
Topological Quantum Pogramming
in TED-K

Urs Schreiber on joint work with Hisham Sati

NYU AD Science Division, Program of Mathematics

& Center for Quantum and Topological Systems

New York University, Abu Dhabi

Center for

Quantum&

Topological

Systems

talk at:

PlanQC 2022 @ Ljubljana, 15 Sep 2022

slides and pointers at: https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

1

https://nyuad.nyu.edu/en/research/faculty-labs-and-projects/center-for-quantum-and-topological-systems.html
https://icfp22.sigplan.org/home/planqc-2022
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

2

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

3

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

4

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanKitaevLarsenWang03

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremen-
dous scientific achievement,

but they take us no closer to having a quantum computer
that can solve a problem that anybody cares about.

What is missing is the breakthrough bypassing quantum
error correction by using far-more-stable quantum-bits,
in an approach called topological quantum computing.”

5

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological quantum computation#DasSarma22

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

6

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

7

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

8

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

9

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

10

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

11

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanLarsenWang02

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

12

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

13

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

14

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

15

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

16

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

17

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

18

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#GuHaghighatLiu21

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

19

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#TodorovHadjiivanov01

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

20

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

21

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

22

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

23

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

24

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

25

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

26

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

27

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

28

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

29

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle

⊢P

30

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle
classifying map

⊢P

31

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle
classifying map

⊢P

32

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle
classifying map

⊢P

33

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

34

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+type+theory#Norell08

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

35

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

36

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

37

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

38

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

39

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

40

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

41

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory#HofmannStreicher98

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

42

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory#HofmannStreicher98
https://ncatlab.org/nlab/show/homotopy+type+theory#AwodeyWarren07

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

43

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

44

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BG =


∗

∗ ∗

g2

g1·g2

g1

∣∣∣∣∣∣∣gi ∈ G



45

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

46

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

47

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BBr(3) =

{ }

48

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

49

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

50

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2)

tr(γ3)

tr(γ1)

γ2

γ3

γ1

51

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
and compatible path lifting:

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1

52

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

53

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

54

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

55

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Homotopy+Type+Theory+--+Univalent+Foundations+of+Mathematics

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

56

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

57

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://homotopytypetheory.org/2019/03/20/introduction-to-univalent-foundations-of-mathematics-with-agda/

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

58

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

59

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

60

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

61

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

62

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

63

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

64

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

65

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

66

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

67

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

68

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

⇒ natural & powerful topological-hardware-aware Q-pogramming paradigm

69

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

⇒ natural & powerful topological-hardware-aware Q-pogramming paradigm

70

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

71

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

72

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#DateJimboMatsuoMiwa90

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

73

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#DateJimboMatsuoMiwa90
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#FeiginSchechtmanVarchenko94

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

74

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#DateJimboMatsuoMiwa90
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#FeiginSchechtmanVarchenko94
https://ncatlab.org/nlab/show/hypergeometric+KZ-solutions+--+references#EtingofFrenkelKirillov98

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

75

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

76

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

77

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

78

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

79

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

80

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷

81

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

82

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

} fiberwise
homotopy

0-truncation

83

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

} fiberwise
homotopy

0-truncation

84

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

This
〈works because

and uses that

〉
HoTT has categorical semantics

in Parameterized Homotopy Theory.

85

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory
https://ncatlab.org/nlab/show/parameterized+homotopy+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

This
〈works because

and uses that

〉
HoTT has categorical semantics

in Parameterized Homotopy Theory.

86

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory
https://ncatlab.org/nlab/show/parameterized+homotopy+theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory#Riehl22

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

87

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

88

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2)

tr(γ3)

tr(γ1)

γ2

γ3

γ1

89

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1

90

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

91

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

92

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

93

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

94

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I −−! O braid
representation

topologica
l

quantum

computatio
n

95

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I −−! O topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

96

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I −−! O H 3
U

−−−−−! H 3topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

97

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I −−! O H 3
U

−−−−−! H 3

H 3
U

−−−−−! H 3
|ψin⟩ 7! |ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

98

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I −−! O H 3
U

−−−−−! H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3
|ψin⟩ 7! |ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

99

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I −−! O H 3
U

−−−−−! H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3
|ψin⟩ 7! |ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

100

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

101

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)

dependenttype family

univalenttype universe

topologica
l

quantum

computatio
n

path
lift

Claim: This has natural construction in HoTT languages:

102

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

103

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

104

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

105

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://arxiv.org/pdf/2203.11838.pdf#page=5
https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

106

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

107

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter

108

https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#Kitaev09

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter

109

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

110

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

111

https://ncatlab.org/nlab/show/topological+order#Wen91Review

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

112

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

113

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/2206.13563.pdf#page=25

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

114

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

115

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

116

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

117

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://youtu.be/uEZXHPdwvJU

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

118

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

119

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

120

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Agda#AgdaFlat

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

121

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

122

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.

123

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems

Topological Quantum Pogramming
in TED-K

Urs Schreiber on joint work with Hisham Sati

NYU AD Science Division, Program of Mathematics

& Center for Quantum and Topological Systems

New York University, Abu Dhabi

Center for

Quantum&

Topological

Systems

talk at:

PlanQC 2022 @ Ljubljana, 15 Sep 2022

slides and pointers at: https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

Thanks!

124

https://nyuad.nyu.edu/en/research/faculty-labs-and-projects/center-for-quantum-and-topological-systems.html
https://icfp22.sigplan.org/home/planqc-2022
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

