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Goal today:

1. reveal secret by example:

Field bundles for gauge fields are higher bundles (stacks).

90% of talk – expository

2. indicate
Local field theory with higher field bundles.

5% of talk – research

the remaining 5% should be your questions!
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First: Locality.

A field is local
if
field configurations on a space(-time) X
are equivalently
field configurations on an atlas {Ui ↪→ X}
with identifications on overlaps of charts.



Simplest example: plain scalar field.

A field configuration on X is a smooth function

φ : X → R .

Restricts to local field configurations

φi := φ|Ui
: Ui → R .

With identification on overlaps

φi = φj on Ui ∩ Uj

.
Locality: {{φi}+ identifications} ' {φ}.

In math jargon:
R : U 7→ {scalar fields on U} = C∞(U ,R) is a presheaf.
Locality is the sheaf condition, R is a sheaf.



another example: electromagnetic field, 19th century style

A field configuration on X is a closed differential 2-form
(Faraday tensor)

F ∈ Ω2
cl(X ) (i.e. dF = 0) .

Restricts to local field configurations

Fi := ω|Ui
∈ Ω2

cl(Ui) .

With identification on overlaps

Fi = Fj onUi ∩ Uj .

Locality: {{Fi}+ identifications} ' {F}

In math jargon:
Ω2

cl : U 7→ {closed 2-forms on U} = Ω2
cl(U) is a presheaf.

Locality is the sheaf condition, Ω2
cl is a sheaf.



quasi-example: sections of a bundle

Let E → X be a bundle over X ;
e.g. a field bundle, e.g. a spinor bundle for fermion fields.

Then
Γ(E ) : U 7→ ΓU(E ) := {sections of E over U}

is a sheaf on the given X , which may be evaluated on charts
U ↪→ X .

But this is not yet a sheaf on all manifolds X .
Instead E → X is fixed background structure.

“locality on background” “covariant locality”

sheaf on charts of fixed X sheaf on all manifolds
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now: Gauge principle.

The meaning of “identification” changes!

This is really deep...

Where scalar fields are equal (or not)

φ1 φ2

gauge fields may be gauge equivalent without being equal

A1 ˜ A2

But also the choice of gauge equivalence g matters

A1
g // A2

e.g. A
g // g−1Ag + g−1dg

In math jargon: remembering choice of gauge equivalence means
refining
equivalence relations
to
groupoids of gauge fields.
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example: the equivalence relation of gauge fields on a chart

Given a chart Rn ↪→ X ,
the gauge equivalence relation on Rn has
as “objects” the gauge field potentials

A ∈ Ω1(Rn, g)

as “morphisms” the existence of gauge transformations

A1 ˜∃g A2

A1 ˜∃g g−1A1g + g−1dg
transitivity is existence of iteration of gauge transformations:

A2

∃h

A1

∃g

∃(h◦g)
A3



example: the groupoid of gauge fields on a chart

Given a chart Rn ↪→ X ,
the groupoid of gauge fields on Rn has
as “objects” the gauge field potentials

A ∈ Ω1(Rn, g)

as “morphisms” the specific gauge transformations

A1
g // A2

A1
g // g−1A1g + g−1dg

composition is iteration of gauge transformations:

A2

h

  
A1

g
>>

h◦g
// A3



Combining locality with the gauge principle

...means identifying local field configurations on overlaps (only) via
gauge transformations:

Local field configurations

Ai on Ui

local identification via gauge equivalences

Ai
gij−→ Aj on Ui ∩ Uj

identification of gauge equivalences on triple overlaps

Aj
gjk

  
Ai

gij
??

gik
// Ak

on Ui ∩ Uj ∩ Uk

hence the familiar cocycle condition:

gij gjk = gik



Example: The Dirac monopole.

On spacetime outside of a magnetic monopole

X = (R3 − {0})× R ' S2 × (R+ × R)

construct any electromagnetic field configuration:

I choose atlas by two hemispheres U± := S± × (R+ × R)

I choose local gauge fields A± ∈ Ω1(S±)

I choose identification-via-gauge-equivalence on equator

g : S1 −→ U(1)

One finds that in the groupoid of local field data, g is
characterized by its winding number

nmonopole =

∫
S2

F = Φmag

math jargon: clutching construction exhibiting first Chern class



Example: The Yang-Mills instanton.

On spacetime with fields appropriately “vanishing at infinity”

X = (R4)+ ' S4

construct SU(2)-gauge field configuration:

I choose atlas by two hemi-4-spheres U± := S±
I choose local gauge fields A±
I choose identification-via-gauge-equivalence on equator

g : S3 −→ SU(2)

One finds that in the groupoid of local field data, g is
characterized by its winding number

ninstanton =

∫
S4

tr(F ∧ F ) .

math jargon: clutching construction exhibiting 2nd Chern class



Punchline:

Choice of gauge transformation crucially matters.

locality principle + gauge relation ⇒ no monopoles

locality+gauge principle captures global phenomena.

Conversely,
since there are topol. sectors (baryogenesis, QCD vacuum, ...):

Passing to gauge equivalence classes breaks locality.

see also A. Schenkel’s talk at this meeting
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Hence consider the “sheaf of groupoids”

X 7→
∐
s


groupoid of

gauge fields on X
in topological sector s


Fact: This is covariantly local.
math jargon: this is a stack (a “higher sheaf of groupoids”).

Fact: The naive

X 7→


groupoid of

gauge fields on X
in topological sector 0


is not local.
math jargon: this is a pre-stack.

Fact: First case is universal way of making local the second.
math jargon: stackification



Neither of

I “stack”

(unsuggestive)

I “sheaf of groupoids on all manifolds”

(too long)

I “category fibered in groupoids over manifolds”

(both)

is great terminology.

For formulating physics
it is useful to change perspective...

...and think of stacks on the“gros” site of all manifolds
as smooth spaces with refined gauge equivalence relation;
hence as smooth groupoids.

Like so:...
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smooth spaces

Think of arbitrary sheaf on

all

manifolds

X : U 7→ X(U)

as sending any manifold U
to the set of smooth maps

“X(U) = {U → X} = Hom(U,X)”

into a would-be smooth space X.
Say “smooth space” for a sheaf regarded this way.

The Yoneda embedding says that

{smooth manifolds} ↪→ {smooth spaces}

The Yoneda lemma says removing the quotation is consistent:{
maps of smooth spaces

U → X

}
' X(U)
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Fact. The category of smooth spaces is an excellent context for
doing differential geometry.

Fact. The higher category of smooth groupoids is an excellent
context for doing higher differential geometry.

(here excellent = cohesive homotopy theory [Schreiber13])

In particular: write BGconn for smooth groupoid of G -gauge fields.

Then: the covariantly local field 2-bundle for
non-perturbative gauge fields is

X × BGconn

��
X

in the category of smooth groupoids.
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(here excellent = cohesive homotopy theory [Schreiber13])

In particular: write BGconn for smooth groupoid of G -gauge fields.

Then: the covariantly local field 2-bundle for
just topological sectors is
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��
X

in the category of smooth groupoids.
math jargon: G-gerbe



Fact. The category of smooth spaces is an excellent context for
doing differential geometry.

Fact. The higher category of smooth groupoids is an excellent
context for doing higher differential geometry.

(here excellent = cohesive homotopy theory [Schreiber13])

In particular: write BGconn for smooth groupoid of G -gauge fields.

Then: the covariantly local field 2-bundle for
non-perturbative gauge fields is

X × BGconn

��
X

in the category of smooth groupoids.

Task: Formulate local gauge theory with higher field bundles!



Outlook.

Fact. For compact gauge group G

{
L ∈ Hn+2(BG ,Z)

} '−→

{
maps of smooth higher groupoids

BG
L−→ Bn+1U(1)

}
∼

Sends level L to fully local higher Chern-Simons Lagrangian.
Defines fully local pre-quantum gauge field theory

exp( i
~

∫
(−)

L) : Bordfrn −→ Corrn(Sh∞(Mfd)/BnU(1)) .

Sends closed n-manifold Σ to higher WZW θ-bundle

exp( i
~

∫
Σ

L) : LocG (Σ) −→ BU(1) .

Quantize by pull-push in generalized cohomology...



more exposition in:

U. S.
What, and for what is higher geometric quantization?
ncatlab.org/schreiber/show/What,+and+for+what+is+Higher+geometric+quantization

details in:

U. S.,
Differential cohomology in a cohesive ∞-topos,
arXiv:1310.7930

in particular section 1.2 in there:

U. S.,
Classical field theory via Cohesive homotopy types,
ncatlab.org/schreiber/show/Classical+field+theory+via+Cohesive+homotopy+types

http://ncatlab.org/schreiber/show/What,+and+for+what+is+Higher+geometric+quantization
http://arxiv.org/abs/1310.7930
http://ncatlab.org/schreiber/show/Classical+field+theory+via+Cohesive+homotopy+types

