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Aspects of Differential Geometry in HoTT
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Differential Geometry of what?

Smooth Manifolds Formal Smooth Sets Sh({ℝ𝑛 ×𝔻|𝑛 ∈ ℕ})

Schemes Zariski-sheaves Sh(Ringsop)

=

=

Where “Sh” means the topos of set- or ∞-groupoid-valued sheaves
on:

1. ℝ𝑛 × 𝔻 with smooth open good covers (ignoring the 𝔻s).
2. Commutative, unital rings with jointly surjective inclusions of

Zariski-open affine subsets.
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How to access differential geometric structure?

By modalities!

Left exact reflections on the model induce modalities.

𝐿∶ Sh(...) → 𝑆 is a reflection, if it is left adjoint to a fully faithful
inclusion 𝑆 ⊆ Sh(...).

Left exact reflections induce compatible reflections on all slices.
⇒ Applicable in any context.
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Which left exact reflections?

On Zariski sheaves, we have the functor ℑ, given by

ℑ(ℱ)(Spec(𝐴)) ≔ ℱ(Spec(𝐴red))

ℑ(ℱ) is called the infinitesimal shape, coreduction or de Rham
stack of ℱ.
Let us see, what this functor does to a sheaf 𝑆, representing a
𝑘-Scheme:

{Tangent vectors at 𝑘-points} ≅ 𝑆(Spec(𝑘[𝑋]/(𝑋2)))

But (𝑘[𝑋]/(𝑋2))red is just 𝑘, so the tangent vectors at 𝑘-points of
ℑ(𝑆) are just the 𝑘-points:

ℑ(𝑆)(Spec(𝑘[𝑋]/(𝑋2))) = 𝑆(Spec(𝑘[𝑋]/(𝑋2))red) = 𝑆(Spec(𝑘))

So: ℑ removes all differential geometric information!
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Which left exact reflections?

The category of smooth manifolds may be extended to admit an
ℑ-functor.
Note that

𝒞∞ ∶ {ℝ𝑛|𝑛 ∈ ℕ}op → ℝ-algebras

is fully faithful and let us write Spec for the inverse on its image.
For all nilpotent ℝ-algebra 𝑉 , formally extend the left category by

ℝ𝑛 × 𝔻𝑉 = Spec(𝒞∞(ℝ𝑛) ⊗ (ℝ ⊕ 𝑉 ))

and call this category FC. For any 𝑘, we can restrict the order:

FC𝑘 ≔ {𝒞∞(ℝ𝑛) ⊗ (ℝ ⊕ 𝑉 )|𝑛 ∈ ℕ, 𝑉 𝑘+1 = 0}op ⊆ ℝ−algebrasop
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Which left exact reflections?

Now, define ℑ∶ Sh(FC) → Sh(FC) by

ℑ(ℱ)(ℝ𝑛 × 𝔻𝑉 ) ≔ ℱ(ℝ𝑛)

and, respectively ℑ𝑘 ∶ Sh(FC𝑘) → Sh(FC𝑘) by the same equation

ℑ𝑘(ℱ)(ℝ𝑛 × 𝔻𝑉 ) ≔ ℱ(ℝ𝑛)
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What can we do with ℑ?

Let 𝑀 be a sheaf in Sh(FC1) representing a smooth manifold.
For any point 𝑥 ∈ 𝑀 , the tangent space is given as a pullback

𝑇𝑥𝑀

𝑀 ℑ1𝑀

1

(pb)

𝜄𝑀

_ ↦ 𝜄𝑀(𝑥)

The tangent bundle is also given as a pullback:

𝑇 𝑀

𝑀 ℑ1𝑀

𝑀

(pb)

𝜄𝑀

𝜄𝑀
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Now: Type Theory

More specific: Homotopy Type Theory with Functional
Extensionality and sometimes with Univalence and Propositional
Truncation. And we always assume a modality called ℑ, i.e. we
assume the following:

1. For any type 𝐴, ℑ𝐴 is a type and we have a map
𝜄𝐴 ∶ 𝐴 → ℑ𝐴.

2. (𝐴 is coreduced) ∶≡ (𝜄𝐴 is an equivalence)
3. For any type 𝐴, ℑ𝐴 is coreduced.
4. For any 𝐵∶ ℑ𝐴 → 𝒰, such that ∏𝑎 ∶ℑ𝐴 𝐵(𝑎) is coreduced, a

section 𝑠∶ ∏𝑎 ∶ℑ𝐴 𝐵(𝑎) is defined by 𝑠0 ∶ ∏𝑎 ∶𝐴 𝐵(𝜄𝐴(𝑎)).
5. Coreduced types have coreduced identity types.
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1. For any type 𝐴, ℑ𝐴 is a type and we have a map
𝜄𝐴 ∶ 𝐴 → ℑ𝐴.

2. (𝐴 is coreduced) ∶≡ (𝜄𝐴 is an equivalence)
3. For any type 𝐴, ℑ𝐴 is coreduced.
4. For any 𝐵∶ ℑ𝐴 → 𝒰, such that ∏𝑎 ∶ℑ𝐴 𝐵(𝑎) is coreduced, a

section 𝑠∶ ∏𝑎 ∶ℑ𝐴 𝐵(𝑎) is defined by 𝑠0 ∶ ∏𝑎 ∶𝐴 𝐵(𝜄𝐴(𝑎)).
5. Coreduced types have coreduced identity types.
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Internal geometric notions

Definition
For any point 𝑥∶ 𝐴, 𝔻𝑥 is defined by

𝔻𝑥

𝐴

1

ℑ𝐴

(pb)

𝜄𝐴

_ ↦ 𝜄𝐴(𝑥)

and called formal disk at 𝑥.
The formal disk bundle over 𝐴, 𝑇∞𝐴 is defined by the pullback

𝑇∞𝐴

𝐴

𝐴

ℑ𝐴

(pb)

𝜄𝐴

𝜄𝐴
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Towards a theorem

Definition
A left invertible H-space is a type 𝑋 together with

1. 𝑒∶ 𝑋
2. 𝜇∶ 𝑋 × 𝑋 → 𝑋
3. Proof that the unit is a left and right unit, i.e. a term in each

of
∏
𝑥 ∶𝑋

𝜇(𝑒, 𝑥) = 𝑥 and ∏
𝑥 ∶𝑋

𝜇(𝑥, 𝑒) = 𝑥.

4. Proof that for any 𝑎∶𝑋 the right-translation 𝑥 ↦ 𝜇(𝑥, 𝑎) is an
equivalence, i.e. there is a term of type

∏
𝑎 ∶𝑋

(𝑥 ↦ 𝜇(𝑥, 𝑎)) is an equivalence.
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The triviality theorem

Theorem
Let 𝑉 be a left invertible H-space and 𝔻 the formal disk at the
unit in 𝑉 , then:

𝑇∞𝑉 𝔻 × 𝑉

𝑉 × 𝑉

≃

(𝜋1, 𝜋2) (𝑑, 𝑔) ↦ (𝜇(𝜋1(𝑑), 𝑔), 𝑔)

This theorem has a proof similar to its topos theoretic version in
[KS17].
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Differential structure preserving morphisms

Definition
A map 𝑓 ∶ 𝐴 → 𝐵 is called formally étale if the naturality square

𝐴 ℑ𝐴

𝐵 ℑ𝐵

𝜄𝐴

𝑓 ℑ𝑓

𝜄𝐵

is a pullback square.
Remark
For smooth manifolds formally étale maps correspond to local
diffeomorphisms.
For noetherian schemes, they correspond to étale maps.
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Structured spaces

Definition
Let 𝑉 be a left invertible H-space. A type 𝑀 is called a
𝑉 -Manifold, if there is a span of formally étale maps

𝑉 𝑀

𝑊ét ét

.

Theorem (needs Univalence)
Any 𝑉 -Manifold has a locally trivial formal disk bundle witnessed
by a classifying map

𝜒𝑀 ∶ 𝑀 → BAut(𝔻𝑉 )
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Cartan Geometry

Remark
If we have a delooping BG of a group 𝐺 with a map
𝜑∶ BG → BAut(𝔻𝑉 ), we can ask if there is a lift:

𝑀 BAut(𝔻𝑉 )

BG

𝜒𝑀

𝜑

For example, such a lift for 𝐺 = 𝑂(𝑛) together with another
condition is a Pseudo-Riemannian structure on 𝑀 .
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Cartan Geometry

Remark
If we have a delooping BG of a group 𝐺 with a map
𝜑∶ BG → BAut(𝔻𝑉 ), we can ask if there is a lift:

𝑀 BAut(𝔻𝑉 )

BG

𝜒𝑀

𝜑

For example, such a lift for 𝐺 = 𝑂(𝑛) together with another
condition is a Pseudo-Riemannian structure on 𝑀 .
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