Literature 2.20 (Braiding). Recall (see, e.g., [Mi72]) that by a group one means
a group of operations, on some object, which are associatively composable and
invertible (cf. pp. 54). By a braid group (due to [Ar25], monographs include
[FoN62][Bir75], exposition in [Will20]) one means the group of joint continuous
movements of a fixed number N + 1 of non-coincident points in the plane, from
any fixed configuration back to that fixed configuration. The “worldlines” traced
out by such points in space-time under such an operation look like a braid with
N + 1 strands, whence the name.

As with actual braids, here it is understood that two such operations are identified
if they differ only by continuous deformations of the “strands” without breaking
or intersecting these, hence by an isotopy in the ambient R3.
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A quick way of saying this with precision (we consider a more explicit description in a moment) is to observe that a braid
group is thus the fundamental group m; (Lit. 2.13) of a configuration space of points in the plane (Lit. 2.18). Here it makes
a key difference whether one considers the points in a configuration as ordered (labeled by numbers 1,--- N + 1) in which
case one speaks of the pure braid group, or as indistinguishable (albeit in any case with distinct positions!) in which case one
speaks of the braid group proper: After traveling along a general braid b the order of the given points may come out permuted
by a permutation perm(b), and the braid is called pure precisely if this permutation is trivial:
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Since these configuration spaces have no other non-trivial homotopy groups (5), the vertical identifications mean equiva-
lently that the homotopy type of these configuration spaces constitute deloopings or classifying spaes or Eilenberg-MacLane
spaces in degree 1 (Lit. 2.14) for the braid groups; in particular:

Conf (R') ~ BPBr(N+1) ~ K(PBr(N+1),1). (8)
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A more explicit way to describe the braid group Br(N + 1) is to observe, first, that any braid may, clearly, be obtained as
a composition of those elementary braids which do nothing but pass a pair of neighbouring points past each other:
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While any braid may be obtained as a composition of just these generators, not every pair of such compositions yields
distinct braids. For example, if a pair of such elementary braids acts on disjoint strands, then the order in which they are
applied does not matter up to the pertinent continuous deformation of braids:
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On the other hand, when consecutive triples of elementary braids do act on the same strands, then an evident continuous
deformation relates them as follows:
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A classical theorem due to Artin [Ar25, §3] (cf. [FoN62, §7]) says that these are the only relations between these

generators, in that the braid group is presented by these generators and relations, in the general sense of group presentations
(e.g. [MKS66][J090], cf. pp. 65): 3

Artin braid relations (10) (11)
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Br(N+1) = FreeGrp({e, i ba) [yl b= byt (12

Analogously for the pure braid group (7), it is fairly evident that any pure braid can be obtained by composing “weaves”

in which one strand lassoes exactly one other strand:
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For example, consecutive application of such generators for ﬁxed i and decreasing j ylelds pure braids of the following form:
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As before in (12), these pure braid generators (13) constitute a finite presentation, now of the pure braid group (we show
the optimized set of pure braid relations due to [Le10, Thm. 1.1, Rem. 3.1]):
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pure braid relations [Le10, Thm. 1.1]
bij-bry = byg-bjj ifr<s<i<jori<r<s<j
bji b - r] = biy-brj-bj; = byj-bji-byy fr<i<j (15)
bys- (bjr-bji-bjs) = (b,r bji-bjs) by ifr<i<s<j

pure
braid group

pure braid generators (13)
PBr(N+1) ~ FreeGrp({e} U {b;j}1<,-<j<N+1)/
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As before in (10), the first of these relations (15) simply say that the order of applying pure braid generators is irrelevant
if these act on disjoint intervals of strands:

3In (12) we include the neutral element in the set of generators just in order to stick with the convention used in (179) below, where it is most natural to
regard the free group-construction as an operation on pointed sets.
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The further relations in the presentation (15) of the pure braid group concern cases where pure braid generators do
“overlap”, specifically with the products (14) of other generators:
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Notice that all these pure braid relations are commutator relations [Le10, Rem. 3.10], saying that one pure braid generator
commutes with a product of pure braid generators, such as those in (14). This implies that group homomorphisms out of a
pure braid group into an abelian group are given by assigning any of the abelian group elements to the pure Artin generators
(13) (used in Lem. 6.5 below).
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