Formalizing higher Cartan geometry in modal homotopy type theory

Urs Schreiber¹

September 17, 2016

talk at Homotopy Type Theory in Logic, Metaphysics and Physics Bristol, Sept 2016

¹CAS Prague and MPI Bonn

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Physics is to a large extent about geometry.

Physics is to a large extent about geometry.

Archetypical example:

gravity is encoded by pseudo-Riemannian geometry

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Physics is to a large extent about geometry.

Archetypical example:

gravity is encoded by pseudo-Riemannian geometry

but many other flavors of geometry play a role:

- symplectic geometry phase spaces
- conformal geometry e.g. 2d critical phenomena, RNS strings, gauge theories on solitonic branes
- complex geometry complex polarized phase spaces, CY-compactifications

All flavors of geometry are unified by Cartan geometry.

(ロ)、(型)、(E)、(E)、 E) の(の)

Which we survey in a moment.

All flavors of geometry are unified by Cartan geometry.

U. Schreiber, *Differential cohomology in a cohesive topos* ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

shows that Cartan geometry (and much more) has a useful synthetic axiomatization in differentially cohesive ∞ -topoi.

All flavors of geometry are unified by Cartan geometry.

U. Schreiber, *Differential cohomology in a cohesive topos* ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

shows that Cartan geometry (and much more) has a useful synthetic axiomatization in differentially cohesive ∞ -topoi.

U. Schreiber,

Some thoughts on the future of modal homotopy type theory, talk at German Mathematical Society meeting 2015

ncatlab.org/schreiber/show/Some+thoughts+on+the+future+of+modal+homotopy+type+theory

poses the problem of formalizing synthetic Cartan geometry in a homotopy type theory proof checker, such as HoTT-Agda. Such a synthetic formalization of Cartan geometry in HoTT with a modal operator has now been obtained:

Felix Wellen,

Formalizing Cartan geometry in modal homotopy type theory PhD thesis, in preparation github.com/felixwellen/DCHoTT-Agda

Such a synthetic formalization of Cartan geometry in HoTT with a modal operator has now been obtained:

Formalizing Cartan geometry in modal homotopy type theory PhD thesis, in preparation github.com/felixwellen/DCHoTT-Agda

Here I give motivation and introduction.

Felix Wellen in his talk will discuss details of the implementation in modal HoTT.

First some informal survey.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Best to speak synthetic differential geometry right away.

Let X be a smooth space. For every $k \in \mathbb{N} \cup \{\infty\}$ and every point $x \in X$ there is its *kth order infinitesimal neighbourhood*

$$\mathbb{D}^{(k)}_{x} \hookrightarrow X$$
.

If $X = \mathbb{R}^d$, then $\mathbb{D}_x^{(k)}$ is characterized by the fact that smooth functions on $\mathbb{D}_x^{(k)}$ are equivalent to Taylor expansions at x to order k of smooth functions on \mathbb{R}^d .

This exists for instance in the "Cahiers topos" (Dubuc '79) as well as in the Cahiers ∞ -topos **H**.

This exists for instance in the "Cahiers topos" (Dubuc '79) as well as in the Cahiers ∞ -topos **H**:

If you care about the details: Let

$$\begin{split} \operatorname{SuperFormalSmoothCartSp} &\hookrightarrow \operatorname{sCAlg}_{\mathbb{R}}^{\operatorname{op}} \\ & & \\ \mathbb{R}^n \times \mathbb{D} \mapsto \mathcal{C}^{\infty}(\mathbb{R}^n) \otimes_{\mathbb{R}} (\mathbb{R} \oplus \left\{ \begin{array}{c} \operatorname{fin. \ dim.} \\ \operatorname{nilpotent} \end{array} \right\}) \end{split}$$

be the site of Cartesian spaces with infinitesimal thickening and smooth functions between them. (See Wellen's talk for details.)

Then

$$\mathbf{H} \simeq \left\{ egin{array}{c} {
m simplicial presheaves} \\ {
m on } {
m SuperFormalSmoothCartSp} \end{array}
ight\} \left[egin{array}{c} {
m local weak} \\ {
m homotopy equivalences} \end{array}
ight]^{-1}$$

Informally, a smooth manifold X is something that locally looks like \mathbb{R}^d , glued by smooth functions.

The tangent bundle of a smooth manifold is over each point x the first order infinitesimal neighbourhood $\mathbb{D}_{x}^{(1)}$, regarded as a vector space.

As one passes from one chart $U_i \simeq \mathbb{R}^d$ to the next via some gluing function f,

then these infinitesimal neighbourhoods transform as

$$df: \mathbb{D}^{(1)}_x \stackrel{\simeq}{\longrightarrow} \mathbb{D}^{(1)}_{f(x)}$$

hence under the group

$$\operatorname{Aut}(\mathbb{D}^{(1)}_{x})\simeq \operatorname{GL}(d)$$
.

One says that the tangent bundle is associated to a GL(d)-principal bundle, the *frame bundle*.

We may require that the infinitesimal neighbourhoods transform under only a subgroup

 $G \hookrightarrow \operatorname{GL}(d)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

"Reduction of the structure group of the frame bundle to G", "G-structure" for short

We may require that

the infinitesimal neighbourhoods transform under only a subgroup

 $G \hookrightarrow \operatorname{GL}(d)$.

"Reduction of the structure group of the frame bundle to G", "G-structure" for short

Examples:

 $\begin{aligned} G &= O(d-1,1) \\ G &= \mathrm{SO}(d-1,1) \\ G &= \mathrm{SO}(d,2) \\ \mathrm{GL}(d,\mathbb{C}) &\hookrightarrow \mathrm{GL}(2d,\mathbb{R}) \\ \mathrm{U}(d) &\hookrightarrow \mathrm{GL}(2d,\mathbb{R}) \\ \mathrm{Sp}(d) &\hookrightarrow \mathrm{GL}(2d,\mathbb{R}) \end{aligned}$

pseudo-Riemannian metric (gravity) metric and orientation conformal structure almost complex structure almost Hermitian structure almost symplectic structure Here is how it works in components:

Reduction of structure group $O(d) \hookrightarrow \operatorname{GL}(d)$ is locally exhibited by d differential 1-forms

$$E^{a}=\sum_{\mu=1}^{d}E_{\mu}^{a}dx^{\mu}$$
 $a\in\{1,\cdots,d\}$

which identify the tangent space at any point with the model space \mathbb{R}^d .

("vielbein", "soldering form")

The model space \mathbb{R}^d carries a canonical metric η , the Minkowski metric. The induced metric on X is

$$ds^2 = \sum_{a,b=1}^d \eta_{ab} E^a E^b$$

Since the tangent bundle of \mathbb{R}^d is trivialized by translation the local model space \mathbb{R}^d carries a canonical *G*-structure for every choice of $G \hookrightarrow \operatorname{GL}(d)$.

Say that a *G*-structure on *X* is flat of order *k* if restricted to every $\mathbb{D}_{x}^{(k)}$ ($x \in X$) it is equivalent to this canonical *G*-structure.

Since the tangent bundle of \mathbb{R}^d is trivialized by translation the local model space \mathbb{R}^d carries a canonical *G*-structure for every choice of $G \hookrightarrow \operatorname{GL}(d)$.

Say that a *G*-structure on *X* is flat of order *k* if restricted to every $\mathbb{D}_{x}^{(k)}$ ($x \in X$) it is equivalent to this canonical *G*-structure.

Flatness to first order is equivalently vanishing torsion.

V. Guillemin, *The integrability problem for G-structures*, Trans. Amer. Math. Soc. 116 (1965)

J. Lott, *The Geometry of Supergravity Torsion Constraints*, Comm. Math. Phys. 133 (1990) <u>arXiv:0108125</u> Examples of torsion free G-structures:

$$G = \operatorname{GL}(d, \mathbb{C})$$
 complex structure
 $G = \operatorname{U}(d)$ Hermitian structure
 $G = \operatorname{Sp}(d)$ symplectic structure
 $G = O(d - 1, 1)$ pseudo-Riemannian metric (gravity)

every orthogonal structure has vanishing intrinsic torsion \Leftrightarrow

for every metric there exists a torsion free metric connection (the "Levi-Civita connection").

```
This is Einstein's principle of equivalence:
For X a spacetime with gravity,
then every \mathbb{D}_{x}^{(1)} looks like Minkowski spacetime.
```

Here is how this works in components.

The model space \mathbb{R}^d carries a canonical vielbein $e^a = dx^a$. This has the special property that it is translation invariant

$$de^a = 0$$

But E^a on X is only defined up to Lorentz transformation in O(d-1,1). Hence instead of asking for dE^a , we need to ask for the covariant derivative

$$au^{a} = dE^{a} + \sum_{b=1}^{d} \Omega^{a}{}_{b} \wedge E^{b}$$

for some 1-forms $\Omega^a{}_b$ that send tangent vectors to infinitesimal Lorentz transformations.

The *intrinsic* torsion is τ^a modulo terms of the form $\Delta \Omega^a{}_b \wedge E^b$.

generalization 1: Super-Cartan geometry

supergravity is Cartan geometry for local model space a super-translation group $\mathbb{R}^{d-1,1|N}$ and reduction along $\operatorname{Spin}(d-1,1) \hookrightarrow \operatorname{GL}(d-1,1|N)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

generalization 1: Super-Cartan geometry

supergravity is Cartan geometry for local model space a super-translation group $\mathbb{R}^{d-1,1|N}$ and reduction along $\operatorname{Spin}(d-1,1) \hookrightarrow \operatorname{GL}(d-1,1|N)$

A miracle happens:

the Einstein equations in 11-dimensions are already equivalent to torsion-free $Spin(10, 1) \hookrightarrow GL(10, 1|N)$ -structure.

A. Candiello, K. Lechner, Duality in Supergravity Theories, Nucl.Phys. B412 (1994) 479-501 arXiv:hep-th/9309143

P. Howe, Weyl Superspace, Physics Letters B Volume 415, Issue 2 (1997) arXiv:hep-th/9707184 generalization 2: Higher Cartan geometry

11d Supergravity with M-brane effects included ("M-theory"), is a hypothetical candidate for a "theory of everything" in physics. physics jargon: "M5-brane moves in condensate of M2-branes"

mathematically: spacetime becomes a higher Cartan geometry modeled on a homotopy 3-type extension of $\mathbb{R}^{10,1|32}$. (stacky spacetime, higher Cartan geometry)

generalization 2: Higher Cartan geometry

11d Supergravity with M-brane effects included ("M-theory"), is a hypothetical candidate for a "theory of everything" in physics. physics jargon: "M5-brane moves in condensate of M2-branes"

mathematically: spacetime becomes a higher Cartan geometry modeled on a homotopy 3-type extension of $\mathbb{R}^{10,1|32}$. (stacky spacetime, higher Cartan geometry)

- D. Fiorenza, H. Sati, U. Schreiber, Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields International Journal of Geometric Methods in Modern Physics Volume 12, Issue 02 (2015) 1550018 <u>arXiv:1308.5264</u>
- H. Sati, U. Schreiber, Lie n-algebras of BPS charges ncatlab.org/schreiber/show/Lie+n-algebras+of+BPS+charges

Now some words on the synthetic axiomatization of (higher, super) Cartan geometry, that Felix Wellen has now implemented in Hott-Agda.

following

U. Schreiber, *Differential cohomology in a cohesive topos*

ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

U. Schreiber,

Some thoughts on the future of modal homotopy type theory, talk at German Mathematical Society meeting 2015

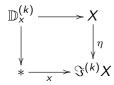
ncatlab.org/schreiber/show/Some+thoughts+on+the+future+of+modal+homotopy+type+theory

For every smooth space $X \in \mathbf{H}$ there is a smooth space $\mathbb{S}^{(k)}X$ obtained from Xby contracting all $\mathbb{D}_{x}^{(k)}$ to a point.

Hence there is a canonical projection

$$\eta: X \longrightarrow \Im^{(k)} X$$

its fiber is $\mathbb{D}_{x}^{(k)}$



 $\Im^{(\infty)}X$ is also called the *de Rham space* or *de Rham stack* of X.

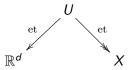
Proposition:

A map between smooth manifolds $f : X \rightarrow Y$ is local diffeomorphism precisely if its \Im -naturality square

is Cartesian (is a pullback square)

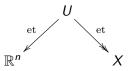
Generally, say that a map f with this property is formally étale.

Hence the atlas $U = \sqcup_i \mathbb{R}^d$ of a manifold X yields a diagram



Generally, the X in such a diagram are *étale* ∞ -*stacks*, e.g. *orbifolds*.

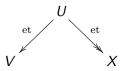
Hence the atlas $U = \sqcup_i \mathbb{R}^d$ of a manifold X yields a diagram



Generally, the X in such a diagram are *étale* ∞ -*stacks*, e.g. *orbifolds*.

Definition:

For V a group object in **H**, say that a V-manifold or V-scheme is an $X \in \mathbf{H}$ such that there exists a diagram



Idea of synthetic axiomatization:

Relevant properties of V-manifolds follow formally from the fact that \Im is an idempotent monad.

Hence Cartan geometry makes sense in every ∞ -topos equipped with an idempotent ∞ -monad interpreted as \Im .

A V-manifold is whatever \Im thinks it is.

	analytic	synthetic
axiomatize:	constitutents	properties

Regarding homotopy type theory as the internal language of ∞ -toposes then assuming the existence of an ∞ -monad \Im corresponds to adding a *modal operator*.

Theorem:

- 1. The infinitesimal disk bundle on any ∞ -group V is trivialized by left translation.
- For every V-manifold X its infinitesimal disk bundle is a locally trivial D-fiber bundle, for D = D_e^V, associated to an Aut(D)-principal bundle (its *frame bundle*) classified by a map

$$au_X: X \longrightarrow \mathsf{BAut}(\mathbb{D})$$

Proof: Formalized in HoTT-Agda by

Felix Wellen, Formalizing higher Cartan geometry in modal HoTT PhD thesis, github.com/felixwellen/DCHoTT-Agda

Details are presented in Felix Wellen's talk at this meeting.

This theorem establishes the fundamental ingredient of Cartan geometry: frame bundles of V-manifolds.

It is now straightforward to axiomatize the geometric concepts

- G-structure;
- torsion-freeness

etc.

We briefly state this now:

Definition:

Let

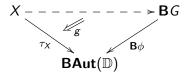
$$\phi: G \to \operatorname{Aut}(\mathbb{D})$$

be any group homomorphism, hence

$$\mathbf{B}\phi:\mathbf{B}G\to\mathbf{BAut}(\mathbb{D})$$

any map.

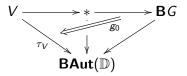
Then a G-structure on a V-manifold is a lift



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observation:

On V there is a canonical G-structure



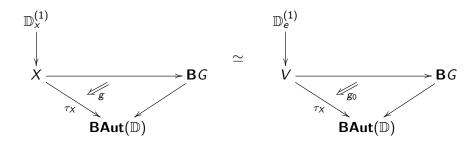
where the left square exhibits the left translation trivialization of τ_V by the previous theorem Definition:

A G-structure on a V-manifold X

is torsion free

if on every first order infinitesimal neighbourhood $\mathbb{D}^{(1)}$

it coincides with the canonical G-structure on V:



(remember: this is really Einstein's principle of equivalence)

One may similarly formalize much more, for instance

- fundamental theorem of calculus,
- Noether's theorem

by postulating a system of adjoint modalities

("differential cohesion") id - id V V \rightarrow $\dashv \rightsquigarrow \dashv \mathbf{Rh}$ \vee V $\Re \rightarrow \Im \rightarrow Et$ V \vee - b - # V V Ø So much for today.

For more exposition see

U. Schreiber, <u>Higher prequantum geometry</u> in G. Catren and M. Anel (eds.) <u>New Spaces in Mathematics and Physics</u> <u>arXiv:1601.05956</u>

These slides with background material are kept online at

ncatlab.org/schreiber/show/Formalizing+Cartan+Geometry+in+Modal+HoTT