
Description f LF in TS style
Vladimir Voevodsky

Started November 27, 2012. Work in progress.

1 Expressions and terms of LF

Definition 1.1 [lfexp] The following labels are permitted in expressions of LF: names of
t-constants, names of o-constants, names of o-variables, Type, [

∏
k; x], [

∏
t; x], [λt;x], [evt],

[λo; x] and [evo].

Definition 1.2 [lfclassesofexp] We distinguish three classes of expressions:

1. K-expressions are the ones with the root node [Type] or [
∏

k;x],

2. T-expressions are the ones with the root node [X] where X is the name of a t-constant,
[
∏

t; x], [λt;x] or [evt],

3. O-expressions are the ones with the root node [x] where x is the name of an o-constant
or an o-variable, [λo; x] and [evo].

Definition 1.3 [lfterms] An LF-term is an expression of LF which satisfies the following
conditions:

1. any node of the form [Type] has valency 0,

2. any node of the form [
∏

k;x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a k-expression,

3. any node of the form [
∏

t; x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a t-expression,

4. any node of the form [λt; x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a t-expression,

5. any node of the form [evt] has valency 2 and both its branches are t-expressions,

6. any node of the form [λo;x] has valency 2, its first branch is a t-expression which does
not depend on x and its second branch is a o-expression,

7. any node of the form [evo] has valency 2 and both its branches are o-expressions.

1



2 Derivation rules for LF

The derivation (inference) rules for LF are as follows:

1.

▷
2. for each i ∈ N

Γ, x : T,Γ′ ▷ where l(Γ) = i

Γ, x : T,Γ′ ⊢ x : T

3.
Γ, x : T ▷ Γ, x : T ′▷

Γ ⊢ T
d
= T

4.
Γ ⊢ T1

d
= T2

Γ ⊢ T2
d
= T1

5.
Γ ⊢ T1

d
= T2 Γ ⊢ T2

d
= T3

Γ ⊢ T1
d
= T3

6.
Γ ⊢ o : T Γ ⊢ o′ : T o ∼A o′

Γ ⊢ o
d
= o′ : T

7.
Γ ⊢ o1

d
= o2 : T

Γ ⊢ o2
d
= o1 : T

8.
Γ ⊢ o1

d
= o2 : T Γ ⊢ o2

d
= o3 : T

Γ ⊢ o1
d
= o3 : T

9.
Γ ⊢ o : T Γ ⊢ T

d
= T ′

Γ ⊢ o : T ′

10.
Γ ⊢ o

d
= o′ : T Γ ⊢ T

d
= T ′

Γ ⊢ o
d
= o′ : T ′

11. if A is a t-constant name unused in Γ then

Γ▷
Γ, A : Type▷

2



12. If A is a t-expression and K is a k-expression then

Γ, x : A, y : K ▷
Γ, z : [

∏
k; x](A,K)▷

13. If A, A′ are t-expressions and K, K ′ are k-expressions then

Γ ⊢ A
d
= A′ Γ, x : A ⊢ K

d
= K ′

Γ ⊢ [
∏

k;x](A,K)
d
= [

∏
k; x](A

′, K ′)

14. If A, B are t-expressions then

Γ, x : A, y : B▷
Γ, z : [

∏
t; x](A,B)▷

15. If A, A′, B, B′ are t-expressions then

Γ ⊢ A
d
= A′ Γ, x : A ⊢ B

d
= B′

Γ ⊢ [
∏

t;x](A,B)
d
= [

∏
t;x](A

′, B′)

16. If A is a t-expression and K is a k-expression then

Γ, x : A ⊢ B : K

Γ ⊢ [λt; x](A,B) : [
∏

k;x](A,K)

17. If A, A′ are t-expressions and K is a k-expression then

Γ ⊢ A
d
= A′′ Γ, x : A ⊢ B

d
= B′ : K

Γ ⊢ [λt; x](A,B)
d
= [λt;x](A′, B′) : [

∏
k;x](A,K)

18.
Γ ⊢ F : [

∏
k;x](A,K) Γ ⊢ a : A

Γ ⊢ [evt](F, a) : K[a/x]

19.
Γ ⊢ F

d
= F ′ : [

∏
k;x](A,K) Γ ⊢ a

d
= a′ : A

Γ ⊢ [evt](F, a)
d
= [evt](F ′, a′) : K[a/x]

20. If A and B are t-expressions then

Γ, x : A ⊢ o : B

Γ ⊢ [λ; x](A, o) : [
∏

t;x](A,B)

21. If A, A′ and B are t-expressions then

Γ ⊢ A
d
= A′ Γ, x : A ⊢ o

d
= o′ : B

Γ ⊢ [λ; x](A, o)
d
= [λ;x](A′, o′) : [

∏
;x](A,B)

3



22.
Γ ⊢ f : [

∏
t;x](A,B) Γ ⊢ o : A

Γ ⊢ [evo](f, o) : B[o/x]

23.
Γ ⊢ f

d
= f ′ : [

∏
t; x](A,B) Γ ⊢ o

d
= o′ : B

Γ ⊢ [evo](f, o)
d
= [evo](f ′, o′) : B[o/x]

24. If A, B are t-expressions then

Γ ⊢ o : A Γ, o : A ⊢ o′ : B

Γ ⊢ [evo]([λo;x](A, o), o′)
d
= o′[o/x] : B[o/x]

25. If A, B are t-expressions then

Γ ⊢ o : A Γ, x : A ⊢ B : K

Γ ⊢ [evt]([λt; x](A,B), o)
d
= B[o/x]

26.
Γ ⊢ F : [

∏
k;x](A,K)

Γ ⊢ [λt; x](A, [evt](F, x))
d
= F : [

∏
k;x](A,K)

27.
Γ ⊢ f : [

∏
t;x](A,B)

Γ ⊢ [λo;x](A, [evo](f, x))
d
= f : [

∏
t; x](A,B)

4


	Expressions and terms of LF
	Derivation rules for LF

