Aspects of Differential Geometry in HoTT

Felix Wellen

Differential Geometry of what?

Differential Geometry of what?

Smooth Manifolds \longleftrightarrow Formal Smooth Sets $=\operatorname{Sh}\left(\left\{\mathbb{R}^{n} \times \mathbb{D} \mid n \in \mathbb{N}\right\}\right)$

Schemes \longrightarrow Zariski-sheaves $=\operatorname{Sh}\left(\right.$ Rings $\left.^{\text {op }}\right)$

Differential Geometry of what?

$$
\text { Smooth Manifolds } \longleftrightarrow \text { Formal Smooth Sets }=\operatorname{Sh}\left(\left\{\mathbb{R}^{n} \times \mathbb{D} \mid n \in \mathbb{N}\right\}\right)
$$

$$
\text { Schemes } \longleftrightarrow \text { Zariski-sheaves }=\mathrm{Sh}\left(\text { Rings }^{\mathrm{op}}\right)
$$

Where "Sh" means the topos of set- or ∞-groupoid-valued sheaves on:

1. $\mathbb{R}^{n} \times \mathbb{D}$ with smooth open good covers (ignoring the $\mathbb{D s}$).
2. Commutative, unital rings with jointly surjective inclusions of Zariski-open affine subsets.

How to access differential geometric structure?

How to access differential geometric structure?

By modalities!

How to access differential geometric structure?

By modalities!

Left exact reflections on the model induce modalities.

How to access differential geometric structure?

By modalities!

Left exact reflections on the model induce modalities.
$L: \operatorname{Sh}(\ldots) \rightarrow S$ is a reflection, if it is left adjoint to a fully faithful inclusion $S \subseteq \operatorname{Sh}(\ldots)$.

How to access differential geometric structure?

By modalities!
Left exact reflections on the model induce modalities.
$L: \operatorname{Sh}(\ldots) \rightarrow S$ is a reflection, if it is left adjoint to a fully faithful inclusion $S \subseteq \operatorname{Sh}(\ldots)$.

Left exact reflections induce compatible reflections on all slices.

How to access differential geometric structure?

By modalities!
Left exact reflections on the model induce modalities.
$L: \operatorname{Sh}(\ldots) \rightarrow S$ is a reflection, if it is left adjoint to a fully faithful inclusion $S \subseteq \operatorname{Sh}(\ldots)$.

Left exact reflections induce compatible reflections on all slices.
\Rightarrow Applicable in any context.

Which left exact reflections?

Which left exact reflections?

On Zariski sheaves, we have the functor \mathfrak{I}, given by

$$
\mathfrak{I}(\mathcal{F})(\operatorname{Spec}(A)):=\mathcal{F}\left(\operatorname{Spec}\left(A_{\mathrm{red}}\right)\right)
$$

Which left exact reflections?

On Zariski sheaves, we have the functor \mathfrak{I}, given by

$$
\mathfrak{I}(\mathcal{F})(\operatorname{Spec}(A)):=\mathcal{F}\left(\operatorname{Spec}\left(A_{\mathrm{red}}\right)\right)
$$

$\mathfrak{I}(\mathcal{F})$ is called the infinitesimal shape, coreduction or de Rham stack of \mathcal{F}.

Which left exact reflections?

On Zariski sheaves, we have the functor \mathfrak{I}, given by

$$
\mathfrak{I}(\mathcal{F})(\operatorname{Spec}(A)):=\mathcal{F}\left(\operatorname{Spec}\left(A_{\text {red }}\right)\right)
$$

$\mathfrak{I}(\mathcal{F})$ is called the infinitesimal shape, coreduction or de Rham stack of \mathcal{F}.
Let us see, what this functor does to a sheaf S, representing a k-Scheme:

$$
\{\text { Tangent vectors at } k \text {-points }\} \cong S\left(\operatorname{Spec}\left(k[X] /\left(X^{2}\right)\right)\right)
$$

Which left exact reflections?

On Zariski sheaves, we have the functor \mathfrak{I}, given by

$$
\mathfrak{I}(\mathcal{F})(\operatorname{Spec}(A)):=\mathcal{F}\left(\operatorname{Spec}\left(A_{\text {red }}\right)\right)
$$

$\mathfrak{I}(\mathcal{F})$ is called the infinitesimal shape, coreduction or de Rham stack of \mathcal{F}.
Let us see, what this functor does to a sheaf S, representing a k-Scheme:

$$
\{\text { Tangent vectors at } k \text {-points }\} \cong S\left(\operatorname{Spec}\left(k[X] /\left(X^{2}\right)\right)\right)
$$

But $\left(k[X] /\left(X^{2}\right)\right)_{\text {red }}$ is just k, so the tangent vectors at k-points of $\mathfrak{I}(S)$ are just the k-points:

$$
\mathfrak{I}(S)\left(\operatorname{Spec}\left(k[X] /\left(X^{2}\right)\right)\right)=S\left(\operatorname{Spec}\left(k[X] /\left(X^{2}\right)\right)_{\text {red }}\right)=S(\operatorname{Spec}(k))
$$

So: \mathfrak{I} removes all differential geometric information!

Which left exact reflections?

Which left exact reflections?

The category of smooth manifolds may be extended to admit an I-functor.

Which left exact reflections?

The category of smooth manifolds may be extended to admit an I-functor.
Note that

$$
\mathcal{C}^{\infty}:\left\{\mathbb{R}^{n} \mid n \in \mathbb{N}\right\}^{\mathrm{op}} \rightarrow \mathbb{R} \text {-algebras }
$$

is fully faithful and let us write Spec for the inverse on its image.

Which left exact reflections?

The category of smooth manifolds may be extended to admit an I-functor.
Note that

$$
\mathcal{C}^{\infty}:\left\{\mathbb{R}^{n} \mid n \in \mathbb{N}\right\}^{\text {op }} \rightarrow \mathbb{R} \text {-algebras }
$$

is fully faithful and let us write Spec for the inverse on its image. For all nilpotent \mathbb{R}-algebra V, formally extend the left category by

$$
\mathbb{R}^{n} \times \mathbb{D}_{V}=\operatorname{Spec}\left(\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \otimes(\mathbb{R} \oplus V)\right)
$$

and call this category FC.

Which left exact reflections?

The category of smooth manifolds may be extended to admit an I-functor.
Note that

$$
\mathcal{C}^{\infty}:\left\{\mathbb{R}^{n} \mid n \in \mathbb{N}\right\}^{\text {op }} \rightarrow \mathbb{R} \text {-algebras }
$$

is fully faithful and let us write Spec for the inverse on its image. For all nilpotent \mathbb{R}-algebra V, formally extend the left category by

$$
\mathbb{R}^{n} \times \mathbb{D}_{V}=\operatorname{Spec}\left(\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \otimes(\mathbb{R} \oplus V)\right)
$$

and call this category FC. For any k, we can restrict the order:
$\mathrm{FC}_{k}:=\left\{\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \otimes(\mathbb{R} \oplus V) \mid n \in \mathbb{N}, V^{k+1}=0\right\}^{\text {op }} \subseteq \mathbb{R}$-algebras ${ }^{\text {op }}$

Which left exact reflections?

Now, define $\mathfrak{I}: \operatorname{Sh}(F C) \rightarrow \operatorname{Sh}(F C)$ by

$$
\mathfrak{I}(\mathcal{F})\left(\mathbb{R}^{n} \times \mathbb{D}_{V}\right):=\mathcal{F}\left(\mathbb{R}^{n}\right)
$$

Which left exact reflections?

Now, define $\mathfrak{I}: \operatorname{Sh}(\mathrm{FC}) \rightarrow \operatorname{Sh}(\mathrm{FC})$ by

$$
\mathfrak{I}(\mathcal{F})\left(\mathbb{R}^{n} \times \mathbb{D}_{V}\right):=\mathcal{F}\left(\mathbb{R}^{n}\right)
$$

and, respectively $\mathfrak{I}_{k}: \operatorname{Sh}\left(\mathrm{FC}_{k}\right) \rightarrow \operatorname{Sh}\left(\mathrm{FC}_{k}\right)$ by the same equation

$$
\mathfrak{I}_{k}(\mathcal{F})\left(\mathbb{R}^{n} \times \mathbb{D}_{V}\right):=\mathcal{F}\left(\mathbb{R}^{n}\right)
$$

What can we do with \mathfrak{I} ?

What can we do with \mathfrak{I} ?

Let M be a sheaf in $\operatorname{Sh}\left(\mathrm{FC}_{1}\right)$ representing a smooth manifold.

What can we do with \mathfrak{I} ?

Let M be a sheaf in $\mathrm{Sh}\left(\mathrm{FC}_{1}\right)$ representing a smooth manifold. For any point $x \in M$, the tangent space is given as a pullback

What can we do with \mathfrak{I} ?

Let M be a sheaf in $\mathrm{Sh}\left(\mathrm{FC}_{1}\right)$ representing a smooth manifold. For any point $x \in M$, the tangent space is given as a pullback

The tangent bundle is also given as a pullback:

Now: Type Theory

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation.

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I},

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I}, i.e. we assume the following:

1. For any type $A, \Im A$ is a type and we have a map

$$
\iota_{A}: A \rightarrow \Im A .
$$

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I}, i.e. we assume the following:

1. For any type $A, \Im A$ is a type and we have a map ${ }^{\iota} A: A \rightarrow \Im A$.
2. $(A$ is coreduced $): \equiv\left(\iota_{A}\right.$ is an equivalence $)$

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I}, i.e. we assume the following:

1. For any type $A, \Im A$ is a type and we have a map ${ }^{\iota} A: A \rightarrow \Im A$.
2. (A is coreduced) $: \equiv\left(\iota_{A}\right.$ is an equivalence $)$
3. For any type $A, \mathfrak{I} A$ is coreduced.

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I}, i.e. we assume the following:

1. For any type $A, \Im A$ is a type and we have a map ${ }^{\iota} A: A \rightarrow \Im A$.
2. (A is coreduced) $: \equiv\left(\iota_{A}\right.$ is an equivalence $)$
3. For any type $A, \mathfrak{I} A$ is coreduced.
4. For any $B: \Im A \rightarrow \mathcal{U}$, such that $\prod_{a: \mathfrak{I} A} B(a)$ is coreduced, a section $s: \prod_{a: \mathfrak{I} A} B(a)$ is defined by $s_{0}: \prod_{a: A} B\left(\iota_{A}(a)\right)$.

Now: Type Theory

More specific: Homotopy Type Theory with Functional Extensionality and sometimes with Univalence and Propositional Truncation. And we always assume a modality called \mathfrak{I}, i.e. we assume the following:

1. For any type $A, \Im A$ is a type and we have a map $\iota_{A}: A \rightarrow \Im A$.
2. (A is coreduced) $: \equiv\left(\iota_{A}\right.$ is an equivalence $)$
3. For any type $A, \mathfrak{I} A$ is coreduced.
4. For any $B: \Im A \rightarrow \mathcal{U}$, such that $\prod_{a: \mathfrak{I} A} B(a)$ is coreduced, a section $s: \prod_{a: \mathfrak{I} A} B(a)$ is defined by $s_{0}: \prod_{a: A} B\left(\iota_{A}(a)\right)$.
5. Coreduced types have coreduced identity types.

Internal geometric notions

Internal geometric notions

Definition

For any point $x: A, \mathbb{D}_{x}$ is defined by

and called formal disk at x.

Internal geometric notions

Definition

For any point $x: A, \mathbb{D}_{x}$ is defined by

and called formal disk at x.
The formal disk bundle over $A, T_{\infty} A$ is defined by the pullback

Towards a theorem

Towards a theorem

Definition

A left invertible H -space is a type X together with

Towards a theorem

Definition

A left invertible H -space is a type X together with

1. $e: X$
2. $\mu: X \times X \rightarrow X$

Towards a theorem

Definition

A left invertible H -space is a type X together with

1. $e: X$
2. $\mu: X \times X \rightarrow X$
3. Proof that the unit is a left and right unit, i.e. a term in each of

$$
\prod_{x: X} \mu(e, x)=x \text { and } \prod_{x: X} \mu(x, e)=x .
$$

Towards a theorem

Definition

A left invertible H -space is a type X together with

1. $e: X$
2. $\mu: X \times X \rightarrow X$
3. Proof that the unit is a left and right unit, i.e. a term in each of

$$
\prod_{x: X} \mu(e, x)=x \text { and } \prod_{x: X} \mu(x, e)=x .
$$

4. Proof that for any $a: X$ the right-translation $x \mapsto \mu(x, a)$ is an equivalence, i.e. there is a term of type

$$
\prod_{a: X}(x \mapsto \mu(x, a)) \text { is an equivalence. }
$$

The triviality theorem

The triviality theorem

Theorem

Let V be a left invertible H -space and \mathbb{D} the formal disk at the unit in V, then:

This theorem has a proof similar to its topos theoretic version in [KS17].

Differential structure preserving morphisms

Differential structure preserving morphisms

Definition

A map $f: A \rightarrow B$ is called formally étale if the naturality square

is a pullback square.

Differential structure preserving morphisms

Definition

A map $f: A \rightarrow B$ is called formally étale if the naturality square

is a pullback square.

Remark

For smooth manifolds formally étale maps correspond to local diffeomorphisms.
For noetherian schemes, they correspond to étale maps.

Structured spaces

Structured spaces

Definition

Let V be a left invertible H -space. A type M is called a V-Manifold, if there is a span of formally étale maps

Structured spaces

Definition

Let V be a left invertible H -space. A type M is called a V-Manifold, if there is a span of formally étale maps

Theorem (needs Univalence)
Any V-Manifold has a locally trivial formal disk bundle witnessed by a classifying map

$$
\chi_{M}: M \rightarrow \operatorname{BAut}\left(\mathbb{D}_{V}\right)
$$

Cartan Geometry

Cartan Geometry

Remark

If we have a delooping BG of a group G with a map $\varphi: \mathrm{BG} \rightarrow \operatorname{BAut}\left(\mathbb{D}_{V}\right)$, we can ask if there is a lift:

Cartan Geometry

Remark

If we have a delooping BG of a group G with a map $\varphi: \mathrm{BG} \rightarrow \mathrm{BAut}\left(\mathbb{D}_{V}\right)$, we can ask if there is a lift:

For example, such a lift for $G=O(n)$ together with another condition is a Pseudo-Riemannian structure on M.

References

A topos theoretic version of the theorem about the triviality of the formal disk bundle and more on the smooth case may be found inI. Khavkine and U. Schreiber. "Synthetic geometry of differential equations: I. Jets and comonad structure". In: ArXiv e-prints (Jan. 2017). arXiv: 1701.06238 [math.DG].

A thesis titled "Formalizing Cartan Geometry in Modal Homotopy Type Theory" containing more on the topic is to appear very soon.

