a morphism

p(σ) = pΓ(σ) : Γ.σ // Γ in C.

This tells that each context can be extended by a type in the context,
and that there is a projection from the extended context to the
original one.

3 / 50

Models of type theory

Definition

1. A category with attributes (cwa) consists of the data

(a) A category C with a terminal object 1.
This is the called the category of contexts and substitutions.

(b) A functor T : Cop // Set.
This functor is intended to assign to each context Γ a set T (Γ) of
types in the context and tells how substitutions act on these types.
For f : B // Γ and σ ∈ T (Γ) we write

σ{f } for T (f)(σ).

(c) For each σ ∈ T (Γ), an object Γ.σ in C and a morphism

p(σ) = pΓ(σ) : Γ.σ // Γ in C.

This tells that each context can be extended by a type in the context,
and that there is a projection from the extended context to the
original one.

3 / 50

Models of type theory

Definition

1. A category with attributes (cwa) consists of the data

(a) A category C with a terminal object 1.
This is the called the category of contexts and substitutions.

(b) A functor T : Cop // Set.
This functor is intended to assign to each context Γ a set T (Γ) of
types in the context and tells how substitutions act on these types.
For f : B // Γ and σ ∈ T (Γ) we write

σ{f } for T (f)(σ).

(c) For each σ ∈ T (Γ), an object Γ.σ in C and a morphism

p(σ) = pΓ(σ) : Γ.σ // Γ in C.

This tells that each context can be extended by a type in the context,
and that there is a projection from the extended context to the
original one.

3 / 50

Models of type theory

(d) The final datum tells how substitutions interact with context
extensions: For each f : B // Γ and σ ∈ T (Γ), there is a morphism
q(f , σ) = qΓ(f , σ) : B.(T (f)(σ)) // Γ.σ in C such that

B Γ
f

//

B.(σ{f })

B

p(σ{f })

��

B.(σ{f }) Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore

(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g , σ) = q(f , σ) ◦ q(g , σ{f }) for A
g // B

f // Γ.

4 / 50

Models of type theory

(d) The final datum tells how substitutions interact with context
extensions: For each f : B // Γ and σ ∈ T (Γ), there is a morphism
q(f , σ) = qΓ(f , σ) : B.(T (f)(σ)) // Γ.σ in C such that

B Γ
f

//

B.(σ{f })

B

p(σ{f })

��

B.(σ{f }) Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore

(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g , σ) = q(f , σ) ◦ q(g , σ{f }) for A
g // B

f // Γ.

4 / 50

Models of type theory

(d) The final datum tells how substitutions interact with context
extensions: For each f : B // Γ and σ ∈ T (Γ), there is a morphism
q(f , σ) = qΓ(f , σ) : B.(T (f)(σ)) // Γ.σ in C such that

B Γ
f

//

B.(σ{f })

B

p(σ{f })

��

B.(σ{f }) Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore

(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g , σ) = q(f , σ) ◦ q(g , σ{f }) for A
g // B

f // Γ.

4 / 50

Models of type theory

Example:

In set theory (ZF or CZF) we may construct a cwa from any set U which
contains a singleton set and is Σ-closed in the sense that if A ∈ U and
F : A // U is any function then the following Σ-set belongs to U

Σx∈AF (x) = {〈x , y〉 : x ∈ A, y ∈ F (x)}.

Then we can take C to be the full subcategory of sets with objects in U. It
is small. Moreover

T =def Set(·,U) : Cop // Set.

For Γ ∈ C and σ ∈ T (Γ)

Γ.σ =def Σx∈Γσ(x).

5 / 50

Models of type theory

Example (cont): The set-theoretic interpretation of the pullback diagram
in (d) is then

B Γ
f

//

Σy∈B .σ(f (y))

B

p

��

Σy∈B .σ(f (y)) Σx∈Γ.σ(x)
q // Σx∈Γ.σ(x)

Γ

p

��

where p(〈u, v〉) = u and q(〈y , s〉) = 〈f (y), s〉.

By assuming that the universe U is closed under further constructions one
can verify axioms for type theoretic constructions like Π, W , I -types etc.

6 / 50

Models of type theory

Indirect model

In view of the fact that intensional Martin-Löf type theory interprets the
universe V of CZF (Aczel 1978, 1986) we get an indirect intepretation of
the extensional M-L type theory in the intensional one.

Aczel’s interpretation has been formalized in various proof assistants:
LEGO (N.P. Mendler , 1990), Agda 1 (M.Takeyama mid 1990s), Coq (P.
and Wilander 2011). In the latter interpretation a full faithful functor

V // Setoids

is explicitly constructed.

However, we are interested in more direct interpretations.

7 / 50

Models of type theory

Setoids

In type theories the notion of set is usually understood in the sense of
Bishop as a type together with an equivalence relation, also called a setoid

A = (|A|,=A)

where |A| is a type and =A is an equivalence relation on |A|.
An extensional function f : A // B between setoids is a function
|A| // |B| which respects the equivalence relations, i.e.

(∀x , y : |A|)[x =A y =⇒ f (x) =B f (y)]

Two such functions f and g are extensionally equal (f =ext g) if
(∀x : |A|)(f (x) =B g(x)).

8 / 50

Models of type theory

Setoids

In type theories the notion of set is usually understood in the sense of
Bishop as a type together with an equivalence relation, also called a setoid

A = (|A|,=A)

where |A| is a type and =A is an equivalence relation on |A|.
An extensional function f : A // B between setoids is a function
|A| // |B| which respects the equivalence relations, i.e.

(∀x , y : |A|)[x =A y =⇒ f (x) =B f (y)]

Two such functions f and g are extensionally equal (f =ext g) if
(∀x : |A|)(f (x) =B g(x)).

8 / 50

Models of type theory

The setoids and extensional functions in a (constructive) type theory form
an e-category Setoids and its properties can be described in the same
abstract way as the category Sets in a (constructive) set theory.

The properties of the category reflects the possibilities and limitations of
constructions in the background theory.

9 / 50

Models of type theory

The setoids and extensional functions in a (constructive) type theory form
an e-category Setoids and its properties can be described in the same
abstract way as the category Sets in a (constructive) set theory.

The properties of the category reflects the possibilities and limitations of
constructions in the background theory.

9 / 50

Models of type theory

The notion of e-category is a variant of the standard notion of category,
but where no equality relation is required on objects.

An e-category C consists of a type Ob C of objects, together with a setoid
C(A,B) of morphisms for every pair of objects A and B. The composition
is an extensional function

◦ : C(B,C)× C(A,B) // C(A,C)

which satisfies the usual monoid laws.

An e-functor is a functor where the object part is just a function between
types. There is no equality of objects to respect.

10 / 50

Models of type theory

The notion of e-category is a variant of the standard notion of category,
but where no equality relation is required on objects.

An e-category C consists of a type Ob C of objects, together with a setoid
C(A,B) of morphisms for every pair of objects A and B. The composition
is an extensional function

◦ : C(B,C)× C(A,B) // C(A,C)

which satisfies the usual monoid laws.

An e-functor is a functor where the object part is just a function between
types. There is no equality of objects to respect.

10 / 50

Families of sets and setoids

Families of setoids

In dependent type theories, such as Martin-Löf type theory, the notion of a
family of types is fundamental.

B(x) type (x : A).

But ...

What do we mean by a family of setoids indexed by a setoid?

A is an index setoid

Bx setoid for each x : |A|
Bx and Bx ′ should be ”equal” if x =A x ′

11 / 50

Families of sets and setoids

Families of setoids

In dependent type theories, such as Martin-Löf type theory, the notion of a
family of types is fundamental.

B(x) type (x : A).

But ...

What do we mean by a family of setoids indexed by a setoid?

A is an index setoid

Bx setoid for each x : |A|
Bx and Bx ′ should be ”equal” if x =A x ′

11 / 50

Families of sets and setoids

Families of setoids

In dependent type theories, such as Martin-Löf type theory, the notion of a
family of types is fundamental.

B(x) type (x : A).

But ...

What do we mean by a family of setoids indexed by a setoid?

A is an index setoid

Bx setoid for each x : |A|
Bx and Bx ′ should be ”equal” if x =A x ′

11 / 50

Families of sets and setoids

”Equality” of Bx and B ′x is stated by saying:

φp : Bx
// Bx ′ bijection for each proof-object p : x =A x ′

The bijections should be ”compatible” with the proof objects p.

There are then two principal choices:

(I) proof-irrelevant family: φp is independent of p

(R) proof-relevant family: φp may depend on p

The first is the most well-behaved version and is entirely what we expect
from set theory.

12 / 50

Families of sets and setoids

”Equality” of Bx and B ′x is stated by saying:

φp : Bx
// Bx ′ bijection for each proof-object p : x =A x ′

The bijections should be ”compatible” with the proof objects p.

There are then two principal choices:

(I) proof-irrelevant family: φp is independent of p

(R) proof-relevant family: φp may depend on p

The first is the most well-behaved version and is entirely what we expect
from set theory.

12 / 50

Families of sets and setoids

”Equality” of Bx and B ′x is stated by saying:

φp : Bx
// Bx ′ bijection for each proof-object p : x =A x ′

The bijections should be ”compatible” with the proof objects p.

There are then two principal choices:

(I) proof-irrelevant family: φp is independent of p

(R) proof-relevant family: φp may depend on p

The first is the most well-behaved version and is entirely what we expect
from set theory.

12 / 50

Families of sets and setoids

Proof-irrelevant families

(I) For a proof-irrelevant family we require

(1) φp =ext idBx whenever p : x =A x ,

(2) φq ◦ φp =ext φr , whenever p : x =A y , q : y =A z , r : x =A z . Here
=ext is extensional equality of functions between setoids.

(Compare to definition in Problem 3.2 of Bishop–Bridges 1985.)

From (1) and (2) follows independence of φp on p

φp =ext φr for p, r : x =A y

13 / 50

Families of sets and setoids

Proof-irrelevant families

(I) For a proof-irrelevant family we require

(1) φp =ext idBx whenever p : x =A x ,

(2) φq ◦ φp =ext φr , whenever p : x =A y , q : y =A z , r : x =A z . Here
=ext is extensional equality of functions between setoids.

(Compare to definition in Problem 3.2 of Bishop–Bridges 1985.)

From (1) and (2) follows independence of φp on p

φp =ext φr for p, r : x =A y

13 / 50

Families of sets and setoids

Proof-irrelevant families (cont.)

The proof-irrelevant families of setoids over a setoid A correspond exactly
to e-functors B from the discrete e-category A# into Setoids.

Thus Bx = B(x) and φp = B(p) in the notation above.

The objects of the e-category A# is |A|, and the setoid of morphisms
A#(x , y) is the type of proofs p in x =A y . Any two proof p, r are
identified. The proof object for transitivity gives the composition,
reflexivity gives the identity morphism, and symmetry gives an inverse
operation.

14 / 50

Families of sets and setoids

Proof-relevant families

One drawback of proof-irrelevant families is that there are too few of them.
However every family of B(x) of types over a type x : A gives rise to a
proof-relevant family of (projective) setoids

B(x) = (B(x), IdB(x)(·, ·))

which can be described as a functor

B : Ag // Setoids

Here Ag = (A, IdA(·, ·), r , s, t) is the groupoid that arises from the type A
(Hofmann and Streicher). The morphism part is given by the standard
substitution operation associated identity type.

15 / 50

Families of sets and setoids

Proof-relevant families

Theorem (P.): The following are equivalent:

(a) The type A satisfies UIP, i.e.∀a : A,∀p : IdA(a, a), Id(p, r(a))

(b) Streicher’s K-axiom holds for A

(c) For every family of types B over A, B is a proof irrelevant family.

16 / 50

Families of sets and setoids

Families and categories of setoid

For any proof-irrelevant F : A# // Setoid we may construct an ordinary
category C = C(F) whose objects are C0 = A and whose arrows C1 is the
setoid consisting of (a, b, f) where a, b ∈ A and f : F (a) // F (b) is an
extensional function, and where the equality (a, b, f) ∼ (a′, b′, f ′) holds iff
there are p : a =A a′ and q : b =A b′ so that the diagram commutes:

F (a′) F (b′)g
//

F (a)

F (a′)

F (p)

��

F (a) F (b)
f // F (b)

F (b′)

F (q)

��
.

The proof-irrelevance comes in when verifying that composition is
extensional.

17 / 50

Families of sets and setoids

Families and categories of setoid

In case F : Ag // Setoid is a proof-relevant family the C0, C1 and C2 get
however natural groupoid structure, and C can be regarded as a category
object in a higher e-category of groupois.

The collection of small setoids (i.e. belonging to some type-theoretic
universe) will naturally be such an ”almost category”.

It seems therefore difficult to use the original cwa definition inside type
theory without first reconstructing the universe of setoids.

Henceforth: family of setoids = proof-irrelevant family of setoids.

18 / 50

Internal cwas

ecwas - cwas in type theory

Referring back to Definition 1, in order for the equations (d.1) and (d.2)
to make sense, we need the object equalities

Γ.(σ{1Γ}) = Γ.σ p(σ{1Γ}) = p(σ)

and
A.(σ{f ◦ g}) = A.(σ{f }{g})

and moreover
p(σ{f ◦ g}) = p(σ{f }{g}).

They follow from the functoriality of T and by requiring the object
equality Γ.σ = Γ.σ′ and p(σ) = p(σ′) whenever σ = σ′.

This notion of cwa is not appropriate for categories C that lack object
equality, like e-categories.

19 / 50

Internal cwas

ecwas - cwas in type theory

Referring back to Definition 1, in order for the equations (d.1) and (d.2)
to make sense, we need the object equalities

Γ.(σ{1Γ}) = Γ.σ p(σ{1Γ}) = p(σ)

and
A.(σ{f ◦ g}) = A.(σ{f }{g})

and moreover
p(σ{f ◦ g}) = p(σ{f }{g}).

They follow from the functoriality of T and by requiring the object
equality Γ.σ = Γ.σ′ and p(σ) = p(σ′) whenever σ = σ′.

This notion of cwa is not appropriate for categories C that lack object
equality, like e-categories.

19 / 50

Internal cwas

ecwas - cwas in type theory

Referring back to Definition 1, in order for the equations (d.1) and (d.2)
to make sense, we need the object equalities

Γ.(σ{1Γ}) = Γ.σ p(σ{1Γ}) = p(σ)

and
A.(σ{f ◦ g}) = A.(σ{f }{g})

and moreover
p(σ{f ◦ g}) = p(σ{f }{g}).

They follow from the functoriality of T and by requiring the object
equality Γ.σ = Γ.σ′ and p(σ) = p(σ′) whenever σ = σ′.

This notion of cwa is not appropriate for categories C that lack object
equality, like e-categories.

19 / 50

Internal cwas

We modify the structure slightly to the setting of e-categories:

Definition 2. An e-category with attributes (ecwa) consists of the
following data (a) - (d):

(a) An e-category C with a terminal object 1.

(b) An e-functor T : Cop // Setoids.

(c) There is an e-functor ∆Γ : T (Γ)# // C/Γ. For σ ∈ Ob T (Γ), write
∆Γ(σ) = (p(σ) : Γ.σ // Γ).

Recall that S# denotes the discrete e-category induced by a setoid S .
C/Γ denotes the slice e-category of C over Γ.

20 / 50

Internal cwas

We modify the structure slightly to the setting of e-categories:

Definition 2. An e-category with attributes (ecwa) consists of the
following data (a) - (d):

(a) An e-category C with a terminal object 1.

(b) An e-functor T : Cop // Setoids.

(c) There is an e-functor ∆Γ : T (Γ)# // C/Γ. For σ ∈ Ob T (Γ), write
∆Γ(σ) = (p(σ) : Γ.σ // Γ).

Recall that S# denotes the discrete e-category induced by a setoid S .
C/Γ denotes the slice e-category of C over Γ.

20 / 50

Internal cwas

Thus for any proof object t of σ =T (Γ) σ
′, ∆Γ(t) : Γ.σ // Γ.σ′ is an

isomorphism such that

Γ.σ

Γ

p(σ)

��?
??

??
??

??
??

??
Γ.σ Γ.σ′

∆Γ(t) // Γ.σ′

Γ

p(σ′)

����
��
��
��
��
��
�

commutes. Moreover, ∆Γ(t) is independent of t and

∆Γ(t) = 1Γ.σ (t proof of σ =T (Γ) σ)

∆Γ(s◦t) = ∆Γ(s)◦∆Γ(t) (t pf. of σ =T (Γ) σ
′ and s pf. of σ′ =T (Γ) σ

′′)

(A particular feature of the slice of an e-category is that equalities of
objects over the base turn into isomorphism.)

21 / 50

Internal cwas

Thus for any proof object t of σ =T (Γ) σ
′, ∆Γ(t) : Γ.σ // Γ.σ′ is an

isomorphism such that

Γ.σ

Γ

p(σ)

��?
??

??
??

??
??

??
Γ.σ Γ.σ′

∆Γ(t) // Γ.σ′

Γ

p(σ′)

����
��
��
��
��
��
�

commutes. Moreover, ∆Γ(t) is independent of t and

∆Γ(t) = 1Γ.σ (t proof of σ =T (Γ) σ)

∆Γ(s◦t) = ∆Γ(s)◦∆Γ(t) (t pf. of σ =T (Γ) σ
′ and s pf. of σ′ =T (Γ) σ

′′)

(A particular feature of the slice of an e-category is that equalities of
objects over the base turn into isomorphism.)

21 / 50

Internal cwas

(d) For each f : B // Γ and σ ∈ T (Γ), there is a morphism
q(f , σ) : B.σ{f } // Γ.σ in C such that

B Γ
f

//

B.σ{f }

B

p(σ{f })

��

B.σ{f } Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and moreover these morphisms satisfy

(d.1) q(1Γ, σ) ◦∆Γ(t) = 1Γ.σ where t is any pf. for T (1Γ)(σ) = σ.

(d.2) q(f ◦ g , σ) ◦∆A(t) = q(f , σ) ◦ q(g , σ{f }) for A
g // B

f // Γ and
where t is any pf. for σ{f ◦ g} =TA σ{f }{g}.

22 / 50

Internal cwas

Note the type correcting isomorphisms ∆(t).

Further in condition (d), note that if f = f ′ : B // Γ, s is a proof of
σ = σ′ ∈ T (Γ) and t is a proof of σ{f } = σ′{f ′}, then by the pullback
properly,

q(f , σ) ◦∆B(t) = ∆Γ(s) ◦ q(f ′, σ′).

23 / 50

Interpretation

Interpretation

The definition of ecwas suggests introducing the following judgements
about types

Γ ` σ type meaning σ ∈ T (Γ)

Γ ` σ = σ′ meaning σ =T (Γ) σ
′ where σ, σ′ ∈ T (Γ).

Define E (Γ, σ), the elements of σ in the context Γ, to be the setoid of
sections of p(σ) : Γ.σ // Γ.

Note that if r is a proof for σ =T (Γ) σ
′, then M ∈ E (Γ, σ) implies

∆Γ(r) ◦M ∈ E (Γ, σ′).

24 / 50

Interpretation

Interpretation

The definition of ecwas suggests introducing the following judgements
about types

Γ ` σ type meaning σ ∈ T (Γ)

Γ ` σ = σ′ meaning σ =T (Γ) σ
′ where σ, σ′ ∈ T (Γ).

Define E (Γ, σ), the elements of σ in the context Γ, to be the setoid of
sections of p(σ) : Γ.σ // Γ.

Note that if r is a proof for σ =T (Γ) σ
′, then M ∈ E (Γ, σ) implies

∆Γ(r) ◦M ∈ E (Γ, σ′).

24 / 50

Interpretation

Now assuming a term M always come with an ”original” type σ, written
as a pair (M, σ), we introduce the further judgements

Γ ` (M, σ) : σ′ meaning

M ∈ E (Γ, σ) and σ =T (Γ) σ
′.

Γ ` (M, σ) = (M ′, σ′) : σ′′ meaning

Γ ` (M, σ) : σ′′ and Γ ` (M, σ′) : σ′′ and that there is a proof r of
σ =T (Γ) σ

′ such that ∆Γ(r) ◦M =E(Γ,σ′) M
′.

25 / 50

Interpretation

Now assuming a term M always come with an ”original” type σ, written
as a pair (M, σ), we introduce the further judgements

Γ ` (M, σ) : σ′ meaning

M ∈ E (Γ, σ) and σ =T (Γ) σ
′.

Γ ` (M, σ) = (M ′, σ′) : σ′′ meaning

Γ ` (M, σ) : σ′′ and Γ ` (M, σ′) : σ′′ and that there is a proof r of
σ =T (Γ) σ

′ such that ∆Γ(r) ◦M =E(Γ,σ′) M
′.

25 / 50

Interpretation

Now assuming a term M always come with an ”original” type σ, written
as a pair (M, σ), we introduce the further judgements

Γ ` (M, σ) : σ′ meaning

M ∈ E (Γ, σ) and σ =T (Γ) σ
′.

Γ ` (M, σ) = (M ′, σ′) : σ′′ meaning

Γ ` (M, σ) : σ′′ and Γ ` (M, σ′) : σ′′ and that there is a proof r of
σ =T (Γ) σ

′ such that ∆Γ(r) ◦M =E(Γ,σ′) M
′.

25 / 50

Interpretation

The rules
Γ ` s : σ Γ ` σ = τ

Γ ` s : τ

Γ ` s = t : σ Γ ` σ = τ

Γ ` s = t : τ

are immediately justified.

26 / 50

Interpretation

Substitution into terms

For M ∈ E (Γ, σ) and f : B // Γ, define M{f } : B // B.σ{f } as the
unique morphism (see diagram below) with p(σ{f })) ◦M{f } = 1B and
q(f , σ) ◦M{f } = M ◦ f . Thus M{f } ∈ E (B, σ{f }).

B Γ
f //

B.σ{f }

B

p(σ{f })

��

B.σ{f } Γ.σ
q(f ,σ)

// Γ.σ

Γ

p(σ)

��

B

Γ.σ

M◦f

((RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRB

B.σ{f }

M{f }

��

B

B

1

��,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,

27 / 50

Interpretation

Stability under substitution

Thus if
Γ ` (M, σ) : σ′

and f : B // Γ, we have M{f } ∈ E (B, σ{f }) and σ{f } =T (B) σ
′{f }, so

B ` (M{f }, σ{f }) : σ′{f }

Thus the rule

Γ ` s : σ′ f : B // Γ

B ` s{f } : σ′{f }

is justified.

28 / 50

Interpretation

Moreover, if
Γ ` (M, σ) = (M ′, σ′) : σ′′

we have ∆Γ(r) ◦M =E(Γ,σ′) M
′ for some proof r of σ =T (Γ) σ

′. Then

∆Γ(r) ◦M ◦ f = M ′ ◦ f
and hence

∆Γ(r) ◦ q(f , σ) ◦M{f } = M ′ ◦ f .
So by remark above there is a proof s of T (f)(σ) = T (f)(σ′) such that
∆Γ(r) ◦ q(f , σ) = q(f , σ′) ◦∆B(s) and hence

q(f , σ′) ◦∆B(s) ◦M{f } = M ′ ◦ f .
It follows by uniqueness that ∆B(s) ◦M{f } = M ′{f }, so indeed

B ` (M{f }, σ{f }) = (M ′{f }, σ′{f }) : σ′′{f }.
This justifies also the rule:

Γ ` s = t : σ′′ f : B // Γ

B ` s{f } = t{f } : σ′′{f }
29 / 50

Interpretation

Moreover, if
Γ ` (M, σ) = (M ′, σ′) : σ′′

we have ∆Γ(r) ◦M =E(Γ,σ′) M
′ for some proof r of σ =T (Γ) σ

′. Then

∆Γ(r) ◦M ◦ f = M ′ ◦ f
and hence

∆Γ(r) ◦ q(f , σ) ◦M{f } = M ′ ◦ f .
So by remark above there is a proof s of T (f)(σ) = T (f)(σ′) such that
∆Γ(r) ◦ q(f , σ) = q(f , σ′) ◦∆B(s) and hence

q(f , σ′) ◦∆B(s) ◦M{f } = M ′ ◦ f .
It follows by uniqueness that ∆B(s) ◦M{f } = M ′{f }, so indeed

B ` (M{f }, σ{f }) = (M ′{f }, σ′{f }) : σ′′{f }.
This justifies also the rule:

Γ ` s = t : σ′′ f : B // Γ

B ` s{f } = t{f } : σ′′{f }
29 / 50

Interpretation

Moreover, if
Γ ` (M, σ) = (M ′, σ′) : σ′′

we have ∆Γ(r) ◦M =E(Γ,σ′) M
′ for some proof r of σ =T (Γ) σ

′. Then

∆Γ(r) ◦M ◦ f = M ′ ◦ f
and hence

∆Γ(r) ◦ q(f , σ) ◦M{f } = M ′ ◦ f .
So by remark above there is a proof s of T (f)(σ) = T (f)(σ′) such that
∆Γ(r) ◦ q(f , σ) = q(f , σ′) ◦∆B(s) and hence

q(f , σ′) ◦∆B(s) ◦M{f } = M ′ ◦ f .
It follows by uniqueness that ∆B(s) ◦M{f } = M ′{f }, so indeed

B ` (M{f }, σ{f }) = (M ′{f }, σ′{f }) : σ′′{f }.
This justifies also the rule:

Γ ` s = t : σ′′ f : B // Γ

B ` s{f } = t{f } : σ′′{f }
29 / 50

Interpretation

Moreover, if
Γ ` (M, σ) = (M ′, σ′) : σ′′

we have ∆Γ(r) ◦M =E(Γ,σ′) M
′ for some proof r of σ =T (Γ) σ

′. Then

∆Γ(r) ◦M ◦ f = M ′ ◦ f
and hence

∆Γ(r) ◦ q(f , σ) ◦M{f } = M ′ ◦ f .
So by remark above there is a proof s of T (f)(σ) = T (f)(σ′) such that
∆Γ(r) ◦ q(f , σ) = q(f , σ′) ◦∆B(s) and hence

q(f , σ′) ◦∆B(s) ◦M{f } = M ′ ◦ f .
It follows by uniqueness that ∆B(s) ◦M{f } = M ′{f }, so indeed

B ` (M{f }, σ{f }) = (M ′{f }, σ′{f }) : σ′′{f }.
This justifies also the rule:

Γ ` s = t : σ′′ f : B // Γ

B ` s{f } = t{f } : σ′′{f }
29 / 50

Interpretation

Moreover, if
Γ ` (M, σ) = (M ′, σ′) : σ′′

we have ∆Γ(r) ◦M =E(Γ,σ′) M
′ for some proof r of σ =T (Γ) σ

′. Then

∆Γ(r) ◦M ◦ f = M ′ ◦ f
and hence

∆Γ(r) ◦ q(f , σ) ◦M{f } = M ′ ◦ f .
So by remark above there is a proof s of T (f)(σ) = T (f)(σ′) such that
∆Γ(r) ◦ q(f , σ) = q(f , σ′) ◦∆B(s) and hence

q(f , σ′) ◦∆B(s) ◦M{f } = M ′ ◦ f .
It follows by uniqueness that ∆B(s) ◦M{f } = M ′{f }, so indeed

B ` (M{f }, σ{f }) = (M ′{f }, σ′{f }) : σ′′{f }.
This justifies also the rule:

Γ ` s = t : σ′′ f : B // Γ

B ` s{f } = t{f } : σ′′{f }
29 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

From (Hofmann 1994) we take the following definition, but adapt it in the
obvious way to cwas.

A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is
an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,

(Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),

(λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

(App-subst) Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).

30 / 50

Π-types

Adapting this to ecwas ... the first part is similar

An ecwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type
Π(σ, τ) ∈ T (Γ), and moreover for every P ∈ E (Γ.σ, τ) there is an element
λσ,τ (P) ∈ E (Γ,Π(σ, τ)), and furthermore for any M ∈ E (Γ,Π(σ, τ)) and
any N ∈ E (Γ, σ) there is an element Appσ,τ (M,N) ∈ E (Γ, τ{N}), such
that the following equations hold for any f : B // Γ:

(β-red) Appσ,τ (λσ,τ (P),N) =E(Γ,τ{N}) P{N}, [as before]

(Π-subst) Π(σ, τ){f } =T (B) Π(σ{f }, τ{q(f , σ)}), [as before]

31 / 50

Π-types

This part of the definition has type adjustments:

(λ-subst)

λσ,τ (P){f } =E(B,Π(σ,τ){f }) ∆B(t) ◦ λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

for any proof t of Π(σ{f }, τ{q(f , σ)}) =T (B) Π(σ, τ){f },
(App-subst)

Appσ,τ (M,N){f } =E(···) ∆B(s)◦Appσ{f },τ{q(f ,σ)}(∆B(t)◦M{f },N{f })

for any proof s of τ{q(f , σ)}{N{f }} =T (B) τ{N}{f } and

any proof t of Π(σ, τ){f } =T (B) Π(σ{f }, τ{q(f , σ)}).

32 / 50

Π-types

This part of the definition has type adjustments:

(λ-subst)

λσ,τ (P){f } =E(B,Π(σ,τ){f }) ∆B(t) ◦ λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

for any proof t of Π(σ{f }, τ{q(f , σ)}) =T (B) Π(σ, τ){f },
(App-subst)

Appσ,τ (M,N){f } =E(···) ∆B(s)◦Appσ{f },τ{q(f ,σ)}(∆B(t)◦M{f },N{f })

for any proof s of τ{q(f , σ)}{N{f }} =T (B) τ{N}{f } and

any proof t of Π(σ, τ){f } =T (B) Π(σ{f }, τ{q(f , σ)}).

32 / 50

Π-types

Furthermore there are the following extensionality conditions on Π, λ and
App:

(Π-cong) if s is a proof of σ =T (Γ) σ
′ and for τ ∈ T (Γ.σ),

τ ′ ∈ T (Γ.σ′) with τ =T (Γ.σ) τ
′{∆(s)}, then

Π(σ, τ) =T (Γ) Π(σ′, τ ′).

(λ-cong) if P =E(Γ.σ,τ) P
′, then

λσ,τ (P) =E(Γ,Π(σ,τ)) λσ,τ (P ′)

(App-cong) if M =E(Γ,Π(σ,τ)) M
′ and N =E(Γ,σ) N

′ then

∆Γ(s) ◦ Appσ,τ (M,N) =E(Γ,τ{N′}) Appσ,τ (M ′,N ′),

where s is any proof of τ{N} =T (Γ) τ{N ′}.

33 / 50

Π-types

Furthermore there are the following extensionality conditions on Π, λ and
App:

(Π-cong) if s is a proof of σ =T (Γ) σ
′ and for τ ∈ T (Γ.σ),

τ ′ ∈ T (Γ.σ′) with τ =T (Γ.σ) τ
′{∆(s)}, then

Π(σ, τ) =T (Γ) Π(σ′, τ ′).

(λ-cong) if P =E(Γ.σ,τ) P
′, then

λσ,τ (P) =E(Γ,Π(σ,τ)) λσ,τ (P ′)

(App-cong) if M =E(Γ,Π(σ,τ)) M
′ and N =E(Γ,σ) N

′ then

∆Γ(s) ◦ Appσ,τ (M,N) =E(Γ,τ{N′}) Appσ,τ (M ′,N ′),

where s is any proof of τ{N} =T (Γ) τ{N ′}.

33 / 50

Π-types

Furthermore there are the following extensionality conditions on Π, λ and
App:

(Π-cong) if s is a proof of σ =T (Γ) σ
′ and for τ ∈ T (Γ.σ),

τ ′ ∈ T (Γ.σ′) with τ =T (Γ.σ) τ
′{∆(s)}, then

Π(σ, τ) =T (Γ) Π(σ′, τ ′).

(λ-cong) if P =E(Γ.σ,τ) P
′, then

λσ,τ (P) =E(Γ,Π(σ,τ)) λσ,τ (P ′)

(App-cong) if M =E(Γ,Π(σ,τ)) M
′ and N =E(Γ,σ) N

′ then

∆Γ(s) ◦ Appσ,τ (M,N) =E(Γ,τ{N′}) Appσ,τ (M ′,N ′),

where s is any proof of τ{N} =T (Γ) τ{N ′}.

33 / 50

Existence of internal models

Existence of internal models

We present some work in progress.

34 / 50

Existence of internal models

Graded extensional universes (jww Olov Wilander)

A graded graded universe is a family of setoids F : A // Setoids with a
grading function δ : A // N, a lifting function ` : A // A and natural
isomorphism φ : F ◦ ` // F i.e. (φa)a∈A are bijections such that

F (`b) Fb
φb
//

F (`a)

F (`b)

F (p)

��

F (`a) Fa
φa // Fa

Fb

F (q)

��

(1)

where a, b ∈ A and p : `a =A `b, q : a =A b are arbitrary. Moreover, it is
required that

δa ≤ δb =⇒ δ(`δb−δa(a)) = δb.

We allow the grading to be trivial: δ(a) ≡ 0 and ` = idA.

35 / 50

Existence of internal models

The graded universe F is Σ-closed if for any a ∈ A and any function
f : F (a) // A, which are adapted, i.e. ∀x ∈ F (a).δ(a) = δ(fx), any proof
H of this, there is Σ̂(a, f ,H) ∈ A, with δ(Σ̂(a, f ,H)) = δ(`a), and a
bijection

ψa,f ,H : F (Σ̂(a, f ,H)) // Σ(Fa,F ◦ f).

These maps should moreover satisfy the following condition: If p : a =A a′

and f = f ′ ◦ F (p), and for any proofs H,H ′ of adaptedness, then

Σ̂(a, f ,H) =A Σ̂(a′, f ′,H ′)

and moreover a naturality condition

F (Σ̂(a′, f ′,H ′)) Σ(Fa′,F ◦ f ′)
ψa′,f ′,H′

//

F (Σ̂(a, f ,H))

F (Σ̂(a′, f ′,H ′))

F (q)

��

F (Σ̂(a, f ,H)) Σ(Fa,F ◦ f)
ψa,f ,H // Σ(Fa,F ◦ f)

Σ(Fa′,F ◦ f ′)

Σp,k

��

(2)

commutes. Above q is any proof of Σ̂(a, f ,H) =A Σ̂(a′, f ′,H ′) and Σp,k is
given by Σp,k(x , y) = (x · p, y · k(x)) where k is any proof of f = f ′ ◦F (p).36 / 50

Existence of internal models

The graded universe F is Σ-closed if for any a ∈ A and any function
f : F (a) // A, which are adapted, i.e. ∀x ∈ F (a).δ(a) = δ(fx), any proof
H of this, there is Σ̂(a, f ,H) ∈ A, with δ(Σ̂(a, f ,H)) = δ(`a), and a
bijection

ψa,f ,H : F (Σ̂(a, f ,H)) // Σ(Fa,F ◦ f).

These maps should moreover satisfy the following condition: If p : a =A a′

and f = f ′ ◦ F (p), and for any proofs H,H ′ of adaptedness, then

Σ̂(a, f ,H) =A Σ̂(a′, f ′,H ′)

and moreover a naturality condition

F (Σ̂(a′, f ′,H ′)) Σ(Fa′,F ◦ f ′)
ψa′,f ′,H′

//

F (Σ̂(a, f ,H))

F (Σ̂(a′, f ′,H ′))

F (q)

��

F (Σ̂(a, f ,H)) Σ(Fa,F ◦ f)
ψa,f ,H // Σ(Fa,F ◦ f)

Σ(Fa′,F ◦ f ′)

Σp,k

��

(2)

commutes. Above q is any proof of Σ̂(a, f ,H) =A Σ̂(a′, f ′,H ′) and Σp,k is
given by Σp,k(x , y) = (x · p, y · k(x)) where k is any proof of f = f ′ ◦F (p).36 / 50

Existence of internal models

The graded universe F is Σ-closed if for any a ∈ A and any function
f : F (a) // A, which are adapted, i.e. ∀x ∈ F (a).δ(a) = δ(fx), any proof
H of this, there is Σ̂(a, f ,H) ∈ A, with δ(Σ̂(a, f ,H)) = δ(`a), and a
bijection

ψa,f ,H : F (Σ̂(a, f ,H)) // Σ(Fa,F ◦ f).

These maps should moreover satisfy the following condition: If p : a =A a′

and f = f ′ ◦ F (p), and for any proofs H,H ′ of adaptedness, then

Σ̂(a, f ,H) =A Σ̂(a′, f ′,H ′)

and moreover a naturality condition

F (Σ̂(a′, f ′,H ′)) Σ(Fa′,F ◦ f ′)
ψa′,f ′,H′

//

F (Σ̂(a, f ,H))

F (Σ̂(a′, f ′,H ′))

F (q)

��

F (Σ̂(a, f ,H)) Σ(Fa,F ◦ f)
ψa,f ,H // Σ(Fa,F ◦ f)

Σ(Fa′,F ◦ f ′)

Σp,k

��

(2)

commutes. Above q is any proof of Σ̂(a, f ,H) =A Σ̂(a′, f ′,H ′) and Σp,k is
given by Σp,k(x , y) = (x · p, y · k(x)) where k is any proof of f = f ′ ◦F (p).36 / 50

Existence of internal models

We build an ecwa from the graded universe, which we later wish to
formalize in Coq. The graded universe has already been so formalized.
Define an e-category C whose objects are elements a, b, . . . ∈ A A

morphism f : a // b is an extensional function f : F (a) // F (b).

Define an e-functor T : Cop // Setoids by letting

T (a) ≡ ((Σk : N)Ext(F (a),A) ∧ (∀x ∈ A)δ(fx) = k),∼)

(i.e. bounded families) where

(k , g , p) ∼ (k ′, g ′, p′)⇔ k = k ′ & g =ext g
′

and for f : a // b
T (f)(k , g , p) = (k , g ◦ f , p′)

37 / 50

Existence of internal models

We build an ecwa from the graded universe, which we later wish to
formalize in Coq. The graded universe has already been so formalized.
Define an e-category C whose objects are elements a, b, . . . ∈ A A

morphism f : a // b is an extensional function f : F (a) // F (b).

Define an e-functor T : Cop // Setoids by letting

T (a) ≡ ((Σk : N)Ext(F (a),A) ∧ (∀x ∈ A)δ(fx) = k),∼)

(i.e. bounded families) where

(k , g , p) ∼ (k ′, g ′, p′)⇔ k = k ′ & g =ext g
′

and for f : a // b
T (f)(k , g , p) = (k , g ◦ f , p′)

37 / 50

Existence of internal models

We build an ecwa from the graded universe, which we later wish to
formalize in Coq. The graded universe has already been so formalized.
Define an e-category C whose objects are elements a, b, . . . ∈ A A

morphism f : a // b is an extensional function f : F (a) // F (b).

Define an e-functor T : Cop // Setoids by letting

T (a) ≡ ((Σk : N)Ext(F (a),A) ∧ (∀x ∈ A)δ(fx) = k),∼)

(i.e. bounded families) where

(k , g , p) ∼ (k ′, g ′, p′)⇔ k = k ′ & g =ext g
′

and for f : a // b
T (f)(k , g , p) = (k , g ◦ f , p′)

37 / 50

Existence of internal models

We build an ecwa from the graded universe, which we later wish to
formalize in Coq. The graded universe has already been so formalized.
Define an e-category C whose objects are elements a, b, . . . ∈ A A

morphism f : a // b is an extensional function f : F (a) // F (b).

Define an e-functor T : Cop // Setoids by letting

T (a) ≡ ((Σk : N)Ext(F (a),A) ∧ (∀x ∈ A)δ(fx) = k),∼)

(i.e. bounded families) where

(k , g , p) ∼ (k ′, g ′, p′)⇔ k = k ′ & g =ext g
′

and for f : a // b
T (f)(k , g , p) = (k , g ◦ f , p′)

37 / 50

Existence of internal models

The context extension operation: For

Γ = a ∈ C and σ = (k, g , p) ∈ T (Γ)

let the extended context be

Γ.σ = (s + 1, Σ̂(`s−n(a), `s−k ◦ g ◦ φs−n))

where s = max(δ(a), k). The associated projection p(σ) : Γ.σ // Γ is
given by

p(σ)(x , y) = x .

38 / 50

Existence of internal models

For f : B // Γ we wish to define q(f , σ) : B.σ{f } // Γ.σ in C such that

B Γ
f

//

B.σ{f }

B

p(σ{f })

��

B.σ{f } Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback. This can be done similarly to the case of sets, but using the
setoid sum instead of the set-theoretic sum.

39 / 50

Existence of internal models

Construction of a graded universe

We construct a sequence of setoids An and sequence of setoid families Fn
over An. Let A0 be a three element setoid with elements called N̂0, N̂1, N̂.
Define F0(N̂0), F0(N̂1) and F0(N̂) to be the empty setoid, the one element
setoid and the setoid of natural numbers respectively. For p : x =A0 y we
let F0(p) be the identity map. We let

An+1 = C (An,Fn) and Fn+1 = S(An,Fn).

The desired graded universe U,T will then be a sum of this family in a
straightforward way i.e U = ((Σn : N)An, ...) and T (n, a) = Fn(a).

40 / 50

Existence of internal models

The constructions C and S.

For a setoid A and setoid family F over A we construct a setoid
A∗ = C (A,F) and F ∗ = S(A,F) a setoid family over A∗.
The set |A∗| is constructed by the following rules

a : |A|
`(a) : |A∗|

a : |A| b : |A|
a + b : |A∗|

a : |A| x : |F |(a) y : |F |(a)

e(a, x , y) : |A∗|
.

a : |A| f : Ext(F (a),A)

σ(a, f) : |A∗|
a : |A| f : Ext(F (a),A)

π(a, f) : |A∗|
We may in fact construct |A∗| as the disjoint sum

|A|+ |A| × |A|+ (Σa : |A|)(|F (a)| × |F (a)|) +

(Σa : |A|)Ext(F (a),A) + (Σa : |A|)Ext(F (a),A).

41 / 50

Existence of internal models

The constructions C and S.

For a setoid A and setoid family F over A we construct a setoid
A∗ = C (A,F) and F ∗ = S(A,F) a setoid family over A∗.
The set |A∗| is constructed by the following rules

a : |A|
`(a) : |A∗|

a : |A| b : |A|
a + b : |A∗|

a : |A| x : |F |(a) y : |F |(a)

e(a, x , y) : |A∗|
.

a : |A| f : Ext(F (a),A)

σ(a, f) : |A∗|
a : |A| f : Ext(F (a),A)

π(a, f) : |A∗|
We may in fact construct |A∗| as the disjoint sum

|A|+ |A| × |A|+ (Σa : |A|)(|F (a)| × |F (a)|) +

(Σa : |A|)Ext(F (a),A) + (Σa : |A|)Ext(F (a),A).

41 / 50

Existence of internal models

We now define =A∗ assuming A and F are given.
Define =A∗ by the 5× 5 cases indicated by the sum above

`(a) =A∗ `(a
′) iff a =A a′

a + b =A∗ a
′ + b′ iff a =A a′ and b =A b′

e(a, x , y) =A∗ e(a′, x ′, y ′) iff for some u : (a =A a′) we have
F (u)(x) =A x ′ and F (u)(y) =A y ′.

σ(a, f) =A∗ σ(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

π(a, f) =A∗ π(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

In the remaining cases, r =A∗ r
′ is false.

42 / 50

Existence of internal models

We now define =A∗ assuming A and F are given.
Define =A∗ by the 5× 5 cases indicated by the sum above

`(a) =A∗ `(a
′) iff a =A a′

a + b =A∗ a
′ + b′ iff a =A a′ and b =A b′

e(a, x , y) =A∗ e(a′, x ′, y ′) iff for some u : (a =A a′) we have
F (u)(x) =A x ′ and F (u)(y) =A y ′.

σ(a, f) =A∗ σ(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

π(a, f) =A∗ π(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

In the remaining cases, r =A∗ r
′ is false.

42 / 50

Existence of internal models

We now define =A∗ assuming A and F are given.
Define =A∗ by the 5× 5 cases indicated by the sum above

`(a) =A∗ `(a
′) iff a =A a′

a + b =A∗ a
′ + b′ iff a =A a′ and b =A b′

e(a, x , y) =A∗ e(a′, x ′, y ′) iff for some u : (a =A a′) we have
F (u)(x) =A x ′ and F (u)(y) =A y ′.

σ(a, f) =A∗ σ(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

π(a, f) =A∗ π(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

In the remaining cases, r =A∗ r
′ is false.

42 / 50

Existence of internal models

We now define =A∗ assuming A and F are given.
Define =A∗ by the 5× 5 cases indicated by the sum above

`(a) =A∗ `(a
′) iff a =A a′

a + b =A∗ a
′ + b′ iff a =A a′ and b =A b′

e(a, x , y) =A∗ e(a′, x ′, y ′) iff for some u : (a =A a′) we have
F (u)(x) =A x ′ and F (u)(y) =A y ′.

σ(a, f) =A∗ σ(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

π(a, f) =A∗ π(a′, f ′) iff for some u : (a =A a′) we have
(∀x : F (a))(f (x) =F (a′) f

′(F (u)(x))).

In the remaining cases, r =A∗ r
′ is false.

42 / 50

Existence of internal models

Next define F ∗(a) by cases on |A∗|.

F ∗(`(a)) = F (a)

F ∗(a + b) = D(F (a),F (b)) (binary disjoint union as setoids).

F ∗(e(a, x , y)) = E (F (a), x , y) (extensional identity setoid)

F ∗(σ(a, f)) = S(F (a),F ◦ f) (general disjoint union setoid)

F ∗(π(a, f)) = P(F (a),F ◦ f) (general product setoid)

43 / 50

Existence of internal models

The setoid constructions E , S and P: Suppose B is a setoid and x , y : |B|.
Define

E (B, x , y) = ((x =B y),∼),

where r ∼ r ′ is true for all r , r ′.
Suppose B is a setoid and that G is a family of setoids over B. Define

S(B,G) = ((Σx : |B|)|G (x)|,∼)

where (x , y) ∼ (x ′, y ′) iff (∃p : x =B x ′)(G (p)(y) =G(x ′) y
′).

Further define

P(B,G) = ((Σg : (Πx : |B|)|G (x)|)
(∀x , x ′ : |B|)(∀p : x =B x ′)[G (p)(g(x)) =G(x ′) g(x ′)],∼)

where (g , r) ∼ (g ′, r ′) iff (∀x : |B|)[g(x) =G(x) g
′(x)].

44 / 50

Existence of internal models

The setoid constructions E , S and P: Suppose B is a setoid and x , y : |B|.
Define

E (B, x , y) = ((x =B y),∼),

where r ∼ r ′ is true for all r , r ′.
Suppose B is a setoid and that G is a family of setoids over B. Define

S(B,G) = ((Σx : |B|)|G (x)|,∼)

where (x , y) ∼ (x ′, y ′) iff (∃p : x =B x ′)(G (p)(y) =G(x ′) y
′).

Further define

P(B,G) = ((Σg : (Πx : |B|)|G (x)|)
(∀x , x ′ : |B|)(∀p : x =B x ′)[G (p)(g(x)) =G(x ′) g(x ′)],∼)

where (g , r) ∼ (g ′, r ′) iff (∀x : |B|)[g(x) =G(x) g
′(x)].

44 / 50

Existence of internal models

The setoid constructions E , S and P: Suppose B is a setoid and x , y : |B|.
Define

E (B, x , y) = ((x =B y),∼),

where r ∼ r ′ is true for all r , r ′.
Suppose B is a setoid and that G is a family of setoids over B. Define

S(B,G) = ((Σx : |B|)|G (x)|,∼)

where (x , y) ∼ (x ′, y ′) iff (∃p : x =B x ′)(G (p)(y) =G(x ′) y
′).

Further define

P(B,G) = ((Σg : (Πx : |B|)|G (x)|)
(∀x , x ′ : |B|)(∀p : x =B x ′)[G (p)(g(x)) =G(x ′) g(x ′)],∼)

where (g , r) ∼ (g ′, r ′) iff (∀x : |B|)[g(x) =G(x) g
′(x)].

44 / 50

Existence of internal models

Transportation functions

For p : a =A∗ a
′ we define a transportation function

F ∗(p) : F ∗(a) // F ∗(a′)

according to the 5× 5 cases for a and a′. For the 20 cases where a and a′

have distinct outer form a =A a′ is empty and we define |F ∗(p)| by
absurdity elimination.

• For p : (`(a) =A∗ `(a
′)) let |F ∗(p)| = |F (p)|,

• For p = (p1, p2) : (a + b =A∗ a
′ + b′) let F ∗(p) = F (p1) + F (p2),

• For p = (p1, p2, p3) : e(a, x , y) =A∗ e(a′, x ′, y ′) we have p1 : a =A a′,
p2 : F (p1)(x) =F (a) x

′ and p3 : F (p1)(y) =F (a) y
′. Let

F ∗(p)(q) = p3 ◦ extF (p1)(x , y , q) ◦ p−1
2

45 / 50

Existence of internal models

Transportation functions

For p : a =A∗ a
′ we define a transportation function

F ∗(p) : F ∗(a) // F ∗(a′)

according to the 5× 5 cases for a and a′. For the 20 cases where a and a′

have distinct outer form a =A a′ is empty and we define |F ∗(p)| by
absurdity elimination.

• For p : (`(a) =A∗ `(a
′)) let |F ∗(p)| = |F (p)|,

• For p = (p1, p2) : (a + b =A∗ a
′ + b′) let F ∗(p) = F (p1) + F (p2),

• For p = (p1, p2, p3) : e(a, x , y) =A∗ e(a′, x ′, y ′) we have p1 : a =A a′,
p2 : F (p1)(x) =F (a) x

′ and p3 : F (p1)(y) =F (a) y
′. Let

F ∗(p)(q) = p3 ◦ extF (p1)(x , y , q) ◦ p−1
2

45 / 50

Existence of internal models

Transportation functions (cont.)

• For p = (p1, p2) : σ(a, f) =A∗ σ(a′, f ′) we have p1 : a =A a′ and
p2 : (∀x : F (a))(f (x) =F (a′) f

′(F (p1)(x))). For
(x , y) : |Σ(F (a),F ◦ f)| = (Σx : |F (a)|) |F (f (x))|, let

F ∗(p)((x , y)) = (F (p1)(x),F (p2(x))(y)).

• For p = (p1, p2) : π(a, f) =A∗ π(a′, f ′) we have p1 : a =A a′ and
p2 : (∀x : F (a))(f (x) =A f ′(F (p1)(x))). For (g , e) : |Π(F (a),F ◦ f)| we
have g : (Πx : |F (a)|) |F (f (x))| and

e : (∀x , x ′ : |F (a)|)(∀p : x =F (a) x
′)[(F ◦ f)(p)(g(x)) =(F◦f)(x ′) g(x ′)].

46 / 50

Existence of internal models

Transportation functions (cont.)

• For p = (p1, p2) : σ(a, f) =A∗ σ(a′, f ′) we have p1 : a =A a′ and
p2 : (∀x : F (a))(f (x) =F (a′) f

′(F (p1)(x))). For
(x , y) : |Σ(F (a),F ◦ f)| = (Σx : |F (a)|) |F (f (x))|, let

F ∗(p)((x , y)) = (F (p1)(x),F (p2(x))(y)).

• For p = (p1, p2) : π(a, f) =A∗ π(a′, f ′) we have p1 : a =A a′ and
p2 : (∀x : F (a))(f (x) =A f ′(F (p1)(x))). For (g , e) : |Π(F (a),F ◦ f)| we
have g : (Πx : |F (a)|) |F (f (x))| and

e : (∀x , x ′ : |F (a)|)(∀p : x =F (a) x
′)[(F ◦ f)(p)(g(x)) =(F◦f)(x ′) g(x ′)].

46 / 50

Existence of internal models

Transportation functions (cont.)

We define F ∗(p)(g , e) = (g ′, e ′) below. For u : F (a′) we have
g(F (p−1

1)(u)) : |F (f (F (p−1
1)(u)))| and hence

F (p2(F (p−1
1)(u)))(g(F (p−1

1)(u)))) : |F (f ′(F (p1)(F (p−1
1)(u))))|. Now

F (p1)(F (p−1
1)(u)) =F (a′) u

so it is inhabited by, say, h(a′, u). Now f ′ is extensional so

(F◦f ′)(h(a′, u)) = F (extf ′(F (p1)(F (p−1
1)(u)), u, h(a′, u))) : F (f ′(F (p1)(F (p−1

1)(u)))) //F (f ′(u)).

We let

g ′(u) = (F ◦ f ′)(h(a′, u))(F (p2(F (p−1
1)(u)))(g(F (p−1

1)(u)))) : |F (f ′(u))|.

To define e ′ it suffices to prove (in any way possible):

(∀u, u′ : |F (a′)|)(∀p : u =F (a′) u
′)[(F ◦ f ′)(p)(g ′(u)) =(F◦f ′)(u′) g

′(u′)].

47 / 50

Existence of internal models

Transportation functions (cont.)

We define F ∗(p)(g , e) = (g ′, e ′) below. For u : F (a′) we have
g(F (p−1

1)(u)) : |F (f (F (p−1
1)(u)))| and hence

F (p2(F (p−1
1)(u)))(g(F (p−1

1)(u)))) : |F (f ′(F (p1)(F (p−1
1)(u))))|. Now

F (p1)(F (p−1
1)(u)) =F (a′) u

so it is inhabited by, say, h(a′, u). Now f ′ is extensional so

(F◦f ′)(h(a′, u)) = F (extf ′(F (p1)(F (p−1
1)(u)), u, h(a′, u))) : F (f ′(F (p1)(F (p−1

1)(u)))) //F (f ′(u)).

We let

g ′(u) = (F ◦ f ′)(h(a′, u))(F (p2(F (p−1
1)(u)))(g(F (p−1

1)(u)))) : |F (f ′(u))|.

To define e ′ it suffices to prove (in any way possible):

(∀u, u′ : |F (a′)|)(∀p : u =F (a′) u
′)[(F ◦ f ′)(p)(g ′(u)) =(F◦f ′)(u′) g

′(u′)].

47 / 50

Existence of internal models

Transportation functions (cont.)

We define F ∗(p)(g , e) = (g ′, e ′) below. For u : F (a′) we have
g(F (p−1

1)(u)) : |F (f (F (p−1
1)(u)))| and hence

F (p2(F (p−1
1)(u)))(g(F (p−1

1)(u)))) : |F (f ′(F (p1)(F (p−1
1)(u))))|. Now

F (p1)(F (p−1
1)(u)) =F (a′) u

so it is inhabited by, say, h(a′, u). Now f ′ is extensional so

(F◦f ′)(h(a′, u)) = F (extf ′(F (p1)(F (p−1
1)(u)), u, h(a′, u))) : F (f ′(F (p1)(F (p−1

1)(u)))) //F (f ′(u)).

We let

g ′(u) = (F ◦ f ′)(h(a′, u))(F (p2(F (p−1
1)(u)))(g(F (p−1

1)(u)))) : |F (f ′(u))|.

To define e ′ it suffices to prove (in any way possible):

(∀u, u′ : |F (a′)|)(∀p : u =F (a′) u
′)[(F ◦ f ′)(p)(g ′(u)) =(F◦f ′)(u′) g

′(u′)].

47 / 50

Using a set-theoretic universe

Using a set-theoretic universe

The above construction of a extensional type-theoretic universe is
complicated, mainly because of the transportation functions. A technically
simpler solution appears to be to use a set-theoretic universe

V = (|V |,=V)

as that in Aczel’s model of CZF. (Recall that |V | = (Wx : U)T(x).)

We build a category AV consisting of elements a of V as objects and as
morphisms a // b elements f of V which are functions from a to b
internally to V .

There is a full and faithful functor F : AV
// Setoid which on objects is

F (sup(a, f)) = (T (a),∼f)

where x ∼f y ⇐⇒ f (x) =V f (y).

48 / 50

Using a set-theoretic universe

Using a set-theoretic universe

The above construction of a extensional type-theoretic universe is
complicated, mainly because of the transportation functions. A technically
simpler solution appears to be to use a set-theoretic universe

V = (|V |,=V)

as that in Aczel’s model of CZF. (Recall that |V | = (Wx : U)T(x).)

We build a category AV consisting of elements a of V as objects and as
morphisms a // b elements f of V which are functions from a to b
internally to V .

There is a full and faithful functor F : AV
// Setoid which on objects is

F (sup(a, f)) = (T (a),∼f)

where x ∼f y ⇐⇒ f (x) =V f (y).

48 / 50

Using a set-theoretic universe

Using a set-theoretic universe

The above construction of a extensional type-theoretic universe is
complicated, mainly because of the transportation functions. A technically
simpler solution appears to be to use a set-theoretic universe

V = (|V |,=V)

as that in Aczel’s model of CZF. (Recall that |V | = (Wx : U)T(x).)

We build a category AV consisting of elements a of V as objects and as
morphisms a // b elements f of V which are functions from a to b
internally to V .

There is a full and faithful functor F : AV
// Setoid which on objects is

F (sup(a, f)) = (T (a),∼f)

where x ∼f y ⇐⇒ f (x) =V f (y).

48 / 50

Using a set-theoretic universe

Using a set-theoretic universe (cont.)

It should be possible to use the Π- and Σ-constructions of CZF for
constructing ecwas with the corresponding constructions. This remains to
be verified formally.

49 / 50

Using a set-theoretic universe

Some references

J. Cartmell, Generalised Algebraic theories and Contextual Categories,
Annals of Pure and Applied Logic, 32:209-243, 1986.

M. Hofmann, Extensional Concepts in Intensional Type Theory,
Springer 1997.

M. Hofmann, Syntax and Semantics of Dependent Type Theory.
1994.

P. Dybjer, Internal type theory, pp 120-134 in TYPES ’95, LNCS
1158, 1996.

A. Buisse and P. Dybjer, Towards formalizing categorical models of
type theory in type theory, Electronic Notes in Theoretical Computer
Science Volume 196, 22 January 2008, Pages 137-151.

50 / 50

	Models of type theory
	Families of sets and setoids
	Internal cwas
	Interpretation
	-types
	Existence of internal models
	Using a set-theoretic universe

