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TOPOLOGICAL QUANTUM COMPUTATION

MICHAEL H. FREEDMAN, ALEXEI KITAEV, MICHAEL J. LARSEN,
AND ZHENGHAN WANG

ABSTRACT. The theory of quantum computation can be constructed from the
abstract study of anyonic systems. In mathematical terms, these are unitary
topological modular functors. They underlie the Jones polynomial and arise in
Witten-Chern-Simons theory. The braiding and fusion of anyonic excitations
in quantum Hall electron liquids and 2D-magnets are modeled by modular
functors, opening a new possibility for the realization of quantum computers.
The chief advantage of anyonic computation would be physical error correction
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There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremen-
dous scientific achievement,

but they take us no closer to having a quantum computer

that can solve a problem that anybody cares about.

What is missing is the breakthrough bypassing quantum
error correction by using far-more-stable quantum-bits,
in an approach called topological quantum computing.”
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There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
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There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).
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There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

A Modular Functor Which is Universal for
Quantum Computation

Michael H. Freedman, Michael Larsen & Zhenghan Wang

Communications in Mathematical Physics 227, 605-622 (2002) | Cite this article

2 A universal quantum computer

The strictly 2-dimensional part of a TQFT is called a topological modular
functor (TMF). The most interesting examples of TMFs are given by the
SU(2) Witten-Chern-Simons theory at roots of unity [Wi]. These exam-
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There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
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Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of
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Such braid gates are rather special among all quantum gates.
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on bundles of conformal blocks of the
chiral su(2) WZW model CFT.
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High Energy Physics - Theory
[Bubmitted on 14 Dec 2021]
Ising- and Fibonacci-Anyons from KZ-equations

Xia Gu, Babak Haghighat, Yihua Liu

In this work we present solutions to Knizhnik-Zamolodchikov (KZ) equations corresponding to conformal
block wavefunctions of non-Abelian Ising- and Fibonacci-Anyons. We solve these equations around
regular singular points in configuration space in terms of hypergeometric functions and derive explicit
monodromy representations of the braid group action. This confirms the correct non-Abelian statistics
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Physics of Atomic Nuclei, Vol. 64, No. 12, 2001, pp. 2059-2068. [From Yadernaya I'izika, Vol. 64, No. 12, 2001, pp. 2149-2158.
Original English Text Copyright (© 2001 by lodorov, Hadjiivanov.

SYMPOSIUM ON QUANTUM GROUPS

Monodromy Representations of the Braid Group”

I. T. Todorov: and L. K. Hadjiivanov™"

Theoretical Physics Division, Institute for Nuclear Research and
Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
Received February 19, 2001

Abstract—Chiral conformal blocks in a rational conformal field theory are a far-going extension of Gauss
hypergeometric functions. The associated monodromy representations of Artin’s braid group B,, capture
the essence of the modern view on the subject that originates in ideas of Riemann and Schwarz. Physically,
such monodromy representations correspond to a new type of braid group statistics which may manifest
itself in two-dimensional critical phenomena, e.g., in some exotic quantum Hall states. The associated
primary fields satisly R-matrix exchange relations. The description of the internal symmetry ol such
fields requires an extension of the concept of a group, thus giving room to quantum groups and their
generalizations. We review the appearance of braid group representations in the space of solutions of
the Knizhnik—Zamolodchikov equation with an emphasis on the role of a regular basis of solutions which
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Efficient programming of topological quantum computers
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Such braid gates are rather special among all quantum gates.
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There are good arguments that
if Quantum Computation is to be a practical reality
then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of
the Knizhnik-Zamolodchikov connection

on bundles of conformal blocks of the
chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,
hardly suitable as a foundation for quantum programming.

We show that the opposite 1s the case.
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Programming languages suited for describing
bundles are dependently typed

system of X-dependent types

X € Types, x€X = P(x) € Types
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Programming languages suited for describing
bundles are dependently typed
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Programming languages suited for describing
bundles are dependently typed
and those which moreover describe
monodromy are homotopically typed.
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Xy € X = Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*,%) ~ G.
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akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*,*%) >~ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ~ JConf,(C).
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with essentially unique * € BG s.t. Pathsgg(*,*%) >~ G.
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An X-dependent type family | x € X F P(x) € Types

inherits transport (monodromy!) along base paths:
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akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
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In HoTT, data types come with paths between their terms

X € Types

5y € X - Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*, %) ~ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ~ [Conf,(C).

An X-dependent type family | x € X F P(x) € Types

and compatible path lifting:
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In HOTT, data types come with paths between their terms

X € Types

Xy € X = Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.



https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HOTT, data types come with paths between their terms

X € Types
x,y € X
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.._l-‘II.'L-IE"-'-' .I (L. s of Mathematics

connection between homotopy theory and type theory.

datwor
It touches on topics as seemingly distant as the

homotopy groups of spheres, the algorithms for type

checking, and the definition of weak ©0-groupoids.

Homotopy type theory offers a new ‘“univalent”

foundation of mathematics, in which a central role is

played by Voevodsky's univalence axiom and higher
inductive types. The present book is intended as a first
systematic exposition of the basics of univalent

foundations, and a collection of examples of this new

style of reasoning — but without requiring the reader THE UNIVALENT FOUNDATIONS PROGRAN
) A DN CED TLLY

INSTITUTE Fi

to know or learn any formal logic, or to use any

computer proof assistant. We believe that univalent

foundations will eventually become a viable alternative to set theory as the “implicit foundation”
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We now first offer the following observations:
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We now first offer the following observations:
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)

@)yt I Conf (€)  + [

H (_f Conf} (CC \ {z:,r}?r_l) (1) — K[C,n)(‘r})]

t:BEyx {yeeom

0

(Recall here that I{ Conf } (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)

(z)¥ :I{::':Hn};}(ﬂ:) - [

I] (o €\ ) ) — Ko
1:BEy o \/ 0

classifying type for
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Namely, bundles of su(2)-conformal blocks

secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on
5155~ 2-conformal blocks GO @ity - I{Fonﬁ}(ﬂ:) = [ [1 (I{Fonl'} (C\{zr}ity) (7) — K[C,n)('r})]
I I:BEK TN | \ , U
classifying type for

(Recall here that [ {Conf }{C) etc. may be regarded as nothing but suggestive notation for types fin complex cohomology
l,---,N
braid relations as in (32).)

Eilenberg-MacLane spaces in homotopy type theory

Authors: Daniel R. Licata, Eric Finster Authors Info & Claims

CSL-LICS "14: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (C5L)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) » July 2014« Article No.: 66 « Pages
1-9 « https://doi.org/10.1145/2603088.2603153



https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)

(z)¥ :I{::q?ni‘l(ﬂ:) - [

I] (o €\ ) ) — Ko
1:BEy o \/ 0

classifying type for

(Recall here that I{ Conf} (C) etc. may be regarded as nothing but suggestive notation for types fin complex cohomology
1o N

braid relations as in (32).)


https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type

A\

KZ-connection on 31) N N

sz~ 2-conformal blocks || 1) | @ity s T Conf (©) | T (J Conf (C\{z}ils) (7) — K(C,m)(¥))
s B~ N~ 0

classifying type for

(Recall here that I{ Fonﬂ } (C) etc. may be regarded as nothing but suggestive notation for types fin complex cohomology

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type
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rBEx ' ~ 0

N Vi

N classifying type for

(Recall here that | Conf (C) etc. may be regarded as nothing ~ dependent product - types fin ~ complex cohomology
{1,---,N} over twist variable

braid relations as in (32).)
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secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:
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braid relations as in (32).)

over twist variable
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

fiberwise function type

_ - % N fiberwise
KZ-connection on homotopy

s1>% —2-conformal blocks SRR IC)/ S IgE?%JC) - [ I1 ('r{FDHE}(E\{F"}?—J(T} _}K(C'H)(T})] J()-truncation
. : - 0

BE v

N Vi

N classifying type for

(Recall here that | Conf (C) etc. may be regarded as nothing ~ dependent product - types fin ~ complex cohomology
{1,---,N} over twist variable

braid relations as in (32),)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

s1>% —2-conformal blocks SN S I#E{.J.I?r{:—(@ " [ 1 (I CUHE}(C\{H}?1)(1}_}K(C’H)(T})]

8L~ 0

(Recall here that I{ Conf } (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

works because
and uses that

This < > HoTT has categorical semantics

in Parameterized Homotopy Theory.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

st~ 2-conformal blocks | D | @)y : T Conf (©)  + llﬂ'z[ (I{F;_J_ng}(ﬂ\{z;}?'1)(1)—>K(C,n)('r))]
By T 0

(Recall here that I{Conf }{C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

HoTT has categorical semantics

Thig <W0rks because>

and uses that
in Parameterized Homotopy Theory.

Emily Riehl, On the co-topos semantics of homotopy type theory,

lecture at Logic and higher structures CIRM (Feb. 2022) [ pdf, pdf]
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

e oo blocks || O | @y + T cont (@) F [1‘31 (I{g;;;_r;g}(«:\{z;}?J(r)—»x(&@(r))]

0

Knizhnik-Zamolodchikov
connection

over configuration over deloopings
spaces of points of braid groups

Gauss-Manin
connections

ﬁ on

twisted generalized
cohomology

e.g. twisted K-theory,
twisted Cohomotopy, ...

parameterized semantics homotopy type
homotopy theory theory (HoTT)

syntax
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)

(z)¥ :I{E?nrigl(ﬂl) - [

H (_f Conf} (CC \ {z };N_l) (1) — K{C,n){‘r})]

1BEy e 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

iz 2-conformal blocks | G | @)y + [ Conf (©)  F [H(I Cong}(wa}?'J(r}—m(c,n)(fc})]

1BEy e 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation

P: X — Types P _
— 1YPp /&(&"{0 — (y ) tr(}? )

S

X : Types X NNANNANNANNNANNANS Z
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

iz 2-conformal blocks | G | @)y + [ Conf (©)  F [H(I Cong}(wa}?'J(r}—m(c,n)(fc})]

1BEy e 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

o~

P: X — Types Wpy%
z

Px "NNANNANANANNNANNN2 Dy

Wyw
&}
b IRAVAVAVAVAVAVAVAVAVAVAVA. IV

X : Types
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

s~ 2-conformal blocks || @V | @iy @ J Conf (C) [13;1(IE‘?,“E}(C\{Z:}?1)(‘:}—*(@1”)(?})]
B ' 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on
51X~ 2-conformal blocks

@ | @iy s g © b | T (1o €\l — K(E(0)
! : 0

IZHEK v

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

5155~ 2-conformal blocks GO (@t I{E‘ff}{’([ﬁ) - [ lﬂ;l (I{FI‘?FE}(E\{ZI}?_J(T} —’K(‘Cﬂ){f})]
rBEy ' 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32),)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.
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To compute is
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To compute is to execute
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representation
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To compute is to execute
sequences of instructions

topological
quantum
circuit

&

o\
co/\//\\\

XCOC

braid

representation


https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

To compute is to execute
sequences of instructions
as composable operations

topological
quantum
circuit
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co/\//\\\
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braid

representation
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

o\
O/\//\\\

topological o \

XCOC

quantum

circuit

braid

representation

Hy —— Hy
| Win) = | Wout)
Hy s H;
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state

topological
quantum
circuit

N - —/m  ~ ——m0
A Vi)

\ T

é o

o\
. S DO

braid

representation

Hy —— Hy
| Win) = | Wout)
Hy s H;
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

topological
quantum
circuit

N - —m ~ ——0

U
AVin) — |Wour)r®
7 o

o < 7T

braid

representation

Hy —— Hy
| Win) = | Wout)
Hy s H;
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

bundle of . quantum states
conformal blocks 7 in Hilbert spaces
\
>
A~
0\0%&0&\00 .
\OQ > \‘b\ g
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00&/// ’
configuration space .
h 5 2. : — unitary operators
pat topological ’ of distinct points braid yop
quantum representation
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

Claim: This has natural construction in HoTT languages:

bundle of . quantum states
conformal blocks 7 in Hilbert spaces
\
>
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quantum representation
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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4"'l‘\.d' > hep-th > arXiv:2203.11838

High Energy Physics - Theory
[Submitted on 22 Mar 2022]

Anyonic Defect Branes and Conformal Blocks In
Twisted Equivariant Differential (TED) K-theory

Hisham Sati, Urs Schreiber



https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://arxiv.org/pdf/2203.11838.pdf#page=5
https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory

In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
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In fact, yet more fine-detail of TQC hardware 1s naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter

[Submitted on 18 Jan 2009 (v1), last revised 20 Jan 2009 (this version, v2)]

Periodic table for topological insulators
superconductors

Alexei Kitaev

Gapped phases of noninteracting fermions, with and without charge
conservation and time-reversal symmetry, are classified using Bott
periodicity. The symmetry and spatial dimension determines a general
universality class, which corresponds to one of the 2 types of complex
and 8 types of real Clifford algebras. The phases within a given class
are further characterized by a topological invariant, an element of some
Abelian group that can be 0, Z, or Z_2. The interface between two
infinite phases with different topological numbers must carry some
gapless mode. Topological properties of finite systems are described in
terms of K-homology. This classification is robust with respect to
disorder, provided electron states near the Fermi energy are absent or
localized. In some cases (e.q., integer quantum Hall systems) the
K-theoretic classification is stable to interactions, but a counterexample


https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#Kitaev09

In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter



In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.



In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

International Journal of Modern Physics B
| Vol. 05, No. 10, pp. 1641-1648 (1991)
| 1V. CHERN-SIMONS FIELD ...

TOPO LOGICAL ORDERS AND Intemational Joumnal of
CHERN-SIMONS THEORY IN

Modern Physics

STRONGLY CORRELATED
QUANTUM LIQUID

XIAO-GANG WEN

https://doi.org/10.1142/50217979291001541 | Cited by: 98
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.
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arl <1V = hep-th = arXiv:2206._13563

High Energy Physics - Theory

[Submitted on 27 Jun 20227

Anyonic Topological Order in Twisted Equivariant Differential (TED) K-Theory

Hisham Sati, Urs Schreiber

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.
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Global
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valence bundles with mass term naive nodal point charges top. senii-metal phases
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HOTT languages
called Cohesive HOTT.
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

Quantum Gauge Field Theory in Cohesive Homotopy Type Theory

Urs Schreiber (Radboud University Nijmegen), Michael Shulman (University of San Diego)

We implement in the formal language of homotopy type theory a new set of axioms called cohesion. Then we
indicate how the resulting cohesive homotopy type theory naturally serves as a formal foundation for central
concepts in quantum gauge field theory. This is a brief survey of work by the authors developed in detail
elsewhere.

Comments: In Proceedings QPL 2012, arXiv- 1407 8427
Subjects: Mathematical Physics (math-ph); Logic in Computer Science (cs LO); Category Theory (math CT)
Cite as: arxiv:1408 0054 [math-ph]
(or arXiv:1408.0054v1 [math-ph] for this version)
https /idoi.org/10.48550/arxXiv.1408.0054 0
Journal reference: EPTCS 158, 2014, pp. 109-126
Related DOI: https://doi.org/10.4204/EPTCS.158.8 o

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages
called Cohesive HOTT.
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Tutorial 6 Felix Wellen: Differential Cohesive HoTT
407 views Jun 25, 2018

hem Hausdorff Center for Mathematics
="  6.34K subscribers

The lecture was held within the framework of the Hausdorff Trimester Program: Types, Sets and
Constructions.

Abstacts:
Several modal extensions of homotopy type theory have been or are being developed, with
applications to synthetic formalizations of aspects of topology, differential geometry, and spectra,

as well as internal language presentations of cubical models of HoTT. In this tutorial, we will
describe some recent work on these type theories, the frameworks we use to design them, and
their applications in real-cohesive and differential-cohesive HoTT.

The preliminary lecture schedule is:

A Fibrational Framework for Modal Simple Type Theories

The Shape Modality in Real-cohesive HoTT and Covering Spaces
Discrete and Codiscrete Modalities in Cohesive HoTT, |

Discrete and Codiscrete Modalities in Cohesive HoTT, Il

A Fibrational Framework for Modal Dependent Type Theories
Differential Cohesive HoTT

are naturally expressible in an enhancement of HoTT languages
called Cohesive HOTT.
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
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expressing characteristic properties of topological phases of matter
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Flat Modality

The flat/crisp attribute @w/@fiat is an idempotent comonadic modality modeled after Spatial Type
Theory and Crisp Type Theory. It is similar to a necessity modality.

We can define » 4 asatype forany (@ 4 : set 1) via an inductive definition:

data b {@h 1 : Level} (@b A : Set 1) : Set 1 where
con : (@b x : A) - b A

counit : {@h 1 : Level} {@h A : Set 1} - b A = A
counit (con %) = x

Parts of Cohesive HOTT have already been implemented in Agda.
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bundles of twisted equivariant differential (TED) K-cohomology;
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Further development at our newly launched Research Center.
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Further development at our newly launched Research Center.
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Topological Quantum Pogramming
in TED-K

Urs Schreiber on joint work with Hisham Sati

ivision, Program of Mathematics Center for
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PlanQC 2022 @ Ljublja 2022

slides and pointers at: https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
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