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There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.
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Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremen-
dous scientific achievement,

but they take us no closer to having a quantum computer
that can solve a problem that anybody cares about.

What is missing is the breakthrough bypassing quantum
error correction by using far-more-stable quantum-bits,
in an approach called topological quantum computing.”
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Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BG =


∗

∗ ∗

g2

g1·g2

g1

∣∣∣∣∣∣∣gi ∈ G


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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BBr(3) =

{ }
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2 )

tr(γ3)

tr(γ1)

γ2

γ3

γ1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
and compatible path lifting:

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

This
〈works because

and uses that

〉
HoTT has categorical semantics

in Parameterized Homotopy Theory.
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Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.
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the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.
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Claim: This has natural construction in HoTT languages:
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at our newly launched Research Center.
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