T-duality in rational homotopy theory
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Abstract

What in string theory is known as topological T-duality between K°-cocycles in type ITA
string theory and K'-cocycles in type IIB string theory or as Hori’s formula can be recognized
as a Fourier-Mukai transform between twisted cohomologies when looked through the lenses of
rational homotopy theory. Remarkably, the whole construction naturally emerges and is actually
derived from noticing that the (super-)Chevalley-Eilenberg algebra of the super-Minkowski space
R8:116+16 carries two distinet 2-cocycles, whose product is an exact 4-cochain with an explicit
trivializing 3-cochain. The super-form components of the RR-fields in type IIA and IIB string
theory are then realized as rational K-theory cocycles twisted by these two 2-cocycles, and the
trivializing 3-cochain induces rational topological T-duality between them.

Notes for the talks given at Higher Structures Lisbon 2017 and at the Loughborough work-
shop on Geometry and Physics 2017. Based on joint work with Hisham Sati and Urs Schreiber
(arXiv:1611.06536).
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1 Twisted de Rham cohomology

LetX be a smooth manifold. Then we can twist the de Rham differential d: Q°(X;R) 4
Q°(X;R) by a 1-form «, defining the twisted de Rham operator d,: Q°*(X;R) 4 Q°(X;R) as



dow = dw + a Aw. The operator d, does not square to zero in general: d2 is the multiplication
by the exact 2-form da. This means that precisely when « is a closed 1-form, the operator d,
is a differential, defining an a-twisted de Rham complex (2°(X),d,). The cohomology of this
complex is called the a-twisted de Rham cohomology of X and it will be denoted by the symbol
Hc;R;a (X) .

The operator d,, is a connection on the trivial R-bundle over X, which is flat precisely when
a is closed. This means that for a closed 1-form «, the a-twisted de Rham cohomology of
X is actually a particular instance of flat cohomology or cohomology with local coefficients.
Having identified d, with a connection in the above remark, it is natural to think of gauge
transformations as the natural transformations in twisted de Rham cohomology. More precisely,
since we are in an abelian setting with a trivial R-bundle, two connections d,, and d,, will be
gauge equivalent exactly when there exists a smooth function 8 on X such that a; = as + dg,
i.e., when the two closed 1-forms a7 and s are in the same cohomology class. When this
happens, the two twisted de Rham complexes (Q°(X),d,,) and (2°(X),d,,) are isomorphic,
with an explicit isomorphism of complexes given by the multiplication by the smooth function
ef. Namely, if w is a differential form on X, we have

doy (€’ Nw) =d(P Nw) +aa NP Aw
=dfAeP Nw+eP Ndw+as heP ANw
=P A((dB + o) Aw + dw)
=’ A (a1 Aw + dw)
=P Ndgy,w.

In particular, multiplication by e induces an isomorphism in twisted cohomology:
66 : H(;R;()q (X) :—> H(;R;Ctg (X)

We now investigate the functorial behaviour of twisted cohomology with repsect to a smooth
map 7: Y — X. It is immediate to see that, since the pullback morphism 7*: Q*(X) — Q*(Y)
is a morphism of differential graded commutative algebras, it induces a morphism of complexes

7 (QN(X),do) = (%), drra)-
In turn this gives a pullback morphism in twisted cohomology
" Hc.lR;a(X) - H&R;ﬂ*a(y)'

The pushforward morphism is a bit more delicate. To begin with, given a smoothmap 7: Y — X
we in general have no pushforward morphism of complexes m.: Q*(Y) — Q*(Y). However
we do have such a morphism of complexes, up to a degree shift, if Y — X is not a general
smooth map but it is an oriented fiber bundle with typical fiber F' which is a compact closed
oriented manifold: in this case m, is given by integration along the fber and is a morphism of
complexes m,: (Q*(Y),d) — (2°(X)[— dim F], d[— dim F]). Yet, 7, will not induce a morphism
i (Q%(Y),do) = (Q*(X)[—dim F],dy, o[- dim F]), and actually a minute reflection reveals
that the symbol d,, , just makes no sense. However, when « is not just a generic 1-form on
Y but it is a 1-form pulled back from X, then everything works fine. Namely, the projection
formula
T (T*a Aw) = (—1)d8adimF o A7

precisely says that m, is a morphism of chain complexes
e (Q°(Y), drva) — (Q%(X)[— dim F], do[— dim F)
and so it induces a pushforward morphism in twisted cohomology

T Hipreo(Y) = Hig O™ F (X).



1.1 Fourier-Mukai transforms in twisted de Rham cohomology

All of the above suggests as to cook up a Fourier-type transform in twisted cohomology. Assume
we are given a span of smooth manifolds

R
X1 Xo,

with Y =2 X, an oriented fiber bundle with compact closed oriented fibers. Let a; be a closed
1-form on Xj;, and assume that the two 1-forms 77a; and 7m5as are cohomologous in Y, with
mio — i = df. Then we have the sequence of morphisms of chain complexes

(Q°(X1),day) =5 (Q*(Y), drray) <@y, drsay) ~2 (Q°(X2)[— dim F1], do, [~ dim F»))

whose composition defines the Fourier-Mukai transform with kernel S in twisted de Rham co-
homology:
o —dim F.
(I)IB: HdR;al (Xl) - Hc.lR;al;n 2(X2)'

Writing [, for o, and writing - for the right action of Q°*(X) on Q°*(Y) given by n-w =nAnjw
makes it evident why this is a kind of Fourier transform:

Dg:w el w.
>

If moreover also m1: Y — X is an oriented fiber bundle with compact closed oriented fibers,
then we also have a Fourier-Mukay transform in the inverse direction, with kernel —3. Notice
that by evident degree reasons the trasforms ®z and ®_ 3 are not inverse each other. A particular
way of obtaining a span of oriented fiber bundles X; < Y — X5 with compact closed oriented
fibers is to consider a single oriented fiber bundle Y — Z with compact closed oriented fiber
Fy x F5. Then the manifolds X; and X5 are given by the total spaces of the Fb-fiber bundle
and Fi-fiber bundles on Z, respectively, associated with the two factors of F; x F5 together with
the canonical projections. In particular, an oriented 2-torus bundle ¥ — Z produces this way
a span X < Y — X, where both 7;: Y — X; are S'-bundles. It is precisely a configuration of
this kind that we will be interested in.

1.2 From 1-form twists to 3-form twists

Assume now « is a 3-form on X instead of a 1-form. Then we can still define the operator d,,
on differential forms as d,w = dw 4+ a A w, but this will no more be a homogeneous degree 1
operator. Yet, as « is odd, this will still be a homogeneous operator if we collapse the grading
on differential forms from the usual Z-grading to the associated Z/2Z-grading. Doing so, and
denoting by 7 the mod 2 class of an integer n, the opearor d, is an operator

do: Q°(X) = Q*TH(X),

and the above discussion verbatim applies, with the de Rham complex Q°®(X) replaced by the
2-periodic de Rham complex Q°(X). In particular, if we have a span X; « Y — X of oriented
Sl-bundles and if o; are 3-forms on X; such that mja; — mias = df for some 2-form 3 on Y,
then we have Fourier-Mukai transforms

(I)ﬁ: HgR;al (Xl) — Hgl;}aQ (XQ)
®_g: Hig.o,(X2) = Hige, (X1)



Since 2 = 0, the compositions ®_g o ®g and ®g o P_g preserve the Z/2Z-degree and so there is
now no degree obstruction to the possibility that ®g and ®_z are inverse each other. We will
come back to this later.

As we have moved from the Z-grading to the Z/2Z-grading there is apparently no point in
considering 3-forms rather than 1-forms or 5-forms. From the the Z/2Z-graded Rham point
of view it is actually pointless even to have differential forms of homogeneous odd degree: the
above argument would identically apply to an odd form o = a ) + a3y + a5y + -+ -, where ag;
is a differential form of Z-degree i on X. There is however an important geometrical reason
to focus on degree 3 forms. namely, when coefficients are taken in a characteristic zero field,
even de Rham cohomology is isomorphic (via the Chern character) with even K-theory, and
odd de Rham cohomology is isomorphic to odd K-thory. Under these isomorphisms, K-theory
twists (which are topologically given by principal U(1)-gerbes and so are classified by maps
to B2U(1) ~ K(Z,3)) precisely become closed 3-forms. In other words, for a; and as closed
3-forms as above, the Fourier-Mukai transform ®g is to be thought as a morphism

Dg: Kg, (X)) R — K51 (Xo) @ R.

where G, and G, are the twisting gerbes. This is indeed the rationalization, with real coefficients,
of a topological Fourier-Mukai transform

Dp: Kg (X1) = K&, 1(Xa).

When the span X; < Y — X of oriented S'-bundles is induced by a 2-torus bundle Y — Z,
and so by a classifying map Z — B(U(1) x U(1)) = BU(1) x BU(1), we say we are given a
de Rham T-fold configuration. In the following section we are going to investigate these from
the point of view of rational homotopy theory. This will be able to read all of the information
contained in the Fourier-Mukai transform associated with a de Rham T-fold configuration, as
the rational homotopy type of a space retains all of its cohomology overa characteristic zero
field (as well as all of its homotopy up to torsion).

2 Basics of rational homotopy theory

The idea at the heart of rational homotopy theory is that, up to torsion, all of the homotopy
type of a simple spaceEI with finite rank cohomology groups is encoded in its de Rham algebra
with coefficients in a characteristic zero field, as a differential graded commutative algebra, up
to homotopy [Qu69} [Su77]. Moreover, since one has the freedom to replace the de Rham algebra
with any homotopy equivalent DGCA, one sees that up to torsion the homotopy type of a simple
space X is encoded into its so called minimal model or Sullivan algebra: a DGCA Ax equipped
with a quasi-isomorphism of differential graded commutative algebras Ax — Q°(X), which is
semi-free, i.e., which is a free graded commutative algebra when one forgets the differential, and
such that the differential is decomposable, i.e., it has no linear component. In other words, Ax
is a DGCA of the form (A®IX*,d) = (Sym®(IX[1]*),d) for a suitable graded vector space [X
(finitely dimensional in each degree) and a suitable degree 1 differential d with d(IX*) C AZ2[X*.
Here [X™ denotes the graded linear dual of [X, and the degree shift in the definition of A® is
there in order to match the degree coming from geometry: the de Rham algebra is generated
by 1-forms, which are in degree 1. The semifreenes property together with the datum of the
quasiisomorphism to the de Rham algebra and the decomposability of the differential uniquely
characterize the minimal model up to isomorphism and the quasiisomorphism to the de Rham
algebra up to homotopy, so that one can talk of the minimal model of a space X. The pair
(A®1X*,d) is what is called a minimal L -algebra structure on [X in the theory of L.-algebras.
Equivalently, one says that the DGCA (A®[X*,d) is the Chevalley-Eilenberg algebra of the L-
algebra [X (omitting the L., brackets of IX from the notation), and writes

lie., a connected topological space that has a homotopy type of a CW complex and whose fundamental group is
abelian and acts trivially on the homotopy and homology of the universal covering space



(Ax,dx) = (CE(IX),dx)

as the defining equation of the L..-algebra [X. We say that the L.,-algebra [X is the rational
approximation of X. Geometrically, it can be thought of as the tangent L.-algebra to the oo-
group given by the based loop space of X (as X is simple, the choice of a basepoint is irrelevant).
A smooth map f: Y — X is faithfully encoded into the DGCA morphism f*: Q*(X) — Q*(Y),
so that the rational approximation of f is encoded into a DGCA morphism, which we will
continue to denote f*,

f* : Ay — Ax.

In turn, by definition, this is a morphism of L..-algebras [f: [X — [Y. Finally, up to homotopy,
every L., algebra is equivalent to a minimal one: this is the dual statement of the fact that
every (well behaved) DGCA is homotopy equivalent to a minimal DGCA. Therefore we get the
fundamental insight of rational homotopy theory: the category of simple homotopy types over a
characteristic zero field K is (equivalent to) the homotopy category of Lo -algebras over K.

Example 2.1. The above description of rational homotopy theory may have erroneously sug-
gested it is a quite abstract construction. So let us make an example to make it concrete.
Consider the classifying space BU(1). Its real cohomology is H*(BU(1);R) = R[zz], where x2
is a degree 2 element, the universal first Chern class. As H®*(BU(1);R) is a free polynomial
algebra, we can think of it as a semifree DGCA with trivial differential. Moreover, choosing a
de Rham representative for the first chern Class defines a quasi-isomorphism

(Rlz2],0) = (2*(BU(1)), d)
exhibiting (R[z2],0) as the Sullivan model of BU(1). The equation
(R[z2],0) = (CE(IBU(1)),dpy (1))

then characterizes [BU(1)) as the Lo.-algebra consisting of the cochain complex R[1] consisting
of the vector space R in degree -1 and zero in all other degrees (with zero differential). We will
denote this L.-algebra by the symbol bu;. A principal U(1)-bundle P — X is classified by a
map X — BU(1). The rational approximation of this map is an L,-morphism

X — bul.
Equivalently, by definition, this is a DGCA morphism
(R[z2],0) = (Ax,dx),

i.e., it is a degree 2 closed element in Ax. By pushing it forward along the quasiisomorphism
(Ax,dx) = (Q°(X),d) we get a closed 2-form wy on X associated to the principal U(1)-bundle
P — X. Since the quasiisomorphism (Ax,dx) — (2°(X),d) is only unique up to homotopy,
the 2-form wsy is only well defined up to an exact term so that it is the cohomology class [ws]
to be actually canonically associated with P — X. No surprise, [ws] is the image in de Rham
cohomology of the first Chern class of P — X.

Given the identification between simple homotopy types and L..-algebras mentioned above,
from now on we will mostly work directly with L..-algebras, with no reference to the space
they can be a rationalization of. Thereore, a span X; < Y — X5 as in the discussion of
Fourier-Mukai transforms in twisted de Rham cohomology will become a span

/h\
g1 g2

of L.-algebras. As we want that the 7;’s represent the (rationalization of) S!-bundles our next
step is the characterization of those L..-morphism that correspond to principal U(1)-bundles.



3 Central extensions of L.-algebras

A principal U(1)-bundle over a smooth manifold X is encoded up to homotopy into a map
f: X — BU(1) from X to the classifying space U(1). The total space P as well as the projection
P — X are recovered by f by taking its homotopy fiber, i.e., by considering the homotopy
pullback

P
l
X—&BUl(l)

As rationalization commutes with homotopy pullbacks, the rational approximation of the above
diagram is
[P——0 .

X —s by

Dually, this means that we have a homotopy pushout of DGCAs

(R[z2],0) —— (R, 0)

r) |

(Ax,dx) E—— (Ap,dp)

This is easily computed. All we have to do is to replace the DCGA morphism R[zs] — R with
an equivalent cofibration. The easiest way of doing this is to factor R[zs] — R as

(R[IQ],O) — (R[yhl‘g], dyl = 562) :—> R.
Then Ap is computed as an ordinary pushout

(Rlzz], 0) —— (R[y1, z2], dy1 = x2) ,

/] |

(Ax,dx) ——— (Ap,dp)
ie.,
(Ap,dp) = (Ax[yl],dpw =dxw for w € Ax, dpy1 = f*zg)

This immediately generalizes to the case of an arbitrary morphism f: g — bu;. The homotopy
fiber of f will be the L..,-algebra g characterized by

CE(g) = CE(g)ly1;

where y; ia a variable in degree 1 and where the differential in CE(g) extends that in CE(g) by
the rule dgy; = f*(x2).

Example 3.1. If g is a Lie algebra (over R), then an L..-morphism f: g — buy is precisely a
Lie algebra 2-cocycle on g with values in R. The L..-algebra g is again a Lie algebra in this
case, and it is the central extension of g by R classified by the 2-cocycle f.

The above construction admits an immediate generalization. Instead of bu; we can consider
the Loo-algebra b™u; given by the cochain complex R[n| consisting of R in degree —n and zero
in all other degrees. The corresponding Chevalley-Eilenberg algebra is

(CE(bnu1)5 db"ul) = (R[‘T"-‘rlL 0)7



where x,,41 is in degree n + 1. One sees that b™u; is a rational model (with coefficients in R)
for the classifying space B"U(1) of principal U(1)-n bundles (or principal U(1)-(n — 1)-gerbes),
which is a K(Z,n + 1). If g is a Lie algebra, then an L.,-morphism g — b™uy is precisely
a Lie algebra (n + 1)-cocycle on g with coefficients in R. More generally, an L..-morphism
g — b"u; with g an L.-algebra will also be called an (n + 1)-cocycle. The dual picture makes
this terminology transparent: an (n + 1)-cocycle on g is a DGCA morphism

(R[zn41],0) = (CE(g), dg)

so it is precisely a closed degree n + 1 element in CE(g). The description of homotopy fibers of
2-cocycles immediately generalizes to higher cocycles: the homotopy fiber g of an (n+1)-cocycle
g — b™u; is characterized by

CE(g) = CE(g)yn],

where y,, ia a variable in degree n and where the differential in CE(g) extends that in CE(g) by
the rule dgy; = f*(2n41). By analogy with the case of 2-cocycles on Lie algebras, one calls g a
higher central extension of g. Geometrically, g is to be thought as the total space of a rational
U(1)-n-bundle over g

4 Twisted L.-algebra cohomology

As we remarked, a (finite dimensional in each degree) Loo-algebra g is encoded into its Chevalley-
Eilenberg algebra (CE(g), dg). As this is differential graded commutaive algebra, we can consider
its cohomology which, by definition, is the L,-algebra cohomology of g:

Hi_(g;R) = H* (CE(g), dy) -

When g is a Lie algebra this reproduces the Lie algebra cohomology of g. If g is the L,-algebra
representing the rational omotopy type of a simple space X, then the L,-algebra cohomology
of g computes the de Rham cohomology of X. Namely,

Hi (IX;R) = H® (CE(IX),dx) = H* (Ax,dx)) = H* (Q*(X),d)) = Hir(X).

Example 4.1. If g is the Lie algebra of a compact Lie group G, then one recovers the classical
statement that the Lie algebra cohomology of g computes the de Rham cohomology of G:

Hiie(g;R) = Hig(G)-

This has actually been one of the motivating examples in the definition of Lie algebra cohomol-
ogy.

Exactly as we twisted de Rham cohomology we can twist Ly,-algebra cohomology: if a is
a degree 3 cocycle on g then we can consider the odd operator dg,,: © — dgz + ax on the
(Z/27Z-graded algebra underlying the) Chevalley-Eilenberg algebra of g and define

Hz (Q;R) =H* (CE(g)’ dg;a) :

As in the de Rham case, if a; and as are cohomologous 3-cocycles with a; — as = db then el is
a cochain complexes isomorphism between (CE(g), dg.q,) and (CE(g), dg.q,) and so induces an
isomorphism

¢ Hi 0 (6R) = HE o, (;R).
If f: h — gis an Lo morphism, then by definition f is a DGCA morphism f*: CE(g) — CE(h)
so that f*a is a 3-cocycle on bh for any 3-cocycle a on g, and f* is a morphism of cochain

complexes between (CE(g),dy,q) and (CE(h),dy;f+q), thus inducing a morphism between the
twisted cohomologies

f*: sz;a(g;R) :_> sz;f*a(h;R)'

7



We therefore see that in order to define Fourier-Mukai transforms at the level of L.-algebra
cohomology the only ingredient we miss is a pushforward morphism

7.t (CE(§), dg) — (CE(g)[~1], dg[~1))

for any central extension 7: § — g induced by a 2-cocycle g — buy, which is a morphism of
cochain complexes and which satisfies the projection formula identity. We are going to exibit
such a morphism in the next section.

5 Fiber integration along U(1)-bundles in rational homo-
topy theory

Let P — X be a principal U(1)-bundle. Since U(1) is a copact Lie group, every differential form
on P can be averaged so to become invariant under the U(1)-action on P. Moreover, taking
average is a homotopy inverse to the inclusion of U(1)-invariant forms into all forms on P so
that

Q*(P)YM — Q*(P)

is a quasiisomorphism of DGCAs. The DGCA Q*(P)Y(") has a very simple description in terms
of the DGCA Q°(X). Namely, identifying Q°(X) with its image in Q°*(P) via 7* one sees that
Q°(X) is actually a subalgebra of Q*(P)V(), The subalgebra Q°(X) however does not exhaust
all of the U(1)-invariant forms on P: those forms that restrict to a scalar multiple of the volume
form on the fibers (for some choice of a U(1)-invariant metric on P) are left out. Picking one
such a form w; is equivalent to the datum of a U(1)-connection V on P and

(Q(P)"W, d) = (2°(X)[wi], dwr = Fy),
where Fy is the curvature of V, so that we have a quasiisomorphism of DGCAs
(Q*(X)[w1], dwr = Fy) = (Q*(P),d).
This is the geometric counterpart of the isomorphism
(CE(9),dg) = (CE(g)[y1], dgyr = [7x2)

we met in Section 3, so that we see that the degree 1 element y; in the Chevalley-Eilenberg
of the central extension g does indeed represent a vertical volume form. The fiber integration
et (Q°(P),d) — (Q°(X)[—1],d[—1]), restricted to U(1)-invariant forms reads

Tt (Q°(X)[w1], dwr = Fy) — (Q°(X)[-1],d[-1])
at+w AB— S,

so it is natural to define the fiber integration morphism 7, associated with the central extension
m: § — g determined by the 2-cocycle f: g — uy as

7. (CE(g)[y1], dgyr = f*x2) — (CE(g)[—1], dg[—1])
a+1y1b—b,

It is immediate to see that 7, is indeed a morphism of chain complexes:
dg[=1](ms(a + 91 b)) = —dgb = m(dga + (f*w2) b — y1 dgb) = . (dg(a +y1 b)).

Next, let us show that the projection formula holds. Since the morphism 7*: (CE(g),dgy) —
(CE(g), dj) is the inclusion of CE(g) into CE(g)[y1], we find:

7. (7 a) (b+y1 ) = m(ab+ (~1)*y1 ac)) = (~1)%ac = (1) am.(b+ys c).



Summing up, we have reproduced at the L.,-algebra/rational homotopy theory level all of the
ingredients we needed to define Fourier-Mukai transforms. That is, give a span g1 <= h = go
of central extensions (by the abelian Lie algebra R) of L,-algebras, and given a triple (a1, as,b)
consisting of 3-cocycles a; on g; and of a degree 4 element b in CE(h) such that dyb = a1 —7w3as
we have Fourier-Mukai transforms

Oy: Hy ., (01) = H; ', (92)

O_p: Hy _4,(92) > Hy ', (01)-

c03a1

6 The hofiber/cyclification adjunction

We are going to see how to produce a quintuple (71,72, a1, a9,b) inducing a Fourier-Mukai
transform in Section [7] But first let us spend a few more words on the geometric properties
of the pushforward morphism .. As 7,: (CE(g),dz) — (CE(g)[—1], dg[—1]) is a morphism of
cochain complexes, it in particular maps degree n + 1 cocycles in CE(g) to degree n cocycles in
CE(g). But, if b is any L.o.-algebra, we have seen that a degree k cocycle in CE(h) is precisely
an Loo-morphism b — b*~1u;. Therefore we see that 7, induces a morphism of sets

HOmLoo (g7 bnlll) — HomLoo (g, b"_lul).

This is actually part of a much larger picture, to see which we need a digression on free loop
spaces. So let again X be our smooth manifold and let 7: P — X be a principal U(1)-bundle
over X, and let ¢: P — Y a map from P to another smooth manifold Y. Let v: Px U — Y
be the composition

PxU(1)—»P3%Y

where the first map is the right U(1)-avtion on P. By the multiplication by S*/free loop space
adjunction, - is equivalently a morphism from P to the free loop space LY of Y. More explicitly,
a point # € P is mapped to the loop ¢,: U(1) — Y defined by ¢, (e”?) = p(x - ). The map
w: P — LY is equivariant with respect to the right U(1)-action onP and the right U(1)-action
on LY given by loop rotation: 7 - e? = pjn, where pg: U(1) — U(1) is the rotation by angle 6.
Namely, one has
((2) - €)(e™) = (P52 (™) = pu(e?e™™) = p((z - €) - ™) = py.ci0 ().

Therefore, equivalently, ¢ is a morphism between the homotopy quotients P//U (1) and LY //U(1)
over BU(1). Moreover, as P is a principal U(1)-bundle over X, the homotopy quotient P//U(1)
is equivalent to the ordinary quotient and so is equivalent to the base X, and the natural map
P//U(1) — BU(1) is identified with the morphism f: X — BU(1) classifying the principal
bundle P. In other words, a morphism ¢: P — Y is equivalently a morphism

X LY//U(1)

N

BU(1)

from f to the canonical morphism LY //U(1) — BU(1) in the overcategory of spaces over
BU(1). Writing cyc(Y') for the “cyclification” LY //U(1) and recalling that the total space P is
the homotopy fiber of the morphism f: X — BU(1), we see that the above discussion can be
elegantly summarised by saying that cyclification is the right adjoint to homotopy fiber,

cyc
spaces spaces/BU(1).
hofib



6.1 Cyclification of L.-algebras

The above topological construction immediately translates to the L..-algebra setting, where we

find an adjunction
cyc

T

L.-algebras Lo-algebras/bu;.

\_/

hofib

We have already seen that the homotopy fiber functor from L..-algebras over bus(i.e., Loo-
algebras equipped with an R-valued 2-cocycles) to Lo-algebras consists in forming the R-central
extension classified by the 2-cocycle. So we have now to complete the picture by describing
the cyclification functor. As usual, we start from geometry, and consider an L.-algebra [X
representing the rational homotopy type of a simple space X. If X is 2-connected (so that its
free loop space is surely simply connected and therefore simple) an L..-algebra representing the
rational homotopy type of the free loop space LX is easily deduced from the multiplication by
St /free loop space adjunction. As a Sullivan model for Y x St is Ay g1 = Ay ® Agr = Ay [t1]
with dt; = 0, one sees that if Ax = (A®IX* dx), then

Arx = (N (IX* @ sIX™),drx)

where sIX* = [X*[1] is a shifted copy of [X*, with dﬁX‘Ax = dx and [dzx,s] = 0, where

s: Arx — Arx is the shift operator s: [X* — (sIX*)[—1] extended as a degree -1 differential.
See [VPBS8H] for details. This immediately suggests the following definition: for an arbitrary
Loo-algebra g we write £g for the L.-algebra defined by

(CE(Lg), deqg) = (A*(g" © 597), deg

CE(g) — dg, [dgg, s] = 0]).

Deriving an Ly.-algebra model for the cyclification cyc(X) is a bit more involved, ad has been
worked out in [VS76]. One finds

AcyC(X) = (/\.([X* ©slX* @ bui)vdcyc(X)) = (/\.([X* @S[X*)[$2],d0yc(x)),

where z2 is a degree 2 closed variable and d.y.(x) acts on an element a € [X* & sIX* as
deyexa = dgga + x2 A sa. From this one has the natural generalization to an arbitrary Lo.-
algbera g: its cyclification is the Lo.-algebra cyc(g) defined by

CE(cyc(g)) = (A*(g © sg © buy)", dcyc(g)) = ((A*(g @ s9)")[x2], dcyC(g))a

where x2 is a degree 2 variable with deyc(g)72 = 0 and dcyc(q) acts on an element a € g [-1]®g*
as

deye(g)@ = dgga + T2 A sa.
Notice that there is a canonical inclusion of DGCAs R[zs] < CE(cyc(g)), giving a canonical
2-cocycle cyc(g) — buy. It is then not hard to see that, if f: g — buj is a 2-cocycle classifying
a central extenson g, then there is a natural bijection

HOHlLOO (hOﬁb(f)a h) = HomLoc/blu (ga Cyc(h))7

for any L.-algebra h, where on the right hand side with a little abuse of notation we have
written the sources in places of the morphisms. Namely, in the dual Chevalley-Eilenberg picture
this amounts to a natural bijection

Hompeca(CE(h), CE(g)) = Hompg(s,)/pcca(CE(cye(h)), CE(g)).

As CE(bh) is freely generated by h*[—1] as a polynomial algebra, a morphism on the left amounts
to a graded linear map h*[—1] — CE(g) constrained by the compatibility with the differentials
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condition. As CE(g) = CE(g)[y1], where y; ia a variable in degree 1 with dgy; = f*(x2), as a
graded vector space we have

CE(g) = CE(g) @ y1 CE(g) = CE(g) @ CE(g)[-1],

so that a graded linear map h*[—1] — CE(§) is equivalent to a pair of graded linear maps
from h*[—1] to CE(g) and to CE(g)[—1], respectively. In turn, this pair is a graded linear map
h*[—1] ® h* — CE(g). We can extend this to a graded linear map

b*[-1] & b" & buj[—1] — CE(g)

by mapping the linear generator x5 of buj[—1] to the element f*(x2) of CE(g). This way we
define a graded commutative algebra map

A (b7 [-1] @ b" © buj[—1]) — CE(g)
which a direct computation shows to be a morphism of DGCAs making the diagram
R[$2]

X

CE(cyc(h)) CE(g)

commute. See [FSS16] for details.

6.2 Fiber integration revisited

The L, algebras b™u; have a particularly simple cyclicization. Namely, as CE(b"u;) = (R[zp41], 0),
we see from the explicit description of cyclicization given in the previous section that as a poly-
nomial algebra CE(cyc(b™uy)) is obtained from R[z,+1] by adding a generator y, = sx,41 in
degree n and a generator zo in degree 2. The differential is given by

drpy1 = 220Yn; dy, =0; dze=0.

From this one immediatly sees that we have an injection (R[y,],0) — (CE(cyc(b™uy)),d) and
so dually a fibration
cyc(d™uy) — "My

of L.-algebras. Then given an R central extension 7: § — g we can form the composition of
morphisms of sets

Homy _(§,0"u1) = Homy,__ /by, (9, cyc(b™u1)) — Homy (g, cyc(b™u1)) — Homyp (g, 0" uy),
and a direct inspection easily reveals that this coincides with the fiber integration morhism
7. : Homp__(§,b"u;) — Homyp __(g,b" 1uy)

from Section Bl

7 Rational homotopy theory of T-duality configurations
As we already noticed, the same way as the classifying space BU(1) of principal U(1)-bundles is
a K(Z,2), the classifying space B3U(1) of principal U(1)-2-bundles (or principal U(1)-2-gerbes)
is a K(Z;4). This implies that the cup product map

U: K(Z,2) x K(Z,2) — K(Z,4)
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is equivalently a map
U: BU(1) x BU(1) — B3U(1),

i.e., to any pair of principal U(1) bundles P; and P, on a manifold X is canonically associated
a U(1)-2-gerbe P; U P, on X. By definition, a topological T-duality configuration is the da-
tum of two such principal U(1)-bundles together with a trivialization of their cup product. In
other words, a topological T-duality configuration on a manifold X is a homotopy commutative
diagram

X— %

| |

BU(1) x BU(1) ——= B3U(1)

By the universal property of the homotopy pullback this is in turn equivalent to a map from
X to the homotopy fiber of the cup product, which will therefore be the classifying space for
topological T-duality configurations. To fix notations, let us call BT folds this classifying space,
so that BT fold is defined by the homotopy pullback

BT fold %

| |

BU(1) x BU(1) —2= B3U(1)

The rationalization of BT fold is obtained as the L..-algebra btfold given by the homotopy
pullback
btjold —— 0 ,

|

U
bu1 X bU1 —_— b3U1

and in order to get an explicit description of it we only need to give an explicit description of the

4-cocycle buy X buy ~s b3u;. This is easily read in the dual picture: it is the obvious morphism
of CGDAs

(Rfza], 0) — (R[Z3, 2], 0) = (Rlza],0) @ (Rz2], 0)

Ty > To To
The Chevalley-Eilenberg algebra of btfold is then given by the homotopy pushout
(R[I4]’ O) > (R’ O) )
| i
(R[Z2, Z2],0) — (CE(btfold), d)

i.e., by the pushout
(Rlz4],0) — (R[ys, z4], dys = z4) .

U*i i

(R[Z2, Z2],0) —— (CE(btfold), d)
Explicitly, this means that

(CE(btfold), d) = (R[&2, T2, y3],dE2 = 0,dT2 = 0,dys = T2 T2),

12



and so an Lo,-morphism g — btfold is precisely what we should have expected it to be: a pair
of 2-cocycles on g together with a trivialization of their product. Moreover, one manifestly has
an isomorphism

(CE(btfold),d) = (CE(cyc(b®uy1), d)

so that the btfold L..-algebra is isomorphic to the cyclicization of b?u;. This result actu-
ally already holds at the topological level, i.e., there is a homotopy equivalence BT fold =
cyc(K(Z,3)) = cyc(B?U(1)). Proving this equivalence beyond the rational approximation is
however harder; see [BS05] for a proof.

The Loo-algebra btfold has two independent 2-cocycles f1, fo: btfoldo — u; given in the dual
picture by ff(z2) = &2 and by f5(x3) = Z3. Let us denote by p; and p, the central extensions
of btfold corresponding to f; and fo, respectively. They are clearly isomorphic as L..-algebras;
however they are not equivalent as L.-algebras over btfold as the two classifying morphisms f;
and fo are not homotopy equivalent.

Let us now write R[z3] for CE(b?u;) so that in the notation of Sectionwe have CE(cyc(b?uy)) =
R[x3, Y2, 22] With dr3 = 22y2, dy2 = 0 and dze = 0, and with the canonical 2-cocycle cyc(b?u;) —
buy being given dually by

foye: Rlza] = Rlz3, Y2, 29

To > Z9.

The isomorphism of L..-algebras o1 : btfold — cyc(b?u;) dually given by x3 +— y3, Yo — To and
2o > &9 is such that the diagram of DGCAs

CE(bul)
fc*yc fl*

CE(cyc(b?uy)) i CE(btfold)

commutes, i.e., ¢ is an isomorphism over bu;. Hence, by the hofiber/cyclicization adjunction,
it corresponds to an L., morphism from the homotopy fiber of f; to b%uy, i.e., to a 3-cocycle
a3, over p;. Repeating the same reasoning for f, we get a canonical 3-cocycle a3 2 over p,.
Therefore we see how some of the ingredients of a rational T-duality configuration naturally
emerge form the T-fold L-algebra. The cocycles a3 1 and a3z 2 can be easily given an explicit
description, by unwinding the hofiber/cyclicization adjunction in this case. Let us do this for
a1. The homotopy fiber p; of f; is defined by the homotopy of DGCAs

(R[z2], 0) (R,0)
i |
(R[&2, T2, y3], dEo = dE2 = 0,dys = T2T2) — (CE(p1),d,,)
and so it is given by
(CE(p1),dp,) = (R[g1, T2, T2, y3], dr = &2, dT2 = dT2 = 0,dyz = T232).

One immediately sees that
dys = d(§122),

i.e., that ys —g142 is a 3-cocycle on p;. Under the hofiber/cyclicization adjunction this 3-cocycle
corresponds to the morphism of DGCAs CE(cyc(b?u1)) — CE(b?tfold) mapping x3 to 3, y2 to
T and zy to &g, i.e., to the morphism ;. In other words,

as,1 = y3 — Y122.
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In a perfectly similar way as 2 = y3 — Z27;1. Finally, let us form the homotopy fiber product
t = P1 Xptjoro P2. It is described by the Chevalley-Eilenberg algebra

(CE(t),d) = (R[g1, §1, T2, T2, y3], dj1 = T2, dfj1 = T2, dy3 = T232),

with the projections 7;: t — p; given in the dual picture by the obvious inclusions. By construc-
tion, m; and my are R-central extensions, classified by the 2-cocycles o and 5, respectively.
One computes

myazy — myaze = (Y3 — J172) — (Y3 — T2g1) = —§102 + T2 = —§1(d91) + (dy1)y1 = d(9171),

ie.,
* *
mas;, — 7T3726L2 = dbg,

where by € CE(t) is the degree 2 element b = ¢17;. Thus we see that the L.-algebra btfold
actually contains all the data of a quintuple (1,72, @31, 3,2, b2) inducing a Fourier-Mukai trans-
form.

7.1 Maps to btfold

All of the construction of the quintuple (71, 72, a1, as, b) out of the the L.-algebra btfold can be
pulled back along a morphism of L..-algebras g — btfold. That is, given such a morphism one
has two R-central extensions g; and g» of g together with 3-cocycles a3 and a3 2 on g and go,
respectively, and a degree 2 element by on the (homotopy) fiber product L-algebra gi X4 g2
with a3 1 — m5as 2 = dbs. Let us see in detail how this works. To begin with, the datum of
a morphism g — btfold is precisely the datum of two 2-cocycles ¢o and ¢, on g together with a
degree 3 element hy € CE(g) such that dhg = ¢éaés. The two cocycles ¢2 and ¢o define the two
R-central extensions g; and go of g defined by

(CE(g1), dg,) = (CE(g)[e
(CE(g2), dg,) = (CE(g)[e

<

1] 2)
1] 2),

respectively. On the L.-algebra g; we have the 3-cocycle as ;1 = hs — €162, and on the Lo.-
algebra go we have the 3-cocycle a3 2 = h3 — ¢2€;. Finally, the homotopy fiber product gi x4 g2
is given by

Qv Q¢

,d
,d

1
€1

CE(gl Xg 92)’dgl><992) = (CE(Q)[élﬁél]’dél = (g, dey = 52)’

and so in CE(g; X 4g2) we have m}as 1 —m3a3 2 = dby, where 7} and 75 are the obvious inclusions
and by = é1€;1. Notice that CE(g1 X 4g2) is built from CE(g1) by adding the additional generator
é1 and from CE(g2) by adding the additional generator ;. We can now make completely explicit
the Fourier-Mukai transform

(pr: Hzooms,l(gl) - Hz;lva.SQ(gQ)

To fix notation, let
g1 Xg 92

N
g1 92
R /
g
be the homotpy fiber product defining g1 x4 g2. We have

* *
DoP1x = T24Tq .
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Indeed, for any wy = ay — é10;—1 in CE(g1), we have
T Wk = T24T7 (g — €18k—1) = Tax(ak — €18k—1) = Br—1 = P14k = P3P14Wk-
An a3 1-twisted even cocycle for g; is an element w € CE(g;) such that
w = Z Wan,
nez

where wo,, is a degree 2n element, and such that
dg,w+az;w=0.
This equation is in turn equivalent to the system of equations
dgl(.AJQn + a3, 1Wan—2 = 0, n € 7.

Writing
Wop = Q2p — €182n-1,

and recalling that
as,1 = hs — é162

this becomes
dgay — Coffon—1 + €1dgPon—1 + h3ag,_2 — 1G22 + €1h3P2n—3 =0,

i.e.

dgaion + hgaon_o = C282n—1
dgfon—1 + h3Bon—3 = Coarapn_o

The Fourier-Mukai transform ®;, maps the twisted cocycle w to mo. (€2

the inclusion and

mjw). Since 7} is just
be _ €161 _ 5.5
e? =e =1+ é16q,
we find
Dy, (W) = mou(w + €161w)

= Z o (o, — €182n—1 + €161 (2n—2 — €102n—3))

nez

= Z Tos(Q2n, — €182n—1 + €1E1Q21,—2)
nez

= Z(ﬁznq — €1Q2p-2)
neZ

Let Gop—1 = Pon—1—€100p 2 and © = ), 0oy 1, 50 that @ is an odd element in CE(g2) and
@ = ®p, (w). We know from the general construction of Fourier-Mukai transforms we have been
developing that @ is an ag o-twisted cocycle. We can directly show this as follows:

dg,0on—1 = dg,(Bon—1 — €102, —2)
= dgfon—1 — Co0iapn_o + E1dgaian_o
= (—h3Pan—3 + E2qan—2) — Cotan—_2 + €1(—hzan_a + ¢282n—3)

= —a3202n—3 — €1G3.202p—4

= —a3,2Wap—3.
Looking at the explicit formula for ®;, we have now determined, we see that ®;, acts as

{aon — €102n—1}nez = {Pon—1 — E102n—2}nez

15



So it is manifestly a bijection between even aj;-twisted cocycles on g; and odd as2-twisted
cocycles on go. Repeating verbatim the above argument one sees that ®;, is also a bijection
between odd a3 ;-twisted cocycles on g; and even a3 o-twisted cocycles on go. No surprise, the
inverse morphism is, in both cases ®_;,. We have therefore proved that the Fourier-Mukai
transform associated to an L.,-morphism g — btfold is an isomorphism

cI)b2 : Hzoo;am(gl) = Hz;l;a&Z (92)

8 An example from string theory: the superMinkowski
space R1,8|16+16
All of the above immediatley generalizes from L,-algebras to super-L,-algebras, and it is
precisely in this more general setting that we find an interesting example from the string theory
literature.

Let 16 be the unique irreducible real representation of Spin(8,1) and let {7,}9Z} be the

corresponding Dirac representation on C'¢ of the Lorentzian d = 9 Clifford algebra. Write
16 + 16 for the direct sum of two copies of the representation 16, and write

o= ()

with 17 and s in 16 fon an element ¢ in 16 + 16. Finally, for a =0, --- ,8 let

a_ (0 ¢
F‘(V“ 0)

The super-Minkowski super Lie algebra
RE1116+16
is the super Lie algebra whose dual Chevalley-Eilenberg algebra is the differential (Z,Z/2)-

bigraded commutative algebra generated from elements {e®}5_, in bidegree (1,even) and from
elements {1)*}32 | in bidegree (1,0dd) with differential given by

dyp® =0 , de* =yI'"y,

where B
YT %) = (CT) a5 ¥*Y°

with C the charge conjugation matrix for the real representation 16 + 16. Let now

ma _ (0 1 mg _ (0 1
I'y _<I 0) and Iy —<I 0),

where [ is the identity matrix. Since dy¥® = 0 for any «, both
A = yrilAy, and clIB — yrlB

are degree (2,even) cocycles on R8:116+16 The central extensions they classify are obtained by
adding a new degree (1,even) generator € or % to CE(R®16+16) with differential

dedy = YTy and dely = Y8y,

respectively. These two central extensions are therefore themselves super-Minkowski super Lie

algebras. Namely, the extensions classified by ¢ and cl'® are

9,1|]16+16 9,1|]16+16
RO RO ,

and
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respectively. Finally, set

I 0
FIO = (76 —ZI) )

and let u4 be the degree (3,even) element in CE(R%1116+16) given by

8
P = iy — T Tgpely = —i Y YTaTigvhe® — Ty Tigred.

The element p}4 is actually a cocycle [CdATPBO0], so that
dpy = (WTEAT100) (YTEA ).
A simple direct computation shows
TUB — TUAD o

so that
i = TP Igte) = P,

As the element uiﬂ’i, as well as the elements ci'* and cl'® actually belong to the differential

bigraded subalgebra CE(R®1116+16) of CE(R?1116+16) the relation

81 _ A IIB
dpgy =c3 ¢y

actually holds in CE(R3'116+16) s that the triple (3, ch'B, %) defines an Lo,-morphism
RS 1L6+16 _, pesolp.

The 3-cocycles on R9116+16 and on RI116+16 s550ciated with this Loo-morphism are

9 IIB 8,1 ITA 9
Npl —€AC and Kp1 — €2 €R;

respectively. As T{™® = i TJAT o, we see that

/J/Fl _ eQACIQIB — MFl AwFHBw ,u _ ZwFHAFIOweA — ILLHA

We then set MHB = u%} — CIQIAe%. An explicit expression for the (3,even)-cocycle B on

R9:1116+16 ;

8
Py = iy — YTE M el = —i Y PTaTige” — il Pee,
a=0

FIIA

where we used ilSBT 9. We have therefore an explicit Fourier-Mukai isomorphism

<I> - H* (Rg 1|16+16) Ho—’ i (R9,1|16+16).

Looy“Fl ooaﬂpl

This isomorphism is known as Hori’s formula or as the Buscher rules for RR-fields in the string
theory literature [Ho99]. A direct computation shows that it maps the Chryssomalakos-de

Azcérraga,-Izquierdo-Pérez Bueno pl2-twisted cocycle on R%116+16 to the Sakaguchi pMB-
twisted cocycle on R%116+16 g0 [CIATPBO0, [Sa0(), [FSS16].
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