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Preface

This book is, first, a streamlined review of L.-algebraic rational homotopy the-
ory in the modern guise of model category theory, and, second, the observation
that the resulting rationalization Quillen adjunction, when understood as operating
on generalized classifying spaces, is the general form of the “character map” in
twisted, differential and non-abelian generalized cohomology theories. Finally it
is an exposition of a zoo of examples and applications of this generalized character
map, ranging all the way from the classical Chern character and the Chern-Weil
homomorphism, over the Chern-Dold character in extraordinary cohomology the-
ories such as topological modular forms and iterated higher K-theories, all the way
to novel higher non-abelian examples such as unstable and twistorial Cohomotopy
theory.

The Chern character is a famous construction in K-theory, generalizing, in its
equivariant form, the classical character theory of group representations from vec-
tor spaces to vector bundles. And yet, the Chern character is just the first instance
of a general and fundamental notion of character maps on generalized cohomol-
ogy theories in a broad and encompassing sense. Part of this generalization is
explicit in existing literature:

In the algebraic topology of stable homotopy theory, Chern-Dold character
maps on Whitehead-generalized cohomology theories serve to approximate these
extraordinary theories (such as elliptic cohomology or Cobordism cohomology)
by ordinary rational cohomology, detecting their non-torsion information. In pas-
sage to differential topology, the extension of scalars of these Chern-Dold char-
acter to the real numbers is the key ingredient in the construction of differential
generalized cohomology theories: commonly defined as the homotopy fiber prod-
ucts, formed in smooth higher stacks, of the Chern-Dold character map with the
de Rham isomorphism.
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In pure mathematics, differential cohomology was originally motivated
through the Beilinson conjectures in arithmetic geometry, where Beilinson reg-
ulators have, more recently, been understood as character maps on algebraic K-
theory. On the other hand, in modern mathematical physics, differential general-
ized cohomology theories encode “charge quantization” laws in fundamental high
energy physics and, more recently, in topological phases of solid state physics.
Here the Chern-Dold character is interpreted as extracting the observable flux den-
sities of higher gauge fields, and as such is at the heart of mathematical modelling
of physical reality. In particular, the observation that differential form expres-
sions for D-brane charges in string theory look like Chern character images led to
the famous conjecture that D-brane charge is quantized in topological K-theory, a
conjecture which has been and still is driving much of the activity in generalized
cohomology theory, even though there are several indications that the conjecture
needs to be refined in order to hold true.

Indeed, in all these applications the notion of “generalized cohomology” in
the classical sense of Whitehead is not actually general enough: Besides the gen-
eralization to differential cohomology, one needs to consider twisted and equivari-
ant and, crucially, also non-abelian (i.e.: unstable) generalizations of Whitehead-
generalized cohomology theory, as we discuss below.

However, a general notion, certainly a general account, of what “character
map” is to mean in the full generality of twisted equivariant differential non-
abelian cohomology has been missing: Existing constructions of generalized vari-
ants of the Chern character tend to be ad-hoc, reliant on intuition and ingenuity;
while required generalizations of more general Chern-Dold characters have hardly
found any attention.

In this book we mean to fill this gap by laying out systematic foundations for
a fully general notion of the character map in twisted, differential and non-abelian
generalized cohomology theory (we relegate analogous discussion of the equiv-
ariant aspect to a followup), reviewing all relevant theory and pertinent examples
as we go along.

The basic idea of general character maps which we promote here is simple and
elegant, following the time-honored paradigm of representability: We 1. observe
that a twisted (differential) non-abelian generalized cohomology theory is exactly
that which is represented, in a suitable slice homotopy category, by a local coeffi-
cient bundle of classifying spaces (of moduli co-stacks) and 2. define the character
map as that cohomology operation which is represented by the rationalization re-
flection of that local coefficient bundle, hence by its universal approximation by a
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bundle in rational homotopy theory. While shadows of this general abstract defi-
nition may easily be recognized throughout the existing literature, notably where
ad-hoc constructions of character maps are justified a posteriori by checking that
they become isomorphisms under tensoring with the rational numbers, a general
and systematic discussion from this universal vantage point has been missing.

Based on this general notion, we highlight that there is a canonical tool for
connecting general character maps to concrete computations and examples: This
is provided by the fundamental theorem of dg-algebraic rational homotopy theory
in the form obtained by Bousfield & Kan, following Quillen and Sullivan. We
review this here in modernized and streamlined form, utilizing the full power of
model category theory (surveyed in an appendix) and using the understanding of
cofibrant dgc-algebras as formal duals of nilpotent L..-algebras. Combined with
the above perspective on non-abelian cohomology, this reveals that the classical
fundamental theorem of dg-algebraic rational homotopy theory may be re-cast as
a twisted non-abelian de Rham theorem on twisted non-abelian generalized coho-
mology. We lay this out in some detail and review in a wealth of examples how
this captures familiar and more exotic differential-form expressions for general-
ized character maps.

In view of the fact mentioned before, that differential generalized cohomol-
ogy is essentially the homotopy fiber product of the general character map with
the de Rham isomorphism, formed in smooth higher stacks, this allows us define
and construct the full combination of twisted differential non-abelian generalized
cohomology. We spell out how, besides the abelian Chern-Dold characters, classi-
cal non-abelian constructions like the Chern-Weil homomorphism on non-abelian
cohomology in degree 1 (represented by principal bundles) and its refinement to
Cheeger-Simons secondary characteristic classes, find their natural home in this
general framework, which hence generalizes all this to non-abelian cohomology
in higher degree, represented by higher non-abelian gerbes.

Finally, as a fundamental example that goes beyond the scope of existing lit-
erature, we discuss the twisted non-abelian character map on twistorial Cohomo-
topy theory, which, over 10-manifolds, may be viewed as a twisted non-abelian
enhancement of topological modular forms (tmf) in degree 4. We review how this
turns out to exhibit a list of subtle topological relations that in high energy physics
are thought to govern the non-linear charge quantization of Yang-Mills instantons
and of branes in non-perturbative string theory (“M-theory”), beyond what can be
seen in K-theory or in any other Whitehead-generalized (hence abelian) cohomol-
ogy theory.
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This suggests (“Hypothesis H”) that the non-abelian twisted differential char-
acter map constructed here, specifically on unstable Cohomotopy, is the funda-
mental object of interest at least for applications in high energy physics, to which
various Chern- and Chern-Dold-character maps are but partial approximations.
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Generalized cohomology theories [Whitehead (1962)][Adams (1974)] — such as K-
theory, elliptic cohomology, stable Cobordism and stable Cohomotopy — are rich. This
makes them fascinating but also intricate to deal with. In algebraic topology it has become
commonplace to apply filtrations by iterative localizations [Bousfield (1979)] (review in
[Elmendorf et al. (1997), §V][Bauer (2014)]) that allow generalized cohomology to be
approximated in consecutive stages; a famous example of current interest is the chromatic
filtration on complex oriented cohomology theories ([Mahowald and Ravenel (1987)], re-
view in [Ravenel (1986)][Lurie (2010)]).

The Chern-Dold character. The primary approximation stage of generalized cohomology
theories is their rationalization (e.g., [Hilton (1971)][Bauer (2014)]) to ordinary cohomol-
ogy (e.g., singular cohomology) with rational coefficients or real coefficients (see Remark
5.2). This goes back to [Dold (1972)]; and since on topological K-theory (Ex. 7.1) it
reduces to the Chern character map [Hilton (1971), Thm. 5.8], this has been called the
Chern-Dold character [Buhstaber (1970)]:

Chern-Dold character  chit

Dold’s

1{
{ \‘\'m\"‘“ E@ (X) o @ Hn+k (X’ ﬂ:k (E) ®Z Q) CO:;E:)llil:)ll;‘lE:)lg»"
m\'\‘“‘“

equivalence
generalized - 21X extensions ©.1)
cohomology obseatars de Rham
En (X) theorem H ([71' (E) R] H0+11 (X)) de Rham
R =~ omp . ) » 4R cohomology
differential-geometric Chern-Dold character j\

That the left map in (0.1) is indeed the rationalization approximation on coefficient spectra
is left somewhat implicit in [Buhstaber (1970)] (rationalization was properly formulated
only in [Bousfield and Kan (1972b)]); a fully explicit statement is in [Lind et al. (2020),
§2.1]. The equivalence on the top of (0.1) serves to make explicit how the result of that
rationalization operation indeed lands in ordinary cohomology, and this was Dold’s original
observation [Dold (1972), Cor. 4] (see Prop. 7.2).

At the heart of differential cohomology. While rationalization is the coarsest of the lo-
calization approximations, it stands out in that it connects, via the de Rham theorem, to
differential geometric data — when the base space X has the structure of a smooth manifold,
and the coefficients are taken to be R instead of Q. Indeed, this “differential-geometric
Chern-Dold character” shown on the bottom of (0.1), underlies (usually without attribution
to either Dold or Buchstaber) the pullback-construction of differential generalized coho-
mology theories [Hopkins and Singer (2005), §4.8] (see [Bunke and Nikolaus (2019), p.
17][Grady and Sati (2017), Def. 7][Grady and Sati (2021b), Def. 17][Grady and Sati
(2019c), Def. 1], recalled as Def. 9.3 and Example 9.1 below).

At the heart of non-perturbative field theory. It is in this differential-geometric form
that the Chern-Dold character plays a pivotal role in high energy physics. Here closed
differential forms encode flux densities F), € in’R (X) of generalized electromagnetic fields
on spacetime manifolds X; and the condition that these lift through (i.e., are in the image of)
the differential-geometric Chern-Dold character (0.1) for E-cohomology theory encodes a
charge quantization condition in E-theory (see [Freed (2000)][Sati (2010)][Grady and Sati
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(2019b)]), generalizing Dirac’s charge quantization of the ordinary electromagnetic field
in ordinary cohomology [Dirac (1931)] (review in [Alvarez (1985), §2][Frankel (1997),
16.4¢]):

differential-geometric
Chern-Dold character

E(X) - Homg, ( [7(E), R], H§g°(x)> 0.2)

cl[acs}n',—> [{Fr(:) € Qgi{(x)}lﬁaédim[ﬂ.(E)yR] |dFr(:) = 0}

E-cohomology charge-quantized flux densities

This idea of charge quantization in a generalized cohomology theory has become famous
for the case of topological K-theory — E = KU, KO — where it is argued to capture aspects
of the expected nature of the Ramond-Ramond (RR) fields in type II/I string theory (see
[Freed and Hopkins (2000)][Freed (2000)][Evslin (2006)][Grady and Sati (2019b)][Grady
and Sati (2021b)]).

Need for non-abelian generalization. However, various further topological conditions
(recalled in [Fiorenza et al. (2020b), Table 1][Fiorenza et al. (2021b), p. 2][Sati and
Schreiber (2021b), Table 3][Fiorenza et al. (2022), p. 2], see Rem. 12.1 below), in non-
perturbative type IIA string theory (“M-theory”) are not captured by charge-quantization
(0.2) in K-theory, nor in any Whitehead-generalized cohomology theory, since they involve
non-linear functions (12.10) in the fluxes.

In order to systematically discuss the rich but under-appreciated area of non-abelian
charge quantization, we introduce and explore, in part IV and part V, the natural non-
linear/non-abelian generalization of the character map. This is based on classical construc-
tions of dg-algebraic rational homotopy theory which we recall and develop in part III.

The non-abelian character map. Indeed, despite their established name, generalized
cohomology theories in the traditional sense of Whitehead [Whitehead (1962)][Adams
(1974)] are not general enough for many purposes:

(i) Already the time-honored non-abelian cohomology that classifies principal bundles (Ex.
2.2 below), being the domain of the Chern-Weil homomorphism [Chern (1952)] (recalled as
Def. 8.3, Prop. 8.5 below), falls outside the scope of Whitehead-generalized cohomology.
Its flat sector alone, observed by secondary Cheeger-Simons invariants (re-derived as Thm.
9.9 below), is controlled by the classical Maurer-Cartan equation (e.g. [Nakahara (2003),
§5.6.4][Rudolph and Schmidt (2017), Prop. 1.4.9]) on a Lie algebra valued differential
form A;:

dAY = foL,AVNAY € Qir(-) 0.3)

(for fg, the structure constants, recalled as Ex. 6.1 below) whose importance in large
areas of mathematics and mathematical physics is hard to overstate (the “master equation”,
e.g. [Markl (2012), Rem. 3.12][Chuang and Lazarev (2013)]), but whose cohomological
content is not captured by Whitehead-generalized abelian cohomology theory.

(ii) Similarly outside the scope of Whitehead-generalized cohomology is the non-abelian
cohomology classifying gerbes [Giraud (1971)] (see Ex. 2.5 below). In its flat sector this
serves to adjoin to (0.3) the higher-degree condition
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b)

dBy = pgpe A AAY AW € Q3 (-) (0.4)

(for some differential 2-form, see Ex. 6.3) which has come to be recognized as a deep
stringy refinement of the classical Maurer-Cartan equation (0.3) (see [Fiorenza et al.
(2014b), App.] for pointers).

However — and this is our topic here — these two items are just the first two stages within
a truly general concept of higher non-abelian cohomology (Def. 2.1 below), that classifies
higher bundles/higher gerbes (Ex. 2.6 below), whose non-abelian character map (Def. IV.2
below) takes values in flat Le-algebra valued differential forms (Def. 6.1 below) satisfying
non-linear polynomial differential relations (L-algebraic Maurer-Cartan equations, e.g.
[Doubek ef al. (2007), (31)][Lazarev (2013), Def. 5.1][Manetti (2022), Def. 10.5.1])
which in string-theoretic applications (see (0.9) and chapter 12 below) are identified with
higher Bianchi identities on flux densities:

ian

i N 2
a3 oo s
non-abelian ‘\“:‘“w\“"“ ~nead LoD
cohomology de® White
non-abelian character
A(X) Har (X 14) 0.5)

ChA

[c] —— [{Fr(:) € chlaR(X)}lgagdim[n.(A),R]‘dFr(:) — Pr“({Fr(:)}bga)}

class in

A-cohomology charge-quantized flux densities higher Bianchi identities

This generalizes (by Thm. 7.4 below) the Chern-Dold character (0.2) on Whitehead-
generalized cohomology, which is subsumed as the abelian sector within the non-abelian
theory (Ex. 2.10).

While the non-abelian character map (0.5) is built from mostly classical ingredients

of dg-algebraic rational homotopy theory (recalled and developed inchapter 5), its re-
incarnation within non-abelian cohomology provides a new unifying perspective on math-
ematical phenomena expected to be relevant for non-perturbative physics:
Yang-Mills monopoles via higher non-abelian cohomology. In modern formulation,
Dirac’s charge quantization (e.g. [Alvarez (1985), §2])s of the electromagnetic field around
a magnetic monopole with worldline R%! < R3!, is the statement that the topological
class of the field is encoded by a continuous map from the surrounding spacetime, which
in the classical homotopy category (Ex. 1.14) is the 2-sphere R>! \ R%! ~ R3\ {0} ~
$2 e Ho(TopSpQu) , to the classifying space of the circle group BU(1) ~ K(Z,2) (2.6):
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RO (R3\{0}) =5 N BU(1) ~CP~
around a G electromagnetic field classifying space of electromagnetic gauge group

sourced by

higher
cells

Since this is the classifying space for integral 2-cohomology (Exp. 2.1), one deduces, gen-
erally, that magnetic charge of the abelian U(1)-Yang-Mills field is measured in ordinary
abelian cohomology H?(—;Z) (e.g. [Freed e al. (2007), p. 71). But the minimal cell
decomposition of this classifying space is by complex projective k-spaces for k € N:

finite (unstable, non-abelian)
infinite (stable, abelian) direct complex projective k-space
complex projective space limit SU k+1
BU(1) ~ B’Z = K(Z,2) ~ CP® ~ limCP' ~ lim SUk+1)
— ()

k—w k=

(0.6)

While none of these finite-dimensional stages CP¥ by themselves classify an abelian
Whiethead-type cohomology theory, each of them classifies a higher non-abelian coho-
mology theory H' (—; Q(CPk) (by Ex. 2.6 below).

We observe that this formal mathematical fact (Prop. 2.2 below) actually captures fine
detail of the motivating physics, in that this higher non-abelian deformation of abelian co-
homology measures magnetic charge of non-abelian magnetic monopoles in SU(k)-Yang-
Mills theory (review in [Atiyah and Hitchin (1988)][Sutcliffe (1997)]) obtained by reduc-
tion from higher dimensional spacetimes R%! x R3 x X“ on a smooth fiber manifold X¢:

gauge-equivalence class of moduli

of N magnetic monopoles on R3 holomorphic maps of algebraic degree N continuous maps of topological degree N
of SU(k + 1)-Yang-Mills theory from Riemann sphere around monopoles . from 2-sphere around monopoles
minimally broken to U(k) to the complex projective k-manifold N(2k—1)-equiv.  to complex projective k-space
home: 1 k (1.14) 2 k
A (SU(k+1)),, =% Mapsy,, (CP!, CPF) ———— Maps($?, CP¥)
( (k+ ))N Don-Jaivis” AP Shol ) deg=N ~ Segal's p ) deg=N
theorem theorem
X‘I-pnrameterized deformation classes
of moduli of N magnetic monopoles higher non-abelian cohomology
d. for d < N(2k—1) 1 d 2. e
H(X,/// SU(k+1)) H' (x4 x $%,QCPY) x_{N}
72(8?)
Cohomotopy

This is a direct consequence (using Prop. 1.20 below) of classical theorems shown in
the first line of (0.7): due to Donaldson ([Donaldson (1984)], for k = 1), Jarvis ([Jarvis
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(1998)][Jarvis (2000)] for general k, originally conjectured by Atiyah [Atiyah (1984), §5],
review in [loannidou and Sutcliffe (1999)]) and Segal ([Segal (1979), Prop. 1.2], see
also [Cohen et al. (1991)][Kamiyama (2007)]). Notice that the same moduli spaces of
holomorphic maps out of CP! (often regarded and referred to as rational maps out of
C), hence the same non-abelian cohomology sets (0.7), control numerous other aspects
of non-abelian Yang-Mills theory, notably the topological field configurations known as
Skyrmions (an observation due to [Houghton et al. (1998)][Manton and Piette (2001)]
whose homotopy-theoretic implications through Segal’s theorem (0.7) have been found in
[Krusch (2003)][Krusch (2006)]), which are of deep relevance in non-perturbative quantum
chromodynamics (hadrodynamics), not only theoretically but also experimentally (review
in [Rho and Zahed (2016)], see [R. A. Battye and Sutcliffe (2010), p. 23] for the impact of
Segal’s theorem (0.7)). Moreover, the homotopy quotient of these spaces by the symme-
tries of CP! (after compactification via adjoining of “stable maps” on degeneration limits of
CPYH govern the Gromov-Witten invariants of CP* (review in [Bertram (2004), §2][Katz
(2006)] ) and, for k = 3, the D-instantons of twistor string theory ([Witten (2004)]), the
scattering amplitudes of .4 = 4 super Yang-Mills theory [Roiban ef al. (2004)] and those
of 4 = 8 supergravity ([Cachazo and Skinner (2013)][Adamo (2015)]), for mathematical
review see [Atiyah et al. (2017), §7].
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Non-abelian character of Yang-Mills monopoles. It turns out (Ex. IV.1) that the non-
abelian character map (0.5) on these non-abelian magnetic monopole charges (0.7) extracts
the underlying abelian magnetic flux density F; together with a non-linear differential re-

lation:
non-abelian character:
non-linear Bianchi identity
dH; = —H A B
dF, =0
dHs = —F, NBAF
dF, = 0
x4 parameterized 0.8)
dH; = —HANBANB A
dF, = 0
/
/
/
!
!
I
I
X4 x CP! dB =0

abelian character:
linear Bianchi-identity

transversal spacetime

While the algebraic form of this non-abelian character data follows readily — once the
non-abelian character map has been conceived in the first place, that is, according to our
Def. IV.2 — from the well-known Sullivan model for complex projective spaces (Ex. 5.5),
it is curious to observe [Fiorenza ef al. (2022)][Sati and Schreiber (2020a)] and seems to
have gone unnoticed before!, that its non-linear differential relations (0.8) on magnetic flux
densities are those of important anomaly cancellation mechanisms in string theory. Notably
the first non-linear relation in the list

2-Cohomotopy

7'[2(7) — H] (7’ Q(CPl ) non-abelian character ma, HdR (7, [(CP] )

chep
[C} Hz € Q3R(7) dH; = —F, AF,| Green-Schwarz-like Bianchi identity
B eQp(-)|dR =0 ordinary abelian Bianchi identity

0.9)

Recently the string physics community is picking up some terminology of higher gauge theory in
interpreting the Green-Schwarz mechanism, following [Sati et al. (2009)][Sati et al. (2012)][Fiorenza
et al. (2014b)], identifying the Green-Schwarz-type Bianchi identity (0.9), Ex. 12.1, as reflecting 2-
group symmetry, e.g. [Cérdova et al. (2021), (1.18)][Del Zotto and Ohmori (2021), (3.3)]. To justify
this terminology, one has to exhibit the GS-identity as the higher curvature invariant of a higher gauge
bundle, hence as the non-abelian character of a higher non-abelian cohomology theory, foundations
for which we mean to lay out here. Our results [Fiorenza et al. (2022)][Sati and Schreiber (2020a)]
(see chapter 12 below) indicate that to account for the fine structure of string/M-theory a 2-group
is not sufficient, but a full co-group (Ex. 2.6, such as QS* (Rem. 2.1) equipped with twisting and
equivariance, is required.
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has the non-linear form of the Bianchi identity governing the Green-Schwarz mechanism
[Green and Schwarz (1984), (4)-(6)][Candelas et al. (1985), [p. 49] (a mathematical
account is in [Freed (2000), p. 40]) for anomaly cancellation in heterotic string theory
(the “first superstring revolution” [Schwarz (2012)]), here for the case of heterotic line
bundles (of phenomenological interest [Anderson et al. (2012)][Anderson et al. (2011)],
see [Ashmore et al. (2021b), §4.2][Ashmore et al. (2021a), §2.2] for the case at hand),
namely heterotic gauge bundles whose gauge group is reduced along the symmetry break-
ing U(1) — SU(2) — Eg of the Yang-Mills monopole (0.8). Of course, the full Green-
Schwarz mechanism is as in equation (0.9) but with a further contribution from a gravita-
tional flux. This turns out to arise through tangential twisting of the non-abelian character,
which is the main result of [Fiorenza et al. (2020b)][Fiorenza et al. (2021b)][Fiorenza et al.
(2022)][Sati and Schreiber (2020a)] discussed in detail in chapter 12 below, surveyed in a
moment, in (0.14) below.

Cohomotopy theory as higher non-abelian cohomology. The higher non-abelian coho-
mology theory on the left of (0.9) is an example of a classical concept in homotopy theory,
namely of Cohomotopy sets (Ex. 2.7) of homotopy classes of continuous maps into an
n-sphere:

) _ cobordism classes of submanifolds
homotopy classes of contin. hlg_",lef non-abelian of codimension 1
n-Cohomotopy maps into n-sphere §"-cohomology and normally framed

7" (=) = Ho(TopSpq,)(—,S") = H'(—:QS") % Cobf.(—). (0.10)
The stabilization of (0.10) to stable Cohomotopy (Ex. 2.13) is a widely recognized
Whitehead-generalized cohomology theory, usually discussed in the context of the sta-
ble Pontrjagin-Thom theorem. But the original Pontrjagin theorem ([Pontryagin (1959)],
see [Sati and Schreiber (2021a)][Sati and Schreiber (2020b)] for review and further point-
ers) is decidedly unstable and as such says that the non-abelian Cohomotopy cohomology
theory in (0.10) measures non-abelian charges carried by (normally framed) submanifolds
(“branes”), which generalize the monopole charges in (0.9) to higher codimension.
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Non-abelian character of Cobordism. The non-abelian character (0.5) on unstable Co-
homotopy/Cobordism (0.10) turns out (Ex. IV.1 below) to generalize the non-linear Green-
Schwarz-type Bianchi identity (0.9) to higher even degrees. In degree 4 this yields the
Bianchi identity of the C3-field in D = 11 supergravity (due to [Sati (2018), §2.5][Fiorenza
et al. (2017), §2], review in [Fiorenza et al. (2019), §7]), which merges with the monopole
characters (0.8) to the mixed Bianchi identity? expected in Hofava-Witten’s heterotic M-
theory (due to [Fiorenza et al. (2022)][Sati and Schreiber (2020a)], see chapter 12 below):

non-abelian characters

= Green-Schwarz-type Bianchi identity
C Pl dHj hAFE S o s
dF =0 on gauge field flux
///‘( 2
.
.
g
.
o 7
B@‘f’/ dH; = G4— B AF
§
S _
‘:,\// (CP3 dF, 0 HoFava-Witten-type Bianchi identity
SOV oause & Ca -fiel .
[ S e dGy = 7%G4/\G4 on gauge & C3-field flux
-parametrized L, “\S >
s @ fo | twistor dGy =0
, g H | fibration
’ fart
// PR
g e — _1
x4 % (R3\{0}) ~ x4 x CPp! underl. Cohom, 54 dG7 = =364 NGy |14 5uGratype Bianchi identity
- / underl. Cobord. dGs =0 on C3-field flux

0.11)
Twisted Cohomotopy as twisted non-abelian cohomology. Classical constructions in dif-
ferential topology revolving around the Poincaré-Hopf theorem (e.g. [Bott and Tu (1982),
§11]) involve deformation classes of non-vanishing vector fields on a smooth manifold X,
hence of homotopy-classes of sections of the unit sphere bundle S(7X) in the tangent bun-
dle TX. Generally, for 7 the class of a real vector bundle of rank n + 1 over a paracompact
Hausdoff space X, we may consider the homotopy-classes of sections of its unit sphere
bundle S(7) (with respect to any fiberwise metric) as the T-twisted generalization (Ex. 3.8)
of non-abelian n-Cohomotopy theory from (0.10):

T-twisted non-abelian cobordims classes of submanifolds

T-twisted . . f "
$"-cohomology twisted with normal /-framing

Cohomotopy

7%(~) = Ho (TopSp, ) (— S(1)) = HF(=58") =mm2e Cobfy (). (0.12)

homotopy classes of cts. sections

(for smth. T~1"®1)

Indeed, when 7 admits smooth structure and there is any section of S(7) at all, then a twisted
version of Pontrjagin’s theorem still applies (e.g. [Cruickshank (2003), Lem. 5.2]) to show
that the twisted non-abelian cohomology theory which we may call twisted Cohomotopy
[Fiorenza et al. (2020b), §2.1] still measures charges carried by cobordism classes of
suitable submanifolds (‘“branes”).

2The physics-inclined reader may want to think of the broken SU(4) in (0.11) as a flavor symmetry
group, along the lines of [Fiorenza et al. (2021a)].
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Non-abelian character of twisted Cohomotopy. In part V below we construct the twisted
generalization of the non-abelian character map (0.5), serving to extract differential form
data underlying such twisted non-abelian cohomology classes. For instance, applied to
the example of tangentially twisted Cohomotopy (0.12) on even-dimensional smooth man-
ifolds, this deforms the Bianchi identity of ordinary odd-degree cohomology by the Euler
form X (8.8) of the manifold:

unit tangent universal n-sphere bundle twisted non-abelian character
bundle 1
o« S(TX) — 771 JO(2k) dby_1 = Xy(V)
v tangential de Rham twist
SR
T : (0.13)
o Chern-Weil character of tangential twist
P
. T=FTX dX9(V) = 0 Euler form
tangential twist d];.(V) = 0 Pontrjagin form

Hence the mere existence of the twisted non-abelian character on odd-degree Cohomo-
topy reflects part of the classical Poincaré-Hopf theorem (e.g. [Bott and Tu (1982), §11]),
namely the vanishing of the Euler number of a manifold implied by the existence of a unit
vector field. The further extension of this twisted non-abelian character to even-degree
Cohomotopy yields a tangentially twisted enhancement of the classical Hopf invariant
[Fiorenza et al. (2021b), §4].

Twisted non-abelian character of Yang-Mills monopoles. The exceptional isomorphism
Sp(2) ~ Spin(5) between the quaternion unitary group (the compact “symplectic group”)
and the spin-group in 5 dimensions, together with the equivariance of the twistor fibration
(0.11) under the canonical action of these groups implies a unification of all the above ex-
amples in a twisted non-abelian cohomology theory which we will call twistorial Cohomo-
topy (Ex. 3.11 below). The twisted non-abelian character on this theory is interesting in that
it exhibits a variety of aspects expected of non-linear Bianchi identities in non-perturbative
string theory (due to [Fiorenza et al. (2020b)][Fiorenza et al. (2021b)][Fiorenza et al.
(2022)][Sati and Schreiber (2020a)], surveyed in Rem. 12.1 below) which cannot be ex-
plained by traditional twisted Whitehead-generalized cohomology theory (Ex. 3.5):

twisted non-abelian character

dHy = —F ANF+G4—1p1(V)
monopole char.  (angential de Rham twist
dF, =0
0.14)
cobordism char. tangential de Rham twist
d2G; = —G4AGy + §pi(V)ASp1(V)—2s(V)
dGy =0

The desire to systematicall understand this rich example (see chapter 12) as a non-abelian
generalization of the traditional character map on twisted Whitehead-generalized cohomol-
ogy originally motivated us to develop the theory of the twisted non-abelian character map
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presented here.

To fully bring out the unifying picture, we will discuss in detail how relevant examples
of twisted Whitehead-generalized cohomology theories are subsumed by our twisted non-
abelian character map (the “inverse Whitehead principle”, Rem. 3.1).

Non-abelian cohomology via classifying spaces. As shown by these motivating exam-
ples, in higher non-abelian cohomology the very conceptualization of cohomology finds a
beautiful culmination, as it is reduced to the pristine concept of homotopy types of mapping
spaces (2.3), or rather, if geometric (differential, equivariant,...) structures are incorporated,
of higher mapping stacks (Remark 2.3 below). In particular, the concept of rwisted non-
abelian cohomology is most natural from this perspective (Def. 3.2 below) and naturally
subsumes the traditional concept of twisted generalized cohomology theories (Prop. 3.5
below).

) cocycle coefficient
twisted coevele co-stack

non-abelian c
cohomology X — ——=——- = >A/)G
HY(X;A) = —
twist T P
local
BG coefficients homotopy
relative BG

State of the literature. It is fair to say that this transparent fundamental nature of higher
non-abelian cohomology is not easily recognized in much of the traditional literature on the
topic, which is rife with unwieldy variants of cocycle conditions presented in combinatorial
n-category-theoretic language. As a consequence, the development of non-abelian coho-
mology theory has seen little and slow progress, certainly as compared to the flourishing
of Whitehead-generalized cohomology theory. In particular, the concepts of higher and of
twisted non-abelian cohomology had tended to remain mysterious (see [Simpson (1997b),
p. 11). It is the more recently established homotopy-theoretic formulation of co-category
theory (see Rem. 1.2) in its guise as co-topos theory (eo-stacks, recalled around Prop. 1.24
below) that provides the backdrop on which twisted higher non-abelian cohomology finds
its true nature [Simpson (1997b)][Simpson (2002)][Toén (2002)][Lurie (2009a), §7.1][Sati
et al. (2012)][Nikolaus et al. (2015a)][Nikolaus et al. (2015b)][Schreiber (2013)][Fiorenza
et al. (2020b)][Sati and Schreiber (2020c)]; see part II for details.

The non-abelian character map. From this homotopy-theoretic perspective, we observe,
in part IV and part V, that the generalization of the Chern-Dold character (0.1) to twisted
non-abelian cohomology naturally exists (Def. IV.2, Def. V.3), and that the non-abelian
analogue of Dold’s equivalence in (0.1) may neatly be understood as being, up to mild
re-conceptualization, the fundamental theorem of dg-algebraic rational homotopy theory
(recalled as Prop. 5.6 below). We highlight that this classical theorem is fruitfully recast
as constituting a non-abelian de Rham theorem (Theorem 6.5 below) and, more generally,
a twisted non-abelian de Rham theorem (Theorem 6.15 below). With this in hand, the
notion of the (twisted) non-abelian character map appears naturally (Def. IV.2 and Def.
V.3 below):
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twisted twisted non-abelian twisted non-abelian
non-abelian cohomology real cohomology de Rham cohomology
twisted (Def. 3.2) Th]f)* L (Def. 5.19) - . (Def. 6.9)
Jomabelin —chyy s HT(X;A) HY® (X LpA) ———— HR(X;1A) . (0.15)
¢ (']')‘f V;)"" R-rationalization twisted non-abelian
el Ve (Def. IV.1) de Rham theorem

(Thm. 6.15)

Twisted differential non-abelian cohomology. Moreover, with the (twisted) non-abelian
character in hand, the notion of (twisted) differential non-abelian cohomology appears nat-
urally (Def. 9.3, Def. 11.2) together with the expected natural diagrams of twisted differ-
ential non-abelian cohomology operations:

di!‘l‘erenlinl flat Loo-algebra valued
non-abelian cohomology curvature differential forms
A(Dcf. 9.3) ©.13) (Def. 6.1)
H(X;A) Qar (X 14)
characteristic differential
class non-abelian character
9.12) 9.14)
N \
H(X;A) — Har(X: 1A)
non-abelian cohomology “““-d([L) I?“l:/ ;)' acter non-abelian
(Def. 2.1) el IV de Rham cohomology
(Def. 6.3)
twisted flat
twisted differential Leo-algebra valued
non-abelian cohomology twisted differential forms
(Def. 11.2) ““(’l‘l"‘g;” (Def. 6.7)
[ Taitt (X - : TR (-
Hirr(X; A) Qi (X3 14)
twisted \ - )
‘o twisted differential
‘h"":“_:;::'s"f non-abelian character (0.16)
(115) (11.7)
Chz \
T
HY(X;A) HI® (X3 1A)
visted twisted ¢ ,
twiste non-abelian character twisted non-abelian
non-abelian cohomology (Def. V3) de Rham cohomology
(Def. 3.2) o (Def. 6.9)

Unifying Chern-Dold, Chern-Weil and Cheeger-Simons. In order to show that this gen-
eralization of (twisted) character maps and (twisted) differential cohomology to higher non-
abelian cohomology is sound, we proceed to prove that the non-abelian character map (Def.
IV.2) specializes to:

the Chern-Dold character

on generalized cohomology (Theorem 7.4),
the Chern-Weil homomorphlsm (Theorem 8.6),
on degree-1 non-abelian cohomology
the Cheeger-Simons homomorphism (Theorem 9.9).

on degree-1 differential non-abelian cohomology
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All these classical invariants are thus seen as different low-degree aspects of the higher
non-abelian character map.

Examples of twisted higher character maps. To illustrate the mechanism, we make ex-
plicit several examples of the (twisted) non-abelian character map on cohomology theories
of relevance in high energy physics:

the Chern character on complex differential K-theory  (Example 7.1, 9.1),
the Pontrjagin character on real K-theory (Example 7.1),

the Chern character on twisted differential K-theory (Example 10.1, 11.1),
the MMS-character on cohomotopy-twisted K-theory  (Example 10.1),

the LSW-character on twisted higher K-theory (Example 10.2),
the character on integral Morava K-theory (Example 7.1),
the character on topological modular forms, tmf (Example 7.1).

Once incarnated this way within the more general context of non-abelian cohomology the-
ory, we may ask for non-abelian enhancements (Example 2.19) of these abelian character
maps:

Non-abelian enhancement of the tmf-character — the cohomotopical character. Our
culminating example, in chapter 12, is the character map on twistorial Cohomotopy theory
[Fiorenza et al. (2020b)][Fiorenza et al. (2022)], over 8-manifolds X8 equipped with tan-
gential Sp(2)-structure 7 (3.33). This may be understood (Remark 7.4) as an enhancement
of the tmf-character (Example 7.1) from traditional generalized cohomology to twisted dif-
ferential non-abelian cohomology:
differential
tmf-coh logy stable Coh 3 beli: twisted beli: twistorial twistorial
in degree 4 in degree 4 4-Coh 4-C; y Cohomotopy Cohomotopy
(Example 7.1) (Example 2.13) (Example 2.7) (Example 3.8) (Example 3.11) (Example 12.1)
4 4 4
tmf*(X®) =~ §*(X®) o> 7 (XB) oo 7 (XB) o> TT(XB) e T (XP).

tmf approximates non-abelian twisting by lift through differential

sphere spectrum 3 J phism  twisted y operation enhancement
(Example 7.1) (Example 2.20) (Def. 3.2) induced by twistor fibration (Def. 11.2)
(Example 3.11)

The non-abelian character map on twistorial Cohomotopy has the striking property
(Prop. 12.1, the proof of which is the content of the companion physics article [Fiorenza
et al. (2022), Prop. 3.9]) that the corresponding non-abelian version of Dirac’s charge
quantization (0.2) implies Horava-Witten’s Green-Schwarz mechanism in heterotic M-
theory for heterotic line bundles F, (see [Fiorenza et al. (2022), §1]) and other subtle
effects expected in non-perturbative high energy physics; these are discussed in Remark
12.1 below.

Quadratic character functions from Whitehead brackets in non-abelian coefficient
spaces. In summary, the crucial appearance of quadratic functions in the character map
(12.10) is brought about by the intrinsic nature of (twisted) non-abelian cohomology the-
ory, here specifically of Cohomotopy theory. These non-linearities originate in non-trivial
Whitehead brackets (Rem. 5.4) on the non-abelian coefficient spaces, such as st (Exp. 5.3)
and CP3 (Exp. 6.8). Generally, the non-abelian character map (0.15) involves also higher
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monomial terms of any order (cubic, quartic, ...), originating in higher order Whitehead
brackets on the non-abelian coefficient space (Rem. 5.4).

The desire to conceptually grasp character-like but quadratic functions appearing in
M-theory had been the original motivation for developing differential generalized coho-
mology, in [Hopkins and Singer (2005)]. Here, in differential non-abelian cohomology,
they appear intrinsically.

Outline.

o In part I we motivate the need for (twisted) non-abelian characters and survey our
key results.

e In part I we recall (twisted) non-abelian cohomology theory with many exam-
ples.

o In part III we review Lo..-algebras and dgc-algebraic rational homotopy theory in
modernized form and re-cast
the fundamental theorem as a de Rham theorem in non-abelian Lo.-
algebraic de Rham cohomology.

e In part IV we use this to construct the general character map in non-abelian co-
homology and discuss applications.

e In part V we generalize to twisted non-abelian cohomology and discuss further
applications.
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PART II
Non-abelian cohomology
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Chapter 1

Model category theory

To set the scene, we begin here by reviewing basics of homotopy theory via model
category theory [Quillen (1967)] (review in [Hovey (1999)][Hirschhorn (2003)][Lurie
(2009a), A.2]) and of homotopy topos theory [Rezk (2010)] via model categories of sim-
plicial presheaves [Brown (1973)][Jardine (1987)][Dugger (2001)] (review in [Dugger
(1998)][Lurie (2009a), §A.3.3][Jardine (2015)]). The reader may want to skip this chapter
and refer back to it as need be.

Topology. By

TopSp € Cats (1.1)

we denote a convenient [Steenrod (1967)] (in particular: cartesian closed) category of
topological spaces such as compactly-generated spaces [Strickland (2009)] or A-generated
spaces [Dugger (2003)], equivalently known as: numerically-generated spaces [Shimakawa
et al. (2018)] or D-topological spaces [Sati and Schreiber (2020c), Prop. 2.4].

Categories. Let € be a category.
(i) For X,A € ¥ a pair of objects, we write

¢(X,A) := Homy(X,A)

for the set of morphisms from X to A.
(ii) For €, 2 two categories, we denote a pair of adjoint functors between them by

L _

-~ -

27 | % e 9W-).-)<berE), a2
—_—
R

and the corresponding adjunction unit and adjunction counit transformations by, respec-
tively:

nkL . ¢ X Ro(0), e . LoR(D) %2, p (1.3)
Notice/recall that this means that adjunct morphisms f < f~(1.2) and (co-)units (1.3) are
related as follows:

19
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7
f ( e R(f) b
Le) — 1 4 o c— s RoL(e) —L s R@), (1.4)
f
( L(f) &4 l ]7
L(c) ——— LoR(d) ———— d — ¢ ———— R(d).

(iii) A Cartesian square in ¢ we indicate by pullback notation f*(—) and/or by the symbol
“(pb)”:
ffA—>A

f‘p¢ (b W (1.5)

314}()32.

Dually, a co-Cartesian square in ¢ we indicate by pushout notation f,(—) and/or by
the symbol “(po)”:

A —f>A2
qil (po) ¢f*q

B— f\B.

(1.6)

Model categories.

Definition 1.1 (Weak equivalences). A category with weak equivalences is a category €
equipped with a sub-class W C Mor(%) of its morphisms, to be called the class of weak
equivalences, such that

(i) W contains the class of isomorphisms;

(i) W satisfies the cancellation property (‘“2-out-of-3”): if in any commuting triangle
in%

(1.7)

two morphisms are in W, then so is the third.

Definition 1.2 (Weak factorization system). A weak factorization system in a category
% is a pair of sub-classes of morphisms Proj,Inj C Mor(%’) such that

(i) every morphisms X —f> Y in ¥ may be factored through a morphism in Proj
followed by one in Inj:
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€ Proj € Inj
fX——>Z——Y (1.8)

(ii) For every commuting square in 4" with left morphism in Proj and right morphism
in Inj, there exists a lift, namely a dashed morphism

X——>A (1.9)
eProj\L el i/elnj

YyZ— B
making the resulting triangles commute.

(iii) Given Inj (resp. Proj), the class Proj (resp. Inj) is the largest class for which (1.9)
holds.

Definition 1.3 (Model category [Joyal (2008c), Def. E.1.2][Riehl (2009)]). A model
category is a category C that has all small limits and colimits, equipped with three sub-
classes of its class of morphisms, to be denoted

W — weak equivalences

Fib — fibrations

Cof — cofibrations
such that
(i) The class W makes C a category with weak equivalences (Def. 1.1);
(ii) The pairs (Fib7 CofﬂW) and (Fib NW, Cof) are weak factorization systems (Def.
1.2).

Remark 1.1 (Minimal assumptions). By item (iii) in Def. 1.2 a model category structure
is specified already by the classes W and Fib, or alternatively by the classes W and Cof.
Moreover, it follows from Def. 1.3 that also the class W is stable under retracts [Joyal
(2008c¢), Prop. E.1.3][Riehl (2009), Lemma 2.4]: Given a commuting diagram in the model
category C of the form on the left here

= . =

X——Y——>X
|
‘fi v if = [EW (1.10)

A—>B——=A

with the middle morphism a weak equivalence, then also f is a weak equivalence.

Definition 1.4 (Proper model category). A model category C Def. 1.3 is called
(i) right proper, if pullback along fibrations preserves weak equivalences:

rf

X—A

J/ b PJ/eFib N Ve W (1.11)
few
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(ii) left proper, if pushout along cofibrations preserves weak equivalences, hence if the
opposite model category (Example 1.4) is right proper.

Notation 1.1 (Fibrant and cofibrant objects). Let C be a model category (Def. 1.3)
(i) We write x € C for the terminal object and @ € C for the initial object.
(ii) An object X € C is called:

. . . . L . € Fib
(a) fibrant if the unique morphism to the terminal object is a fibration, X Ll

(b) cofibrant if the unique morphism from the initial object is a cofibration,

f
@LCO>X.

We write Cgp,, C°f, C%‘,’f C C for the full subcategories on, respectively, fibrant objects, or
cofibrant objects or objects that are both fibrant and cofibrant.
(iii) Given an object X € C

(a) A fibrant replacement is a factorization (1.8) of the terminal morphism as

Jx qx

PX - (1.12)
€ CofNW € Fib
(b) A cofibrant replacement is a factorization (1.8) of the initial morphism as
ix 2%
€ Cof X € Fibnw X (1.13)

Recall that a continuous function f between topological spaces X ,Y induces homomor-
phism on all homotopy groups m(f,x) : M (X,x) — m (Y, f(x)) and is called (e.g. [tom
Dieck (2008), p. 144])

| an n-equivatence i To<n (f7x) is an isomorphism and
fis 7, (f,x) is an epimorphism (1.14)
a weak homotopy equivalence if 4 (f,x) is an isomorphism

for all x € X.

Example 1.1 (Classical model structure on topological spaces [Quillen (1967),
§I1.3][Hirschhorn (2019)]). The category TopSp (1.1) carries a model category structure
whose

(i) W — weak equivalences are the weak homotopy equivalences (1.14);

(ii) Fib — fibrations are the Serre fibrations (e.g. [tom Dieck (2008), §5.5, 6.3]).
We denote this model category by

TopSpg, € ModelCategories .

Example 1.2 (Classical model structure on simplicial sets [Quillen (1967),
§I1.3][Gelfand and Manin (1996), §V.1-2][Goerss and Jardine (1999), §1.11]). The cate-
gory of ASets of simplicial sets (e.g. [May (1967)][Curtis (1971)] exposition in [Friedman
(2012)]) carries a model category structure whose
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(i) W — weak equivalences are those whose geometric realization is a weak homotopy
equivalence;

(ii) Cof — cofibrations are the monomorphisms (degreewise injections).

(iii) Fib — fibrations are the Kan fibrations.
‘We denote this model category by

ASetsq, € ModelCategories .

Every simplicial set is cofibrant in the classical model structure (Nota. 1.1):

(ASetsqu) = ASets. (1.15)

cof
while the fibrant simplicial sets are exactly the Kan complexes (e.g. [Goerss and Jardine
(1999), §1.3], exposition in [Friedman (2012), §7])

)ﬁb

(ASetsqu) = KanComplexes. (1.16)

which we may think of as eo-groupoids [Lurie (2009a), §1.1.2].

Example 1.3 (Simplicial nerves of groupoids).
(i) Let

@ = (%,xs% EECENY7) #%)

be a groupoid (exposition in [Weinstein (1996)]) then its nerve N(¥) € ASets® ([Segal
(1968), §2]) is the Kan complex (1.16) whose k-cells are the sequences of k composable
morphisms in ¥.

N(Z) 2 [k] = G XD X5 XDy (1.17)

(i) For S € Sets any set, consider its pair groupoid Pair(S) := (S xS§S= S) whose objects

are the elements of S and which has exactly one morphism s¢ EN s1 between any pair of
elements. Its nerve (1.17) is contractible, in that it is weakly equivalent in the classical
model category (Def. 1.2) to the point (the terminal simplicial set, which is constant on the
singleton set):

N (Pair(s)) YOEP (1.18)

Example 1.4 (Opposite model category [Hirschhorn (2003), §7.1.8]). If C is a model
category (Def. 1.3) then the opposite underlying category becomes a model category C°P
with the same weak equivalences (up to reversal) and with fibrations (resp. cofibrations)
the cofibrations (resp. fibrations) of C, up to reversal.

Example 1.5 (Slice model categories [Hirschhorn (2003), §7.6.4][May and Ponto (2012),
Thm. 165.3.6]). Let C be a model category (Def. 1.3)
(i) For X € C any object, the slice category /X, whose objects are morphisms to X and
whose morphisms are commuting triangles in C over X
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f
A-——=—— >B
cX(a,b) =
(a,b) S . 7

becomes itself a model category, whose weak equivalence, fibrations and cofibrations are
those morphims whose underlying morphisms f are such in C. This means in particular
that:

ae (€ & aecet and be (), & bec® (119

(ii) Dually there is the coslice model category CX/ := ((COP)/ X )Op , being the opposite
model category (Example 1.4) of the slice category of the opposite of C:

CX/(a,b) = a/ \b

Homotopy categories.

Definition 1.5 (Cylinder objects and Path space objects [Quillen (1967), Def. 1.4]). Let
C be a model category (Def. 1.3).

(a) With A € Cgy, a fibrant object (Notation 1.1), a path space object for A is a factorization
of the diagonal morphism A4 through a weak equivalence followed by a fibration:

,p1)€Fib
A =<V paths(a) — P aa (1.20)

Ay

(b) With X € C.r a cofibrant object (Notation 1.1), a cylinder object for X is a factorization
of the co-diagonal morphism V4 through cofibration followed by a weak equivalence:

e Cor
Xux — ol i) — Vs x| (1.21)

Vx

Example 1.6 (Standard cylinder object in simplicial sets). For X € ASetsq (Example
1.2) a cylinder object (Def. 1.5) is evidently given by Cartesian product X x A[1] with the
1-simplex, with (ig, ;) being the two endpoint inclusions.

Definition 1.6 (Homotopy). Let C be a model category (Def. 1.3), X € Cf a cofi-
brant object, A € Cgp, a fibrant object (Notation 1.1). Then a homotopy between a pair of
morphisms f,g € C(X,A), to be denoted



December 12, 2023 20:14 ws-book9x6 The character map in nonabelian cohomology:

(twisted, differential, and generalized) cherndold'ws'book page 25
Model category theory 25
f
o f=>¢g or X \l—La)/fA
8

is a morphism ¢; € C(Cyl(X),A) out of a cylinder object for X or a morphism ¢, €
C(X,Paths(A)) to a path space object for A Paths(A) (Def. 1.5) which make either of these
diagrams commute:

X , A
of L e
Cyl(X) n—=A X = ¢,—> Paths(A)

Proposition 1.7 (Homotopy classes). Let C be a model category, X € C*°f and A € Cgp
(Notation 1.1). Then homotopy (Def. 1.6) is an equivalence relation ~ on the hom-set
C(X,A). We write

C(X,A),. € Sets (1.22)

for the corresponding set of homotopy classes of morphisms from X to A.

Definition 1.8 (Homotopy category of a model category). For C a model category (Def.
1.3),
(i) we write

Ho(C) = (CfY),., € Cats (1.23)

for the category whose objects are those objects of C that are both fibrant and cofibrant
(Notation 1.1), and whose morphisms are the right homotopy classes of morphisms in C
(Prop. 1.7):

X,A€CRl = Ho(C)(X,A) = C(X,A).,

and composition of morphisms is induced from composition of representatives in C.
(ii) Given a choice of fibrant replacement P and of cofibrant replacement Q for each object
of C (Notation 1.1) we obtain a functor

¢ "~ Ho(C), (1.24)

which (a) sends any object X € C to PQX and sends (b) any morphism X L A to the
right homotopy class (1.22) of any lift (1.9) PQf obtained from any lift Qf in the following
diagrams:
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JoroQf
B — _— >
) —= [0)% ox —Z PQY
ix\L B _of” \LPY - jQX\L _Pof i/qu
oXT—— >y POX > &
fop:

Proposition 1.9 (Homotopy category is localization). For a model category C (Def.
1.3) the functor C x HO(C) (1.24) from Def. 1.8 exhibits the homotopy category as the

localization of the model category at its class of weak equivalences: 7Y¢ sends all weak
equivalences in C to isomorphisms, and is the universal functor with this property.

The restriction to fibrant-and-cofibrant objects in Def. 1.8 is convenient for defining
composition of morphisms, but for computing hom-sets in the homotopy category it is
sufficient that the domain object is cofibrant, and the codomain fibrant:

Proposition 1.10 ([Quillen (1967), §1.1 Cor. 7]). Let € be a model category (Def. 1.3).
For X € € a cofibrant object and A € Gy, a fibrant object, any choice of fibrant replace-
ment PX and cofibrant replacement QA (Notation 1.1). induces a bijection between the
set of homotopy classes (Def. 1.6) and the hom-set in the homotopy category (Def. 1.8)
between X and A:

C (jx,pa
CX A, — P Ho(C)(X,A)

While the hom-functor of a homotopy category preserves almost no homotopy (co)limits,
we do have:

Proposition 1.11 (Hom-functor of homotopy category respects (co)products). The
hom-functor of a homotopy category (Def. 1.8) respects coproducts in the first argument
and products in its second argument, in that there are natural bijections of the following

form:
Ho(C)(HX,-,HAj) ~ JHo(C)(X:, A))
il jeJ iel
JjeJ
Proof. Noticing that coprodcts preserve cofibrancy and products preserve fibrancy, evi-
dently, this follows from Prop. 1.10. O

Quillen adjunctions.

Definition 1.12 (Quillen adjunction). Let D, C be model categories (Def. 1.3). Then a
pair of adjoint functors (L 4 R) (1.2) between their underlying categories is called a Quillen
adjunction, to be denoted

L
<

D e C (1.25)
_
R

if the following equivalent conditions hold:
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o [ preserves Cof, and R preserves Fib;
e [ preserves Cof and Cof "W (“left Quillen functor”);
e R preserves Fib and FibN'W (“right Quillen functor”).

Example 1.7 (Base change Quillen adjunction). Let C be a model category (Def. 1.3),
B1,B, € Cygp a pair of fibrant objects (Notation 1.1) and

By N B, €C (1.26)

a morphism. Then we have a Quillen adjunction (Def. 1.12)

- r
/B Lou C/Bi (1.27)

between the slice model categories (Example 1.5), where:
(i) The left adjoint functor fi is given by postcomposition in C with f (1.26):

c c

X oA X A
NN — — S~ — (1.28)
1 1
Ve
B,

(ii) The right adjoint functor f* is given by pullback (1.5) along f (1.26).
That these functors indeed form an adjunction f; 4 f* follows from the defining universal
property of the pullback (1.5):

C/®(f, p) =~ c/Pi(z, f*p)
Xo oo —— s X—Sopa— A
\
s 1.29
\ AN \fvp ) P (129
B \ By
f BZ f\Bz

That this adjunction is a Quillen adjunction (Def. 1.12) follows since f; (1.28) evidently
preserves each of W and Cof (even Fib) separately, by Example 1.5.

Example 1.8 (Sliced Quillen adjunction). Given a Quillen adjunction L ,, R (Def.
1.12) and an object of either of the two model categories, there is an induced sliced Quillen
adjunctions (Def. 1.12) between slice model categories (Ex. 1.5) as follows:

L L/c L/d
—— — —

D 1o C = [V DLI) Lo Cf|and [ Vv DM Loo C/RD ) (1.30)
- ceC — deD

—
R R I
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where:

(i) L/ and R/9 are given directly by applying L or R, respectively, to the triangular
diagram that defines a morphism in the slice;

(i) R/¢and L/ are given by this direct application followed by right/left base change
(1.7) along the adjunction unit/counit (1.3), respectively:

Rle: DILe) R, o/RoLle) M) pye

D/d (L{)' C/LOR(d) # D/R<d> : L/d (131)

In particular, this means that L/ sends a slicing morphism 7 to its adjunct 7 (1.4),
in that:

¢ L(c)
L ir - ﬁ € D/, (1.32)
R(d) d

Aspects of this statement appear in [Lurie (2009a), Prop. 5.2.5.1][Li (2016), Prop. 2.5(2)].
Since it is key to the proof of the twisted non-abelian de Rham theorem (Th. 6.15) we spell
it out:

Proof. It is clear that if we have adjunctions as claimed in (1.30), then L//R/? are
left/right Quillen functors, respectively, since these two act as the left/right Quillen functors
L/R on underlying morphisms (by item (i) above), where the classes of slice morphisms are
created, by Ex. 1.5.

To see that we have adjunctions as claimed, we may check their hom-isomorphisms
(1.2) (for readability we now denote the object being sliced over by “b”, in both cases, with

¢” and “d” now being the variables in the hom-isomorphism):
(1) For the first case, consider the following transformations of slice hom-sets:
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7
[ 3
L(e) 15 d e — " 4 Ror(e) XL Ra)
N <y I \ > <o
L(b) b —— RoL(b) 7
! !
f 7
( L . 2
L(c) ———~— LoR(d) ——~ d ¢ -mmmmm » N7 (R(d)) —— R(d)
N v e » - o (ob) N
L(b) — LoRoL(b) — L(b) b RoL(p) RV
L(ny EL(b) My
L )
id

Here the horizontal transformations are given by applying the functors and then (post-
)composing with (co-)units, while the left vertical bijection is the formula (1.4) for adjuncts
and the right vertical bijection is the universal property of the pullback. Evidently these
operations commute in both possible ways, showing that also the horizontal operations are
bijections (and they are natural by the naturality of the underlying hom-isomorphism).

(2) The second case follows analogously, but more directly as no pullback is involved here:

f f
( 1 [ - 3
Ao r@ LW rLor@) fhd ¢ M RoL(e) — I Ra)
™ ¥ = N v 7 N N ¥
R(D) LoR(b) - b R(b)nzh)ROLOR(b)R@,)R(b)
id O

Example 1.9 (Induced Quillen adjunction on pointed objects). Given a Quillen ad-
junction L H,, R (Def. 1.12) there is an induced Quillen adjunction of model categories of
pointed objects, hence of coslice model structures (Ex. 1.5) under the terminal object

0] op
L L/ L/l:)
D e C = [D/ /| = (D)™t (CRL)™ | (133
H *())
R R*/ (R(/)E)P

where

(i) R is given directly by applying R to the underling triangular diagrams in D;
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(i) L* is given by that direct application of L followed (using that the right adjoint
R preserves the terminal object) by pushout along the adjunction counit, which is
of the form L(x) ~ Lo R(x) ok

—) U =
L . ¢ Lpte/ o pt)/ Y/ (1.34)

This may be checked directly (e.g. [Hovey (1999), Prop. 1.3.5]), but it is also a special
case of Ex. 1.8, as shown on the right of (1.33), observing that pullbacks are pushouts in

the opposite category.

Lemma 1.1 (Ken Brown’s lemma [Hovey (1999), Lemma 1.1.12][Brown (1973)]).
Given a Quillen adjunction L 4R (Def. 1.12),

(i) the right Quillen functor R preserves all weak equivalences between fibrant objects.
(ii) the left Quillen functor L preserves all weak equivalences between cofibrant objects.

Proposition 1.13 (Derived functors). Given a Quillen adjunction (L -qy R) (Def. 1.12),
there are adjoint functors DL - DR' (1.2) between the homotopy categories (Def. 1.8)

Ho(D) i Ho(C) (1.35)

whose composites with the localization functors (1.24) make the following squares com-
mute up to natural isomorphism:

D R C D L C
™, z J m, o N | e
Ho(D) — o Ho(C) Ho(D) ~ Ho(C).

These are unique up to natural isomorphism, and are called the left and right derived
Sfunctors of L and R, respectively.

Example 1.10 (Derived functors via (co-)fibrant replacement). It is convenient to leave
the localization functors 7y (1.24) notationally implicit, and understand objects of C as ob-
jects of Ho(C), via 7. Then:

(i) The value of a left derived functor DL (Prop. 1.13) on an object ¢ € C is equiva-
lently the value of L on a cofibrant replacement Qc (1.13):

DL(c) ~ L(Qc) € Ho(D). (1.36)

(ii) The value of a right derived functor DR (Prop. 1.13) on an object d € D is
equivalently the value of R on a fibrant replacement Pd (1.12):

I'We avoid the common notation ILL - RR for derived functors, since this clashes with the prominent
role that “R” plays as notation for the field of real numbers in the main text.
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DR(d) ~ R(Pd) € HO(C). (1.37)

(iii) The derived unit Dn (1.3) of the derived adjunction (1.35) is, on any cofibrant
object ¢ € Cf, given by

D1, : cLR(L(c)) %R(PL@)) € Ho(C)  (1.38)

Jre
where L(c) N PL(c) is any fibrant replacement (1.12).

(iv) The derived co-unit De (1.3) of the derived adjunction (1.35), is, on any fibrant
object d € Dgp, given by

De, : L(QR(d)) %L(R(d)) —“.4 €HoD) (1.39)

Pr(d) .
where QR(d) —> R(d) is any cofibrant replacement (1.13).

Homotopy fibers and homotopy pullback.
Definition 1.14 (Homotopy fiber). Let C be a model category (Def. 1.3).

(i) For A £ B a morphism in C with B € Cgp, C C a fibrant object (Notation 1.1), and

for * L p a morphism from the terminal object (a “point in B”), the homotopy fiber of
p over b is the image in the homotopy category (1.24) of the ordinary fiber over b, i.e. the
pullback (1.5) along b in C, of any fibration p weakly equivalent to p:

hofib(p) —= A fiby () A< 4

lp = % l o pl% € Ho(C) . (1.40)
B B

—
b

This is well-defined in that hofib,(p) € Ho(C) depends on the choice of fibration replace-
ment p only up to isomorphism in the homotopy category.

(ii) Dually, homotopy co-fibers are homotopy fibers in the opposite model category (Def.
1.4).

More generally:

Definition 1.15 (Homotopy pullback). Given a model category C (Def. 1.3) and a pair
of coincident morphisms
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between fibrant objects, the homotopy pullback of p along T (or homotopy fiber product of
p with 7) is the image of p, regarded as an object in the homotopy category (Def. 1.8) of
the slice model category (Example 1.5) under the right derived functor (Prop. 1.13) of the
right base change functor along 7 (Ex. 1.7):

A D7*A
J/ ey i/]D)r* p
Ho(C/%) 3 BP s Y := Ho(C/X), (1.41)

By (1.29), the derived adjunction counit (1.39) on (1.41) gives a commuting square in
(1.24) the homotopy category of C

DT*A ——=A T*A A €W
Dr*pl (hpb) lp = Y l o 5\L€ Fib ; € Ho(C).
X B

X%B _—
T T

(1.42)
This square in the homotopy category, together with its pre-image pullback square in the
model category, is the homotopy pullback square of p along 7.

Example 1.11 (Homotopy fiber is homotopy pullback to the point). Homotopy fibers
(Def. 1.14) are the homotopy pullbacks (Def. 1.15) to the terminal object, by (1.37).

Lemma 1.2 (Factorization lemma [Brown (1973), p. 421]). Let C be a model category

(Def. 1.3) and A L Csip a morphism between fibrant objects. Then for Paths(B) a
path space object for B (Def. 1.5) the vertical composite in the following diagram

A cw PiA W A (1.43)
l (pb) J{P
_—
P Paths(B) o B
ll’u
B

is a fibration, and in fact a fibration resolution of p, in that it factors p through a weak
equivalence.

Example 1.12 (Homotopy pullback via triples). Given a model category C (Def. 1.3)
and a pair of coincident morphisms
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between fibrant objects, Lemma 1.2 says that the corresponding homotopy pullback (Def.
1.15) is computed by the following diagram

Dr*A A ™ (po o pip) PiA A
AN
~N
N lp ) P
N
Paths(B) 0 B = ob) Paths(B) —— B
Po
il’l iPl
x—% .B XxX—* o8B

Here the right hand side exhibits the left hand side as a limit cone. This means that the
homotopy pullback D7*A is universally characterized by the fact that morphisms into it are
triples (f,g,¢) , consisting of a pair of morphisms f, g to A, X, respectively, and a right
homotopy ¢ (Def. 1.6) between their composites with p and 7, respectively:

__ L >A
|7
C=sDea) = {(f.g0)| «1 2 ip . (1.44)
\
X4T>B

Quillen equivalences.

Lemma 1.3 (Conditions characterizing Quillen equivalences). Given a Quillen ad-
Junction L -qu R (Def. 1.12), the following conditions are equivalent:

o The left derived functor (Prop. 1.13) is an equivalence of homotopy categories

(Def. 1.8) Ho(Z) <= Ho(%).

o The right derived functor (Prop. 1.13) is an equivalence of homotopy categories

(Def. 1.8) Ho(2) % Ho(%).
o Both of the following two conditions hold:

(i) The derived adjunction unit Dn (1.38) is a natural isomorphism, hence
(1.38) is a weak equivalence in C;

(ii) The derived adjunction counit De (1.39) is a natural isomorphism, hence
(1.39) is a weak equivalence in D.

e Force C and d € Dgy,, a morphism out of L(c) is a weak equivalence precisely
if its adjunct into R(d) is:
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Definition 1.16 (Quillen equivalence). If the equivalent conditions from Lemma 1.3 are
met, a Quillen adjunction L -qy R (Def. 1.12) is called a Quillen equivalence, which we
denote as follows:

Hence:

Proposition 1.17 (Derived equivalence of homotopy categories). The derived adjunc-
tion (Prop. 1.13) of a Quillen equivalence (Def. 1.16) is an adjoint equivalence of homo-
topy categories (Def. 1.8):
DL
Ho(D) ~ Ho(C) . (1.46)
DR

Remark 1.2 (co-Category theory). As each model category (Def. 1.3) provides a con-
text of homotopy theory (with its own notion of homotopy-coherent universal constructions
such as homotopy pullbacks, Def. 1.15, etc.), Prop. 1.17 is a first indication that Quillen
equivalent (Def. 1.16) model categories represent the same context of homotopy theory, for
a suitably homotopy-theoretic notion of sameness. This suggests that model categories re-
garded up to Quillen equivalence are but coordinate presentations of a more intrinsic notion
of homotopy theories, now known as co-categories [Joyal (2008c)][Joyal (2008b)][Joyal
(2008a)][Lurie (2009a)][Cisinski (2019)][Riehl and Verity (2021)].

Lemma 1.4 (Quillen equivalence when left adjoint creates weak equivalences [Erdal
and Giigliikan Ilhan (2019), Lemma 3.3]). LerL —qu R be a Quillen adjunction (Def. 1.12)
such that the left adjoint functor L creates weak equivalences, in that for all morphisms f
in C we have

f e W¢ & L(f) € Wp. (1.47)
Then L -qu R is a Quillen equivalence (Def. 1.16) precisely if the adjunction co-unit &g is
a weak equivalence on all fibrant objects d € Cgp,.

Proof. By Lemma 1.3, it is sufficient to check that the (i) derived unit and (ii) derived
counit of the adjunction are weak equivalences precisely if the ordinary counit is a weak
equivalence.

(ii) For the derived counit (1.39)

L(pr(a)) &

De. : L(QR(d)) L(R(d)) ——d

we have that pg(4) is a weak equivalence (1.13), and since L preserves this, by assumption,
S0 is L(pR(d)). Therefore Deg,; is a weak equivalence precisely if g, is, by 2-out-of-3 (1.7).
(i) For the derived unit (1.38)

¢ R(L(e) —) L R(pL(e))

consider the composite of its image under L with the adjunction counit, as shown in the
middle row of the following diagram:
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L(Dn.)

EpL(c)

/\
L(c) L(n)—> LoR(L(c)) LoR(ju)) —>= Lo R(PL(c)) PL(c) .

jL(c) EW

By the formula (1.4) for adjuncts, this composite equals the adjunct of the derived adjunc-
tion unit, hence ji ), as shown by the bottom morphism, which is a weak equivalence
(1.12). Now, since L creates weak equivalences by assumption, L(D1n,) is a weak equiv-
alence precisely if D7, is a weak equivalence. Therefore it follows, again by 2-out-of-3
(1.7), that this is the case precisely if the adjunction counit € is a weak equivalence on the
fibrant object PL(c). O

Proposition 1.18 (Base change along weak equivalence in right proper model cate-

gory). Let C be a right proper model category (Def. 1.4). Then its base change Quillen
adjunction (Ex. 1.7) along any weak equivalence

Bl*f>32 e C

ew
is a Quillen equivalence (Def. 1.16):
fi
C/B: ~u C/Br .
_—
1

Proof. Observe that B, a4 Bj is the terminal object of C/B2, 50 that the fibrant objects

of C/B2 correspond to the fibrations in C over B;. Therefore, the condition (1.45) says that
for fi 4 f* to be a Quillen equivalence it is sufficient that in (1.29) ¢ is a weak equivalence
precisely if ¢ is, assuming that p is a fibration:

. = few
X———— S X—— S spa PNy
\ peFib - \ if p o pe Fib (1.48)

By

w3, o

2

But under this assumption, right-properness implies that p* f is a weak equivalence (1.11),
so that the statement follows by 2-out-of-3 (1.7).

Alternative Proof. The conclusion also follows with Lemma 1.4: The left adjoint functor
L = fi clearly creates weak equivalences (1.47) (by the nature of the slice model structure,
Example 1.5), so that Lemma 1.4 asserts that we have a Quillen equivalence as soon as
the ordinary adjunction counit is a weak equivalence on all fibrant objects. By (1.29),
the adjunction counit on a fibration p € Fib is the dashed morphism p*f in the following
diagram on the right:
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id p feEW prfeEW
FfA——S > ffA—— > A ffrA—— — 2 —— — — >A

X if*" o pern p pern  (1.49)

B B \
fe\w\ B, feW™p,
Therefore this is a weak equivalence, again by right-properness. O

Example 1.13 (Quillen equivalence between topological spaces and simplicial sets
[Quillen (1967)]). Forming simplicial sets constitutes a Quillen equivalence (Def. 1.16)

geometric realization
|-
TopSpqy ~qu ASetsgy (1.50)
Sing
singular simplicial complex

between the classical model structure on topological spaces (Example 1.1) and the classical
model structure on simplicial sets (Example 1.2).

Example 1.14 (Classical homotopy category). The derived adjunction (Prop. 1.13) of
the |—| - Sing-adjunction (Example 1.13) is an equivalence between the homotopy cate-
gories (Def. 1.8) of the classical model category of topological spaces (Example 1.1) and
the classical model category of simplicial sets (Example 1.2):

Dl
Ho(TopSpg,) — =~ Ho(ASetsqy). (1.51)
DSing

Either of these is the classical homotopy category. We refer to its objects as homotopy
types, to be distinguished from the actual topological spaces or simplicial sets that represent
them.

Example 1.15 (Simplicial sets are weakly equivalent to singular simplicial sets of their
realization). The characterization of Quillen equivalences (Lemma 1.3) implies, with
Example 1.13, that for each S € ASets the composite

3 Sing(|is|])
s— ™ Sing(s]) — " - Sing(P|S])
is a weak equivalence, where jig is a fibrant replacement for |S]. But since all topological
spaces are fibrant (Example 1.1), it follows that the ordinary unit of the adjunction (1.50)
is already a weak equivalence:

Ns .
_ >
S W Sing(|S]) - (1.52)
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Cell complexes.
Proposition 1.19 (Skeleta and truncation [May (1967), §I1.8][Dwyer and Kan (1984),
§1.2 (vi)] ). Foreach n € N there is a pair of adjoint functors

skn
-~
ASets n ASets, (1.53)
_—

cosk,
where sk, (S) is the simplicial sub-set generated by the simplices in S of dimension < n
(hence including only all their degenerate higher simplices), and where
cosk,(S) : [k] — ASets(sk,(A[K]),S).

One says that S is n-coskeletal if the comparison morphism S — cosk,(S) is an isomor-
phism.

Here cosk,, | preserves ([Dwyer and Kan (1984), p. 141], for proofs see [Low (2013)][De-
florin (2019), Lem. 10.12 ]) fibrant objects of the classical model structure (Example 1.2),
hence preserves Kan complexes (1.16), and models n-truncation, in that:

7| cosk,+1(S)| = 0 fork>n+1
and there are natural morphisms

Pn

S —————— cosky(S) (1.54)
such that
”k‘pnl
ﬂk|S’ — ﬂk‘coskHl (S)’ Sfork <n.
For A € Ho(ASetsqy ) we write
A(n) := |cosky 1 (Sing(A))] (1.55)

We say that A is n-truncated if it is equivalent to its n-truncation (1.55):
Aisn-truncated < A ~ A(n). (1.56)

Example 1.16 (Homotopy types of manifolds via triangulations). For X € TopSp
equipped with the structure of a smooth n-manifold, there exists a triangulation of X
(e.g. [Whitney (1957), §IV.B][Munkres (1966), Thm. 10.6], see also [Manolescu (2014)]),
namely a simplicial set (in fact a simplicial complex) which is n-sleletal (Prop. 1.19)

Tr(X) € ASets, sk, (Tr(X)) = Tr(X) (1.57)

equipped with a homeomorphism to X out of its geometric realization (1.50)

ITe(X)| ——> X (1.58)

homeo
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which restricts in the interior of each simplex to a diffeomorphism onto its image. Since
the inclusion

Tr(X )(LSmg“Tr( )|)S’6—g<)>slng( X), (1.59)

is a weak equivalence (by Example 1.15), the triangulation represents the homotopy type
(1.51) of the manifold.

Proposition 1.20 (Homotopy classes of maps out of #n-manifolds). Ler X € TopSp admit
the structure of an n-manifold. Then for any A € Ho (ASetsQu) (Example 1.14) the homo-

topy classes of maps X — A are in natural bijection to the homotopy classes into the
n-truncation (1.55) of A:

Ho(ASetsqu) (X, A) ~ Ho(ASetsqu) (X, A(n)) (1.60)
Proof. Consider the following sequence of natural isomorphisms

Ho(ASetsqy) (X, A)
~ Ho (ASetsQu) (Slng(X) Sing(A ))
~ Ho(ASetsqy ) (Tr(X), Sing(A))

~ ASets (Tr(x) : Sing(A)) / ASets (Tr(x) x All], Sing(A)>

~ ASets(san (Tr(X)), Sing(A)) / ASets (sknﬂ (Te(X) x A[1]), Sing(A))

~ ASets (Tr(X) , cosky 41 (Sing( ))) / ASets (Tr(X) x A[1], cosky 1 (Sing(A))>
~ Ho(ASetsqu) (Tr(X) , cosky 1 (Sing(4)) )

~ Ho(ASetsqu) ([Tr(X)] , [cosky +1(Sing(4))])
~ Ho(ASetsqu) (X, A(n)).

Here the first step is (1.14), using, with Example 1.10, that all topological spaces are fibrant
and all simplicial sets cofibrant. The second step uses (1.59). The third step uses Example
1.6 with Prop. 1.10 (observing that Sing(A) is fibrant as A is and Sing is right Quillen) to
express the morphisms in the homotopy category as equivalence classes of simplicial maps
under the relation that identifies those pairs of maps that extend to a map on the cylinder
Tr(X) x A[1]. The fourth step observes that with Tr(X) being n-skeletal (1.57), its cylinder
s (n+ 1)-skeletal. The fifth step is thus the sk, ; - cosk,-adjunction isomorphism
(1.53). The sixth step applies again Prop. 1.10, using that cosk,; preserves fibrancy
(Prop. 1.19). The seventh step is the reverse of the first step, with the same argument on
(co-)fibrancy. The last step uses (1.58) in the first argument and (1.55) in the second. The
composite of these isomorphisms is the desired (1.60). O

Proposition 1.21 (Postnikov tower [Goerss and Jardine (1999), Cor. 3.7]). Let X €
Ho(ASetsQu) (Example 1.14). If X is connected, then its sequence of n-truncations (1.55)
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forms a system of maps with homotopy fibers (Def. 1.14) the Eilenberg-MacLane spaces
(2.6) of the homotopy group in the given degree:

K(ms(X),3) — ) x(3)
o) Y7
K(m(x),2) —) x(2)
g

K(m (), 1) — 0 x (1)
I

X(0)

If X is not connected then this applies to each of its connected components.

Stable model categories.

Example 1.17 (Looping/suspension-adjunction). On the category of pointed topolog-
ical spaces, equipped with the coslice model structure under the point (Example 1.5) of
the classical model structure (Example 1.1), the operation of forming based loop spaces
QX := Maps*/ (', X) is the right adjoint in a Quillen adjunction (Def. 1.12)

x
- =
TopSp*Q/u Lau TopSpE/u (1.61)
Q

whose left adjoint is the reduced suspension operation £X := S AX = (S! x X)/(S! x

{re b U {xg ) X X).

Example 1.18 (Stable model category of sequential spectra [Bousfield and Friedlander
(1978)][Goerss and Jardine (1999), §X.4]). There exists a model category (Def. 1.3)
SequentialSpectragr whose objects are sequences

E = {E,, € TopSp, EEn > Eni1 by

of topological spaces E, and continuous function ¢, from their suspension LE, (Example
. . f

1.17) to the next space in the sequences; and whose morphisms E — F are sequences of
fﬂ .

component maps E, — F,, that commute with the o's. Moreover:

W — weak equivalences are the morphisms that induce isomorphisms on all stable
homotopy groups e(X) := limm, 1 (X;) (Where the colimit is formed using the

n

G’s);

Cof — cofibrations are those morphisms E L F such that the maps
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fo (fus1,07)
Ey——F and V E U, ——— F
0 < Cof 0 neN n+1 SE, n  Cof n+1

are cofibrations in the classical model structure on topological spaces (Example
1.1).

Fib — Fibrant objects are the Q-spectra, namely those sequences of spaces {E,} for
which the £ 4 Q-adjunct (1.61) of each o, is a weak equivalence:

6,
{Ex € TopSpg,, By —m QEpt | (1.62)

Example 1.19 (Derived stabilization adjunction). The suspension/looping Quillen ad-
junction on pointed spaces (Example 1.17) extends to a commuting diagram of Quillen
adjunctions (Def. 1.12) to and on the stable model category of spectra (Example 1.18)

)
TopSpE/u Lou TopSpE/u
Q
Emlbu Tgw 5 z*lwu TQ“’ (1.63)
SequentialSpectragg Lou SequentialSpectragy. .
Q

such that the bottom adjunction is a Quillen equivalence (Def. 1.16), hence such that under
passage to derived adjunctions (Prop. 1.13)

DX
Ho (TopSpg/u> 1L Ho <TopSp6/u)
DQ
DX~ \L B TDQ” DX~ \L - TDQ‘”
DX
Ho (SequentialSpectraBF) ~ Ho (SequentialSpectraBF) (1.64)
DQ

the bottom adjunction is an equivalence, thus exhibiting the homotopy category of spectra
as being stable under looping/suspension.

We say that

(i) Ho (SequentialSpectraBF) is the stable homotopy category of spectra;

(ii) the vertical adjunction (DX 4 DQ™) is the stabilization adjunction between homotopy
types (1.51) and spectra.

(iii) the images of £ are the suspension spectra.

(iv) For E € Ho (SequentialSpectraBF) and n € N we write (for brevity and in view of
(1.62))

E, := DQ~((DE)'E) € Ho(ASetsy,) (1.65)
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for the homotopy type of the nth component space of the spectrum.

Smooth co-stacks. We briefly highlight some basics of smooth eo-stack theory, for more de-
tails and more exposition see [Fiorenza et al. (2013), §2][Fiorenza et al. (2015b)][Schreiber
(2013)][Sati and Schreiber (2021b), §1].

Definition 1.22 (Simplicial presheaves over Cartesian spaces). We write

®

smooth

CartSp = {R" —— R™ < SmthMfds (1.66)

}n;GN
for the category whose objects are the Cartesian spaces R”, for n € N, and whose mor-
phisms are the smooth functions between these (hence the full subcategory of SmthMfds
on the Cartesian spaces).
(i)

PSh(CartSp,ASets) := Functors(CartSp°®, ASets) (1.67)
for the category of functors from the opposite of CartSp (1.66) to ASets (Ex. 1.2).

Example 1.20 (Model structure on simplicial presheaves over Cartesian spaces [Dug-
ger (1998)][Dugger (2001)][Fiorenza et al. (2012), §A]). The category of simplicial
presheaves over Cartesian spaces (Def. 1.22) carries the following model category struc-
tures (Def. 1.3):

(i) The global projective model structure

PSh (CartSp, ASetsqy ) € ModelCategories (1.68)

proj
whose

W — weak equivalences are the morphisms which over each R” are weak equivalence
in ASetsqyu (Example 1.2),

Fib — fibrations are the morphisms which over each R" are fibrations in ASetsg, (Ex-
ample 1.2),

(ii) The local projective model structure
PSh (CartSp, ASetSQu) i € ModelCategories (1.69)
loc
whose:

W — weak equivalences are the morphisms whose stalk at 0 € R” is a weak equiva-
lence in ASetsq, (Example 1.2), forall n € N;

Cof — cofibrations are the morphisms with the left lifting property (1.9) against the class
of morphisms which over each R" are in FibN'W of ASetsqy.

Example 1.21 (Smooth manifolds as simplicial presheaves). Consider a smooth mani-
fold. X € SmthMfds.
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(i) The manifold is incarnated as a simplicial presheaf (Def. 1.20) by the rule which assigns

. . 5 th . ..
to a Cartesian space the set of smooth functions R” oL X, regarded as a simplicially
constant simplicial set. This construction constitutes a full subcategory inclusion:

SmthMfds PSh (CartSp7 ASets)
X — (R” > (k] — SmthMfds(R" X))) .

(1.70)

(ii) For p,, € R" any point, the stalk of this presheaf is the set of germs of smooth functions
from an open neighbourhood of p, to X. This set depends, in general, on n € N, but does
not depend on the choice of p,.

Example 1.22 (Lie groupoids as simplicial presheaves). Consider a Lie groupoid
9 = (% = {%) (review in [Mackenzie (1987)][Moerdijk and Mrcun (2003)] [Mackenzie
(2005)]) hence a groupoid internal to smooth manifolds ¢ € Grpds(SmthMfds). Notice
that for each R" € CartSp there is an induced bare groupoid of smooth functions into the
component manifolds:

R" +— ¢(R") := (SmthMfds(R", %) = SmthMfds(R", %)) € Grpds(Sets).

The simplicial nerves (Ex. 1.3) of these mapping groupoids arrange into a simplicial
presheaf (Ex. 1.20) and this construction is the inclusion of a full subcategory, extend-
ing the full inclusion of smooth manifolds (1.70):

Grpds(Smtthds) —_— PSh(CartSp, ASets)
7 — (R" — N(g(R")))

Example 1.23 (Cech groupoids of open covers as simplicial presheaves). Let X be a

smooth manifold equipped with a cover by a set of open subsets {Ui P x }i e

(i) The Cech nerve of the open cover is the simplicial presheaf (Def. 1.20)

N({Ui}icr) € PSh(CartSp, ASets) (1.71)

whose k-cells over any R” are the smooth functions
(D)
N({Uikier) + (R, [K]) — SmehMfds(R", (1;0,)" ) (1.72)

into the (k + 1)-fold intersections of the patches U; in X:

k+1 Uit 1

(l_liUi)XX = (l_liUl‘) Xx~~~><x(|_|iUi)‘—>X. (1.73)

k+1 factors

This is, for each R”, a Kan complex (1.16) and as such is the nerve of the Lie groupoid
(Ex. 1.22) which is the smooth Cech-groupoid of the open cover:

N({Uibier) = N((0i0) xx (Li0) = (i) (1.74)
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(ii) For any point p, € R", the stalk of the Cech nerve (1.71) at Dn 1s the disjoint union over

the germs of smooth functions R” 2, X of the nerves of the pair groupoids on the subset
Iy(p,) C X of patches U; that contain ¢ (py).

(iii) Postcomposition with the inclusions (1.73) yields a canonical morphism of simplicial
presheaves from the cover’s Cech nerve (1.72) to the presheaf incarnation (1.70) of the
underlying manifold:

cW X

N({Ui}ier)

€ PSh(CartSp, ASetsqu )
(Rnﬂ(UiUi)Xyl) - (R"ﬂ(uiw)ka = x). (CartSp. ASetsqu)

(1.75)
On stalks, this map takes the nerve of the pair groupoid on the set of factorizations through

the patches U; of a the germ of a given smooth R” L X to that germ itself. Since nerves of
pair groupoids are contractible (1.18), this means that (1.75) is a weak equivalence in the
local model structure of Ex. 1.20.

This says that (Cech nerves of) open covers serve as resolutions of smooth manifolds in the
local model structure Ex. 1.20; in fact as cofibrant resolutions if the cover is “good”:

Proposition 1.23 (Dugger’s cofibrancy recognition [Dugger (2001), Cor . 94]). A
sufficient condition for 2 € PSh(CartSp, ASets) poj (Ex. 1.20) to be cofibrant (Nota. 1.1)
loc
is that in each simplicial degree k, the component presheaf X, is
(i) a coproduct (as presheaves, using Ex. 1.21) of Cartesian spaces: X ~ [[R";
iy
(ii) whose degenerate cells split off as a disjoint summand.

Example 1.24 (Good open covers are projectively cofibrant resolutions of smooth man-
ifolds). Prop. 1.23 applied to Ex. 1.23 says that the Cech nerve of an open cover is a
cofibrant resolution of the underlying manifold if the open cover is good, or rather: dif-
ferentiably good, in that each non-empty intersection of a finite number of its patches is
diffeomorphic to an open ball (namely, equivalently: to a Cartesian space):

(Ui X} isgood = @ N({Usbier) "5 X € PSh(CartSp, ASets) s

(1.76)
Notice that every smooth manifold admits a differentiably good open cover (which is a

somewhat subtle point that is traditionally being glossed over, for details see [Fiorenza
et al. (2012), Prop. A.1]).

Example 1.25 (Hom-complexes of simplicial presheaves).
(i) For 2° € PSh(CartSp, ASets) and (Def. 1.22) S € ASets (Ex. 1.1) there is the tensored
simplicial presheaf

% xS € PSh(CartSp, ASets)
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given by value-wise Cartesian product of simplicial sets:
Z xS : R" — Z(R")xS. (1.77)

(ii) For 2",/ € PSh(CartSp, ASets) the simplicial hom-complex from 2 to </ is the
simplicial set of morphisms of simplicial presheaves

simplicial mapping complex

Maps (2", «/) = PSh(CartSp, ASets) (2 x Ale], &/) € ASets. (1.78)

into o7 out of the tensoring (1.77) of 2~ with the simplicial simplices A[n] € ASets, n € N.
Its image in the classical homotopy category (Ex. 1.14) is the mapping space

Maps(2°, «/) € Ho(ASetsqy) - (1.79)

(iii) The (simplicially enriched) Yoneda lemma says that simplicial hom-complexes (1.78)
out of a Cartesian space (1.66) regarded as a simplicial presheaf via Ex. 1.21:

2 (R") ~ Maps(R", Z). (1.80)

Proposition 1.24 (Smooth «-Stacks). The fibrant objects (Nota. 1.1) in the local projec-
tive model structure (1.69), are to be called the smooth oo-stacks (or smooth oo-groupoids)

fib
SmoothStackse = (PSh (CanSp, AS etsQu) proj ) , (1.81)
loc

are precisely those simplicial presheaves which:

(i) are presheaves of eo-groupoids in that they take values in Kan complexes (1.16);

(ii) respect gluing of patches of good open covers of Cartesian spaces ( “satisfy descent”)
in that for each n € N and each good open cover {U,- — R”}ie] (Ex. 1.24) the following
map (1.82) of simplicial hom-complexes (1.78) — induced by precomposition with the com-
parison morphism (1.76) from the Cech nerve (1.75) — is a weak equivalence of simplicial
sets (Ex. 1.2):

Maps(p;}; 2)
—

Z (R") ~ Maps(R", Z) oW

Maps (N({Ui}iel), %) € ASetsgu.  (1.82)
Proof. By the discussion in [Dugger (2001), §5.1] the claimed condition characterizes the
fibrant objects in the left Bousfield localization of the global projective model category

(1.68) at the Cech nerve projections (1.75) By [Dugger (1998), Prop. 3.4.8] this left Bous-
field localization is the local model structure (1.69). O

Definition 1.25 (Homotopy category of smooth co-stacks). In view of Prop. 1.24, we
write
Ho(SmthStacks..) i= Ho(PSh(CartSp, ASets) y ) (1.83)
loc

for the homotopy category (Def. 1.8) of the local projective model category of simplicial
presheaves over CartSp (Example 1.20). We say that the objects of Ho(SmthStacks..)
(1.83) are smooth oo-stacks.
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Example 1.26 (Truncated smooth o-stacks [Sati and Schreiber (2020c), Ex. 3.18]).

(i) Those smooth co-stacks (Prop. 1.24) which take values in 2-coskeletal, hence 1-
truncated, Kan complexes (Prop. 1.19) are 1-groupoid valued, hence are smooth I-stacks
or just smooth stacks [Jardine (2001)][Hollander (2008)].

(ii) Those smooth oo-stacks which are O-truncated take values in sets and hence are sheaves
on CartSp. We call these smooth spaces. The concrete sheaves among these are the dif-
feological spaces ([Souriau (1980)][Souriau (1984)][Iglesias-Zemmour (1985)], see [Baez
and Hoffnung (2011)][Iglesias-Zemmour (2013)]).

smooth sets smooth groupoids
(smooth spaces) (smooth stacks)

PSh(CartSp, Sets)® . < PSh(CartSp, Sets)™ < PSh(CartSp, ASetscosk, )™

diffeological spaces

smooth co-groupoids
(smooth co-stacks)

< PSh(CartSp, ASets)fi®

Lemma 1.5 (o-Stackification preserves finite homotopy limits). The identity functors
constitute a Quillen adjunction (Def. 1.12) between the local and the global projective
model categories of Example 1.20:

id
-
PSh(CartSp, ASets) o Lu PSh (CartSp,ASets)pmj )
id
Moreover, this is such that the derived left adjoint functor (Prop. 1.13)
¢ Ho (PSh(CartSp,ASets)proj> DM . Ho(SmthStacks..) (1.84)

(the oo-stackification functor) preserves homotopy pullbacks (Def. 1.15).

Proposition 1.26 (Shape Quillen adjunction [Schreiber (2013), Prop. 4.4.8][Sati and
Schreiber (2021b), Example 3.18]). We have a Quillen adjunction (Def. 1.12)

Shp
PSh(CartSp, ASets) o Laqu ASetsqy
Disc
between the projective local model structure on simplicial presheaves over CartSp (Ex-
ample 1.20) and the classical model structure on simplicial sets (Example 1.2), hence a
derived adjunction (Prop. 1.13) between homotopy category of oo-stacks (Def. 1.25) and
the classical homotopy category (Example 1.14)

DShp
- >
Ho(SmthStackse) Lou Ho(ASetsqu)
-
DDisc

whose (underived) right adjoint sends a simplicial set to the presheaf which is constant on
that simplicial set:

Disc(S) = const(S) : (R" —S). (1.85)
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Homological algebra.

Example 1.27 (Projective model structure on connective chain complexes [Quillen
(1967), §11.4 (5.)]). The category ChainComplexes;® of connective chain complexes of
abelian groups (i.e. concentrated in non-negative degrees with differential of degree -1)
carries a model category structure (Def. 1.3) whose

W — weak equivalences are the quasi-isomorphisms (those inducing isomorphisms on
all chain homology groups)
Fib — fibrations are the morphisms that are surjections in each positive degree

Cof — cofibrations are the morphisms with degreewise injective kernels.

We write (ChainComplexes;;“) for this model category.

proj
More generally:

Example 1.28 (Projective model structure on presheaves of connective chain com-
plexes [Jardine (2003), p. 7]). The category of presheaves of connective chain com-
plexes over CartSp (1.66) carries the structure of a model category whose weak equiva-
lences and fibrations are objectwise those of (ChainComplexesi”)pmj (Ex. 1.27). We write

PSh(CartSp, ChainComplexes;,(')proj for this model category.
Proposition 1.27 (Dold-Kan correspondence [Dold (1958), Thm 1.9][Kan (1958)][Go-

erss and Jardine (1999), §II.2][Schwede and Shipley (2003a), §2.1]). Given Ao €
AADbGrps, its normalized chain complex

N(A)e € ChainComplexes;’
is the connective chain complex of abelian groups (Example 1.27) which in degree n € N is

the quotient of A, by the degenerate cells and whose differential is the alternating sum of
the face maps:

N(A)s = {N(A)n ‘= An/O(Ans1), O = é(q)fd,- C N(A)y —= N(A)n }

neN’
(1.86)
(i) This construction constitutes an adjoint equivalence of categories
N
. -
ChainComplexes;’ o~ AAbGrps (1.87)

(ii) such that simplicial homotopy groups of A € AAbGrps — SimplicialSet are identified
with chain homology groups of the normalized chain complex ([Goerss and Jardine (1999),
Cor. 111.2.5]):

Te(A) ~ Hy(NA). (1.88)
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Example 1.29 (Model structure on simplicial abelian groups [Quillen (1969),
§III.2][Schwede and Shipley (2003a), §4.1]). The category AAbGrps carries a model
category structure (Def. 1.3) whose

W — weak equivalences are the morphisms which are weak equivaleces as morphisms
in ASetsg, (Example 1.2)

Fib — fibrations are the morphisms which are fibrations as morphisms in ASetsq, (Ex-
ample 1.2)

In other words, this is the transferred model structure along the free/forgetful adjunction,
which thus becomes a Quillen adjunction (Def. 1.12):

Z[-]

AAbGrps Lou ASetsqy - (1.89)

proj
Proposition 1.28 (Dold-Kan Quillen equivalence [Schwede and Shipley (2003a),
§4.1][Jardine (2003), Lemma 1.5]). With respect to the projective model structure on
connective chain complexes (Example 1.27) and the projective model structure on simpli-
cial abelian groups (Example 1.29) the Dold-Kan correspondence (Prop. 1.27) is a Quillen
equivalence (Def. 1.16):

-y
~Qu AADbGrps

>0

=) broj (1.90)

(ChainComplexes proj »

where both functors preserve all three classes of morphims, Fib, Cof and W, separately.

Example 1.30 (Dold-Kan construction [Fiorenza et al. (2012), §3.2.3][Fiorenza et al.
(2013), §2.4]). (i) We write DK for the total right adjoint in the composite of the free
Quillen adjunction (1.89) and the Dold-Kan equivalence (1.90):

N Z[-]
~Qu AAbGIPS Lau ASetsqy - (1.91)
_—

(ii) This extends to a right Quillen functor on global projective model categories of

presheaves (Example 1.20, Example 1.28). whose right derived functor (Prop. 1.13) DDK
composed with the co-stackification functor (1.84) is thus of the form

(ChainComplexes;°) proj

derived
Dold-Kan construction

Ho <PSh(CartSp7 ChainComplexesf“) ) _ PP Ho (PSh(CaI‘tSp, ASets) )
%/ proj proj

tackified iL]“C co-stackification
co-stackifie
Dold-Kan construction

Ho(SmthStacks..)

and preserves homotopy pullbacks (by Lemma 1.5).
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Example 1.31 (Projective model structure on unbounded chain complexes [Hovey
(1999), Thm. 2.3.11]). The category ChainComplexes, of unbounded chain complexes of
abelian groups carries a model category structure (Def. 1.3) whose:

W — weak equivalences are the quasi-isomorphisms;

Fib — fibrations are the degreewise surjections.

We write (ChainCornplexesZ )proj for this model category.

Proposition 1.29 (Stable Dold-Kan construction). The Dold-Kan construction (Def.
1.30) lifts along the stabilization adjunction (Example 1.19) from connective to unbounded
chain complexes (Example 1.31), such as to make the following diagram commute:

Dold-Kan correspondence

DDK

/\

Ho ( (ChainComplexes> ") pmj) —= > Ho (AAbGrpspmj) — > Ho (ASetsQu)

. o

Ho ( (ChainComplexes,A ) proj ) = Ho ( (H Z)ModuleSpectra) - Ho (SequentialSpectraBF) .

DDKg

stable Dold-Kan construction

(1.92)
Here the right adjoint on chain complexes is the homological truncation from below:

]D)Q“’(...ivzi)vl ﬁ,voﬂvilﬁ...) — <~-~ini>Vli>ker(9,1)
(1.93)

Proof. (i) It is clear from inspection that the assignment (1.93) is right adjoint to the inclu-
sion of connective chain complexes, so that we have a pair of adjoint functors

(ChainComplexes, ) Lo (ChainComplexes; )

(1.94)

proj proj °

Moreover, it is immediate that this is a Quillen adjunction (Def. 1.12) between the projec-
tive model structure on connective chain complexes (Example 1.27) and that on unbounded
chain complexes (Example 1.31): Q% clearly preserves fibrations (using that those between
connective chain complexes need to be surjective only in positive degrees!) and clearly
preserves all weak equivalences. Finally, since all chain complexes in the projective model
structure are fibrant, we have that with Q> also DQ* is given by (1.93), via Example 1.10.

(ii) A Quillen adjunction of the form
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. -~ <~ .
(ChalnComplexesZ)pmj 1. (HZ)ModuleSpectra Lo, SequentialSpectragp
w
DK

(1.95)
is established in [Schwede and Shipley (2003b), §B.1], where:

(a) the first step is a Quillen equivalence (Def. 1.16) between the projective model struc-
ture on unbounded chain complexes (Example 1.31) and a model category of mod-
ule spectra over the Eilenberg-MacLane spectrum HZ [Schwede and Shipley (2003b),
§B.1.11];

(b) the second step is a Quillen adjunction [Schwede and Shipley (2003b), p. 37, item
ii)] to the Bousfield-Friedlander model structure (Example 1.18) whose right adjoint
assigns underlying sequential spectra; such that

(c) the composite right adjoint DK (1.95) further composed with Q* on spectra (1.63)
equals the composite of Q* on chain complexes (1.94) with the unstable Dold-Kan
construction (1.91):

Q” oDKgy ~ DKo Q”

(by immediate inspection of the construction in [Schwede and Shipley (2003b), p. 38-
39D).

(iii) By uniqueness of adjoints, this implies that the Quillen adjunction of the stable Dold-
Kan construction (1.95) is intertwined by the Quillen adjunctions involving Q% with the
Quillen adjunction of the unstable Dold-Kan construction (1.91), and hence the commuting
diagram of derived functors (1.29) follows (Prop. 1.13). O
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Chapter 2

Non-abelian cohomology theories

We make explicit the concept of general non-abelian cohomology (Def. 2.1 below) and of
twisted non-abelian cohomology (Def. 3.2 below), following [Simpson (1997b)][Simpson
(2002)][Toén (2002)][Sati et al. (2012)][Nikolaus et al. (2015a)][Nikolaus et al.
(2015b)][Fiorenza et al. (2020b)][Sati and Schreiber (2020c)]; and we survey how this
concept subsumes essentially every notion of cohomology known.

In the following, we make free use of the basic language of category theory and homo-
topy theory (for joint introduction see [Riehl (2014)][Richter (2020)]). For ¥ a category
and X,A € % a pair of its objects, we write

% (X,A) = Homg(X,A) € Sets 2.1

for the set of morphisms from X to A. These are, of course, contravariantly and covariantly
functorial in their first and second argument, respectively:

FX, - ¢(~,A

4 %— Sets & °P %— Sets . 2.2)

Basic as this is, contravariant hom-functors are of paramount interest in the case where
€ is the homotopy category Ho(C) (Def. 1.8) of a model category (Def. 1.3), such as
the classical homotopy category of topological spaces or, equivalently, of simplicial sets
(Example 1.14).

Definition 2.1 (Non-abelian cohomology). For X,A € Ho(ASetsq,) (Example 1.14) we
say that their hom-set (2.1) is the non-abelian cohomology of X with coefficients in A, or
the non-abelian A-cohomology of X, to be denoted:

map = cocycle
c

non-abelian

cohonuoogy I

H(X;A) := Ho(ASetsqu)(X,A) = X tomew= 4 (2.3)

coboundary

¢

map = cocycle
/ homotopy

51
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We also call the contravariant hom-functor (2.2)
H(—:;A) : Ho(ASetsq,) — Sets 2.4)

the non-abelian A-cohomology theory.

Example 2.1 (Ordinary cohomology). Forn € N and A a discrete abelian group, the or-
dinary cohomology (e.g. singular cohomology) in degree n with coefficients in A is equiv-
alently ([Eilenberg (1940), p. 243][Eilenberg and MacLane (1954), p. 520-521], review
in [Steenrod (1972), §19][May (1999), §22][Aguilar et al. (2002), §7.1, Cor. 12.1.20])
non-abelian cohomology in the sense of Def. 2.1

ordinary
cohomology

H"(—;A) ~ H(—;K(A,n)) 2.5)

with coefficients in an Eilenberg-MacLane space [Eilenberg and Mac Lane (1953)][FEilen-
berg and Mac Lane (1954)]:

Alk=n

2.
0|k#n. )

K(A,n) € Ho(ASetsqy) suchthat m(K(A,n)) = {

Example 2.2 (Traditional non-abelian cohomology). For G a well-behaved! topological
group, the traditional non-abelian cohomology H'! (—;G) classifying G-principal bundles,
is equivalently ([Steenrod (1951), §19.3][Roberts and Stevenson (2016), Thm 1.], review
in [Addington (2007), §5]) non-abelian cohomology in the general sense of Def. 2.1

classification of

principal bundles

H'(—;G) ~ H(—;BG) 2.7

with coefficients in the classifying space BG ([Milnor (1956)][Segal (1968)][Steenrod
(1968)][Stasheff (1971)], review in [Kochman (1996), §1.3][May (1999), §23.1] [Aguilar
et al. (2002), §8.3][Nikolaus et al. (2015b), §3.7.1]). The latter may be given as the homo-
topy colimit (in the classical model structure of TopSpg,, Example 1.1) over the nerve of
the topological group G (e.g. [Nikolaus et al. (2015a), Rem. 2.23]):

_—
BG ~ hc_)lim GXxG —(-)(-)—= G <e— x |. 2.8)
_—

Example 2.3 (Group cohomology and Characteristic classes). Conversely, the ordi-
nary cohomology (Example 2.1) of the classifying space BG (2.8) of a Lie group G with

!The technical condition is that G be well-pointed, which means that the inclusion * < G of the
neutral element is a closed Hurewicz cofibration, hence that (G,{e}) is an NDR pair, see [Baez and
Stevenson (2009)] for pointers and [Roberts and Stevenson (2016)] for details. All Lie groups are
well-pointed.
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coefficients in a discrete group A € Grps(Sets) (such as A = Z) is, equivalently:?
(i) the group cohomology of G;
(ii) the universal characteristic classes of G-principal bundles:

group
cohomology

H(BG;K(A,n)) ~ H"(BG;A) ~ HG,,(G; A) .

Example 2.4 (Non-abelian cohomology in degree 2). For a well-behaved topological 2-
group, such as the string 2-group String(G) (of a connected, simply connected semi-simple
Lie group G) [Baez et al. (2007)][Henriques (2008), Thm. 4.8][Nikolaus et al. (2013)], the
non-abelian cohomology H'(—; String(G)) classifying principal 2-bundles [Nikolaus and
Waldorf (2013)] with structure 2-group String(G) is, equivalently [Baez and Stevenson
(20091,

classification of
String-bundles

Hl(f;String(G)) ~ H(—;BString(G)) 2.9)

non-abelian cohomology in the general sense of Def. 2.1 with coefficients in the classifying
space BString(G).

Example 2.5 (Non-abelian gerbes). For G a well-behaved topological group, a non-
abelian G-gerbe [Giraud (1971)][Breen (2010)] is equivalently [Nikolaus e al. (2015a),
§4.4] a fiber 2-bundle associated to principal 2-bundles with a certain topological structure
2-group Aut(BG) (the automorphism 2-group of the moduli stack of G, see Rem. 2.3).
Hence, as in Example 2.4, G-gerbes are classified by non-abelian cohomology with coeffi-
cients in BAut(BG) [Nikolaus et al. (2015a), Cor 4.51]:

classification of

non-abelian gerbes

GGerbes(X),. ~ H'(X;Aut(BG)) ~ H(X;BAut(BG)).

Example 2.6 (Non-abelian cohomology in unbounded degree). For any co-group ¥
(see [Nikolaus et al. (2015a), §2.2][Nikolaus et al. (2015b), §3.5]), the non-abelian
cohomology H' (—; 54) classifying principal oo-bundles [Glenn (1982)][Jardine and Luo
(2006)][Nikolaus et al. (2015a)][Nikolaus et al. (2015b)] with structure co-group ¥ is,
equivalently [Wendt (2011)][Roberts and Stevenson (2016)],

classification of
non-abelian co-gerbes

H'(—%) ~ H(—;BY) (2.10)

non-abelian cohomology in the general sense of Def. 2.1 with coefficients in the classifying
space BY (see also [Stevenson (2012)]).

2 If G is a topological or Lie group, then the appropriate (continuous or smooth, respectively) group
cohomology of G is (by [Schreiber (2013), Thm. 4.4.36]) in general not that of the classifying space
BG, but of the universal moduli stack BG (Rem. 2.3) with coefficients in the higher stack B"A. How-
ever, for discrete coefficients A this reduces (by [Schreiber (2013), Prop. 4.4.35]) to the cohomology
of the geometric realization of BG, which, at least for Lie groups G, coincides (by [Schreiber (2013),
Prop. 4.4.30]) with that of the classifying space BG.
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Example 2.6 is, in fact, universal:

Proposition 2.2 (Connected homotopy types are higher non-abelian classifying spaces
[May (1972)][Lurie (2009a), 7.2.2.11], [Nikolaus et al. (2015a), Thm. 2.19][Nikolaus
et al. (2015b), Thm. 3.30, Cor. 3.34]). Every connected homotopy type A € Ho (ASetsQu)

(1.51) is the classifying space of a topological group, namely of its loop group® QA
A ~ B(QA) € Ho(ASetsqy)- (2.11)

This allows to make precise the core nature of non-abelian cohomology:

Remark 2.1 (From non-abelian to abelian co-groups). For A ~ BG (2.11), the c-group
structure on G is reflected by its weak homotopy equivalence G ~ QBG with a based loop
space.

e There is no commutativity of composition of loops in a generic loop space, and
hence this exhibits G as a non-abelian oo-group.

e But it may happen that A itself is already equivalent to a loop space, which
by (2.11) means that A ~ B(BG) =: B2G is a double delooping. In this case
G ~ Q(QA) =: Q%A is an iterated loop space [May (1972)], specifically a
double loop space; hence a braided oo-group ([Garzon and Miranda (1997),
§1][Garzoén and Miranda (2000), §6][Fiorenza et al. (2014b), Def. 4.28]). By the
Eckmann-Hilton argument [Eckmann and Hilton (1961/62), Thm. 1.12][Schlank
and Yanovski (2019)], this implies a first level of commutativity of the group op-
eration in G. Indeed, in the special case that such G is also O-truncated (1.55), it
implies that G is an ordinary abelian group.

e Next, it may happen that A ~ B3G is a 3-fold delooping, hence that G ~ Q3A
is a 3-fold loop space, hence a sylleptic oo-group (where the terminology follows
[Day and Street (1997), §5][Crans (1998), §4] see [Gurski and Osorno (2013),
§2.2] for relation to our context). This is one step “more abelian” than a braided
co-group.

o In the limiting case that G is an n-fold loop space for any n € N, hence an infinite
loop space [May (1977b)][Adams (1978)], it is as abelian as possible for an oo-
group. Such symmetric (in the monoidal co-category theoretic terminology of
[Lurie (2009b)]) or, we may say, abelian o-groups are the coefficients of abelian
cohomology theories, namely of generalized cohomology theories in the sense
of Whitehead (Example 2.10).

e The fewer deloopings an co-group G admits, the “more non-abelian” is the coho-
mology theory represented by BG.

3 A priori, the loop group is an A.-group, for which classifying spaces are defined as in [Nikolaus
et al. (2015a), Rem. 2.23], but each such is weakly equivalent to an actual topological group, see
[Nikolaus et al. (2015b), Prop. 3.35].
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non-abelian s-group | G ~ Q B G 7" (—) (Exp. 2.7)

braided co-group | G ~ Q?B%G non-abelian (-)

sylleptic co-group | G ~ Q3B3G cohomology
: G ~ Q"B"G

abelian co-group | G ~ Q*B>G || abelian cohomology | E"(—) (Ex. 2.10)

The most fundamental connected homotopy types are the n-spheres (all other are obtained
by gluing n-spheres to each other):

Example 2.7 (Cohomotopy theory). The non-abelian cohomology theory (Def. 2.1) with
coefficients in the homotopy types of n-spheres is (unstable) Cohomotopy theory [Borsuk
(1936)][Spanier (1949)][Peterson (1956)][Taylor (2012)][Kirby et al. (2012)]:

Cohomotopy

n'(—) = H(—S") ~ H'(—;Q8") forneN,.

(i) By Prop. 2.2, Cohomotopy theory classifies principal co-bundles (Example 2.6) with
structure oo-group of the homotopy type of the co-group QS".

(i) By Remark 2.1, Cohomotopy theory is a maximally non-abelian cohomology theory,
in that S” does not admit deloopings, for general n (it admits a single delooping for n =3
and arbitrary deloopings for n =0, 1).

Example 2.8 (Bundle gerbes). The classifying space (2.8) of the circle group U(1) is an
Eilenberg-MacLane space (2.6)

BU(1) ~ K(Z,2) € Ho(ASetsqu) -
Since U(1) is abelian, this space carries itself the structure of (the homotopy type of) a
2-group, and hence has a higher classifying space
B*U(1) := B(BU(1)) ~ K(Z,3) € Ho(ASetsqy)

in the sense of Example 2.4, which is an Eilenberg-MacLane space in one degree higher.
The higher principal 2-bundles with topological structure 2-group BU(1) are equivalently
[Nikolaus et al. (2015a), Rem. 4.36] known as bundle gerbes [Murray (1996)][Schweigert
and Waldorf (2011)]. Therefore, Example 2.6 combined with Example 2.1 gives the clas-
sification of bundle gerbes by ordinary integral cohomology in degree 3:

classification of
bundle gerbes

H'(—;BU(1)) ~ H(—;B*U(1)) ~ H* (- Z).
Example 2.9 (Higher bundle gerbes). In fact, Prop. 2.2 implies that, for all n € N,

B"'U(1) == B(B"U(1)) ~ K(Z,n+2) € Ho(ASetsqu) , (2.12)
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in the sense of Example 2.6. The higher principal bundles with structure (n + 1)-group
B"U(1) [Gajer (1997)][Fiorenza et al. (2012), §3.2.3][Fiorenza er al. (2013), §2.6] are
also known as higher bundle gerbes (for n =2 see [Carey et al. (1997)][Stevenson (2004)]).
On these coefficients, Example 2.6 reduces to the classification of higher bundle gerbes by
ordinary integral cohomology in higher degree:

classification of
higher bundle gerbes

Hl(—;B"U(l)) o~ H(—;B”HU(I)) ~ H" (-, 7).

More generally, the special case of Example 2.6 where the coefficient co-group happens
to be abelian is “generalized cohomology” in the standard sense of algebraic topology
(including cohomology theories such as K-theory, elliptic cohomology, stable Cobordism
theory, stable Cohomotopy theory, etc.):

Example 2.10 (Whitehead-generalized cohomology). For E a generalized cohomology
theory in the traditional sense of [Whitehead (1962)] (review in [Adams (1974)][Adams
(1978)][Kono and Tamaki (2006)]), Brown’s representability theorem ([Adams (1974),
§II1.6][Kochman (1996), §3.4]) says that there is a spectrum (“Q-spectrum”, Example 1.18)
of pointed homotopy types

{En € Ho(ASetsgy,) . By ——> QF,. 1 } . (2.13)
- n

such that the generalized E-cohomology in degree n is equivalently non-abelian cohomol-
ogy theory in the sense of Def. 2.1 with coefficients in E,:

generalized
cohomology

E"(-) ~ H(—E,). (2.14)
Often one is interested in the special case that the representing spectrum carries the struc-
ture of an E..-ring (review in [Baker and Richter (2004)][Richter (2022)]), in which case
E*(—) is amultiplicative cohomology theory (e.g. [Kono and Tamaki (2006), §2.6]) where,
in particular, the generalized cohomology groups (2.14) inherit ordinary ring-structure.

Example 2.11 (Topological K-theory). The classifying space (2.13) representing com-
plex K-cohomology theory KU [Atiyah and Hirzebruch (1959), §2] (review in [Atiyah
(1967)]) in degree 0 is [Atiyah and Hirzebruch (1961), §1.3]:

KUy ~ Z x BU, (2.15)

where

BU := limBU(n) (2.16)
is the classifying space (2.8) for the infinite unitary group (e.g. [Espinoza and Uribe
(2014)]). Hence for the case of complex K-theory, Example 2.10 says that:

topological
K-theory

KU(—) ~ H(—;Zx BU).
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Example 2.12 (Iterated K-theory). Given an E..-ring spectrum R (Ex. 2.10), one may
form its algebraic K-theory spectrum K (R) [Elmendorf et al. (1997), § VI][Blumberg e al.
(2013), §9.5][Lurie (2014)] and hence the corresponding generalized cohomology theory
(Example 2.10). Much like complex topological K-theory (Example 2.11) is the K-theory
of topological C-module bundles, so K (R)-cohomology theory is the K-theory of R-module
oo-bundles [Lind (2016)]. Specifically, for R = ku the connective spectrum of topological
K-theory, its algebraic K-theory K(ku) [Ausoni (2010)][Ausoni and Rognes (2002)][Au-
soni and Rognes (2012)] has been argued to be the K-theory of certain categorified complex
vector bundles [Baas et al. (2004)] [Baas et al. (2011)].

Moreover, if R is connective, then K(R) itself carries the structure of a connective
E.-ring spectrum (by [Schwinzl and Vogt (1994), Thm. 1][Elmendorf ez al. (1997), Thm.
6.1]), so that the construction may be iterated to yield iterated algebraic K-theories [Rognes
(2014)] K°2(R) := K(K(R)), K°3(R) := K(K(K(R))), et cetera.

For R = ku, this generalizes the above “form of elliptic cohomology” K (ku) to higher
degrees [Lind et al. (2020)]. By Example 2.10, we will regard these (connective) iterated
algebraic K-theories K°(ku) of the complex topological K-theory spectrum as examples
of non-abelian cohomology theories (that happen to be abelian):

iterated K-theory

Ko (ku)(—) ~ H(—; K (ku)).

Example 2.13 (Stable Cohomotopy). The generalized cohomology theory (Example
2.10) represented by the suspension spectra (Example 1.19) of n-spheres is called stable
Cohomotopy theory (e.g. [Stretch (1981)][Nowak (2003)]) or stable framed Cobordism
theory:

S"(=) = H(—;(E"S")o). (2.17)

Non-abelian cohomology operations.

Definition 2.3 (Non-abelian cohomology operation). For A{,A; € Ho (ASetsQu) (Ex-
ample 1.14), we say that a natural transformation in non-abelian cohomology (Def. 2.1)
from A|-cohomology theory to A;-cohomology theory (2.4) is a (non-abelian) cohomology
operation

¢ : H(—3A)) ——H(—A2) . (2.18)

By the Yoneda lemma, these are in bijective correspondence to morphisms of coefficients

A —2 > A, € Ho(ASetsqy) (2.19)

via the covariant functoriality of the hom-sets (2.2):

¢. = H(—; ) := Ho(ASetsqu)(—; 9). (2.20)

Example 2.14 (Cohomology of coefficient spaces parametrizes cohomology opera-
tions). By the Yoneda lemma (2.20) in Ho(ASetsQu) (Example 1.14), the set of all coho-
mology operations (Def. 2.3) from A-cohomology theory to A>-cohomology theory (2.18)
coincides with the non-abelian A;-cohomology (Def. 2.1) of the coefficients Ay:
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non-abelian A, -cohomology of A|
acting as cohomology operations 7)0 _

(=)o(=)
H(A1; A7) x H(—A)) ——————> H(—; Ap) (2.21)
acting by composition composition in Ho (ASetsQu).

Example 2.15 (Cohomology operations in ordinary cohomology). In specialization to
Example 2.1 the non-abelian cohomology operations according to Def. 2.3 reduce to the
classical cohomology operations in ordinary cohomology [Steenrod (1972)][Mosher and
Tangora (1968)] (review in [May (1999), §22.5]), such as Steenrod operations [Steenrod
(1947)][Steenrod (1962)] (review in [Kochman (1996), §2.5]). These operations admit re-
finements, involving rational/real form data, to differential cohomology operations [Grady
and Sati (2018b)].

Example 2.16 (Cohomology operations in generalized cohomology).

In specialization to Example 2.10, the non-abelian cohomology operations according
to Def. 2.3 on a Whitehead-generalized cohomology theory E®(—) regarded as a system of
non-abelian cohomology theories {E ”(7)} reduce to the traditional notion of unstable co-
homology operations on generalized cohomology theories [Boardman et al. (1995)], such
as the Adams operations in K-theory [Adams (1962)] (review in [Aguilar er al. (2002),
§10]) or the Quillen operations in stable Cobordism theory (review in [Kochman (1996),
§4,5]). For differential refinements see [Grady and Sati (2021b)].

Example 2.17 (Characteristic classes of principal co-bundles). For G a topological
group, the ordinary group cohomology of G (Example 2.3) parametrizes, via Example 2.14,
the cohomology operations from non-abelian cohomology classifying G-principal bundles
(Examples 2.2, 2.4, 2.6) to ordinary cohomology of the base space (Example 2.1):

group G-principal

s ordinar
characteristic Y

cohomology bundles s cohomology
X 1 . asses °
HE, (G5 A) x H'Y (= G) ————— H"(—A). (2.22)

This is the assignment of characteristic classes to principal bundles (principal co-bundles).
In the case when A = R, this is equivalently the Chern-Weil homomorphism, by Chern’s
fundamental theorem (see Remark 8.1 and Theorem 8.6 below).

Example 2.18 (Rationalization cohomology operation). For fairly general non-abelian
coefficients A (see Def. 5.2, Def. IV.1 for details), their rationalization* A —nf—=> LA
(Def. 5.2, 5.7 below) induces a cohomology operation (Def. 2.3) from non-abelian A-
cohomology theory (Def. 2.1) to non-abelian real cohomology (Def. 5.14 below):

non-abelian non-abelian
cohomology (n/]gk )* real cohomology
H(—:A) H(—;LgA). (2.23)
rationalization

4To make the connection to differential cohomology, we consider rationalization over the real num-
bers; see Remark 5.2 below.
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Remark 2.2 (Rationalization as character map). Up to composition with an equivalence
provided by the non-abelian de Rham theorem (Theorem 6.5 below), which serves to bring
the right hand side of (2.23) into neat minimal form, this rationalization cohomology oper-
ation is the character map in non-abelian cohomology (Def. IV.2 below).

Example 2.19 (Stabilization cohomology operation). For A € Ho(ASetsg, ), the non-
abelian cohomology operation (Def. 2.3) induced (2.20) by the unit of the derived sta-
bilization adjunction (Example 1.19) goes from non-abelian A-cohomology theory (Def.
2.1) to (abelian) generalized cohomology theory (Example 2.10) represented by the Oth
component space of the suspension spectrum of A:

non-abelian generalized
A-cohomology % A-cohomology

H(_’ A) stabilization H(_; (]D)ZOOA)O) '

Hence a lift through this operation is an enhancement of generalized cohomology to non-
abelian cohomology.

Example 2.20 (Non-abelian enhancement of stable Cohomotopy). The canonical non-
abelian enhancement (in the sense of Example 2.19) of stable Cohomotopy (Example 2.13)
is actual Cohomotopy theory (Example 2.7):

stable
Cohomotopy

S*(—).

Cohomotopy
n

T (7) stabilization

Example 2.21 (Hurewicz homomorphism and Hopf degree theorem). By definition of

Eilenberg-MacLane spaces (2.6) there is, for n € N, a canonical map

o)

§" —— K(Z,n) € Ho(ASetsqy),

which represents the element 1 € Z ~ 7, (K (z, n)) The non-abelian cohomology operation
(Def. 2.3) induced by this, from degree n Cohomotopy (Example 2.7) to degree n ordinary
cohomology (Example 2.1)

(n)
n"(~) —— H"(—:Z)
is the cohomological version of the Hurewicz homomorphism. The Hopf degree theorem
(e.g. [Kosinski (1993), §1X (5.8)]) is the statement that the non-abelian cohomology opera-
tion ei") becomes an isomorphism on connected, orientable closed manifolds of dimension
n. These maps, together with their differential refinements, are analyzed in more detail via
Postnikov towers in [Grady and Sati (2021a)].

Structured non-abelian cohomology.

Remark 2.3 (Structured non-abelian cohomology). More generally, it makes sense to
consider the analog of Def. 2.1 for the homotopy category Ho(H) of a model category
which is a homotopy topos [Toén and Vezzosi (2005)][Lurie (2009a)][Rezk (2010)].
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(i) This yields structured non-abelian cohomology [Simpson (1997b)][Simpson
(2002)][Toén (2002)][Sati et al. (2012)][Nikolaus et al. (2015a)][Nikolaus et al
(2015b)][Schreiber (2013)][Fiorenza et al. (2020b)][Sati and Schreiber (2020¢)]:

structured
beli: h 1 y topos

H(Z:A) := Ho(H)(Z ,A),

co-stacks

including the stacky non-abelian cohomology originally considered in [Giraud
(1971)][Breen (1990)] (“gerbes”, see [Nikolaus et al. (2015a), §4.4]), and, more gener-
ally, differential-, étale-, and equivariant- nonabelian cohomology theories (see [Sati and
Schreiber (2020c), p. 6]) based on co-stacks.

(ii) In good cases (cohesive homotopy toposes [Schreiber (2013)][Sati and Schreiber
(2020c), §3.11), the homotopy topos Ho(H) comes equipped with a shape operation down
to the classical homotopy category (Example 1.14):

homotopy topos Shp classical homotopy category
Ho(H) Ho(ASetsqu) (2.24)
H(Z;A) ——— H(Shp(2’); Shp(A))
nun-ah:llir:ndcl:jrtf.?molog, non-abcli::]:zhomulugy

which takes, for well-behaved group co-stacks G, the classifying stacks BG of G-principal
bundles to the traditional classifying spaces BG ~ Shp(BG) of underlying topological
groups (2.8). This gives a forgetful functor from structured non-abelian cohomology to
plain non-abelian cohomology in the sense of Def. 2.1. A classical example is the map from
non-abelian Cech cohomology with coefficients in a well-behaved group G to homotopy
classes of maps to the classifying space of G, in which case this comparison map is a
bijection (Example 2.2).

(iii) All constructions on non-abelian cohomology have their structured analogues, for in-
stance non-abelian cohomology operations (Def. 2.3) in structured cohomology

H(Z Ay~ H(2 Ay (2.25)

are induced by postcomposition with morphisms A 2, A, of coefficient stacks.

Ultimately, one is interested in working with structured non-abelian cohomology on
the left of (2.24). However, since this is rich and intricate, it behooves us to study its
projection into plain non-abelian cohomology on the right of (2.24). This is what we are
mainly concerned with here. But we provide in chapter 9 a brief discussion of non-abelian
differential cohomology on smooth co-stacks.
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Chapter 3

Twisted non-abelian cohomology

For ¢ any category and B € % any object, there is the slice category €/X, whose objects
are morphisms in % to X and whose morphisms are commuting triangles over X in %.
Basic as this is, hom-sets in the homotopy category Ho(C/B) (Def. 1.8) of a slice model
category c/B (Example 1.5) are of paramount interest:

The slicing imposes twisting on the corresponding non-abelian cohomology (Def. 2.1),
in that the slicing of the domain space serves as a twist, the slicing of the coefficient space
as a local coefficient bundle, and the slice morphisms as twisted cocycles.

Proposition 3.1 («o-Actions on homotopy types [Dror er al. (1980)][Prezma (2012),
§5][Nikolaus et al. (2015a), §4][Sharma (2019)][Sati and Schreiber (2020c), §2.2]).

For any A € Ho (ASetsQu) (Ex. 1.14) and G a topological group, homotopy-coherent ac-
tions of G on A are equivalent to fibrations p with homotopy fiber A (Def. 1.14) over the
classifying space BG (2.8)

A—=A)G (3.1)

J/p
BG.

Here
AJG ~ (AXEG)

'/ diagG

is the homotopy quotient (Borel construction) of the action.

Definition 3.2 (Twisted non-abelian cohomology [Nikolaus ez al. (2015a), §4][Fiorenza
et al. (2020b), (10)][Sati and Schreiber (2020c), Rem. 2.94]).

For X A € Ho(ASetsQu) (Def. 1.14) we say:

(i) A local coefficient bundle for twisted A-cohomology is an A-fibration p over a classify-
ing space BG (2.8) as in Prop. 3.1:

A——AJG
local coefficient \L p (3.2)

bundle
BG.

61
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(ii) A rwist for non-abelian A-cohomology theory on X with local coefficient bundle p over

BG is a map :
X ——>BG € Ho(ASetsqy) - (3.3)

(iii) The non-abelian t-twisted A-cohomology of X with local coefficients p is the hom-set
from 7 (3.3) to p (3.1)

cocycle

twisted c
non-abelian X — — —— — > A // G

c;humolugy /BG /
H¥(X:A) == Ho(aSetsgy”) (1,p) = § "\ <~ / (34)

local
BG coefficients
/ homotopy

relative BG
in the homotopy category (Def. 1.8) of the slice model category over BG (Example 1.5) of
the classical model category on topological spaces (Example 1.1).

Definition 3.3 (Associated coefficient bundle [Nikolaus er al. (2015a), §4.1][Sati and
Schreiber (2020c), Prop. 2.92]). Given a local coefficient A-fiber bundle p (3.2) and a
twist T (3.3) on a domain space X, the corresponding associated A-fiber bundle over X is
the homotopy pullback (Def. 1.15) of p along 7, sitting in a homotopy pullback square
(1.42) of this form:

associated local
A-:ishs::ll‘::l;dle E A// G cnel’ﬁcig;:hundle
* (hpb)
Rt pl homompg’ pullback ip (35)
T
X , BG
twist
We write
sections of section E associated
associated bundle /X . c 4 bundle
I'x(E))~ = Ho (TopSpQu> (idy,Rt*p) = - ¥ (3.6)
XZ—X

/ vertical
homotopy

for the set of vertical homotopy classes of section of the associated bundle, hence for the
hom-set, from the identity on X to the associated bundle projection, in the homotopy cat-
egory (Def. 1.8) of the slice model category over X (Example 1.5) of the classical model
category on topological spaces (Example 1.1).

Proposition 3.4 (Twisted non-abelian cohomology is sections of associated coefficient
bundle [Nikolaus et al. (2015a), Prop. 4.17]). Given a local coefficient bundle p (3.2) and
a twist T (3.3), the T-twisted non-abelian cohomology (Def. 3.2) with local coefficient in p
is equivalent to the vertical homotopy classes of sections (3.6) of the associated coefficient
bundle E (Def. 3.3):

twisted non-abelian sections of
cohomology associated bundle

HY(X:A) ~ Tx(E).. (3.7
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Proof. Consider the following sequence of bijections:

=Ho TopSpQu ) 7,p)

(
(TopSp ) Dr.idy , p)
(
(E

R

1

TopSpQu> idy ,D7*p)

Ho
Ho
Tx(E),...

Here the first line is the definition (3.4). Then the first step is the observation that every
slice object is the derived left base change (Ex. 1.7, Prop. 1.13) along itself of the identity
on its domain, by (1.28). With this, the second step is the hom-isomorphism (1.2) of the
derived base change adjunction D7) 4 R7*. The last line is (3.6). O

In twisted generalization of Example 2.1 we have:

Example 3.1 (Twisted ordinary cohomology with local coefficients). Let n € N, let
X € Ho (ASetsQu) (Ex. 1.14) be connected and consider a traditional system of local coef-
ficients [Steenrod (1943), §3] (see also [May (1977a)][Ando et al. (2010)][Grady and Sati
(2018¢c)])

IT; (X) —— AbGrps,

namely, a functor from the fundamental groupoid of X to the category of abelian groups.
Since the construction A — K(A,n) of Eilenberg-MacLane spaces (2.6) is itself functorial
and using the assumption that X is connected, this induces (see [Bullejos et al. (2003), Def.
3.1]) a local coefficient bundle (3.2) of the form

K(A,n) ——K(A,n) [ m(X) . (3.8)

1P

Bm (X)

Finally, write X = Bm;(X) for the classifying map (via Example 2.2) of the universal
connected cover of X (equivalently: for the 1-truncation projection of X). Then the -
twisted non-abelian cohomology (Def. 3.2) of X with local coefficients in p; (3.8) is equiv-
alently t-twisted ordinary cohomology, traditionally known as ordinary cohomology with
local coefficients t:

twisted
ordinary cohomology

H"(X;A) ~ H*(X;K(A,n)).

This is manifest from comparing Def. 3.2 with the characterization of cohomology with
local coefficients found in [Hirashima (1979), Cor. 1.3][Goerss and Jardine (1999), p.
332][Bullejos et al. (2003), Lemma 4.2].

Example 3.2 (Classification of tangential structure). Let X be a smooth manifold of
dimension n. Its frame bundle is an O(n)-principal bundle Fr(X) — X, whose class (a
diffeomorphism invariant of X)
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O(n)Bundles(X),, ———— H(X; BO(n)) (3.9)
[Fr(X)] o [Tt

gives, by Example 2.2, the class of a twist 7 (3.3) in the non-abelian O(n)-cohomology of
X.

Now for BG any connected homotopy type (Prop. 2.2) and for BG £ BO(n) any

map (equivalently the delooping of a morphism of eo-groups G — O(n) ), we get a local
coefficient bundle (3.2) with (homotopy-)coset space fiber [Fiorenza et al. (2020b), Lemma

2.7]:
o) )G —™0 g (3.10)
l”
BO(n).
The relative homotopy class of a homotopy lift of the frame bundle classifier g (3.2)
through this map p
g Cwemtssmane o
o @ € GTangentialStructures(X) (3.11)
BO(n)

is known a topological G-structure or tangential p-structure on X (e.g. [Kochman (1996),
§1.4][Galatius et al. (2009), §5][Sati and Schreiber (2020c), Def. 4.48]). For instance,
for p a stage in the Whitehead tower of O(n), this is, in turn, Orientation, Spin structure,
String structure, Fivebrane structure [Sati et al. (2012)] and higher structures (see [Sati
(2015)][Sati and Wheeler (2018)]): )

BFivebrane(n)
BString(n)

Fiv ebrane ¢
structure

Slrmg Bspln(n)
structure ¢

Spin

struclure Bso(n)
Onenl.llmn l/

BO(n)
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By comparison of (3.11) with (3.4) we see that tangential G-structures on X are clas-
sified by twisted non-abelian cohomology (Def. 3.2) with coefficients in (homotopy-)coset
spaces O(n) /G (3.10) and twisted by the class 75 of the frame bundle (3.9):

GTangentialStructures(X) ~ H™(X;0(n)/G). (3.12)

According to Prop. 2.2, this example is actually universal for 7g-twisted non-abelian coho-
mology.

As a special case of Example 3.1 and in twisted generalization of Examples 2.8, 2.9
we have:

Example 3.3 (Orientifold gerbes). Consider the action oyy(;) of Z; on the circle group
U(1) c C* given by complex conjugation. This deloops (see [Fiorenza et al. (2015a),
§4.4]) to an action Opnu(1) of Z, on the classifying spaces B"U(1) (2.8). By Prop. 3.1
there is a corresponding local coefficient bundle

B"U(1) — B"U(1) ) Z, (3.13)
J/O_B”U(l)
BZ,

Moreover, consider a smooth manifold X, with orientation bundle classified by

x % BZ, . Then the or-twisted cohomology (Def. 3.2) of X...

(i) ...with local coefficients in o2y (1) classifies what is equivalently known as Jandl gerbes
[Schreiber et al. (2007)][Gawedzki ef al. (2011)] or real gerbes [Hekmati ef al. (2019)] or
orientifold B-fields;

(ii) ...with local coefficients in opsyy(1) classifies what is equivalently known as topological
sectors of orientifold C-fields [Fiorenza et al. (2015a), §4.4].

More generally, one can consider twisted Deligne cohomology [Grady and Sati (2018c)] as
well as higher-twisted periodic integral- and Deligne-cohomology [Grady and Sati (2019a)]
(see also chapter 9).

Remark 3.1 (The Whitehead principle of non-abelian cohomology).

Let A € Ho(ASetsqy) be connected, so that A ~ BG (Prop. 2.2).

(i) If A is also n-truncated (1.56), then its Postnikov tower (Prop. 1.21) says that A is the
total space of a local coefficient bundle (3.2) of the form

K (7 (A),n) 22

A
o

A(n—1)~B(G(n—2))

with homotopy fiber an Eilenberg-MacLane space (2.6).

(ii) Accordingly, non-abelian cohomology with coefficients in A (Def. 2.1) is equivalently
the disjoint union, over the space of twists 7, (3.3) in non-abelian cohohomology with
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coefficients in A(n — 1), of T-twisted non-abelian cohomology (Def. 3.2) with coefficients
in K(m,(A),n):

non-abelian cohomology higher twisted
in higher degree ordinary cohomology

H(X;A) ~ || H"(X:K(m(A),n)). (3.14)
1,€H(X;A(n—1))
non-abcl‘i::lt:'l:umolugy
of lower degree

(iii) But notice that this is just the first step, and that iterating this unravelling yields un-
wieldy formulas:

first H(X;A) =~ |_| K(m:(A),n)),
Be M (XK @)

then H(X;A) ~ || H K(mu(A),n)) (3.15)
re U Hw (XK(mo(A)n-1)) '

rn16|_|H"2( nz(AnZ))
%, o €H (X;A(n-3)

etc.

(iv) Thus, non-abelian cohomology in higher degrees (Example 2.6) decomposes as a tower
of consecutively higher twisted but otherwise ordinary cohomology theories, starting with
a twist in non-abelian cohomology in degree 1. This phenomenon has been called the
Whitehead principle of non-abelian cohomology [Toén (2002), p. 8] and has been inter-
preted as saying that “nonabelian cohomology occurs essentially only in degree 1” [Simp-
son (1997a), p. 1].

(v) But the above formulas (3.14), (3.15), make manifest that there are two perspectives
on this phenomenon. On the one hand: non-abelian cohomology in higher degrees may be
computed by brute force as a sequence of consecutively higher twisted abelian cohomolo-
gies, with lowest twist starting in degree-1 non-abelian cohomology. On the other hand,
conversely: intricate such systems of consecutively twisted abelian cohomology theories
are neatly understood as unified by non-abelian cohomology.

(vi) Similarly, even though Postnikov towers do exist (Prop. 1.21) in the classical homotopy
category (Example 1.14), the latter is far from being equivalent to the stable homotopy
category (1.64) “up to twists in degree 1.

In twisted generalization of Example 2.11, we have:

Example 3.4 (Twisted topological K-theory). The classifying space KUy ~ Z x BU
(2.15) for complex topological K-theory (Example 2.11) is the fiber of a local coefficient
bundle (3.2) over K(Z,3) ~ B3U(1) (2.12):

KUy — KUy /BU(1)

v
B20(1) (3.16)
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For X —> BZU(I) a corresponding twist (3.3) (hence equivalently a bundle gerbe, by
Example 2.8), the corresponding twisted non-abelian cohomology (Def. 3.2) is twisted
complex topological K-theory [Karoubi (1968)][Donovan and Karoubi (1970)]:

twisted
topological K-theory

KU®(=) ~ HY(—;ZxBU). (3.17)
This is manifest from comparing (3.4) with [Freed et al. (2008), (2.6)]. Alternatively,
under Prop. 3.4, this is manifest from comparing the equivalent right hand side of (3.7)
with [Rosenberg (1989), Prop. 2.1] (using [Nikolaus et al. (2015a), Cor. 4.18]) or, more
directly, with [Atiyah and Segal (2004), §3][Ando et al. (2010), §2.1].

Generally, in twisted generalization of Example 2.10, we have:

Example 3.5 (Local coefficient bundle for twisted Whitehead-generalized cohomol-
ogy). Let R be an E.-ring spectrum (Ex. 2.10) and write GL (1,R) for its co-group of
units [Schlichtkrull (2004), §2.3][May and Sigurdsson (2006), §22.2][M. Ando, A. Blum-
berg, D. Gepner, M. Hopkins, and C. Rezk (2008), §3][Ando er al. (2014b), §2], defined
as the homotopy pullback (Def. 1.15) of the component space Ry = DQ™R (1.65) fibered
over its O-truncation (i.e. its 1-coskeleton (1.54)) to the ordinary group of units of this
ordinary ring of connected components:

co-group of units Eco-ring space
GL(1,R) —— Ry
l (hpb) \LI’O (3.18)
GL (1,79(Ro)) > mo(Ro)
ordinary group ordinary ring of
of units connected components

This makes GL (1,R) an co-group (as in Example 2.6) with group operation induced from
the multiplicative structure on Ry. The canonical action of GL (1,R) on Ry is given, via
Prop. 3.1, by a local coefficient bundle (3.2) of this form:

R() — (R())//GL(l,R)
lpR (3.19)
BGL(1,R) .

Proposition 3.5 (Twisted non-abelian cohomology subsumes twisted generalized co-
homology). For R an Ew-ring spectrum (Ex. 2.10), the twisted non-abelian cohomology
(Def. 3.2) with local coefficient bundle pg from Example 3.5 is, equivalently, twisted gen-
eralized R-cohomology in the traditional sense (e.g. [May and Sigurdsson (2006), §22.1]):

twisted Whi d twisted beli y
generalized cohomology with local pg-coefficients

R'(-) =~ HY(—;pg). (3.20)

Proof. Given any twist X —> BGL(1,R) (3.2), write P — X for the homotopy pullback
(Def. 1.15) along 7 of the essentially unique point inclusion:
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P— (PXRo) fl4GL(1,R) 2 E ——— Ry /GL(1,R)
i o wal (o) l/PR (3.21)
X ——— BGL(L,R) X ——— BGL(1,R)

This P is the GL (1, R)-principal co-bundle which is classified by 7, [Nikolaus ez al. (2015a),
Thm. 3.17], to which the coefficient bundle E (3.5) is GL (1, R)-associated [Nikolaus et al.
(2015a), Prop. 4.6], as shown on the right of (3.21). Consider then the following sequence
of natural bijections:

HY(X;Ro) ~Tx(E)

Ho(GL(1,R) Actions) (P; R)
Ho(RModules) (Mt; R)
RE(X) .

1

(3.22)

1

1

Here the first step is Prop. 3.4, while the second step is [Nikolaus et al. (2015a), Cor. 4.18].
The third step is [M. Ando, A. Blumberg, D. Gepner, M. Hopkins, and C. Rezk (2008),
(2.15)][Ando et al. (2014b), (3.15)], with M7 denoting the R-Thom spectrum of 7 [M.
Ando, A. Blumberg, D. Gepner, M. Hopkins, and C. Rezk (2008), Def. 2.6][Ando ef al.
(2014b), Def. 3.13]. The last step is [M. Ando, A. Blumberg, D. Gepner, M. Hopkins,
and C. Rezk (2008), §2.5] [Ando et al. (2014b), §1.4][Ando et al. (2014a), §2.7]. The
composite of these natural bijections is the desired (3.20). O

Example 3.6 (Higher Cohomotopy-twisted K-theory). For complex topological K-
theory R = KU (Ex. 2.11) with KUy = Z x BU (2.15) — where the Z-factor encodes the
virtual rank of vector bundles and the multiplicative operation in the ring structure cor-
responds to tensor product of vector bundles — the co-group of units (3.18) classifies the
virtual vector bundles of invertible rank in {+1} = GL(1,Z) C Z:

GL(1,KU) =~ ({£1} xBU), . (3.23)

(Here the subscript just indicates the co-group structure, now with respect to the multi-
plicative operation corresponding to tensor product of virtual vector bundles.) Since de-
looping B(—) shifts up homotopy groups by one, it follows that the homotopy groups of
BGL (1,KU), appearing in (3.19), are freely generated by the powers of the Bott generator
B € m(KU), shifted up in degree by one:
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Z ~ (B*) | n even

7. (KUp) ~ {

0 | nodd
(3.24)
Zz ‘ n=1
= m(GL(1,KU)) ~ S Z~(B%*) | n=2k+3
0 neven

It follows that, parameterized by any odd-dimensional sphere S+ for positive k € N,
there are exactly Z worth of higher twists of complex K-theory, up to equivalence, embod-
ied by the local coefficient bundles which are the homotopy pullback of (3.19) along the
classifying maps of the elements (3.24). The universal one among these is the pullback
along the classifying map for the suspended power of the Bott generator itself:

local coefficient bundle for universal local coefficient bundle
Cohomotopy-twisted K-theory for twisted complex K-theory

KUy — (KUp) /Q§*+! ——— (KUy) /GL(1,KU)

» (3.25)
L)%U ’ o lpKU
§oH] Sl pGL(1,KU)
Z(,B 2k )

By Def. 3.2, these local coefficient bundles encode higher twists of complex K-theory (Ex.
2.11) by classes in unstable/non-abelian Cohomotopy (Ex. 2.7) in degree 2k + 1:

twist in Cohomotopy ically-twisted ical K-theory

A] € 2 (x)  +  KU*X) = H*(X;KUj). (3.26)

This cohomotopically higher twisted K-theory has been considered in [Macdonald et al.
(2021), Def. 2.5].

In twisted generalization of Example 2.12, we have:

Example 3.7 (Twisted iterated K-theory). Letr € N, r > 1. By [Lind et al. (2020),
Prop. 1.5, Def. 1.7] and using Prop. 3.5, there is a local coefficient bundle (3.2) of the form

(K22 (ku)), —> ((KZ”Z(ku))O) JB¥1U(1) (3.27)

i’plng"l

B>U(1),

where K2"~2(ku)g is the Oth space in the spectrum (2.13) representing iterated K-theory
(Ex. 2.12) and B>'U(1) ~ K(Z,2r + 1) is the classifying space for bundle (2r — 1)-gerbes

(Ex. 2.9). This means that for X 5 B U(1) a classifying map for such a higher gerbe,
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the 7-twisted non-abelian cohomology (Def. 3.2) with local coefficients in (3.27) is equiv-
alently (still by Prop. 3.5) integrally twisted iterated K-theory according to [Lind et al.
(2020)]:

twisted
iterated K-theory

(Kot (k) *(=) == A (K (ko)

In twisted generalization of Example 2.7, we have:

Example 3.8 (Twisted Cohomotopy theory [Fiorenza er al. (2020b), §2.1]). Forn e N,
consider the canonical action of the orthogonal group O(n+ 1) on the homotopy type of
the n-sphere, via the defining action on the unit sphere in R*"!, which restricts along
the canonical inclusion O(n) < O(n + 1) to the defining action of O(n) on the one-point
compactification (R")cpt = §". By Prop. 3.1, this corresponds to local coefficient bundles
(3.2) for twisting Cohomotopy theory (Example 2.7):

§" —— §")0(n) —— §"JO(n+1)
le (hpb) l (3.28)
BO(n) ——— BO(n+1)
The classifying map BO(n) <, BAut(S") of py is the unstable J-homomorphism (e.g.

[Kono and Tamaki (2006), §4.4]). For X a smooth manifold of dimension d > n—+ 1, and
equipped with tangential O(n + 1)-structure (e.g. [Sati and Schreiber (2020c), Def. 4.48])

X ! BO
—
}* N /4
BO(d)

the 7-twisted non-abelian Cohomology (Def. 3.2) with local coefficients in (3.28) is
the tangentially twisted Cohomotopy theory of [Fiorenza et al. (2020b)][Fiorenza et al.
(2021b)][Sati and Schreiber (2021b)]:

(n+1)

tangentially twisted
Cohomotopy

nt(=) == H'(=5").
This twisted Cohomotopy theory in degree n = 4 encodes, in particular, the shifted flux
quantization condition of the C-field [Fiorenza et al. (2020b), Prop. 3.13] and the vanishing
of the residual M5-brane anomaly [Sati and Schreiber (2021b)]; while tangentially twisted
Cohomotopy in degree n = 7 encodes, in particular, level quantization of the Hopf-Wess-
Zumino term on the M5-brane [Fiorenza et al. (2021b)].

Twisted non-abelian cohomology operations. In generalization of Def. 2.3, we set:

Definition 3.6 (Twisted non-abelian cohomology operation). Given a transformation
of local coefficient bundles (3.2) presented (under localization (1.24) to homotopy types
(1.51)) as a strictly commuting diagram
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o
A )Gy ———— Ay |G,
o ' e TopSpqy : (3.29)
BG| ———— =BG,

pasting composition induces, ! for each twist X L. BG; (3.3),a map

0 HE(X:Ay) — 22OV per(x a,) (3.30)

of twisted non-abelian cohomology sets (Def. 3.2). We call these twisted non-abelian
cohomology operations.

Example 3.9 (Total non-abelian class of twisted cocycles). For any coefficient bundle
p (3.2) there is the tautological transformation (3.29) to its total space regarded as fibered
over the point:

AJ)G=———A)G

Py ¢

BG ——MMM > x.

The induced twisted non-abelian cohomology operation (3.30) goes from twisted cohomol-
ogy to non-twisted cohomology with coefficient in the total space:

HY(X; A) —2> H(X; A)/G). (3.31)

Example 3.10 (Hopf cohomology operation in twisted Cohomotopy [Fiorenza et al.

(2020b), §2.3]). The quaternionic Hopf fibration ST —hp> 8% is equivariant under the
symplectic unitary group Sp(2) ~ Spin(5), so that after passage to classifying spaces it
induces a morphism of local coefficient bundles (3.29) for twisted Cohomotopy (3.28) in
degrees 4 and 7:

Borel-equivariantized
quaternionic Hopf fibration

S7/sp(2) /5o 5*/Sp(2) (3.32)
J7l lh
BSp(2) BSp(2) .

Via (3.30), this induces for each Spin 8-manifold X equipped with tangential Sp(2)-
structure (Example 3.2)

'We postpone discussing the details of forming pasting composites to part V, where they are provided
by Def. V.2.
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T
X BSp(2) (3.33)
x//g//” _
TX Bi
BO(8)

a twisted non-abelian cohomology operation (Def. 3.6)

g /Sp(2))«

0 (x) R ety (3.34)
in twisted non-abelian Cohomotopy theory (Example 3.8). Lifting through the twisted non-
abelian cohomology transformation (3.34) encodes vanishing of C-field flux up to C-field
background charge [Fiorenza et al. (2020b), Prop. 3.14].

Example 3.11 (Twistorial Cohomotopy [Fiorenza er al. (2022), §3.2] ). The
equivariantized Hopf morphism (3.32) of coefficient bundles factors through Borel-
equivariantizations of the complex Hopf fibration i followed by that of the twistor fi-

bration ty
Borcl-cquivall'ifmiiz'cd Borcl'-cqui\vuriar'ltizcd
S7 S 2 complex Hopf fibration CP3 S 2 twistor fibration S4 S 2
Jsp(2) — Jsp(2) —— /sp(2)
Jgi ngl ijﬁ (3.35)
BSp(2) BSp(2) BSp(2)

The twisted non-abelian cohomology theory (Def. 3.2) with local coefficients in the bundle
appearing in this factorization is the Twistorial Cohomotopy of [Fiorenza et al. (2022)]

Twistorial
Cohomotopy

TT(=) 1= H(—CPY).

Via (3.30), the morphisms (3.35) induce, for each spin 8-manifold X equipped with tan-
gential Sp(2)-structure (3.33), twisted non-abelian cohomology operations (Def. 3.6)

tang. twisted - tang. twisted
7.Cohomotopy (he /Sp(2)) c{nfn"‘:;'”"l'“ (11 /Sp(2)) 4-Cohomotopy

7 e « ’ H . 4
" (X) TUX)s " (X) (3.36)

between tangentially twisted non-abelian Cohomotopy theory (Example 3.8) and Twistorial
Cohomotopy.
We turn to the differential refinement of this statement in chapter 12 below.
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Chapter 4

Dgc-Algebras and L..-algebras

We formulate (twisted) non-abelian de Rham cohomology (Def. 6.3, Def. 6.9) of differen-
tial forms with values in L..-algebras (Example 4.13) and prove the (twisted) non-abelian
de Rham theorem (Theorem 6.5, Theorem 6.15), as a consequence of the fundamental
theorem of dg-algebraic rational homotopy theory, which we recall (Prop. 5.6).

Here we fix notation and conventions for the following system of categories and func-
tors:

Def. 4.15

(LL,OAlgsZO'"”)Op ——— | SullModels;'

R, fin

J \L\‘ Def. 4.12

Def. 4.14

Def. 4.13 (é;;” Def. 4.10 Sym Def4.7
> [s) < <~ .
(LwAlgs:") P1C— | dgcAlgs:® 1 CochainComplexes:*°
GrdCr;lbt\‘/Algbri Def. 4.3 \L Gl’dd{/clrSpc
Sym
gcAlgs:’ 1L GrdVectSpz°
Def. 4.5 Def. 4.1

.1

Remark 4.1 (Homotopical grading). Our grading conventions, to be detailed in the fol-
lowing, are strictly homotopy theoretic, in that all algebraic data in degree n always corre-
sponds to homotopy groups in that same degree:

(i) Every graded-algebraic object discussed here corresponds, under the equivalences of ra-
tional homotopy theory laid out in chapter 5 below, to a rational space, such that algebraic
generators in degree n correspond to homotopy groups in the same degree n. Since homo-
topy groups of spaces are in non-negative degree n € N, all dg-algebraic objects discussed,
both homological as well as cohomological, we take to be concentrated in non-negative de-
gree. This implies that we take linear duality of (co)chain complexes (Def. 4.3) to preserve
the degree as opposed to changing it by a sign.

75
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(ii) In particular, our L..-algebras are in non-negative degree, hence are connective, nat-
urally accommodating (as in [Lada and Markl (1995)] [Buijs et al. (2011), §2.9]) the
rationalized Whitehead homotopy Lie algebras . (2X) ®, R of connected spaces X, with
their natural non-negative grading induced from that of the homotopy groups of QX. See
Prop. 5.11 and Prop. 5.13 below.

(iii) Accordingly, all Chevalley-Eilenberg (CE) dgc-algebras (Ex. 4.10) are taken to be in
non-negative degree, as usual, so that their generators in degree n correspond to dual ho-
motopy groups in degree n. For example, the CE-algebra model for an Eilenberg-MacLane
space K(Z,n) has a single generator which is in degree +n (Ex. 5.4).

Graded vector spaces.

Definition 4.1 (Connective graded vector spaces). (i) We write

GrdVectSp;° € Cats 4.2)

for the category whose objects are N-graded (i.e. non-negatively Z-graded) vector spaces
over the real numbers; and we write

GrdVectSp: "™ (= GrdVectSp:® € Cats 4.3)

r
for its full subcategory on those objects which are of finite rype, namely degree-wise finite-
dimensional.
(ii) For V € GrdVectSp:° and k € N, we write
vk e VectSp,

for the component vector space in degree k.

Example 4.1 (The zero-object in graded vector spaces). We write

0 € GrdVectSp;’ 4.4)

for the graded vector space which is the zero vector space in each degree. This is both the
initial as well as the terminal object (hence the zero object) in GrdVectSp;°.

Example 4.2 (Graded linear basis). For n,n,,---,n; € N a finite sequence of non-
negative integers, we write
(On, , Otpy -+, Oy, ) € GrdVectSp; "™

for the graded vector space (Def. 4.1) spanned by elements o, in degree n;, respectively.

Definition 4.2 (Tensor product of graded vector spaces). The category of GrdVectSp;°
(Def. 4.1) becomes a symmetric monoidal category under the graded tensor product given
by

Vew) = @ viewn.

ny+ny=k
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and the symmetric braiding isomorphism given by

oW

VW —————— =WV (4.5)
o_V.W
VIRWE —— s W Y™
w = w
(V,W) — (71)}1]}12 . (va)
We denote this by
(GrdVectSpEo, ®, G) € SymmetricMonoidalCategories . (4.6)

Definition 4.3 (Degreewise linear dual). For V € GrdVectSp: "™ (Def. 4.1) we write

R

VvV € GrdVectSpz*™

R

for its degree-wise linear dual: !
(V¥)E = (v @7
Definition 4.4 (Degree shift). For V € GrdVectSp;® (Def. 4.1) we write

bV € GrdVectSp;’ 4.8)

for the result of shifting degrees up by 1:

Vel k>
(bV)k = [ k=1,
0 |k=0.

Graded-commutative algebras.

Definition 4.5 (Graded-commutative algebras). We write

gcAlgsz® = CommMonoids(GrdVectSpfeo,®,0') € Cats 4.9)

for the category whose objects are non-negatively Z-graded, graded-commutative unital
algebras over the real numbers (hence commutative unital monoids with respect to the
braided tensor product of Def. 4.2); and we write

gcAlgs: "™ C— gcAlgs;® € Cats (4.10)

for its full sub-category in those objects which are of finite type, namely degree-wise finite
dimensional.

I'This is in contrast to the intrinsic duality (—)* in the monoidal category of graded vector spaces

in unbounded degree (not considered here), which instead goes along with inversion of the degree:
(V*)k — (V’k)*.
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Definition 4.6 (Underlying graded vector space). We write

GrddVetrSpe

gcAlgs;® ———— > GrdVectSpz’ 4.11)

for the functor on graded algebras (Def. 4.5) that forgets the algebra structure and remem-
bers only the underlying graded vector space (Def. 4.1).

Example 4.3 (Free graded-commutative algebras). For V € GrdVectSpz° (Def. 4.1),
we write

Sym(V) € gcAlgs:’ 4.12)

for the graded-commutative algebra (Def. 4.5) freely generated by V, hence that whose
underlying graded vector space (4.11) is

GrddVetrSpe(Sym(V)) = R @&V & (VOV) ;5000 & (VOVEV) g0 q) @ -

where the symmetric groups Sym(n) act via the braiding (4.5).

Example 4.4 (Graded Grassmann algebra). ForV &€ GrdVectSp:® (Def. 4.1), we write

A®V := Sym(bV) € geAlgs:’

for the free graded-commutative algebra (Def. 4.3) on V shifted up in degree (Def. 4.4);
and we call this the graded Grassmann-algebraon'V.

Example 4.5 (Graded polynomial algebra). For ny,n;,---,n; € N a finite sequence of
non-negative integers, we write

>0,fin

R[0tn,, Cny o+ Q| = Sym<<a,,,,ocn2,-~-,ank>) € geAlgs?

for the free graded-commutative algebras (Def. 4.3) the graded vector space spanned by
the oy, (Def. 4.2).

Remark 4.2 (Incarnations of Grassmann algebras). With these notation conventions
from Examples 4.3, 4.4, 4.5, an ordinary Grassmann algebra on k generators is equivalently:

A®(RY) = Sym(bRY) = R[6{V, 6% ... 017
Cochain complexes.
Definition 4.7 (Connective cochain complexes). We write

CochainComplexes:’ € Cats

for the category of cochain complexes (i.e. with differential of degree +1) of real vector
spaces in non-negative degree.
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Definition 4.8 (Underlying graded vector space). We write

GrddVetrSpe

CochainComplexes;° GrdVectSpz*° (4.13)

for the forgetful functor on connective cochain complexes (Def. 4.7) which forgets the
differential and remembers only the underlying connective graded vector space (Def. 4.1).

Definition 4.9 (Tensor product on cochain complexes). The tensor product and braiding
of graded vector spaces from Def. 4.2 lifts, through (4.13), to a tensor product and braiding
on CochainComplexes;® (Def. 4.7), making it a symmetric monoidal category:

(CochainComplexes;",@,G) € SymmetricMonoidalCategories . (4.14)

Differential graded commutative algebras.

Definition 4.10 (Connective differential graded commutative algebras [Gelfand and
Manin (1996), V.3.1]). We write

>0
R

dgcAlgs:® := CommMonoids(CochainComplexes;’,®,0) € Cats

for the category whose objects are differential-graded, graded-commutative, unital alge-
bras over the real numbers concentrated in non-negative degrees (hence commutative unital
monoids in the symmetric monoidal category of Def. 4.9).

Definition 4.11 (Underlying graded-commutative algebra). We write

GrddCmmttvAlgbr

dgcAlgs:’ gcAlgs:’ (4.15)

for the functor on dgc-algebras (Def. 4.10) that forgets the differential and remembers only
the underlying graded-commutative algebra (Def. 4.5).

Definition 4.12 (Free differential graded algebras). For V* in CochainComplexes:’
(Def. 4.7) we write
Sym(V*®) € dgcAlgs:’

for the free differential graded-commutative algebra on V*, (Def. 4.10), hence whose un-
derlying graded-commutative algebra algebra (4.15) is as in Example 4.3.

Example 4.6 (Initial algebra). The real algebra of real numbers, regarded as concentrated
in degree-0

R € geAlgs:® & dgcAlgs:*
is the initial object: For any other A € gcAlgs:’ (Def. 4.9) or € dgcAlgs:® (Def. 4.10) there

. . L
is a unique morphism R CEs 4
(because our algebras are unital and homomorphims need to preserve the unit element).
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Example 4.7 (The terminal algebra). We write

0 € geAlgs:® &——— dgcAlgs;® (4.16)

for the unique graded-commutative algebra (Def. 4.5) or dgc-algebra (Def. 4.10) whose un-
derlying graded vector space (Def. 4.6) is the zero-vector space 2 (4.4). This is the terminal

object 3 in gcAlgsz®: For every A € gcAlgsZ, there is a unique morphism A ..

Example 4.8 (Product and co-product algebras). In the categories gcAlgs:° (Def. 4.5)
and dgcAlgs:° (Def. 4.10):

(i) the coproduct is given by the tensor product (Def. 4.2),

(ii) the product is given by the direct sum

on underlying graded vector spaces (Def. 4.6).

(The first follows by [Johnstone (2002), p. 478, Cor. 1.1.9], while the second holds since
(4.11) is aright adjoint.)

Example 4.9 (Smooth de Rham complex (e.g. [Bott and Tu (1982)])). For X be a smooth
manifold, its de Rham algebra of smooth differential forms is a dgc-algebra in the sense of
Def. 4.10, to be denoted here:

Qr(X) € dgcAlgs:’.

Example 4.10 (Chevalley-Eilenberg algebras of Lie algebras). For (g,[—,—]) a finite-
dimensional real Lie algebra, its Chevalley-Eilenberg algebra is a dgc-algebra (Def. 4.10):

CE(g) := (/\'g*, d‘/\lg* = [f,f}*) € dgcAlgs:’

with underlying graded-commutative algebra (Def. 4.5) the Grassmann algebra on the
linear dual space g* (Def. 4.4, Remark 4.2), and with differential given on Alg* by the
linear dual of the Lie bracket and necessarily extended from there to all of A®g* by the
graded Leibniz rule.

More explicitly, for {v, }Si:mlR(g ) a linear basis for the underlying vector space of the

Lie algebra
9 =~ (.2, ,Vdim(g)) » (4.17)
with Lie brackets
[Va,vp] = fapve, for structure constants £, € sR (4.18)
we have
CE(g) ~ R[6",0%,...01 ™)1 (@0 = f,,c0) n0[),  (4.19)

2Notice that the algebra 0 (4.16) is indeed a unital algebra (4.9).
3Beware that the corresponding statement in [Gelfand and Manin (1996), p. 335] is incorrect.
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which means, for instance, that in this dg-algebra we have relations such as

d(0 70y = (a0/)) n6; —0{" A (a0)")
— falblcl el(ﬂl) A el(bl) A 91(02) _fagbgcz 91(01) A 91(a2> A 91(b2>

etc.
Using such manuipulations, one readily observes that the Jacobi identity condition on
the Lie bracket [—, —] is equivalent to the condition that the differential d := [—, —|* squares
to zero. This means that (4.19) being a dgc-algebra is actually equivalent to (g,[—,—])
being a Lie algebra.
This construction is evidently contravariantly functorial and constitutes a full subcate-
gory inclusion
B (dgeAlgs:®)P

LieAlgebras , (4.20)

R, fin

meaning that, in addition, homomorphisms of Lie algebras are in natural bijection to dgc-
algebra morphisms between their CE-algebras.

This observation is the golden route to approaching L..-algebras:
L..-algebras.

Definition 4.13 (Chevalley-Eilenberg algebras of L..-algebras [Lada and Markl (1995),
Thm . 2.3][Sati et al. (2009), Def. 13][Buijs et al. (2011), §2]). In direct generalization
of (4.20), consider those A € dgcAlgs:’ (Def. 4.10) whose underlying graded-commutative
algebra (4.15) is free (Example 4.3, Remark 4.2) on the degreewise dual bg" (Def. 4.3) of
the degree shift bg (Def. 4.4) of some connective finite-type graded vector space (Def. 4.1)

g € GrdVectSpz™ 4.21)
in that
A= (A"gY,d) := (Sym(bg"),d) € dgcAlgs:’. (4.22)
In this case the differential d restricted to A g¥ defines, under linear dualization, a sequence
of n-ary graded-symmetric multilinear maps {—,---,—} on g:
d‘/\'gv(_) = {-r+{--r+{---Fr+- (4.23)
AlgY d Alg¥ e A2gY & A e ... =pgY = Sym(bg\/)7

and the condition d od = 0 imposes a sequence of compatibility conditions on these brack-
ets, generalizing the Jacobi identity in Example 4.10. The corresponding graded skew-
symmetric n-ary brackets ([Lada and Stasheff (1993), (3)])

[ar, - ,an] = (—1)y"Lmpdegl@) g o g1 (4.24)
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subject to these conditions give g the structure of an L.-algebra (or strong homotopy Lie

algebra):
(g ’ [7}7 [73 7]3 [75 ) 7}7 o ) € LooAlgSé(:m ) (425)
which makes A in (4.22) its Chevalley-Eilenberg algebra:
CE(g) = (/\.g\/’d = {7}*+{777}*+{77777}* +)
(4.26)

(Sym(bg"), dcE) -

This construction constitutes a full subcategory inclusion

LooAlgs:t, > (dgeAlgs:) P . 4.27)

R, fin

into the category of dgc-algebras of the category of connective finite-type L..-algebras, with
the homotopy-correct morphisms between them (known as “weak maps” [Lada and Markl
(1995), Rem. 5.4], “sh maps” [Merkulov (2004), §2.11] or “L..-morphisms” [Kontsevich
(2003), p. 12]).

Example 4.11 (Differential graded Lie algebras). A differential graded Lie algebra is
an L.-algebra (4.25) whose only possibly non-vanishing brackets are the unary bracket
d := [—] (its differential) and the binary bracket [—,—] (its graded Lie bracket). In further
specialization, a plain Lie algebra (Example 4.10) is an L..-algebra/dg-Lie algebra concen-
trated in degree O:

LieAlgebras, . = DiffGradedLieAlgebras? = L., Algs2° . (4.28)

R, fin R, fin R, fin

Example 4.12 (Line Lie n-algebra). For n € N, the line Lie (n+ 1)-algebra is the L-
algebra (Def. 4.13)

b"R € LoAlgs:" (4.29)

R, fin

whose Chevalley-Eilenberg algebra (4.26) is the polynomial dgc-algebra (Example 4.14)
on a single closed generator in degree n+ 1:

CE(b"R) := Rlegs1]/(dcprs =0). (4.30)

More generally, for V € VectSpS“, we have

bV >~ @ 'R € L.Algs:) ,
dim(V)

v dcl, =0, 4.31)
with CE(b"V) ~ R[c), | ci, . et/ :
dc™™ =0

n+l T

Example 4.13 (String Lie 2-algebra [Baez er al. (2007), §5][Henriques (2008),
§1.2][Fiorenza et al. (2014b), App.]). Let g € LieAlgebras, . be semisimple (such as
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g=su(n+1),s0(n+3), for n € N), hence equipped with a non-degenerate, symmetric,
g-invariant bilinear form (“Killing form”)

g®g g R . 4.32)
Then the element
H = <7a [77 7}> € CE(Q)

in the Chevalley-Eilenberg (4.10) is closed (is a Lie algebra cocycle)

du = 0.

In terms of a linear basis {v,} (4.17) with structure constants {f,} (4.18) and inner prod-
uct kg = (v4,vp) we have, in terms of (4.19):

wo= fukec 09 n0" Aol
Hence we get an L..-algebra (Def. 4.13)

stringg € LoAlgs;] (4.33)

R, fin

with the following Chevalley-Eilenberg algebra (4.26):

CE(stringy) :== R dby = f% ke 81 A6 A0 |- (4.34)
—_— ——m

{ef‘}] ) a6l = 15,0{" nof®
=u

2
This is known as the string Lie 2-algebra, since it is [Baez et al. (2007)][Henriques (2008)]
the L..-algebra of the String 2-group of Ex. 2.4.

Sullivan models and nilpotent L..-algebras.

Example 4.14 (Polynomial dgc-algebras). For A € dgcAlgs:® (Def. 4.10), and

pe At cA, dpu =0 (4.35)

a closed element of homogeneous degree n + 1, we write

Aloy]/(daw=p ) € dgeAlgs;’ (4.36)

for the dgc-algebra obtained by adjoining a generator ¢, of degree n to the underlying
graded-commutative algebra (4.15) of A and extending the differential from A to A [Otn] by
taking its value on the new generator to be . The polynomial dgc-algebra (4.36) receives
a canonical algebra inclusion of A:

A Al /(d oy =p) . 4.37)

Example 4.15 (Multivariate polynomial dgc-algebras). Let A € dgcAlgs:® (Def. 4.10),
u(]) eamtl 4 u“) = 0, with corresponding polynomial dgc-algebra (4.36) as in Example
4.14. Then, for
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u® e alalV)/(@all) = M), au® =o

another closed element of some homogeneous degree 1, + 1, in the new algebra (4.36) we
may iterate the construction of Example 4.14 to obtain the bivariate polynomial dgc-algebra
over A, to be denoted:

] (a0l =2
A/ (1) = ) ) e = ).

1
O, dalsx) = Hn,

Iterating further, we have multivariate polynomial dgc-algebras over A, to be denoted as

follows:
af,f) , dan(f) =u®
Al / : € dgeAlgs>” (4.38)
a() d 2 _ @2
" ny =N,
] \doh) =
with
ay
u e A o, forl <r<k.
otV

These multivariate polynomial algebras (4.38) receive the canonical inclusion (4.37) of A:

(X;Sf) ) d(X,(,f) = I‘l<k>7
ia .
A" / - , (4.39)
Oy dOCn(lz) =u®,
06;(1.1) doc,(”l) :/,t“)

these being the composites of the stage-wise inclusions (4.37).

Definition 4.14 (Semifree dgc-Algebras/Sullivan models/FDAs).  The multivariate
polynomial dgc-algebras of Example 4.15 are sometimes called (i) semi-free dgc-algebras
over A (since their underlying graded-commutative algebra (4.15) is free, as in Example
4.3), but they are traditionally known (ii) in rational homotopy theory as relative Sullivan
models (due to [Sullivan (1977)], review in [Félix et al. (2001), II][Menichi (2015)][Félix
and Halperin (2017)]), or, (iii) in supergravity theory (following [van Nieuwenhuizen
(1983)][D’ Auria and Fré (1982)]), as FDAs* [Castellani er al. (1991)], (for translation

4Beware that “FDA” in the supergravity literature is meant to be short-hand for “free differential alge-
bra”, which is misleading, because what is really meant are not free dgc-algebras as in Example 4.12
(in general) but just “semi-free” dcg-algebras, only whose underlying graded-commutative algebras
(4.15) is required to be free (Example 4.3).
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see [Fiorenza et al. (2015¢)][Fiorenza et al. (2017)][Fiorenza et al. (2018)][Huerta et al.
(2019)][Braunack-Mayer et al. (2019)][Fiorenza et al. (2019)]). Here we write:

SullModels;' < SullModels, “—— dgcAlgs:* (4.40)

R

for, from right to left, (a) the full subcategory of connective dgc-algebras (Def. 4.10) on
those which are isomorphic to a multivariate polynomial dgc-algebra over R, as in Example
4.15 (i.e., the ordering of the generators in (4.38) is not part of the data of a Sullivan model,
only the resulting dgc-algebra); and (b) for the further full subcategory on those Sullivan
model that are generated in positive degree > 1.

Example 4.16 (Polynomial dgc-algebras as pushouts). For A € dgcAlgs:° (Def. 4.10)
the polynomial dgc-algebras over A (Def. 4.14) are pushouts in dgcAlgs:° of the following
form:

Oy Oy
ey Oy, d oy = Cn+l)
Alo)/(doty = p) <———R
[O{n]/( Oy ,U,) l:c.n+1:|/<dcn+l =0
i (po) o
1 (4.41)
Cn+1
A ]R[C,H_]}/(dcn-&-l = 0)
Me—Cpp

Here on the right we have multivariate polynomial dgc-algebras (Example 4.15) over R
(Example 4.6) as shown. The horizontal morphisms encode the choice of u € A (4.35) and
the left vertical morphism is the canonical inclusion (4.37).

Example 4.17 (Chevalley-Eilenberg algebras of nilpotent Lie algebras). Beware that
not every Lie algebra g has Chevalley-Eilenberg algebra (Example 4.10) which satisfies the
stratification in the Definition 4.15 of multivariate polynomial dgc-algebras.

e (i) For instance, the Lie algebra su(2) has
CE(su(2)) = R[91,92,93}/(d 6 = Zs,»jkejAek)
ik

and no ordering of {1,2,3} brings this into the iterative form required in (4.38).

e (ii) Instead, those Lie algebras whose CE-algebra is of the form (4.38) are pre-
cisely the nilpotent Lie algebras.

In generalization of Example 4.17, we may say (by [Berglund (2015), Thm 2.3] this
matches [Getzler (2009), Def. 4.2]):

Definition 4.15 (Nilpotent L..-algebras). An L.-algebra (4.25) is nilpotent if its CE-
algebra (Def. 4.13) is a multivariate polynomial dgc-algebra (Example 4.15), hence is in
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the sub-category of SullModels; (4.40):

LoAlgsz? - (SullModels, )™ (4.42)
(pb) \[
LoAlgs:? ——F (dgeAlgs:®)™®

In fact, from (4.22) it is clear that every connected Sullivan model, hence with generators
in degrees > 1, is the Chevalley-Eilenberg algebra of a unique nilpotent L..-algebra, so that
the defining inclusion at the top of (4.42) further restricts to an equivalence of homotopy
categories:

L.Algs;®" —— - (SullModels; ). (4.43)

R, fin

Homotopy theory of connective dgc-Algebras. We recall the homotopy theory of connec-
tive differential graded-commutative algebras, making free use of model category theory
[Quillen (1967)]; for a review see [Hovey (1999)][Lurie (2009a), A.2] and chapter 1.

Definition 4.16 (Homotopical structure on connective cochain complexes). Consider
the following sub-classes of morphisms in the category CochainComplexes;° (Def. 4.7):
(i) W — weak equivalences are the quasi-isomorphisms;

(ii) Fib — fibrations are the degreewise surjections;

(iii) Cof — cofibrations are the injections in positive degrees.

We call this the injective homotopical structure on CochainComplexes; ‘.

Proposition 4.17 (Injective model structure on connective cochain complexes [Hess
(2007), p. 6]). Equipped with the injective homotopical structure of Def. 4.16 the category
of CochainComplexes:® (Def. 4.7) becomes a model category (Def. 1.3) which is right
proper (Def. 1.4). We denote this by:

(CochainComp]exesi")mj € ModelCategories .

Proof. The proof of the model structure itself is formally dual to the proof of the projective
model structure on connective chain complexes [Quillen (1967), I1.4][Goerss and Schem-
merhorn (2007), Thm. 1.5]; it is spelled out in [Dungan (2010), Thm. 2.4.5]. (Here we
are using that for modules over a field of characteristic zero, as in our case, the condition
that kernels of epimorphisms be injective is automatic.) A proof of right properness with
respect to degreewise surjections is spelled out in [Strickland (2020), Prop. 24]. O

Definition 4.18 (Homotopical structure on connective dgc-algebras [Bousfield and Gu-
genheim (1976), §4.2][Gelfand and Manin (1996), §V.3.4]). Consider the following sub-
classes of morphisms in the category of dgcAlgs:° (Def. 4.10):

(i) W — weak equivalences are the quasi-isomorphisms;

(ii) Fib — fibrations are the degreewise surjections;

We call this the projective homotopical structure on dgcAlgebrasiO.
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Proposition 4.19 (Model structure on connective dgc-algebras). Equipped with the
homotopical structure from Def. 4.18, the category of dgcAlgs:’ (Def. 4.10), becomes a
model category (Def. 1.3) which is right proper (Def. 1.4), in fact this is the case over any
ground field k of characteristic 0.

(dgcAlgs;2 ") € ModelCategories . (4.44)

trinj
Proof. The model structure itself is due to [Bousfield and Gugenheim (1976), §4.3], the
proof is spelled out in [Gelfand and Manin (1996), V.3.4]. Right properness follows from
the right properness of the injective model structure on cochain complexes (Prop. 4.17)
since the free/forgetful adjunction (4.45) implies that underlying pullbacks of dgc-algebras
are pullbacks of the underlying cochain complexes. O

Proposition 4.20 (Quillen adjunction between dgc-algebras and cochain complexes).
The adjunction (4.1) between dgcAlgs:® (Def. 4.10) and CochainComplexes:® (Def. 4.7) is
a Quillen adjunction (Def. 1.12) with respect to the model category structures from Prop.
4.17 and Prop. 4.19:

Sym

-
(dgeAlgs:®) Lou (CochainComplexes:*)

trinj

i - (4.45)
underlying

Proof. It is immediate from Def. 4.16 and Def. 4.18 that the forgetful right adjoint pre-
serves the classes W and Fib. O

Remark 4.3 (All dgc-algebras are projectively fibrant). Every object A €
(dgcAlgs:®), . . (4.44) is fibrant: By Example 4.7 the terminal morphism is to the O-

algebra, and this is clearly surjective, hence is a fibration, by Def. 4.18: A g 0.
1

trinj

Cofibrant dgc-algebras. With all dgc-algebras being fibrant (Rem. 4.3), the crucial prop-
erty is cofibrancy.

Lemma 4.1 (Generating cofibrations). The following inclusions of multivariate polyno-
mial dgc-algebras (Example 4.15) are cofibrations in (dgcAlgs“' (Def. 4.19)

R ) trinj

Cpa 1 F—Cp o, do, =c s
Rlep1]/(dens1 = o)#m . " /(dCH"1 :O"“ ) forneN. (4.46)
n+1

(In fact, these are the generating cofibrations of dgc-algebras, in the sense of cofibrant
generation of model categories, but we do not further need this notion here.)

Proof. Consider the following morphisms of cochain complexes, for n € N:
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0 0
Ta Ta
0 0
Ta Td

(en+1) {ent1)
Td in Td .

.t 5 withdoy, = ¢,y (4.47)

0 (o)
Ta Ta
0 0
Ta Td
Ta Ta

L 0 | L ]

Since these are injections, they are cofibrations in (CochainCOmplexesui°)inj (Prop. 4.17),
by Def. 4.16. Thus also their images under Sym (Def. 4.12) are cofibrations in

(dgcAlgsE”)trinj (Prop. 4.19) because Sym is a left Quillen functor, by Prop. 4.20. But
Sym(i,) manifestly equals (4.46), and so the claim follows. O

Proposition 4.21 (Relative Sullivan algebras are cofibrations). For a multivariate poly-
nomial dgc-algebra from Example 4.15, the canonical inclusion (4.39) of the base algebra
is a cofibration in (dgcAlgsg")trinj (Prop. 4.19):
alP] (dan) =pu®)
A A / : . (4.48)
€ Cof :
an'] \aa!) = pu®

In particular, since R € dgcAlgs:’ is the initial object (Example 4.6), all multivariate
polynomial dgc-algebras over R (the Sullivan models, Def. 4.14) are cofibrant objects
in (dgcAlgs:") winj
Proof. By Lemma 4.1, the right vertical morphisms in the pushout diagram (4.41) are
cofibrations. Since the class of cofibrations is preserved under pushout, so are hence the
left vertical morphisms in (4.41), which are the base algebra inclusions (4.37) of poly-
nomial dgc-algebras. The base algebra inclusions into general multivariate polynomial
dgc-algebras are composites of these, and since the class of cofibrations is preserved under
composition, the claim follows. O

Lemma 4.2 (Pushout along relative Sullivan algebras preserves quasi-isomorphisms
[Félix et al. (2001), Prop. 6.7 (ii), Lemma 14.2]). The operation of pushout (1.6) along
the canonical inclusion (4.39) of a base dgc-algebra into a multivariate polynomial dgc-
algebra (Example 4.15) preserves quasi-isomorphisms. In fact, it sends quasi-isomorphism
between base algebras to quasi-isomorphisms of multivariate polynomial dgc-algebras:
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aﬁ? , da,gf) = u(’”‘
Cof .
A % Al /
1A :
1
al(1|) daf,ll):[.l(l)
flew (po) (ia)+f .
= (ia)of € W. (4.49)
o] (dof) =p®)]

Al C € Cof A
is

1
al(1|) dar(,ll):u(l)

Lemma 4.3 (Weak equivalences of nilpotent L..-algebras [Félix et al. (2001), Prop.
14.13]). A morphism between Chevalley-Eilenberg algebras (Def. 4.13) of nilpotent Lo-
algebras (Def. 4.15), is a quasi-isomorphism of dgc-algebras (hence a weak equivalence
according to Def. 4.18) precisely if the corresponding morphism (4.20) of Le-algebras is
a quasi-isomorphism between the chain complexes given by the unary bracket operation

=[] (4.24):
CB(p) < CE()) & (a.[]g) ———> (0.1y)-

Remark 4.4 (Homotopy theory of nilpotent L..-algebras inside all L..-algebras).

(i) Prop. 4.21, with Remark 4.3 and Def. 4.13, allows to identify the homotopy category
of finite-type nilpotent connective L.-algebras (Def. 4.15), with a full subcategory of the
homotopy category (Def. 1.8) of the opposite (Example 1.4) of dgc-algebras (Prop. 4.19):

Ho(L.Algs; ") <> Ho((dgeAlgs;")? ). (4.50)
(ii) There is also the homotopy theory of more general L..-algebras [Hinich (2001)][Prid-
ham (2010)][Vallette (2020)][Rogers (2020)], whose weak equivalences are the quasi-
isomorphisms on chain complexes formed by the unary bracket [—] (4.24). Lemma 4.3
says that the homotopy theory (4.50) of finite-type, nilpotent connective L..-algebras that
we are concerned with here is fully faithfully embedded into this more general L., homo-
topy theory:

Ho(LeAlgs; ™) & Ho(LwAlgs, ) .

Minimal Sullivan models

Definition 4.22 (Minimal Sullivan models [Bousfield and Gugenheim (1976), Def.
7.2][Hess (2007), Def. 1.10]). A connected (relative) Sullivan model dgc-algebra
A € SullModels:' (Def. 4.14) is called minimal if it is given by a multivariate polyno-
mial dgc-algebra as in (4.38) the degrees n; of whose generators OC,(,;) are of monotonically

increasing degrees n;
i<j = nj<nj.
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Remark 4.5 (Meaning of minimality). The condition in Def. 4.22 means that a dgc-
algebra is minimal precisely if it may be obtained by a sequence of pushouts as in Ex. 4.16
such that the generators are adjoined in order of increasing degree, hence such that gener-
ator a,i-j ) adjoined in the jth step has degree no lower than the degrees of the generators
already adjoined in the previous steps.

Often there are no generators in degree 1, in which case the minimality condition has the
following simpler and more popular form:

Example 4.18 (Minimal models of simply connected dgc-algebras [Bousfield and Gu-
genheim (1976), Prop. 7.4]). If A € SullModels;' (Def. 4.14) is trivial in degree 1, then
it is minimal (Def. 4.22) precisely if the unary bracket [—] (4.23) of the corresponding
L..-algebra (4.43) vanishes:

A'=0 = (Aisminimal & [-]=0).
Finally, the condition [—] = 0 is often written in its dual form as
dA C ANA,

expressing that the CE-differential of a single generator is (either zero or) the wedge prod-
uct of at least two generators.

Proposition 4.23 (Existence of minimal Sullivan models [Bousfield and Gugenheim
(1976), Prop. 7.7, 7.8][Félix et al. (2001), Thm. 14.12]).

If A € dgcAlgs:" is cohomologically connected, in that HO(A) =R, then:

(i) There exists a minimal Sullivan model Ay, (Def. 4.22) with weak equivalence in
(dgcAlgs:") ;@44 104

trin -
mlﬂe
Apin ———> A. 4.51)
(ii) This Amin is unique up to isomorphisms of dgcAlgs:" compatible with the weak equiv-
alences in (4.51): Any two p;‘“i“,p?i“, in (4.51), make a commuting diagram of this form
([Félix et al. (2001), Thm. 14.12]):

Amin PA in
~] A (4.52)
Amin/ Pk"i"/

More generally:
Proposition 4.24 (Existence of minimal relative Sullivan models [Félix ef al. (2001),

Thm. 14.12]). Let B —¢> A be a morphism in dgcAlgs:® (Def. 4.10) such that
(a) A and B are cohomologically connected, in that H'(A) = R and H*(B) =R,
() H'(¢) : H'(B) — H'(A) is an injection.
Then:
(i) There exists a minimal relative Sullivan model B — Ay, (Def. 4.22) equipped with
a weak equivalence to ¢ in (dgcAlgs]i ”)trinj (Def. 4.44):
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w
Amin, = A (4.53)

T

B/

(ii) This Ayin, is unique up to isomorphism in the coslice category (dgcAlgsEO) compat-

ible with the weak equivalence in (4.53), in cosliced generalization of (4.52).
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Chapter 5

R-Rational homotopy theory

We recall fundamental facts of dg-algebraic rational homotopy theory [Sullivan
(1977)][Bousfield and Gugenheim (1976)][Griffiths and Morgan (2013)] (review in [Félix
et al. (2001)][Hess (2007)][Félix et al. (2008)] [Félix and Halperin (2017)DY, with em-
phasis on its incarnation over the real numbers (Rem. 5.2) and streamlined towards the
application to non-abelian de Rham theory below in chapter 6 and thus to the non-abelian
character map in part IV. For the usual technical reasons (Rem. 5.1), we focus on the
following class of homotopy types (with little to no restriction in practice):

Definition 5.1 (Connected nilpotent spaces of finite rational type [Bousfield and Gugen-
heim (1976), 9.2]). Write
Ho(ASetsqu) i"l"@ml C—— Ho(ASetsqy)

for the full subcategory of homotopy types of topological spaces X (1.51) on those which
are:

(i) connected: my(X) ~ *;

(ii) nilpotent: m(X) € NilpotentGroups, and m,>,(X) are nilpotent 7 (X )-modules
(e.g. [Hilton (1982)]);

(iii) finite rational type: dimg (H"(X; Q)) <o, foralln € N.

Remark 5.1 (Technical assumptions). The connectedness assumption in Def. 5.1 is a
pure convenience; for non-connected spaces all of the following applies just by iterating
over connected components. On the other hand, the nilpotency and R-finiteness condi-
tion in Def. 5.1 are strictly necessary for the plain dg-algebraic formulation of rational
homotopy theory (due to [Bousfield and Gugenheim (1976)][Sullivan (1977)]) to satisfy
the fundamental theorem (Theorem 5.6 below). The generalizations required to drop these
assumptions are known, but considerably more unwieldy:

!One may naturally understand rational homotopy theory also within the theory of derived algebraic
oco-stacks [Toén (2006)][Lurie (2011), §1]. The real character map in part IV instead expresses rational
homotopy theory within smooth (differential-geometric) co-stacks in non-abelian generalization of the
way it appears in differential cohomology theory, see chapter 9.

93
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(i) To drop the nilpotency assumption, all dgc-algebra models need to be equipped with the
action of the fundamental group (see [Félix et al. (2015)]).

(ii) To drop the finite-type assumption one needs dgc-coalgebras in place of dgc-algebras,
as in the original [Quillen (1969)].

Therefore, the construction of the (twisted) non-abelian character map, below in sections
part IV and part V, works also without imposing these technical assumptions, but a discus-
sion in that generality is beyond the scope of the present article, we discuss this elsewhere.

Example 5.1 (Examples of nilpotent spaces [Hilton (1982), §3][May and Ponto (2012),
§3.1]). Such examples (Def. 5.1) include:
(i) every simply connected space X, 7 (X) = 1;
(ii) every simple space X, i.e. with abelian fundamental group acting trivially, such
as tori;
(iii) hence every connected H-space;
(iv) hence every loop space X ~ QY and hence every oo-group (Prop. 2.2);
(v) hence every infinite-loop space, i.e., every component space E, of a spectrum E
(2.13);
(vi) the classifying spaces BG (2.8) of nilpotent Lie groups G;
(vii) the mapping spaces Maps(X,A) out of manifolds X into nilpotent spaces A.

Rational homotopy theory is concerned with understanding the following notion:

Definition 5.2 (Rationalization [Bousfield and Kan (1972b), p. 133][Bousfield and Gu-
genheim (1976), §11.1][Hess (2007), §1.4, §1.7]).

(i) A connected nilpotent homotopy type X € Ho (TopSpQu) ~1 ni (Def. 5.1) is called ratio-
nal if the following equivalent conditions hold [Bousfield and Kan (1972b), §V 3.3][Bous-
field and Gugenheim (1976), §9.2]:

o the higher homotopy groups m,>7(X) have the structure of Q-vector spaces, and
the fundamental group m; (X) is uniquely divisible in that each element g has a
unique nth root x, i.e. with x* =g, forall n € N ;

o the integral homology groups He>1(X;Z) all carry the structure of Q-vector
spaces;

(ii) A rationalization of X is a map

Q
n
X —— Lg(X) €Ho(TopSpqu )~ uy .1

such that:
(a) Lg is rational in the above sense;

(b) the map n;(} induces an isomorphism on rational cohomology groups:

H*(n$:Q)

H*(LgX; Q) H*(X;Q).
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Rationalization exists essentially uniquely, and defines a reflective subcategory inclusion

connected, nilpotent,
Lo

N connected, nilpotent
rational homotopy types I

Y types

HO(TOPSPQu)gl,nﬂ C L Ho(TopSpq, ) >1,nil (6.2)

whose adjunction unit (1.3) is (5.1).

PL de Rham theory. At the heart of dg-algebraic rational homotopy theory is the observa-
tion that a variant of the de Rham dg-algebra of a smooth manifold (Example 4.9) applies
to general topological spaces: the PL de Rham complex? (Def. 5.3). This satisfies an ap-
propriate PL de Rham theorem (Prop. 5.4) and makes dg-algebras of PL differential forms
detect rational homotopy type (Prop. 5.6). At the same time, over a smooth manifold the
PL de Rham complex is suitably equivalent to the smooth de Rham complex (Lemma 6.4).

Definition 5.3 (PL de Rham complex and PL de Rham cohomology [Bousfield and
Gugenheim (1976), pp. 1-7][Griffiths and Morgan (2013), §9.1]). Let k be a field of
characteristic zero.

(i) The simplicial dgc-algebra of k-polynomial differential forms on the standard simplices
([Sullivan (1977), p. 297][Bousfield and Gugenheim (1976), p. 1][Griffiths and Morgan
(2013), p. 83]) is:

Qpr (M) AP dgcAlgs;’
0 ) p0) W] /(i =1,
i 0] (1)
0 0 Y 1 }/ v ail) = o)
(i)
1617)%(10/“ (5‘3)
f 1
'(()O
() _
k t(o) (m) 9<O) 9(’") Y IO, *17_
[m] — [0 youlg U by }/detéj):elm

(ii) For S € ASets, its piecewise k-linear de Rhm complex, or PL de Rham complex for
short, is the hom-object of simplicial objects from S to Q,:de (A(_>) (5.3), hence is the
following end (e.g. [Borceux (1994), Def. 6.6.8]) in dgcAlgs:":

° L . n
QpLar(S) = / [T 9% (A") - (5.4)
piecewise k-linear k Su k-polynomial
de Rham complex (e nde Rham complex
of simplicial set of the n-simplex

2The terminology “PL” or “PL.” for this construction seems to have been silently introduced in
[Bousfield and Gugenheim (1976)], as shorthand for “piecewise linear”, and has become widely
adopted (e.g. [Griffiths and Morgan (2013), §9]). Our subscript “PkL” is for “piecewise k-linear”,
in this sense. But beware that this refers to the piecewise-linear structure that a choice of triangula-
tion (Ex. 1.16) induces on a topological space; while the actual differential forms in the PL. de Rham
complex are piecewise polynomial with respect to this piecewise linear structure.
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This means that an element @ € Qp; jr(S) is a k-polynomial differential form a)((,"> S
Q,:de(A") (5.3) on each n-simplex ¢ € S, for all n € N, such that these are compatible
under pullback along all simplex face inclusions J; and along all degenerate simplex pro-

jections o;:
o)

Sy————— — >Q,;de(A2)
o ) AT A AT A
S) = & oy 6 of & & oy 6 of &
PdeR 0 0 1 1 2 0 0 1 1 2
VIV 60((1)) Y Iy ly
S1—=———-—-- >Ql:de(A1)

|4 | A |

& o o & o &

N
So———--—-— > QI:de(A )

(iii) For X € TopSp, its PL de Rham complex is that of its singular simplicial set, according
to (5.4):
QbiLar (X) = Qpyrar (Sing(X)). (5.5

By pullback of differential forms, this extends to a functor of the form

Qbirar © ASets ————— (dgeAlgs:*)™ . (5.6)

R
(iv) We write
Hppar(—) = HQpyq ar(—) (5.7)

for PL de Rham cohomology, the cochain cohomology of the PL. de Rham complex.

Proposition 5.4 (PL de Rham theorem [Bousfield and Gugenheim (1976), Thm.
2.2][Griffiths and Morgan (2013), Thm. 9.1]). The evident operation of integrating differ-
ential forms over simplices induces a quasi-isomorphism

o eqlso .
Qprar(—) — C*(—=:k)

Jfrom the PL de Rham complex (Def. 5.3) to the cochain complex of ordinary singular coho-
mology with coefficients in k. Hence on cochain cohomology this induces an isomorphism

Hyy gr(—) —— H*(=3k)

between PL de Rham cohomology (5.7) and ordinary cohomology with coefficients in k.
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Example 5.2 (PL de Rham complex of the interval). The PL de Rham complex (Def.
5.3) of the 1-simplex, hence the polyonial differential forms (5.3) on A!, is isomorphic to
the multivariate polynomial dgc-algebra (Ex. 4.15) of the form

O ar(A) ~ QI:de(AI) ~ kl19,6:1]/(dto = 6y). (5.8)

ForA € (dgcAlgSf“) (Prop. 1.27), its tensor product with (5.8)

trinj

A QP ar(AY) = Alto, 61]/(dto = 1)

is a path space object for A (Def. 1.5), in that it fits into the following diagram (we are
notationally suppressing here the differentials just for readability):

ar— (a(f(]:O,Q] :0)+u(to:1~,91 :O>)

ar—a
A E—W>A[r0,91] i ABA ~ AxA, (59)
L 7
Ay

where the morphism on the right is given by evaluation of polynomials as shown, and where
the equivalence on the right is by Ex. 4.8.

Here the morphism on the right is a degreewise surjection (a pre-image for (ag,a;) €
ADAis (1 —19) Aag+itgAay € Altg, 61]), hence a fibration according to Def. 4.18; while
the morphism on the left is a quasi-isomorphism, in fact a chain homotopy equivalence
(with homotopy operator f - a%l), hence a weak equivalence according to Def. 4.18.

The following type of argument will be greatly expanded on in chapter 6:

Lemma 5.1 (Homotopical formulation of ordinary cohomology).
(i) The cochain cohomology of any A € dgcAlgs:® (Def. 4.10) in positive degree is natu-
rally and R-linearly identified,

H(A) ~ Ho((dgcAlgs?) ) (CE(6°R), A), (5.10)

trinj

with the hom-sets out of the CE-algebras (4.30) of the line Lie (e + 1)-algebras (Ex. 4.12)
in the homotopy category (Def. 1.8) of the dgc model category (Prop. 4.19).

S
(ii) For X € TopSp SN ASets, its real cohomology in positive degree is naturally identified
with these hom-sets into its PL de Rham complex (Def. 5.3)

H (X R) ~ Ho((dgcAlgs,f“)trmj) (CE(6°R), Qfpr r (X)) - G.11)

(iii) If the above X is equipped with a base-point * L X, then the real cohomology of
X in positive degrees is equivalently computed by the homotopy classes of morphisms of
augmented dgc-algebras, hence with respect to the slice model structure (Ex. 1.5) over the
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initial dgc-algebra R (Ex. 4.6), as follows:

H(X;R) =~ Ho((dgcAlgsi")ﬁlj) <CE(b'R),Q;,RLdR(x) x R). (5.12)

PRLaR (%)

Proof. Observing that

(a) CE(b"R) is cofibrant, by Prop. 4.21;

(b) A is fibrant, by Rem. 4.3;

(c) Alto, 01]/(dry = 61) is a path space object for A, by Expl. 5.2;
we may identify, by Prop. 1.10, the morphisms in the homotopy category with equivalence
classes of dgc-algebra morphisms CE(b"R) < A under the corresponding equivalence
relation of right homotopy (Def. 1.6):

A
< (=) =06, =0

~ 3 Ali.6)]
crre & CE(b"R) —----3---- > B

\ \L(7>\r0*1.91 =0
¢ A.

Since CE(b"R) is free on a single generator 6, in degree n, subject only to the dif-
ferential relation d 6, = 0, dgc-algebra homomorphisms CE(b"R) — A are in bijection to
closed degree-n elements of A (see also Ex. 6.2). Hence, under this identification it remains
to see that existence of coboundaries is equivalent to existence of right homotopies:

dn =0,
3= dh & 3 = =0)=
hea 4 c+ To01) n (l() 0,6, O) c,

TIG((;,O:BI) n([0:1791:0):cl.

Indeed: If & is given as on the left, then 1 := tg Ac’ + (1 —19) Ac + Oy A(c— ') is as
required on the right; while if any 71 is given as on the right, then i = fol ndty is as
required on the left (by Stokes, as in Lem. 6.1). This proves the first statement, whence the
second follows via Prop. 5.4.

To deduce from this the third statement, observe that:

(a) forA 2 Ran augmented dgc-algebra, the canonical path object (5.9) for A yields
a path space object in the slice over R by equipping it with the induced augmen-

. Alto,61] a a(ty=0,6,=0) N
tation 77 to‘): él) AR,
(b) the projection
. eEW .
Qprrar(X) X R —— Qppy gr(X) (5.13)
Qprar ()

is a quasi-isomorphism, by right-properness (Def. 1.4) of the model structure
(Prop. 4.19), since this is the pullback of the quasi-isomorphism R W, QPRLdR
(by Prop. 5.4) along the morphism Qpp 4 (* — X), which is a projective fibra-
tion by the fact that * — X is an injection and hence a cofibration (Ex. 1.2) and
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that Qpp; 4r 18 a left Quillen functor (Prop. 5.5) to the opposite model structure
(Ex. 1.4).
Therefore, since the generators CE(b"R) are in positive degree and hence unaffected by
the augmentation slicing, the right homotopy classes in the slice (5.12) are computed as in
case (2) above and hence yield the cochain cohomology of Qpp; g (X) % k() R, which
by (5.13) equals the real cohomology of X.

In fact, before passing to cochain cohomology, the PL. de Rham complex captures the
full rational homotopy type. This is the Fundamental Theorem which we recall as Prop.
5.6:

Lemma 5.2 (Extension lemma for polynomial differential forms [Griffiths and Morgan
(2013), Lemma 9.4]). For n € N, the operation of pullback of piecewise polynomial dif-

ferential forms (Def. 6.4) along the boundary inclusion of the n-simplex dA" P A isan
epimorphism:

i*

QE’deR (An ) - QE’deR (aAn ) :

Proposition 5.5 (PL de Rham Quillen adjunction [Bousfield and Gugenheim (1976),
§8]). For all ground fields k of characteristic zero, the PL de Rham complex functor (Def.
5.3) is the left adjoint in a Quillen adjunction (Def. 1.12)

Ql"deR
(dgeAlgs;®) b Lau ASetsqy (5.14)
Bexppy,

between the opposite (Def. 1.4) of the model category of dgc-algebras (Prop. 4.19) and
the classical model structure on simplicial sets (Prop. 1.2); where the right adjoint sends a
dgc-algebra A to

Bexpp (A) = (A[n] s dgcAlgsf“(Qf,deR(A”),A)) € ASets . (5.15)

Proof. That the right adjoint exists and is given as in (5.15) follows by general
nerve/realization theory [Kan (1958)], or else by direct inspection.

For the left adjoint to preserve cofibrations means to take injections of simplicial sets
to degreewise surjections of dgc-algebras. This follows from the extension lemma (Lemma
5.2). Moreover, the left adjoint preserves even all weak equivalences, by the PL. de Rham
theorem (Prop. 5.4). O

Proposition 5.6 (Fundamental theorem of dgc-algebraic rational homotopy theory).
For k = Q, the derived adjunction (Prop. 1.13)
DQ;

PQLAR
Ho((dgcAlgsél))z?nj) 1 Ho (ASetsQu) (5.16)
DBexppgr

of the Quillen adjunction (5.14) from Prop. 5.5 is such that:
(i) on connected, nilpotent, Q-finite homotopy types (Def. 5.1) the derived PLdR-adjunction
unit (1.38) is equivalently the unit (5.1) of rationalization (Def. 5.2):
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derived unit of rational
PL de Rham adjunction

X e DBexppgr © Qporar (X)

fi
€ Ho(TopSpqu) 2y - (5:17)

2
e

X LoX

rationalization unit

(ii) For X,A nilpotent, connected, Q-finite homotopy types (Def. 5.1), the PL de Rham
complex functor (5.6) from Def. 5.3 induces natural bijections

Ho(TopSpqy ) (X, LoA) 5= Hol(dgeAles:’) iy ) (Vgrar (1), QgL (X)) (:18)

PQLAR

Proof. (i) This is [Bousfield and Gugenheim (1976), Thm 11.2].

(ii) This follows via [Bousfield and Gugenheim (1976), Thm 9.4(i)], which says that the
derived adjunction (5.16) restricts on connected, nilpotent, Q-finite (Def. 5.1) rational
homotopy types (Def. 5.2) to an equivalence of homotopy categories:

DQEoLar

B

>1
>0)\OP - Q,fin
Ho((dgeAles:) ) - Ho(ASetsqu) fhe . (5.19)
DBexppgr.

In detail, this is witnessed by the following sequence of natural bijections of hom-sets:
Ho (TopSpq,) (X, LA)
~ Ho (ASetsqy ) (Sing(X), LgSing(A))
~ Ho (ASetsqu) (LgSing(X), LgSing(A))
=~ Ho (ASetsqu) (DBexppgr, © Qpgrar (X) , DBexppy, © Qpor g (4))
~ Ho ((dgcAlgsé")ﬁ?ﬂJ (QI;QLdR o DBexppgr, © Qg ar (X)),
Qborar © DBexppgr © Qpgrar (4))
=~ Ho ((dgCAIgSE'))Z?nj) (Borar (X) Qpgrar(A))
~Ho ((dgCAlgSEO)trinj> (QI.JQLdR (4); Qpgrar (X )> :

Here the first step is (1.51); the second step uses that rationalization is a reflection (5.2);
the third step uses (5.17); the fourth is the equivalence (5.19) along DQEQLdR (using, with
Example 1.10, that every simplicial set is already cofibrant (1.15), Example 1.2); the fifth
step is the statement from (5.19) that DBexppqy, is the inverse equivalence. The last step
is just the definition of the opposite of a category. The composite of the bijections (5.20) is
the desired bijection (5.18). O

(5.20)



December 12, 2023 20:14 ws-book9x6 The character map in nonabelian cohomology:
(twisted, differential, and generalized) cherndold'ws'book page 101

R-Rational homotopy theory 101

In view of (5.17) the following notation is convenient, keeping in mind that L; is a
localization in the sense of localization of spaces only for k = Q:

Definition 5.7 (Rationalization over R). For k a field of characteristic zero, we write
Ly = DBexppy o DQp; 4 for the monad given by the derived functors (Prop. 1.13) of
the k-PL de Rham Quillen adjunction (Prop. 5.5). Our focus here is on the case over the

real numbers:
nR :=DnPLRAR .
() Lr(—) = DBexppgy, © DQpgr; 4r(0) - (5.21)
‘We may refer to Ly as rationalization over R. Because, while the derived PLdR-adjunction
(Prop. 5.5) is a localization of homotopy types only over k = Q, (Prop. 5.6, Rem. 5.5), for
general k it is the suitable change of scalars of Q-localization:

Lemma 5.3 (Derived change of scalars [Bousfield and Gugenheim (1976), Lem. 11.6]).
For k a field of characteristic zero, the extension/restriction of scalars-adjunction along
Q — k is a Quillen adjunction (Def. 1.12) between the corresponding model categories of
dgc-algebras (from Prop. 4.19):
(f)ozan
Llou . (dgeAlgs:)

resq

(dgcAlgsf 0)trinj trinj *

Proof. Since restriction of scalars resg is the identity on the underlying sets of a dgc-
algebra, it manifestly preserves all fibrations (since these are the surjections of underlying
sets ) and all weak equivalences (since these are the bijections on underlying cochain co-
homology groups). O

Proposition 5.8 (PkLdR-Adjunction factors through rationalization). The following
diagram of derived functors (Prop. 1.13 — with the left derived functors from Prop. 5.5 and
the right derived functor from Lem. 5.3) commutes up to natural isomorphism:

DQp,
Ho( (dgetgg”)yhy)

trinj
D((—)@gk)l

Ho((dgcAlgﬁo)OP ) — Ho(ASetsQu)ﬁ"@.

trinj DQ;’RLdR

Ho (ASetsqu) fing
(5.22)

Proof. Via the formula for derived functors in terms of (co)fibrant replacement (Ex. 1.10)
and using that Sullivan models are cofibrant in (dgcAlgsEO) tin (Prop. 4.21), hence fibrant

in (dgcAlgsfo)in)nj, this follows by [Bousfield and Gugenheim (1976), Lem. 11.7]. O
Remark 5.2 (Rational homotopy theory over the real numbers). Below in Prop. IV.1
we recast Prop. 5.8 as the statement that the real character map on non-abelian cohomology
factors through the rational character map via extension of scalars.

This fact motivates and justifies the focus on rational homotopy theory over the real
numbers (as in [Deligne et al. (1975)] [Griffiths and Morgan (2013)], see also [Wierstra
(2017)]) in all of the following. Rational homotopy theory over the real numbers is the
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version that connects to differential geometry (e.g. [Félix et al. (2008)]), since the smooth
de Rham complex is not defined over Q but over R (see Lemma 6.4). The original ac-
count [Bousfield and Gugenheim (1976)] of rational homotopy theory is, for the most part,
formulated over an arbitrary field k of characteristic zero; and [Bousfield and Gugenheim
(1976), Lem. 11.7] (Prop. 5.8) makes explicit that the choice of this base field does not
change the form of the classical theorems. For example, the “real-ified” homotopy groups

fas X
of a space Te(X) @R ~ (T(X)®,Q) @R
form a real vector space with real dimension equal to the rational dimension of the corre-
sponding rationalized homotopy groups

dimg (e (X) ©,Q) = dimg (7(X) ®:R),

and hence the rational Whitehead L..-algebras (Prop. 5.11 below) have the same set of
generators and their Chevalley-Eilenberg algebras (Def. 4.13) have the same structure con-
stants, irrespective of whether they come as algebras over Q or over R. 3 Therefore, we
regard the case k = R as our default and abbreviate the PL. de Rham Quillen adjunction
(Prop. 5.5) in this case by:

QPR o Bexpp = Qporar Tou BeXPpar - (5.23)

Remark 5.3 (Real homotopy theory and schematic homotopy type). In contrast to
the rational homotopy theory over R with which we are concerned here (Rem. 5.2) is
real homotopy theory in the sense of [Brown and Szczarba (1995)], given by localization
of the category of simplicial spaces at real cohomology-equivalences seen in continuous
cohomology [Brown and Szczarba (1989)], making use of the Euclidean topology on the
real number coefficients. The “most convincing motivation” [Brown and Szczarba (1995),
pp. 882-883] for this construction was formal analogy, and the main application in [Brown
and Szczarba (1995), Thm. 8.2] is a re-derivation of the traditional result [Deligne et al.
(1975), §6], originally derived in the R-rational homotopy theory of concern here.

3While rational homotopy theory has the same form over all ground fields of characteristic zero, there
is, of course, a difference between rational homotopy equivalences over different ground fields: Two
minimal Sullivan models (Prop. 4.23) over the real numbers may be isomorphic as real dgc-algebras
but not as rational dgc-algebras. This happens when the isomorphism is given by an irrational linear
transformation between the generators. For example, for any b € R, b > 0 there is a dgc-algebra
isomorphism over the real numbers
03— @

0 — o
= B2 — Vb, =
r| @ <dw3 azAaz+ﬁz/\Bz> R| © (dws ocz/\az+bﬁz/\ﬁz)_
B \dop=0,dp =0 B \doa=0,dB =0

But over the rational numbers this exists only when the square root of b is rational.

Notice that the comparison between the homomotopy types over, in this order, the integers, the
rational numbers and then the real numbers is provided by the character map (Def. 9.2 below); and the
theory which embodies the distinction between these coefficients is that of homotopy fiber products
of the character map, which is the theory of non-abelian differential cohomology (Def. 9.3 below),
where for instance the homotopy fiber R/Q — BQ — BR is being detected (e.g. [Grady and Sati
(2019¢)][Grady and Sati (2019b)]).
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With hindsight, one may observe that continuous R-cohomology of simplicial topo-
logical spaces is an approximation to cohomology of topological stacks with coefficients
in the higher topological stack B"R (as in footnote 2 to Ex. 2.3 above), to which it reduces
when the domain is fine enough (i.e., cofibrant as a simplicial presheaf on topological
spaces). Understood in this stacky refinement, real homotopy type is a topological version
of schematic homotopy type in algebraic geometry [Toén (2006)]; the general and smooth
version of which is discussed in [Stel (2010)].

These localizations of geometric stacks at the stacky ground field are interesting and
closely related to the R-rational homotopy theory of concern here, but further discussion
of the relation is beyond the scope of this text.

PS de Rham theory. The point of using piecewise polynomial differential forms in the
PL de Rham complex (Def. 5.3) is that these, but not the piecewise smooth differential
forms, can be defined over the field Q of rational numbers. But since we may and do use
the real numbers as the rational ground field (Remark 5.2), it is expedient to also consider
piecewise smooth de Rham complexes:

Definition 5.9 (PS de Rham complex [Griffiths and Morgan (2013), p. 91]). Forn € N,
we write, in variation of (5.3),

Qir (R" x A(_)) : A% — > dgcAlgs:”

for the simplicial dgc-algebra of smooth differential forms on the product manifold of n-
dimensional Cartesian space with the standard simplices (i.e., of smooth differential forms
on an ambient Cartesian space (Example 4.9), restricted to the simplex and identified there
if they agree on some open neighbourhood). As in Def. 5.3, this induces for each § € ASets
the corresponding piecewise smooth de Rham complexes

Qpsar (R" x 8) = / [1Q%®R" x A" (5.24)
[Kea S
and by pullback of differential forms these extend to functors

O R x(—
ASets ——BEN (gocAlgs:t)°P. (5.25)

Proposition 5.10 (Fundamental theorem for piecewise smooth de Rham complexes).
For all n € N the piecewise smooth de Rham complex functors (Def. 5.9) participate in
a Quillen adjunction analogous to the PL de Rham adjunction (Prop. 5.5) over the real

numbers
Qpsar (R"x (=)
(dgeAlgs; )b Low ASetsqy (5.26)
Bexpps,,

with right adjoint given as in (5.15):
Bexppg ,(A) = (’A[k] — dgcAlgs;”(Qpy g (R” XAk),A>) € ASets,  (5.27)
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whose derived functors (Prop. 1.13) are naturally equivalent to those of the PL de Rham
adjunction (5.16) over the real numbers:

DQPgar (R" x (—)) =~ DQpggr(—) =~ DQpprgr(—), (5.28)

DBexpps, =~ DBexppg =~ DBexpppy,- (5.29)

Proof. (i) The proofs of the PL de Rham theorem (Prop. 5.4) as well as of the exten-
sion Lemma (Lemma 5.2) apply essentially verbatim also to piecewise-smooth differential
forms ([Griffiths and Morgan (2013), Prop. 9.8]) and hence so does the proof of the PL de
Rham Quillen adjunction in the form given in Prop. 5.5.

(ii) We have evident natural transformations

Qrrar () — Qg (S) —— Qpgir R xS) | for § € ASets,

given by inclusion of polynomial differential forms into smooth differential forms, and then
by pullback of differential forms along the projections R” x Ak — AK . The corresponding
component morphisms are quasi-isomorphisms ([Griffiths and Morgan (2013), Cor. 9.9]),
hence are weak equivalences in (dgcAlgs,g“) wini (Def. 4.18). Under passage to homotopy
categories (Def. 1.8) and derived functors (Example 1.10), these natural weak equivalences
become the natural isomorphisms (5.28) (by Prop. 1.9). By essential uniqueness of adjoint
functors, this implies the natural isomorphisms (5.29). O

Whitehead L..-algebras.

Proposition 5.11 (Real Whitehead Lo.-algebras). For X € Ho(ASetsqy)
there exists a nilpotent Le.-algebra (Def. 4.15)

ﬁn@
U (Def: 5.1),

X € LoAlgs: ™ (5.30)

R.fin 7

unique up to isomorphism, whose Chevalley-Eilenberg algebra (Def. 4.13) is the minimal
model (Def. 4.22) of the PL de Rham complex of X (Def. 5.3):

. ",
CE(X) == (Qpar(X)) i Tew Qprar(X) - (531
Proof. By the PL de Rham theorem (Prop. 5.4) and the assumption that X is connected,
it follows that we have H QngR (X) = R. Therefore Prop. 4.23 applies and says that
(Qpar (X)), . € SullModels; ' exists, and is unique up to isomorphism. With this, the

min

equivalence (4.43) says that [X exists and is unique up to isomorphism. O

Proposition 5.12 (R-Rationalization as integration of Whitehead L..-algebras). For
X e Ho(ASetsQu)ilenil (Def. 5.1) its rationalization over the real numbers (Def. 5.7) is
equivalently the image under B expp, (5.23) of the CE-algebra (5.31) of its Whitehead

Loo-algebra (5.30):
Lg(X) ~ Bexpp (CE(IX)) € Ho(ASetsqy)- (5.32)
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Proof. By Def. 5.7 and the characterization of derived functors (Ex. 1.10), Lg is
equivalently the image under Bexpp; of any cofibrant replacement of Qp ;o (X) €

(dgcAlgsi“)[rinj (using that every X € ASetsq, is already cofibrant (1.15)). This is pro-
vided by CE(IX), according to (5.31) and by Prop. 4.21. O

Proposition 5.13 (Rational homotopy groups in the rational Whitehead L., algebra).
Let X € Ho(ASetsqu) ™%, (Def. 5.1).

@) If X is simply connected, m;(X) =1 (Example 5.1), then there is an isomorphism of
graded vector spaces (Def. 4.1) between the graded vector space underlying (4.21) the
Whitehead L-algebra |X (Prop. 5.11) and the rationalized homotopy groups of the based
loop space QX :

‘Whitehead rationalized
Loo-algebra homotopy groups

X =~ m(QX)®zR € GrdVectSp;’.

(ii) If m (X) is not necessarily trivial but abelian, then this statement still holds with (X
replaced by its homology with respect to the unary differential [—] (4.23).
(iii) If 1 (X) is not abelian, then (ii) still holds in degrees > 2.

Proof. Under translation through Prop. 5.11 and Def. 4.13, and using e (QX) ~ e 1 (X),
claim (i) is equivalent to the existence of a dual isomorphism:

CE(IX)/CE([X)2 ~ Homy (7 (X),R) € GrdVectSp;*, (5.33)

AN(IX)Y

where the left hand side denotes the graded vector space of indecomposable elements in
the Chevalley-Eilenberg algebra (the ) in (4.38)). In this form, this is the statement
of [Bousfield and Gugenheim (1976), Theorem 11.3 with Def. 6.12], in the special case
when, with 7 (X) = 1, the unary differential [—] in [X vanishes (Example 4.18). The

generalizations follow analogously. O

Remark 5.4 (Equivalent L..-structures on Whitehead products). The original discus-
sion of the Whitehead algebra structure on the homotopy groups of a space is in terms of
differential-graded Lie algebras ([Hilton (1955), Theorem B]), as are the Quillen models
of rational homotopy theory [Quillen (1969)].

(i) Notice that dg-Lie algebras (Example 4.11) and L..-algebras with minimal CE-algebra
(Def. 4.22) are two opposite classes of L.-algebras: The former has k-ary brackets (4.23)
only for k < 2, the latter only for k£ > 2 (in the simply connected case, by Example 4.18).
Yet, quasi-isomorphisms connect algebras in one class to those in the other ([K¥iZ and May
(1995), p. 28]), such as to make their homotopy theories equivalent ([Pridham (2010)],
see also Rem. 4.4). The transmutation of dg-Lie- into minimal L.-algebras is described
in [Belchi ef al. (2017), Thm. 2.1]; that from L..- to dg-Lie-algebras in [Fiorenza et al.
(2014a), §1.0.2].

(ii) The minimal L..-algebra structure on [X that we obtained in Prop. 5.11, 5.13, has
the property that its k-ary brackets are, up to possibly a sign, equal to the order-k higher
Whitehead products on X [Belchi et al. (2017), Prop. 3.1].



December 12, 2023 20:14 ws-book9x6 The character map in nonabelian cohomology:
(twisted, differential, and generalized) cherndold 'ws'book page 106

106 The character map in nonabelian cohomology:(twisted, differential, and generalized)

Examples of rationalizations over the real numbers. The following fundamental ex-
amples of rationalizations serve to illustrate the above notation and terminology and to
highlight that rationalization over the real numbers (Def. 5.7), even though it is not a local-
ization (Rem. 5.5 below), still acts as real-ification on the homotopy groups of Eilenberg-
MacLane spaces (Ex. 5.4 below) and, more generally, of loop spaces (Ex. 5.6 below).
This is the crucial fact that makes the real character map on non-abelian cohomology in
part IV reduce to the traditional Chern-Dold characters on abelian generalized cohomology
in chapter 7.

Example 5.3 (R-Rationalization of n-spheres (e.g. [Menichi (2015), §1.2])). The Serre
finiteness theorem (see [Ravenel (1986), Thm. 1.1.8]) says that the homotopy groups of
n-spheres for n > 1 are of the form

v/ | k=0
Tk (S") ~ < Zafin | n=2m and k=2m— 1 (5.34)
fin | otherwise

where “fin” stands for some finite group. Since finite groups are pure torsion, hence have
trivial rationalization, this means that the rational homotopy groups of spheres are:
R| k=0
Tk (S") @R ~ { R | n=2mand k=2m—1 (5.35)
0 | otherwise.

Moreover, the fact that ordinary cohomology is represented by Eilenberg-MacLane spaces
(Example 2.1) means that

R | k€ {0,n}

(5.36)
0 | otherwise.

Hk(S";R) ~ {

With this, Prop. 5.13 together with Prop. 5.4 implies that the Whitehead L..-algebras of
spheres (Prop. 5.11) are dual to the following Sullivan models:

CE(IS") ~ Rlw,|/(dw, = 0) if n is odd (5.37)

and

n ~
CE(IS") ~ R o do, 0

wlnl] /(d W21 = —On A w") if n > 1 is even (5.38)

Example 5.4 (R-Rationalization of Eilenberg-MacLane spaces). Since the homotopy
types of Eilenberg-MacLane-spaces K(A,n+1) = B 1A (see (2.6)) are fully characterized
by their homotopy groups (for discrete abelian groups A, e.g. [Aguilar et al. (2002), §6]))

Alk=n+1
0|k#n+1

b (B"HA) ~ {
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we have, forn € N:
(i) Their Whitehead Le.-algebra (Prop. 5.11) is, by Prop. 5.13,
R) copies of the line Lie n-algebra (Def. 4.12):

~

(B"'A) ~ b"(A®,R) ~

D

dim(A®,R)

b"R.
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the direct sum of dim (A ®,

(5.39)

(ii) Their rationalization over R (Def. 5.7) is the Eilenberg-MacLane space on the realifi-

cation of A:

Lp(B"'A) ~ B""' (A®,R) € Ho(TopSpq,)-

(5.40)

Observe how this is implied via the machinery that we have set up above: For all k € N

we have:

m Lz (B14) )

= Ho (TopSpa/u) <Sk7 Ly (B”“A))

Ho(TopSpgy,) (5*, Bexppy (CE(b" (A, R))) )

~ Ho( (dgeAlgs;*) ) (CE(6" (42, R), Oy 4o (1)

trinj . X
Qb ar ()
>0y /R . k
= dim(/l;é go((dgCAlgsin)trinj) (CE(b"]R), Qprar (51) | * *)
z PLAR
~ H Hn+1 (Sk; R)
dim(A®, R)
_JA®, R [k=n+1
- 0 |k#n+1

by def. of m(—)
by Prop. 5.12 with (5.39)

]R) by Props. 5.5, 1.9, 1.13
R) by (4.31)
by Lem. 5.1

by (5.36).

The same computation, but with S¥ replaced by the point * and without the slicing, shows

that 7o (L (B14) ) = +.

Remark 5.5 (Failure of R-rationalization to be idempotent).

Example 5.4 reveals how

rationalization over R (or over any field k strictly containg the rational numbers, Def. 5.7)
is not idempotent, hence not a localization (see also [Bousfield and Gugenheim (1976),

Rem. 9.7]): Applying (5.40) twice yields

R

LgoLg(B"'A)

but R®, R # R, in contrast to Q®, Q
and Kan (1972a), §2.4], while R is not).

Bn+l (A ®ZR®Z R) 5

(5.41)

Q (reflecting that Q is a solid ring [Bousfield

Example 5.5 (R-Rationalization of complex projective spaces). From the defining ho-

motopy fiber sequence for complex projective n-space CP",
(1982), Ex. 14.22])

n €N (e.g. [Bott and Tu
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I I I (5.42)
U(l) —— U(n+1)/U(n) —» SU(n+1)/U(n)

the corresponding long exact sequence of homotopy groups (e.g. [tom Dieck (2008), Thm.
6.1.2]) yields the following homotopy groups:

* | ke {0,1}
zZ ke{2,2n+1
n(CP") — kel
(S [ k>2n+1
0 | otherwise. (5.43)
R|ke{0,1,2,---,2n
H*(CP";R) = ket I

0 | otherwise.

Since these homotopy groups (5.43) in degrees > 2n+ 1 are finite by Ex. 5.3, hence ratio-
nally trivial, it follows, with Prop. 5.13 and Prop. 5.4, that the Chevalley-Eilenberg algebra
of the Whitehead L..-algebra of CP" (Prop. 5.11) has exactly one generator f> in degree
2 and one generator /iy in degree 2k + 1. Moreover, since the cohomology groups are
(e.g. [Bott and Tu (1982), Ex. 14.22.1]) as shown on the right of (5.43), the first of these
must be the closed generator of the cohomology ring, and the differential of the latter must
exhibit the vanishing of its (n+ 1)st cup product in cohomology (see also, e.g., [Félix er al.
(2001), p. 203][Menichi (2015), §5.3]):

n+ 1 factors

dh =faN-A
CE([CP") - R l:?§n+la:| /( iin;;zl ;éz fZ) ) (5.44)

Example 5.6 (R-Rationalization of loop spaces). The minimal Sullivan model (Def.
4.22) of a loop space A ~ QA’ of Q-finite type (which exists by Ex. 5.1) has vanishing
differential (e.g. [Félix er al. (2001), p. 143]). Therefore, Prop. 5.13 implies that the
rational Whitehead L..-algebra [A (Prop. 5.11) of A is the direct sum of line Lie n-algebras
b"R (Example 4.12) and its Chevalley-Eilenberg algebra (Def. 4.10) is the tensor product
of those of the summands:

A~ @b (M 1(A)®,R) € LoAlgs;™,
neN

CE(4) ~ ® CE<b"(n,,+1(A) ®Z]R)) € dgcAlgs:".
neN

Noticing that the tensor product of dgc-algebras is the coproduct in the category of

dgcAlgs:’ (Ex. 4.8), and hence the Cartesian product in the opposite category, the right

adjoint functor Bexppy, (5.14) preserves this, so that
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Bexppy o CE(IA) ~ H (BexpPL o CE(b"(M,41(A) ®, R))) € Ho(TopSpg, ) -
neN

Finally, by Ex. 5.4, this means that the rationalization over R (Def. 5.7) of a loop space is
a Cartesian product of Eilenberg-MacLane spaces:

A~ QA = Lr(A) ~ []B"" (mu1(A)®,R). (5.45)
neN

Example 5.7 (R-Rationalization of spectra). For E a spectrum (Ex. 2.10), Ex. 5.6 says
that its degree-wise rationalization (Def. 5.2) and R-rationalization (Def. 5.7) are both
direct sums of the same form of rational Eilenberg-MacLane spectra:

Lo(E) =~ & H(m(E)®, Q)

Lr(E) ~ kgaZH(ir. (E)®,R),

(5.46)

But rationalization of spectra is also known (review in [Lawson (2022), Ex. 8.12][Bauer
(2014), Ex. 1.7 (4)]) to be given by forming the smash product of spectra (e.g. [Elmendorf
et al. (1997)]) with the rational Eilenberg-MacLane spectrum:

Lo(E,) ~ (EANHQ) (5.47)

e
Observing with (5.46) that

Lg(E) ~ (Lg(E)) Ao HR. (5.48)

this implies that the componentwise R-rationalization (Def. 5.7) of spectra is analogously
given by the smash product with the real Eilenberg-MacLane spectrum:

Lg(E)

(Lg(E)) Ay HR by (5.47)
ENHQA,, HR by (5.48) (5.49)
~ ENHR.

1

It is in this smashing form that R-rationalization of spectra traditionally appears in the
construction of differential generalized cohomology theories, see Ex. 9.1 below.

Non-abelian real cohomology. Using these R-rational models, we obtain the first key
concept formation towards the character map:

Definition 5.14 (Non-abelian real cohomology). Let X,A € TopSp. Then the non-
abelian real cohomology of X with coefficients in A is the non-abelian cohomology (Def.
2.1) of X with coefficients in the R-rationalization LgA (Def. 5.7)

H(X; LgA) := Ho(TopSpqy) (X, LrA) . (5.50)
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Example 5.8 (Non-abelian real cohomology subsumes ordinary real cohomology). For
n € N, non-abelian real cohomology (Def. 5.14) with coefficients in the R-rationalized
classifying space Lg (B"t!Z) ~ B"'!R (by Ex. 5.4) is naturally equivalent (by Ex. 2.1)
to ordinary real cohomology in degree n:

H(X;LgB""'Z) ~ H(X;B""'R) ~ H"T'(X;R).
More generally:
Proposition 5.15 (Non-abelian real cohomology with coefficients in loop spaces).

Let A € Ho (ASetsQu)Enl@ml (Def. 5.1) such that it admits loop space structure, hence such

that there exists A’ with
A~ QA € Ho (TopSpQu) .

Then the non-abelian real cohomology (Def. 5.14) with coefficients in LrA is naturally
equivalent to ordinary real cohomology with coefficients in the rationalized homotopy
groups of A:

H(X;LgA) ~ @H"™(X; mi1(A) @:R). (5.51)
neN
This is the result of the following sequence of natural bijections:
H(X; LgA) ~ H(X; [T B (71 (A) @, R)) by Ex. 5.6
neN

~ I H(X;B”“(Jr,,H(A)@ZR)) by Def. 2.1 & Prop. 1.11

neN

= [1 H"' (X; A)®,; R by Ex. 2.1
HN (X; Ty 1(A) @, R) y Ex. 2.
ne

=@ H"(X; M1 (A) @, R) by finite type.
neN

Relative rational Whitehead L..-algebras. In parameterized generalization of Prop. 5.11:

Proposition 5.16 (Relative real Whitehead L..-algebras).
For A,B,F € Ho (ASetsQu)ﬁnﬁnﬂ (Def. 5.1) and p a Serre fibration (Example 1.1) from A to

B with fiber F fib
fi P (p) A

Py € Fib
B

there exists a nilpotent Le-algebra (Def. 4.15)

A € LooAlgs: O™ (5.52)

R.fin 7
unique up to isomorphism, whose Chevalley-FEilenberg algebra (Def. 4.13) is the relative

minimal model (Def. 4.22, Prop. 4.24) of the PL de Rham complex of p (Def. 5.3), relative
to CE(IB) (from Prop. 5.11):
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ming
A

CE(L,A) = (Ql’,LdR(A))minCE“B) e QL ar(A) (5.53)

~_ _ Tg;m )
relative minimal model CE(Ip) P

CE(1B) — > Oy gx (B).

Proof. By the PL de Rham theorem (Prop. 5.4) and the assumption that A and B are
connected, it follows that we have H QngR (A) = Rand H QngR (B) = R. Moreover, by
the assumption that p is a Serre fibration with connected fiber, it follows that H'! (QpLar(P))
is injective (e.g. [Félix et al. (2001), p. 196]). Therefore, Prop. 4.24 applies and says that
(QPLar (A)) pyin, € SullModels; ' exists, and is unique up to isomorphism. With this, the
equivalence (4.43) says that [,A exists and is unique up to isomorphism. O

In parameterized generalization of Prop. 5.12 we have:

Proposition 5.17 (Relative R-rationalization as integration of relative Whitehead L..-
algebras). For a Serre fibration A L, Basin Prop. 5.16, its rationalization over the real

numbers (Def. 5.7) is equivalently the image under Bexp (5.14) of the image under forming
CE-algebras (5.31) of its relative Whitehead Le-algebra (5.30):

BeXpPLCE([HA)

A
Lp ( $P> ~ \L Bexpp CE(Ip)
B Bexppy CE(IB)

Proof. As in Prop. 5.12, now appealing to Prop. 5.16 for the (co)fibrant replacement. [

Lemma 5.4 (Minimal relative Sullivan models preserve homotopy fibers [Félix er al.
(2001), §15 (a)][Félix et al. (2015), Thm. 5.1]). Consider F,A,B € Ho (ASetsQu)th

>1,nil
(Def. 5.1) and let p be a Serre fibration from A to B (Ex. 1.1) such that the hamo_lo’gy
groups He(F,R) of the fiber are nilpotent as m(B)-modules (for instance in that B is
simply-connected or that the fibration is principal). Then the cofiber of the minimal rel-
ative Sullivan model for p (5.53) is the minimal Sullivan model (5.31) for the homotopy

fiber F (Def. 1.14):

fib(p) cofib(CE(Ip))

F—————>A CE(IF) <————— CE(L,A)
PieFib CE(Ip) (5.54)
B CE(IB)

Twisted non-abelian real cohomology.

Proposition 5.18 (R-Rationalization of local coefficients — the fiber lemma [Bousfield
and Kan (1972b), §1I]). Let A——>AJG

VP
BG
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be a local coefficient bundle (Def. 3.2) such that all spaces are connected, nilpotent and
of Q-finite type: A, BG,A//G € Ho (ASetsQu)inlgnﬂ (Def. 5.1), and such that the action
of m1 (BG) on He(A,R) is nilpotent (for instance in that BG is simply connected). Then:

R-Rationalization (Def. 5.7) preserves the homotopy fiber:

Bexpp, (cof(CE( [p)))
Bexppy CE(IA) Bexpp CE(I,,A/G)

~

LpA hofib(Lg p) (LR)// (LR
DR
/ hofib(p) ) D/ﬂf//'a Bexpp CE(1p)
A AlG
Lr(p)
B eXpPLCE([BG)
P /
Lr(BG)

(5.55)

Proof. By Prop. 5.16, Prop. 5.17 and since Bexppy, preserves fibrations, being a right
adjoint, the homotopy fiber of Ly (p) is the image under Bexppy, of the cofiber of CE([p).
That this is a claimed is the content of Lemma 5.4. O

Due to Prop. 5.18, it makes sense to say, in generalization of Def. 5.14:
Definition 5.19 (Twisted non-abelian real cohomology). Let X € TopSp and let
ﬁnQ

AJG A BG be alocal coefficient bundle (Prop. 3.1, Def. 3.2) in Ho (ASetsQu)>1 nil
(Def. 5.1). Then the twisted non-abelian real cohomology of X with local coefficients | py is
the twisted non-abelian LgA-cohomology (Def. 3.2) of X with coefficients in the rational-
ized local coefficient bundle Ly (p) from Prop. 5.18:

H™(X; LgA) = Ho((aSetsqu) ™) (v, La(p).

Next we discuss how this non-abelian real cohomology is the domain of a non-abelian
de Rham isomorphism.
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Chapter 6

Non-abelian de Rham theorem

We establish non-abelian de Rham theory for differential forms with values in (nilpotent)
L.-algebras, following [Sati et al. (2009)] [Fiorenza et al. (2012)]. The main result is
the non-abelian de Rham theorem, Theorem 6.5, and its generalization to the twisted non-
abelian de Rham theorem, Theorem 6.15.

L..-Algebra valued differential forms.

Definition 6.1 (Flat L..-algebra valued differential forms [Sati et al. (2009), §6.5]
[Fiorenza et al. (2012), §4.1]).
(i) For X € SmoothManifold and g € L.Algs:% (Def. 4.13), a flat g-valued differential

form on X is a morphism of dgc-algebras (Def. 4.10)

QR (X) A CE(g) € dgcAlgs;’ 6.1)

to the smooth de Rham dgc-algebra of X (Example 4.9) from the Chevalley-Eilenberg dgc-
algebra of g (Def. 4.13).
(ii) We write

Qur (X; ) := dgeAlgs;’(CE(g), Qir (X)) (6.2)

for the set of all flat g-valued forms on X.

Example 6.1 (Flat Lie algebra valued differential forms). Let g € LieAlgebras, , be
a Lie algebra (4.28) with Lie bracket [—, —]. Then a flat g-valued differential form in the
sense of Def. 6.1 is the traditional concept: a g-valued 1-form satisfying the Maurer-Cartan
equation:

QR (X: 0)ac ~ {AeQ}jR(X)eag dA+[ANA] = o}. 6.3)

One way to see this is to appeal to the classical fact that the Chevalley-Eilenberg algebra
of a finite-dimensional Lie algebra (Example 4.10) is isomorphic to the dgc-algebra of left
invariant differential forms on the corresponding Lie group G, which is generated from
the Maurer-Cartan form 6 € QL (G) ® g satisfying 67,6 = idg and d6 = [0 A 6]. More
explicitly, for {v,} a linear basis for g (4.17) with structure constants {f, } (4.18), we see

113
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from (4.19) that a dgc-algebra homomorphims (6.1) has the following components (second
line) and constraints (third line):

flat Lie algebra valued differential form

R[{6/})/(a6(" = 15,6" n6|") = CE(a). (6.4)

O3 (X) :

components 0 ( C)

AL 16,

dI —v(d

dAlermmipe 40 \p@ « e 9(“) p g ")

Example 6.2 (Ordinary closed forms are flat line L..-algebra valued forms). Forn €
N, consider g = b"R the line Lie (n+ 1)-algebra (Example 4.12). Then the corresponding
flat g-valued differential forms (Def. 6.1) are in natural bijection to ordinary closed (n+1)-
forms:

Qqr (X; bnR)ﬂat = Qﬁﬁl (X)closed . (6.5)

That is, by (4.30), we see that the elements on the left of (6.5) have the following component
(second line) subject to the following constraint (third line):

flat

line Lie (n + 1)-algebra-valued
differential form
Qs (X) Rl 1)/(dcayr = 0) ~ CE(6"R) . (6.6)
component
Gt Cntl
ay A Yd
an+l constraint 0 | 0

Example 6.3 (Flat String Lie 2-algebra valued differential forms). Flat L..-algebras
valued forms (Def. 6.1) with values in a String Lie 2-algebra string; (Example 4.13) are
pairs consisting of a flat g-valued 1-form A; (Example 6.1) and a coboundary 2-form B;
for its Chern-Simons form CS(A) := c(A A [A A A]):

dBy=1CS(A), }

. By, .
Qur (X stringg) g, ™ {Al €QRX) dAy = (AL A

Namely, from (4.34) we see that in degree=1 the components of and constraints on such a
differential form datum are exactly as in (6.4), while in degree 2 they are as follows:

Q(.lR (X) flat String Lie 2-algebra valued form |: b27 } /< dby = Uape el(c) A el(b) A 91(41)
}

: ! ; ~ CE(stringg).
(o) oo o ) = CBlasing)

component in degree 2

B, { by
6.7)
dI Lf

gy Spee— I NN

constraint

dBy 2 1 e A NAY
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Example 6.4 (Flat sphere-valued differential forms). Flat L.-algebras valued forms
(Def. 6.1) with values in the rational Whitehead L..-algebra (Prop. 5.11) of a sphere (Ex.
5.3) of positive even dimension 2k are pairs consisting of a closed differential 2k-form and
a (4k — 1)-form whose differential equals minus the wedge square of the 2k-form:

‘dG4k71 = GZkAGZka}

dGy =0

G- ’ °
QR (= 15%) ~ {G:’; I e Qir(X)

Namely, from (5.38) one sees that the components of and the constraints on an [S%*-valued
form are as follows:

° flat (52K .valued form W4f—1, d g1 = — W N W, 2k
Q% (X) R o :|/(da>:: 1= ou k> = CE(1s%*)
component in degree 2k
Gox 1 (6.8)
d d
\L constraint $
dGy ——=0 10

component in degree 4k — |

G | g1

ay $

constraint
d Gy Gy NGy =<4 — g N Oy

For 2k = 4 this is the structure of the equations of motion of the C-field in 11-dimensional
supergravity (modulo the Hodge self-duality constraint G; = *Gy4) [Sati (2018), §2.5].

Example 6.5 (PL de Rham right adjoint via L..-algebra valued forms). Forn € N, the
right adjoint functor in the PS de Rham adjunction (5.26) sends the Chevalley-Eilenberg
algebra (Def. 4.13) of any g € LoAlgs:%™ (Def. 4.15) to a simplicial set of flat g-valued
differential forms (Def. 6.1):

bBexppy (9)(R") := Bexpps,(CE(g)) : [k] — Qg (R" XAk;g) € ASets

flat

(by direct comparison of (5.27) with (6.2)). Regarded as a simplicial presheaf over CartSp
(Def. 1.22), this construction is the moduli eo-stack of flat L..-algebra valued differential
forms (see chapter 9 below).

Non-abelian de Rham cohomology.

Definition 6.2 (Coboundaries between flat L.-algebra valued forms). Let X €
SmthMfds and (from Def. 4.13) g € L., Algs:! . For

R, fin*

AD AW € Q4R (X; 0)fa

a pair of flat g-valued differential forms on X (Def. 6.1), we say that a coboundary between
them is a flat g-valued differential form on the cylinder manifold over X (its Cartesian
product manifold with the real line):
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A € QX xR; g)fiar (6.9)

such that its restrictions along

X D¢
XX x {0l Vs XxR < Oxx{l1}~X
are equal to A and to AW, respectively:
(i) A = A0 and (i) A = A, (6.10)
If such a coboundary exists, we say that A©® and A are cohomologous, to be denoted
A0 4

Definition 6.3 (Non-abelian de Rham cohomology). Let X € SmthMfds and g €
LoAlgs:" (Def. 4.13). Then the non-abelian de Rham cohomology of X with coefficients

R, fin
in g is the set

Hor (X5 9) = (Qar(X; 0)far), . (6.11)

of equivalence classes with respect to the coboundary relation from Def. 6.2 on the set of
flat g-valued differential forms on X (Def. 6.1).

We recall the following basic facts (e.g. [Gomi and Terashima (2000), Rem 3.1]):

Lemma 6.1 (Fiberwise Stokes theorem and Projection formula). Ler X be a smooth
manifold and let F be a compact smooth manifold with corners, e.g. F = A¥ a standard
k-simplex, which for k = 1 is the interval F = [0,1].

Then fiberwise integration over F of differential forms on the Cartesian product mani-

fold X x F
. J; o—dim(F . Jo o
QX xF) —— > 0% (x) cg QI (X xR) Q' (x)

satisfies, for all o € Qi (X x F) and B € Qg (X):
(i) The fiberwise Stokes formula:

Jrda = (=1)"™OVd [ o+ [Hra

(6.12)

eg.  dfgya = () o — (iy) o — Joyyda,

where
i i
X ~ X x{0}¢ X xR X x {1} ~ X

are the boundary inclusions.
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(ii) The projection formula

Je (prxB) na = (—1)dimE)deeBIg A [ qr,
(6.13)

eg oy (prxB) Aa = (=1)*EPIBA o a,
where
prx
XxF ——=X
is projection onto the first factor.

Proposition 6.4 (Non-abelian de Rham cohomology subsumes ordinary de Rham co-
homology). For any n € N, let g = b"R be the line Lie (n+ 1)-algebra (Example 4.12).
Then the non-abelian de Rham cohomology with coefficients in g (Def. 6.3) is naturally
equivalent to ordinary de Rham cohomology in degree n+ 1:

Hr(— b"R) ~ HiZ'(-). (6.14)
Proof. From Example 6.2, we know that the canonical cocycle sets are in natural bijection

QdR (X; bnR)ﬂal = Qgﬂl (X)Closed .

Therefore, it just remains to see that the coboundary relations in both cases coincide. By the
explicit nature (6.6) of the above natural bijection and by the Definition 6.2 of non-abelian
coboundaries, we hence need to see that a pair of closed forms

0 1
C1(1+)17 Cr(z+>1 € QZ]J{I (X)closed

has a de Rham coboundary, i.e.,

dh, € QR(X),

(6.15)
such that C\%), +dh, = clY), |

precisely if the pair extends to a closed (n+ 1)-form on the cylinder over X, as in (6.9)
(6.10):

=~ . =~ 0 . =~ 1
3Cri1 € QU (X X R)egsea, suchthat (i)' Copr = €9, and (i)' Gy = €Y, .
(6.16)
That (6.15) < (6.16) is a standard argument: Let ¢ denote the canonical coordinate function
on R. In one direction, given A, as in (6.15), the choice

Cur1 = (1—1)pr (C,(Br)l) +1pry (Cr(11+)1) +dt Apry (hn)

clearly satisfies (6.16). In the other direction, given 5,1“ as in (6.16), the choice

hn = / 5n+1
(0,1]
satisfies (6.15), by the fiberwise Stokes theorem (Lemma 6.1). O
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The non-abelian de Rham theorem.

Theorem 6.5 (Non-abelian de Rham theorem). Let X € Ho(ASetsQu) and A €
Ho (ASetsQu)in@ (Def. 5.1), and let X admit the structure of a smooth manifold. Then the

1,nil

non-abelian de Rham cohomology (Def. 6.3) of X with coefficients in the real Whitehead
Leo-algebra (A (Prop. 5.11) is in natural bijection with the non-abelian real cohomology
(Def. 5.14) of X with coefficients in LA (Def. 5.7):

H(X;LpA) ~ Hagr(X;IA). (6.17)

Proof. This is the result of the following sequence of bijection:

H(X;LgA)

Ho(ASetsqu) (X, LrA) by Def. 5.14

Ho ((dgeAlgs;’) i) (prar (A), Qpp g (X)) by Def. 5.7 & Prop. 5.5 (6.18)
Ho((dgcAlgsg“)trmj) (CE(14), Q3 (X)) by Prop. 5.11 & Lem. 6.4

Har(X; 1A) by Lem. 6.3.

R

1

1

The two lemmas invoked here are proved next. O

Lemma 6.2 (De Rham complex over cylinder of manifold is path space object). For
X € SmthMIfds, consider the following morphisms of dgc-algebras (Def. 4.10)

Qo) — P ge (xxR) — T e (X) @ Qe (X) (6.19)

(from the de Rham complex of X (Example 4.9) to that of its cylinder manifold X x R, to
its Cartesian product with itself, by Example 4.8), given by pullback of differential forms
along these smooth functions:

X" xar<— "M S (x o)) U(E x {1}) ~ XUX.

This is a path space object (Def. 1.5) for Q&g (X) in (dgcAlgs:®) . . (Prop. 4.19).

trinj
Proof. (i) It is clear by construction that the composite morphism is the diagonal.

(i) That (pry)* is a weak equivalence, hence a quasi-isomorphism, follows from the de
Rham theorem, using that ordinary cohomology is homotopy invariant: H®(X x R;R) ~
H*(X;R).

(iii) That (i, i}) is a fibration, namely degreewise surjective, is seen from the fact that any
pair of forms on the boundaries X x {0}, X x {1} may be smoothly interpolated to zero
along any small enough positive parameter length, and then glued to a form on X x R. [
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Lemma 6.3 (Non-abelian de Rham cohomology via the dgc-homotopy category). Let
X € SmthMfds and g € L. Algs; ™" (Def. 4.15). Then the non-abelian de Rham cohomol-
ogy of X with coefficients in g (Def. 6.3) is in natural bijection with the hom-set in the
homotopy category of (dgcAlgs:"), . . (Prop. 4.19) from CE(g) (Def. 4.13) to Q3x(X)

(Example 4.9):

trinj

Har (X;9) ~ Ho((dgcAlgs]Z”)mnj) (CE(g), Qir(X)). (6.20)
Proof. Consider a pair of dgc-algebra homomorphisms
A AW € dgeAlgs:® (CE(g), Q3R (X)) (6.21)
hence of flat g-valued differential forms, according to Def. 6.1. Observe that:

(i) CE(g) is cofibrant in (dgcAlgs;")
assumed to be nilpotent (4.42));

(4.44). (by Prop. 4.21, and since g is

trinj

(i) Qg (X) is fibrant in (dgcAlgs]§ (4.44). (by Remark 4.3);

U) trinj

(iii) A right homotopy (Def. 1.6) between the pair (6.21) of morphisms, with respect
to the path space object Q3 (X x R) from Lemma 6.2, namely a morphism A
making the following diagram commute

%)
/F A
QRX xR) ~—3 CE(g) ©622)
iw’ A
Qi (X)

is manifestly the same as a coboundary A between the corresponding flat g-valued
forms according to Def. 6.2.

Therefore, Prop. 1.10 says that the quotient set (6.11) defining the non-abelian de Rham
cohomology is in natural bijection to the hom-set in the homotopy category. O

Lemma 6.4 (PL de Rham complex on smooth manifold is equivalent to smooth de
Rham complex). Let X be a smooth manifold. Then

(i) There exists a zig-zag of weak equivalences (Def. 4.18) in (dgcAlgsi“)Lrinj (4.44) be-
tween the smooth de Rham complex of X (Example 4.9) and the PL de Rham complex of its
underlying topological space (Def. 5.3).

(ii) In particular, both are isomorphic in the homotopy category:

X smooth manifold = QR(X) ~ QprX) € Ho((dgcAlgs@")triHj).



December 12, 2023 20:14 ws-book9x6 The character map in nonabelian cohomology:
(twisted, differential, and generalized) cherndold 'ws'book page 120

120 The character map in nonabelian cohomology:(twisted, differential, and generalized)

Proof. Let Qpgr (—) (for “piecewise smooth”) be defined as the PL de Rham complex in
Def. 5.3, but with smooth differential forms on each simplex. Notice that this comes with
the canonical natural inclusion

° ( poly .
QPLdR( ) Qpsar(— ) -
Let then Tr(X) € ASets be any smooth triangulation of X (Ex. 1.16). This means that we
Te(X)| ——— X (1.58),
homeo

have a homeomorphism out of its geometric realization (1.50),

which restricts on the interior of each simplex to a diffeomorphism onto its image; and that
we have an inclusion (1.59)

i) . Sing(p)
Tr(X) (% Sing(|Tr(X)]) i Sing(X), (6.23)

which is a weak equivalence (by Example 1.15). In summary, this gives us the following
zig-zag of dgc-algebra homomorphisms:

PLdR Tr Qir(X
N
Qpygr (X) = Qpy 4 (Sing(X) PSdR Tr

Here the two morphisms on the right are quasi-isomorphisms by [Griffiths and Morgan
(2013), Cor. 9.9] (as in Prop. 5.10). The morphism on the left is a quasi-isomorphism
because 75 is a weak homotopy equivalence (6.23) which is preserved by Qp; i (using
Lem. 1.1), since this is a Quillen left adjoint (by Prop. 5.5) and since every simplicial set
is cofibrant (Ex. 1.2). O

Flat twisted L..-algebra valued differential forms. We generalize the above discussion
to include twistings.

Definition 6.6 (Local L..-algebraic coefficients). We say that a local Le-algebraic coef-
ficient bundle is a fibration
g—>b (6.24)
P
b
in LoAlgsz? (Def. 4.13), hence a morphism such that under passage to Chevalley-
Eilenberg algebras (4.27) we have a cofibration

CE(g) cofib(CE(p)) CE( b)

CE(p)q\E Cof (6.25)
CE(b)
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in (dgcAlgsEo) j (Prop. 4.19).

trin
In generalization of Def. 6.1, we say:

Definition 6.7 (Flat twisted L..-algebra valued differential forms).
(i) Let X € SmthMfds and b (6.24) a local Le.-algebraic coefficient bundle (Def. 6.6). For

TR € Qar(X; b)fac (6.26)

a flat b-valued differential form on X (Def. 6.1), we say that a flat T-twisted g-valued
differential form on X is a morphism of dgc-algebras (Def. 4.10) in the slice over CE(b)

flat 7y -twisted

g-valued differential form —~
Q4 (X) . CE(b) (6.27)
TaR CE(p)
twist local .
CE(b) Cevecionts

(ii) We write

QR (X ) = (dgeAlgs;”) g (Tar s D)

for the set of all flat Tqg-twisted g-valued differential forms on X.

Remark 6.1 (Underlying flat forms of flat twisted forms). Let X € SmthMfds, let

g »EL b be a local Le-algebraic coefficient bundle (Def. 6.6), and let T4 €
Q4R (X ; b). Then there is a canonical forgetful natural transformation

Q% (X g)fa —> Q(X50) (6.28)

from flat tgr-twisted g-valued differential forms (Def. 6.7) to flat b-valued differential
forms (Def. 6.1), given by remembering only the top morphism in (6.27).

Example 6.6 (L.-coefficient bundle for H3-twisted differential forms [Fiorenza et al.
(2017), §41[Fiorenza et al. (2018), §4][Braunack-Mayer et al. (2019), Lem. 2.31]).
Consider the local L..-algebraic coefficient bundle (Def. 6.6) given by the following multi-
variate polynomial dgc-algebras (Def. 4.15):
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CE(Ikuy) CE(1(kuy /BU(D)) )

Rfs,/ dfs =0 | LCxn—omn f57/ dfs=h3/f3,

/1 ar 2o R/ [dn=hnn,
A dfi =0 I, dfi =0,
! ! s dhy =0

I3
I
I3
R[h3](dh3 =0) = CE(b’R)
Here the rational model of the classifying space ku; for complex topological K-theory in
degree 1 and for its twisted version is as in [Fiorenza et al. (2017), §4][Fiorenza et al.

(2018), §4][Braunack-Mayer et al. (2019), Lem. 2.31]. In this case:
(i) A twist (6.26) is equivalently an ordinary closed 3-form form (by Example 6.2):

Hy € Qqr(X;0°R) g, ~ Qip(X)closed- (6.29)

(ii) The flat 7gr ~ H3-twisted [ku;-valued differential forms according to Def. 6.7 are
equivalently sequences of odd-degree differential forms Fyi4 € Qﬁ’f{l (X) satisfying the
Hj;-twisted de Rham closure condition (see [Rohm and Witten (1986), (23)][Grady and Sati
(2019b)]):

QR (X: Ikuy) g, {FM1 eQﬁgjl’d):FM, =H AZFZk,l} (6.30)
k k

(where we set Fy_1 := 0if 2k — 1 < 0, for convenience of notation).

In direct generalization of Example 6.6, we have:

Example 6.7 (L..-coefficient bundle for higher twisted differential forms [Fiorenza et al.
(2020a), Def. 2.14]). Forr € N, r > 1, consider the local L..-algebraic coefficient bundle
(Def. 6.6) given by the following multivariate polynomial dgc-algebras (Def. 4.15):
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CE( ® bz’kR) CE<( ® b2f’<R) //BZHU(U)
keN keN

R fars1, df4r+1. —0 | forer ok Jars1, / d fars1 = horp1 A for1,s
Sorsts dfri1=0 oty d for+1 = harp1 A S1,
T df, =0 f1s df, =0,
h2r+1 dh2r+1 =0

hari1
T I
hart
R[hos1] (dhori1 =0)
|
CE(b*R)
(6.31)

In this case:
(i) A twist (6.26) is equivalently an ordinary closed (2r + 1)-form form (by Example 6.2):

Hyrp1 € Qur(X50%R) =~ Q3 (X) ctosed - (6.32)

(ii) The flat Tqr ~ Hpp41-twisted & b2*R-valued differential forms according to Def. 6.7
keN

are equivalently sequences of differential forms F,e41 € Qgﬁ'“ (X) satisfying the H, (2r+1)"
twisted de Rham closure condition (6.43):

QR (X;k?szrkR)ﬂat ~ {FZr-+l € Qﬁf{“ ‘ dY Forer1 = Hary /\ZF2rk—l} (6.33)
X k

(where we set F5,;,_1 :=01if 2rk — 1 < 0, for convenience of notation).

In twisted generalization of Example 6.4, we have the following:

Example 6.8 (Flat twisted differential forms with values in Whitehead L..-algebras
of spheres and twistor space). The L.-algebraic local coefficient bundles (Def. 6.6)
given as the relative Whitehead L..-algebras (Prop. 5.16) of the local coefficient bundles
(3.35) for twisted and twistorial Cohomotopy (Example 3.11) are as shown on the right of
the following diagram [Fiorenza ef al. (2020b), Lem. 3.19][Fiorenza et al. (2022), Thm.
2.14]:
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. -
f3’ dhy=w3—tpi—HAf
3 — 2 df,=0
CE([BSP(Z)(CP //SP(Z))) CE(IBSp(2)) w7, / dan=—oi Aoy +(1p1)? —2s
P dwy=0
s o4
G4,G7,F H -
(G4,G7,F> 3)/ - (1 /Sp(2))" t
Ve
-
- -

(G4,2G) 4

y2
_ 1,02
QR (X) = = = CE (I (S*/Sp(2))) = CE(IBSp(2))[“’7’ J(Gan= gennens Gro™=H)
TdR

X d Xg=0
CE(1BSp(2)) = R %p?]/(dép?—O)

Therefore, given a smooth 8-dimensional spin-manifold X equipped with tangential Sp(2)-
structure 7 (3.33), the flat T4z -twisted [$*- and (CP3-valued differential forms (Def. 6.7)
are of the following form [Fiorenza et al. (2020b), Prop. 3.20][Fiorenza et al. (2022),
Prop. 3.9]:

Q(’ﬁ{{ (X; [S4) — {28176 QaR(X) ’d2G7 = _(G4 - %PI(V)) A (G4 + %pl(v)) _XS(V)}

d Gy=0
II:!3’ dHy =Gy~ 1pi(V) - B AP,
T ’ dF :0
Q% (x.1CP3) = { . 2 et (X 2
R (GIEPY) =9 26, €98 1426, = (6~ 1) 1 G4+ 1) ~2(¥)
Gy d G4 =0,

(6.34)
Notice:
(a) Here we are using (Example 8.1) that the de Rham image t4g of the rationalization LT
of the twist 7 is given by evaluating characteristic forms (Def. 8.2) on any Sp(2)-connection
V.
(b) In the second equation of (6.34) we are using the above minimal model for CP? //Sp(2)
relative to $* /Sp(2) (instead of relative to BSp(2)).

Twisted non-abelian de Rham cohomology. In generalization of Def. 6.2, we set:

Definition 6.8 (Coboundaries between flat twisted L..-algebraic forms). Let X €

SmthMfds, let g — b £ b be a local L.-algebraic coefficient bundle (Def. 6.6), and
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let Tqr € Qgr(X; b). Then for
AL A e Qr(x,g)

a pair of flat Tqg-twisted g-valued differential forms on X (Def. 6.7), a coboundary between
them is a coboundary

A€ Qr(XxR;b) (6.35)

in the sense of Def. 6.2 between the underlying flat b-valued forms (via Remark 6.1),
such that the underlying b-valued form of H equals the pullback of the twist Tggr along

XxR2X x .

p«(H) = pry(Tar) - (6.36)

If such a coboundary exists, we say that A and AWM are cohomologous, to be denoted
A0 A

In generalization of Def. 6.3, we set:

Definition 6.9 (Twisted non-abelian de Rham cohomology). Let X € SmthMfds,

let g —~b A b be a local Le.-algebraic coefficient bundle (Def. 6.6), and let 7qr €

Q4r (X ; b). Then the Tqr -twisted non-abelian de Rham cohomology of X with coefficients
in g is the set

HiR (X:9) = (4R (X 0)na),. (6.37)

of equivalence classes with respect to the coboundary relation from Def. 6.8 on the set of
flat Tqr-twisted g-valued differential forms on X (Def. 6.7).

Remark 6.2 (Independence of the representative of the twist). The twisted non-abelian
de Rham theorem below (Thm. 6.15) makes manifest that the twisted non-abelian de Rham
cohomology in Def. 6.9 depends on the twist Tgg only through its class [tqr] € Hgr (X b)
in (un-twisted) non-abelian de Rham cohomology (Def. 6.3).

The example of traditional twisted de Rham cohomology. Twisted de Rham cohomol-
ogy is traditionally familiar in the form of degree-3 twisted cohomology of even/odd degree
differential forms [Rohm and Witten (1986), §III, Appendix][Bouwknegt et al. (2002),
§9.3][Mathai and Stevenson (2003), §3][Freed et al. (2008), §2][Teleman (2004), Prop.
3.7][Cavalcanti (2005), §1.4][Sati (2010)][Mathai and Wu (2011)][Grady and Sati (2019a)]
(which is the target of the twisted Chern character in degree-3 twisted K-theory, see Prop.
10.1).

We discuss now how this archetypical example (Def. 6.10) and its higher-degree gen-
eralization (Def. 6.12) are subsumed by our general Def. 6.9.
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Definition 6.10 (Degree-3 twisted abelian de Rham cohomology). For X € SmthMfds,
and H3 € QgR (X)closed @ closed differential 3-form, the H3-twisted de Rham cohomology

of X is the cochain cohomology !

ker®(d —H3 A (—))

Hy (X)) = 6.38
of the following 2-periodic cochain complex:
d—H3N\(— d—H3N\(—
'%EBQIE 1+2k(X)( 3A( ))®Qg§2k( )( 3 @QnH +2k( )4)
k
(6.39)

We show that this is a special case of twisted non-abelian de Rham cohomology ac-
cording to Def. 6.9:

Proposition 6.11 (Twisted non-abelian de Rham cohomology subsumes Hj-twisted
abelian de Rham cohomology). Given a twisting 3-form as in (6.29)

TR <—> H3
m m
Q (X; bzR) ~ 0 (X)closed

the tqr-twisted non-abelian de Rham cohomology (Def. 6.9) of flat twisted |ku;-valued
differential forms (Example 6.6) is naturally equivalent to Hs-twisted abelian de Rham
cohomology (Def. 6.10) in odd degree®

flat

[v E-twisted [kuj -valued traditional H3 -twisted
de Rham de Rham

HT‘“‘(X ku)) ~ HEP(x)

Proof. By (6.30) in Example 6.6 the cocycle sets on both sides are in natural bijection.
Hence it is sufficient to see that the coboundary relations on the cocycle sets coincide,
under this identification. In one direction, consider a coboundary in the sense of twisted
non-abelian de Rham cohomology (Def. 6.8) with coefficients as in Example 6.6:

Frey1 € Qar (X x R; Ikuy).

We claim that

/ Fros (6.40)
[0,1]

satisfies the coboundary condition (6.38):

The notation “H3” for the twist (and of “Ha,|” for the higher twists later) originates in the physics
literature and has made it as a convention in differential geometry as well. Not to be confused with a
third homology group, of course

2The discussion for even degrees is directly analogous; we omit it for brevity.
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_ (1) (0)
(d*H3/\);h2k = ;(F2k+1 —Fyly)- (6.41)

To see this, we may compute as follows:

1)
dzh%— Z( 2k+1 F2k+l /dF2k+1>

[0,1]

_Z< U1 21@11 /(PY§H3)AEk—1>

[0,1]

_Z< 241 2k+1+H3/\ /IFZk1>
[0,1]

_Z< 2%k+1 7 2k+1+H3Ah2k 2)

where the first step is the fiberwise Stokes formula (6.12) together with the defining restric-
tions (6.10) of I;Z.H; the second step is the cocycle condition (6.30) on onﬂ using the
constraint (6.36); the third step is the projection formula (6.13); and the last step uses again
the definition (6.40).

Conversely, given hy, satisfying (6.41), we claim that

Fai1i= (1—1)pr}(F. ;.ll)—l—zprl( z(.j_l)ﬁ—dt/\prx(hz.) (6.42)

is a coboundary of twisted non-abelian cocycles, in the sense of Def. 6.8: It is immediate
that (6.42) has the required restrictions (6.10). We check by direct computation that it
satisfies the required differential equation:

dY Pt = Y= di npri (FL) + (1= 1) pr (H3) Apr (FY )
k k

+dt Apry (F. ;kll)+ter(H3)Aprx( 2<k>1)

fdt/\pr}*((thk) )

_Fz(kil F2(k4)rl+H?/\h2k

;(Prx H3) A Py 1) O

In generalization of Def. 6.10, there are twisted abelian Rham complexes with twist
any odd-degree closed form [Teleman (2004), §3][Sati (2009)][Mathai and Wu (2011)][Sati
(2010)][Grady and Sati (2019a)] (these serve as the targets for the Chern character
[Macdonald et al. (2021)] on higher-twisted ordinary K-theory [Teleman (2004)][Guerra
(2008)][Dadarlat and Pennig (2015)][Pennig (2016)], see Example 10.1 below; and for the
LSW-character on twisted higher K-theories [Lind ez al. (2020), §2.1], see Prop. 10.2
below):
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Definition 6.12 (Higher twisted abelian de Rham cohomology). For X € SmthMfds,
reNand Hy.y) € Q(zﬂr;l (X)closed @ closed differential (2r+ 1)-form, the Hy,y | -twisted de
Rham cohomology of X is the cochain cohomology

otHor oy Ker®(d—Hor 1 A(—))
@ ¥) = im® (d — Hyri N (—))

o (6.43)

of the following 2r-periodic cochain complex:

e ’ (d*Hz, 1/\(7)) (d*Hzpr]A(f))
s ?QSR Dk ey otk (x)

k

G](agfjr}l{+l)+2rk(x) .

In direct generalization of Prop. 6.11, we find:

Proposition 6.13 (Twisted non-abelian de Rham cohomology subsumes higher twisted
abelian de Rham cohomology). For r € N, r > 1, consider a twisting (2r + 1)-form as
in (6.32)

TqR <—> Hpr
m m
Q(X, bZrR) ~ Q2r+1 (X)

flat closed

The tyr-twisted non-abelian de Rham cohomology (Def. 6.9) of flat twisted IK*—2 (ku)q-
valued differential forms (Example 6.7) is naturally equivalent to H, 1 -twisted abelian de
Rham cohomology (Def. 6.12) in degree® 1 mod 2r.

twisted higher H,, | -twisted
non-abelian de Rham cohomology de Rham cohomology

o gk L,
Hgg(x,ngb TR) = H (X)),

Proof. By Example 6.7, the cocycle sets on both sides are in natural bijection. Hence it
remains to see that the coboundary relations correspond to each other, under this identifi-
cation. This proceeds verbatim, up to degree shifts, as in the proof of Prop. 6.11 (which is
the special case of r = 1). O

Example 6.9 (Degree-1 twisted non-abelian de Rham cohomology). Def. 6.12 sub-
sumes also the case of a twist in (“lower”) degree 1, for k = 0. By classical theory of
sheaf cohomology for local systems (see e.g. [Chen and Yang (2019), Prop. 2.3] following
[Voisin (2007), §11 5.1.1 ]) the degree-1 twisted de Rham cohomology in the sense of Def.
6.12 is equivalently classical sheaf cohomology with coefficients in the flat local sections
of a trivial line bundle with flat connection. Beware that for more general local systems of
lines (or even of vector spaces) some authors still speak of “twisted de Rham cohomology”
(e.g. [Chen and Yang (2019), §2.1]), though the twist itself is then no longer in real/de

3The discussion for other degrees is directly analogous, and we omit it for brevity.
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Rham cohomology, whence this more general case is, in our terminology, no longer an ex-
ample of Def. 6.12, but is an example of (torsion-)twisted differential cohomology [Grady
and Sati (2018¢)].

Example 6.10 (Cohomology operation in (higher-) twisted de Rham cohomology).
Degree-3 twisted de Rham cohomology (Def. 6.10) supports the following twisted coho-
mology operations (Def. 3.6):

(i) wedge product with H3:

H. +3+H-
Hid ™ (X) —— H3 M5 (x)
Y F — YFANH3
k k

(ii) wedge square:
@H2r+H3( ) o @H§£+2H3 (X)
Y — YF ) A LF
k (£5) » (2)
(iii) compositions of these:
@HZF+H3( ) ®H2r+1+2H3 (X)
Yh, — YF )N LF ) NH3
k (z5) » (24)

It is noteworthy that terms of the form (iii) arise in type IIA string theory, together with
terms of the form I3 U [H3] (8.7), see [Grady and Sati (2019b)].

This evidently generalizes to higher twisted de Rham cohomology (Def. 6.12) and
higher twisted real cohomology in the sense of [Grady and Sati (2019a)], with H3 replaced
by Hpy41 forr e N.

Homotopical formulation of twisted non-abelian de Rham cohomology. In preparation
of the twisted non-abelian de Rham theorem (Thm. 6.15) we give a homotopy-theoretic
reformulation of twisted non-abelian de Rham cohomology (Def. 6.9):

Lemma 6.5 (Pullback to de Rham complex over cylinder of manifold is relative path
space object).
Let X € SmthMfds, let b € L., Algs:, (Example 4.10) with Chevalley-Eilenberg algebra

R.fin
CE(b) € dgeAlgs;® (4.26), and let  {Qe (x) <"*_ CE(p)} € (dgeAlgs:’)gi® be
a morphism of dgc-algebras to the de Rham complex of X (Example 4.9), regarded as an
object in the coslice model category (Example 1.5) of (dgcAlgs“‘)trinj (Prop. 4.19) under
CE(b). Then a path space object (Def. 1.5) for Ty, is given by this diagram.:
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. pryeW 10 i})eFib .
QR(X) ———— Qi ( XXR — QR (X) © QR (X)

- pry ° TR
TaR (Tir > Tar)

where the top morphisms are from (6.19).

Proof. It is clear that the diagram commutes, by construction. Moreover, the top mor-
phisms are a weak equivalence followed by a fibration in (dgcAlgs\“)mnj, by Lemma 6.2.
Therefore, by the nature of the coslice model structure (Example 1.5) the total diagram
constitutes a factorization of the diagonal on 73, through a weak equivalence followed by
a fibration, as required (1.20). (To see that the composite really is still the diagonal mor-
phism in the coslice, observe that Cartesian products in any coslice category are reflected
in the underlying category.) It only remains to observe that T3, is actually a fibrant object
in the coslice model category. But the terminal object in the coslice is clearly the unique
morphism from CE(b) to the zero-algebra (Example 4.7), so that in fact every object in the
coslice is still fibrant

€Fib

Ww  CE(b) (6.44)
as in Remark 4.3. O

Qir(X)

Proposition 6.14 (Twisted non-abelian de Rham cohomology via the coslice dgc-
homotopy category). Consider X € SmthMfds, let

g—>10

o € Lo Algs; ™

be an Le,-algebraic local coefficient bundle (Def: 6.6) of nilpotent Les-algebras (Def: 4.15)
with Chevalley-Eilenberg algebra CE(b), CE(b) € dgcAlgsz® (4.26), and let

iR 0\ CE(b
Qs (X) < CE(p) € (dgealgs:”) oo (6.45)

be a morphism of dgc-algebras to the de Rham complex of X (Example 4.9), hence a flat
b-valued differential form (Def. 6.1)
TR € Qar(X;b),

equivalently regarded as an object in the coslice model category (Example 1.5) of
(dgcAlgsi;”)trinj (Prop. 4.19) under CE(b). Then the tqr-twisted non-abelian de Rham
cohomology of X with coefficients in g (Def. 6.9) is in natural bijection with the hom-set
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; . . o CE(b)
in the homotopy category (Def. 1.8) of the coslice model category (dgcAlgsug ) trin (Ex-

ample 1.5) of the model structure on dgc-algebras (Prop. 4.19) from CE(p) (6.25) to T3
(6.45):

Hi (X:9) = Ho((dgealgs:") (o) (CE(p) . 7). (6.46)

trinj
Proof. Consider a pair of dgc-algebra homomorphisms in the coslice

A — -
QiR (X) CE(b)

\A(l) —
- CE®) e € (dgeAles:) iy (CE®), i), (647)

hence of flat 7yg-twisted g-valued differential forms, according to Def. 6.7. Observe that:

(i) CE(p) is cofibrant in (dgcAlgs;" CE(p)/

5 )mnj , since:
(a) the initial object in the coslice is CE(b) 4 CE(b) ,

(b) the unique morphism from this object to CE(p) is

CE(p)e Cof

)
XCEIJ)@:

CE(b CE(b) (6.48)

(

(¢) CE(p) is a cofibration in (dgcAlgs:") trinj> DY (6.25), s0 that the diagram (6.48)

is a cofibration in the coslice model category, by Example 1.5.
.. . . - o\ CE(b)/ )
(ii) pry o Tjg is fibrant in (dgcAlgs:") winj DY (6.44);
(iii) A right homotopy (Def. 1.6) between the pair (6.47) of coslice morphisms, with
respect to the path space object from Lemma 6.5, namely a A that makes the
following diagram commute

QR (X)
on \A(o) \
QL (X X R) i CE(b) (6.49)

\

Qir(X) CE(b)

is manifestly the same as a coboundary A between the corresponding flat twisted
g-valued forms according to Def. 6.8:
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(a) The top part of (6.49) is, just as in (6.22), the flat twisted g-valued form on
the cylinder over X that is required by (6.35);

(b) the bottom part of (6.49) is the condition (6.36) on the extension of the twist
to the cylinder over X.

Therefore, Prop. 1.10 says that the quotient set (6.37) defining the twisted non-abelian de
Rham cohomology is in natural bijection to the hom-set in the coslice homotopy category.
O

The twisted non-abelian de Rham theorem. With this in hand we may finally prove the
main result in this section, generalizing the non-abelian de Rham theorem (Thm. 6.5) to
the twisted case:

Theorem 6.15 (Twisted non-abelian de Rham theorem). Let X € Ho(ASetsqy)
equipped with the structure of a smooth manifold, and let

A— S AJG
fin

€ Ho(ASetsqu) 1 (6.50)

local coefficient bundle lp

BG

be a local coefficient bundle (3.2) of connected Q-finite nilpotent homotopy types (Def.
5.1) such that the action of T (BG) = my(G) on the real homology groups of A is nilpotent.
Consider; via Prop. 5.18, the rationalized coefficient bundle Lg (p) with corresponding Le-
algebraic coefficient bundle |p (Def. 6.6) of the relative real Whitehead L-algebra (Prop.

5.16):
LRA R (LRA)//(L]RG) a——>b.
o S | Lalp) Il i |
LrBG b
Then, for

X — > LgBG € Ho(ASetsqy)

a twist, the T-twisted non-abelian real cohomology (Def. 5.19) of X with local coefficients
in Lg(p) (Prop. 5.18) is in natural bijection with the Tag-twisted non-abelian de Rham
cohomology (Def. 6.9) of X with local coefficients in p,

T-twisted non-abelian TgR -twisted non-abelian
real cohomology de Rham cohomology
T(y. T .
HY(X;LpA) ~ Hi¥(X:a), (6.51)

where the twists are related by the plain non-abelian de Rham theorem (Theorem 6.5):

[1] <—— [taR] (6.52)
m m
H(X:LrBG) =~ Har(X;b)
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Proof. This is established by the following sequence of natural bijections of hom-sets
(where on the right we are illustrating the structure of their elements):

HY(X; LpA)
X —-oomes » Lp (A G)
= Ho(aSetsps%) (z, L (p)) =0 N o
LrBG
X - » Bexpp CE(a)
= Ho(ASetsg, %) (¢, Bexppr CEM) =4 B sewmicen
Bexpp CE(b)
QY o (X) ¢ CE(b)
~ >0)OP /CE(9)\ (= — PLAR
~ Ho(((dgcAlgsR )mnj) )(r, CE(p)) = %\ pn
CE(b)
Qo (X) ¢-----—- CE(b)
- ~0yop | /CE(g) _J R
~ Ho(((dgcAlgs,R )mnj) )(TdR, CE(p)) = T:T‘R\ /CFf(p)
CE(b)

12

H™® (X;[A).

Here the first line is the definition of twisted non-abelian real cohomology (Def. 5.19),
while the second line inserts the definition of Lg (Def. 5.7), with CE(lp) serving as the
required (1.37) fibrant resolution (1.19) of Qp; iz (P)-

The key step is the third line, which uses the hom-isomorphism (1.2) of the derived
adjunction (1.35) of the sliced Quillen adjunction (Ex. 1.8) of the PLdR-adjunction (Prop.
5.5), using the form (1.32) of its left adjoint with the observation that this is already derived
(1.36) since 7 is necessarily cofibrant, by (1.15) and (1.19).

The fourth step is composition with the slice morphism exhibiting (6.52)

CE(b)

which is an isomorphism in the homotopy category by Lemma 6.4 (as, in the untwisted
case, in the last step of (6.18)). The last step is Prop. 6.14, O
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PART IV

The (differential) non-abelian character
map

135
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We introduce the character map in non-abelian cohomology (Def. 1V.2 below) and then
discuss how it specializes to:

chapter 7 — the Chern-Dold character on generalized cohomology;
chapter 8 — the Chern-Weil homomorphism on degree-1 nonabelian cohomology;

chapter 9 — the Cheeger-Simons differential character on degree-1
nonabelian cohomology.

Definition IV.1 (Rationalization and realification in non-abelian cohomology). Let
A € Ho(ASetsqy) ™ . (Def. 5.1).
(i) We write -

non-abelian . non-abelian
cohomology H( .nQ —H(—:D PQL rational cohomology
E — N4 )=H(—; M)

(M)e : H(—;A) H(—; LgA) (IV.1)

for the cohomology operation (Def. 2.3) from non-abelian A-cohomology (Def. 2.1) to
non-abelian rational cohomology (Def. 5.14), which is induced (2.20) by the rationalization
map n;@ (Def. 5.2), or equivalently, via the Fundamental Theorem (Prop. 5.6), by the
derived unit of the rational PL de Rham adjunction.

(ii) Analogously, we write

rationalization

non-abelian non-abelian
cohomology H( . DT] pfd_> real cohomology
> A

(Mx)s = H(—A) H(—: LgA) (Iv.2)

real-ification

for the cohomology operation to non-abelian real cohomology that is induced by the de-
rived PL de Rham adjunction unit over the real numbers into Ly (5.21).

(iii) For, moreover, X € Ho (ASetsQu)t;n]?m] (Def. 5.1), we consider the cohomology opera-
tion shown by the dashed arrow here:

(IV.3)
H(X; LgA)
T ()egR
\\\‘\»
O H(X;LgA)
HO((dgCAlgSEO)E?nj) (DQI.)QLdR X), DO ar (A)) ()
\
D((-)2qR)
™~

Ho((dgeAlgs:’) z};’nj) (DQpgy gr (X), Dy 4r(4))

hence the composition of:

(i) the hom-isomorphisms (—) (1.2) of the derived (1.35) PL de Rham Quillen adjunction
(Prop. 5.5) over the rational and over the real numbers, respectively;
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(i1) the corresponding hom-component of the right derived extension-of-scalars functor
from Lem. 5.3 (the operation of “tensoring a space with R” from [Deligne et al. (1975),
Footn. 5));

While real-ification (IV.2), in constrast to rationalization (IV.1), is not directly induced
by a localization of spaces, it is equivalent to rationalization followed by derived extension
of scalars:

Proposition IV.1 (Realification is rationalization followed by extension of scalars).
The operation of real-ification (IV.2) factors through rationalization (IV.1) via extension of
scalars (IV.3) in that the following diagram commutes:

n2). H(X; LgA)
S l(”@’“R (IV.4)

4

H(X;A)
M) 7 H(X; LgA).

Proof. Consider the following diagram:

nonabelian
cohomology

nonabelian
real cohomology

real character map

H(X; D)

[ oot e e - 1
H(X;A) —HX;Dnd)» H(X;LQA) H(X;LrA)

%} (\:)ll

N o
extension

of scalars

H (DQI.’QLdR (X) ’ Dgzl.)QLdR (A ) ) H (DQI.’IRLdR (X) ’ DQ;’RLdR (A ) )

D((-)gR) 7

DQERLdR

av.s)
Here the triangle on the left as well as the outer rectangle commute by general properties
of adjunctions (the naturality of the hom-isomorphism (1.2) combined with the definition
(1.3) of the adjunction unit). The square on the right commutes by definition (IV.3), and the
bottom part commutes by Prop. 5.8. Together, these imply that the top rectangle commutes,
which is the statement to be shown. O
Definition IV.2 (Non-abelian character map). Let X,A € Ho(ASetsQu)filenil (Def. 5.1)
such that X admits the structure of a smooth manifold. Then we say that the non-abelian
character map in non-abelian A-cohomology (Def. 2.1) is the cohomology operation (Def.
Iv.1)

non-abelian
real cohomology

H(X; LrA)

non-abelian
cohomology (TL]F )*

H(X:;A)

non-abelian
~ de Rham cohomology
———— Hgr(X:4)
non-abelian
de Rham theorem

non-abelian ChA :

character map

(IVv.6)

R-rationalization

from non-abelian A-cohomology (Def. 2.1) to non-abelian de Rham cohomology (Def.
6.3) with coefficients in the rational Whitehead L..-algebra [A of A (Prop 5.11), which is
the composite of
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(i) the operation (IV.2) of real rationalization of coefficients (Def. IV.1),
(ii) the equivalence (6.17) of the non-abelian de Rham theorem (Theorem 6.5).

Unwinding the definitions and theorems that go into Def. IV.2, shows that the non-
abelian character map on a non-abelian cohomology theory with classifying space a (con-
nected, nilpotent and Q-finite) homotopy type A assigns flat non-abelian differential form
data (Def. 6.1) satisfying the differential relations of the CE-algebra of the Whitehead
Lo.-algebra of A (Prop. 5.11):

Example IV.1 (Non-abelian character on Cohomotopy theory). The non-abelian char-
acter (Def. IV.2) of
(i) aclass [c] € 7" (X) = H! (X;QS”) in Cohomotopy (Ex. 2.7) is (by Ex. 5.3, Ex. 6.4) of

this form:
[Gy € Q"(X)|dG, =0] i = 241 s odd
chsi(¢) = 3 [Gay 1 € Q2 (X)[ Gyt = ~GuNG
- 'dR n n n| . _ .
{Gn € Qi (X) dG, =0 if n =2k is even

(ii) a class [c] € H! (X ;.Q(CP”) in the non-abelian cohomology theory represented by com-
plex projective n-space is (by Ex. 5.5) of this form:

n+1 factors
+1 fact
dHyy1 =B N NF,
dF, =0

H2n+] S Q?ﬁ;“ (X)

chepr =
cpe(c) B c QﬁR(X)

We come back to these new and deeply non-abelian examples in chapter 12 below.
First we now turn attention to verifying that the non-abelian character map of Def. IV.2
correctly subsumes more classical structures of differential topology.
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Chapter 7

Chern-Dold character

We prove (Theorem 7.4) that the non-abelian character map reproduces the Chern-Dold
character on generalized cohomology theories (recalled as Def. 7.3) and in particular the
Chern character on topological K-theory (Example 7.1).

Remark 7.1 (Chern-Dold character over the real numbers). In view of Prop. IV.1
and Ex. 5.7 we may and will regard Dold’s equivalence (Prop. 7.1) and the Chern-Dold
character (Def. 7.3) over the real numbers instead of over the rational numbers. This
does not affect the information contained in the character but serves to allow, over smooth
manifolds, for composition with the de Rham isomorphism.

Proposition 7.1 (Dold’s equivalence [Dold (1972), Cor. 4][Hilton (1971), Thm.
3.18][Rudyak (1998), §11.3.17]). Let E be a generalized cohomology theory (Example
2.10). Then its R-rationalization Erg is equivalent to ordinary cohomology with coefficients
in the rationalized stable homotopy groups of E:

EL(X) — =~ @ H" (X; ;(E) 9, Q).
- keZ

Remark 7.2 (Rational stable homotopy theory). In modern stable homotopy theory,
Dold’s equivalence (Prop. 7.1) is a direct consequence of the fundamental theorem
[Schwede and Shipley (2003b), Thm. 5.1.6] that rational spectra are direct sums of
Eilenberg-MacLane spectra with coefficients in the rationalized stable homotopy groups
[Braunack-Mayer et al. (2019), Prop. 2.17].

But we may explicitly re-derive Dold’s equivalence using the unstable rational homotopy
theory from part III and passing to rationalization over the real numbers.

Proposition 7.2 (Dold’s equivalence via non-abelian real cohomology). LetE be a gen-
eralized cohomology theory (Example 2.10) and let n € N such that the nth coefficient space
(2.13) is of rational finite homotopy type (Def. 5.1) E, € Ho (ASetsQu)hn@ . Then there is a
natural equivalence between the non-abelian real cohomology (Def. 5.14) with coefficients
in E, and ordinary cohomology with coefficients in the R-rationalized homotopy groups of
E:

H(—: LrE,) ~ @H"™(—: m(E)@.R). (7.1)

keN

141
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Proof. Since E, is an infinite-loop space, it is nilpotent (Example 5.1). We may assume

without restriction that it is also connected, for otherwise we apply the following argument

to each connected component (Remark 5.1). Hence E,, € Ho (ASetsQu)t;n]?m] (Def. 5.1) and

the discussion in chapter 5 applies. Again, since Ej, is a loop space (2.13), Prop. 5.15 gives

H(—; LRE,) ~ k@NHk (—; m(En) ®, R). The claim follows from the definition of stable
€

homotopy groups as m;_,(E) = m(Ey,) for k,n >0, (as E is an “Q-spectrum” (2.13)). O

Definition 7.3 (Real Chern-Dold character [Buhstaber (1970)][Hilton (1971), p. 50]).
Let E be a generalized cohomology theory (Example 2.10). The real Chern-Dold character
in E-cohomology theory is the cohomology operation to ordinary cohomology which is the
composite of rationalization in E-cohomology with Dold’s equivalence (Prop. 7.1):

Chern-Dold R-rationalization Dold’s equivalence
character in E-cohomoloy di
chg o E% (=) ———— ER(~) > @H"(—m(E)2,R)  (1.2)
- k
(214)\L2 zi(z.m =
(ng@. )* (7.1
H(—;E,) H(—;LgE.,).

(Iv.2)

Here the bottom part serves to make the nature of the top maps fully explicit, using Example
2.10, Def. IV.1 and Prop. 7.2.

Remark 7.3 (Rationalization in the Chern-Dold character). That the first map in the
Dold-Chern character (7.2) is the rationalization localization (here shown exended to the
real numbers) is stated somewhat indirectly in the original definition [Buhstaber (1970)]
(the concept of rationalization was fully formulated later in [Bousfield and Kan (1972b)]).
The role of rationalization in the Chern-Dold character is made fully explicit in [Lind ez al.
(2020), §2.1]. The same rationalization construction of the generalized Chern character,
but without attribution to [Buhstaber (1970)] or [Dold (1972)], is considered in [Hopkins
and Singer (2005), §4.8] (see also [Bunke and Nikolaus (2019), p. 17]).

We now come to the main result in this section:

Theorem 7.4 (Non-abelian character subsumes Chern-Dold character). Let E be a
generalized cohomology theory (Example 2.10) and let n € N such that the nth coefficient
space (2.13) is of rational finite homotopy type (Def. 5.1). Let moreover X be a smooth
manifold.

Then the non-abelian character (Def. 1V.2) coincides with the Chern-Dold character (Def.
7.3) on E-cohomology in degree n, in that the following diagram commutes:

H(X;E,) o Hr (IE,)
(2.14) T: ZJ/ (6.17) (7.1) (73)

DH"*(X; m(E)®,R).
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Here the equivalence on the left is from Example 2.10, while the equivalence on the right
is the inverse non-abelian de Rham theorem (Theorem 6.5) composed with that from Prop.
7.2.

Proof. Since E, is an infinite-loop space, it is necessarily nilpotent (Example 5.1). We may

assume without restriction that it is also connected, for otherwise we apply the following
ﬁnQ

argument to each connected component (Remark 5.1). Hence E, € Ho(ASetsQu)>1 nil

(Def. 5.1) and the discussion in chapter 5 and chapter 6 applies:

The non-abelian de Rham isomorphism (6.17) in the definition (IV.6) of the non-
abelian character cancels against its inverse on the right of (7.3). Commutativity of the
remaining diagram

H(X; LrE,)

(M, )+
(2.14)T2 ZJ/ (7.1)

DH"™(X; m(E) @, R)
k

chg,

is the very definition of the Chern-Dold character (Def. 7.3). O

Example 7.1 (de Rham homomorphism in ordinary cohomology). On ordinary inte-
gral cohomology (Example 2.1), the non-abelian character (Def. IV.2) reduces to extension
of scalars from the integers to the real numbers, followed by the de Rham isomorphism, in
that the following diagram commutes:

non-abelian character
on ordinary cohomology

H(—;B"™7Z) — Hgr (—; 1B"17Z)

gn+17,
2.5) TN N\L (5.39) (6.14)

HY(—-7 > g (R = H L (—
( ’ ) extension ( ’ ) ordinary dR ( )
of scalars de Rham isomorphism

Example 7.1 (Chern character on complex K-theory). The spectrum (2.13) represent-
ing complex K-theory has Oth component space KUy ~ Z x BU (2.15). Here the connected
components BU, the classifying space of the infinite unitary group (2.16), are clearly of
finite rational type (since their rational cohomology is the ring of universal Chern classes,
e.g. [Kochman (1996), Thm. 2.3.1]). Therefore, Theorem 7.4 applies and says that the
non-abelian character map (Def. IV.2) for coefficients in Z x BU reduces to the Chern-Dold
character on complex K-theory. This, in turn, is equivalent (by [Hilton (1971), Thm. 5.8])
to the original Chern character ch on complex K-theory [Hirzebruch (1956), §12.1][Borel
and Hirzebruch (1958), §9.1][Atiyah and Hirzebruch (1961), §1.10] (review in [Hilton
(1971), §V]):
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beli y - I " non-abelian de Rham homology
Pl . abelian character map ith (7, coefficients
vith 7 J-coefficients g - o with [(Z x BU)-coefficients
with Z x BU-coefficients with 7 » BU-coefficients ( )

H(X;Z x BU) — Har (X; [(Z x BU)) (7.4)
0 ch 2%k
KU (X) traditional Chern character kGEBZ HdR (X)
V] — [tr oexp (%) ]

On the bottom we are showing the classical component-formula, which to the K-theory
class of a complex vector bundle with any choice of connection V assigns the de Rham
cohomology class of the trace of the exponential series of its curvature 2-form (8.5). (More
on this Chern-Weil formalism in chapter 8).

Example 7.1 (Pontrjagin character on real K-theory). The Pontrjagin character
ph on real topological K-theory (see [Greub et al. (1973), §9.4][Imaoka and Kuwana
(1999)][1gusa (2008)][Grady and Sati (2021b), §2.1]) is defined to be the composite

-
( . ps
KSpin®(—) —— KSO®*(—) —— KO*(=) — P @H*+¥(—;R)

-

KU'(*) ch® @HQ—Q—Zk(i; R)
k

of the complexification map (on representing virtual vector bundles) with the Chern char-
acter ch on complex K-theory (Example 7.1).

(i) By naturality of the complexification map and since the complex Chern character is a
Chern-Dold character (by [Hilton (1971), Thm. 5.8]), so is the Pontrjagin character, as well
as its restriction ph to oriented real K-theory KSO and further to ph on KO-theory and to
Spin K-theory, etc.

(ii) The connected components BO of the classifying space KOy for real topological K-
theory are of finite R-type (since the real cohomology is the ring of universal Pontrjagin
classes). Therefore, Theorem 7.4 applies and says that the non-abelian Chern character
(Def. 1V.2) for coefficients in Z x BSO coincides with the Pontrjagin character ph in KSO-
theory:

Pontrjagin character
on oriented real K-theory

ph =~ chzypso-

(iii) By Remark 5.1, the construction extends to the Pontrjagin character ph on KO-theory.
(iv) The same applies to the further restriction of the Pontrjagin character to KSpin; see [Li
and Duan (1991)][Thomas (1962)] for some subtleties involved and [Sati (2008), §7] for
interpretation and applications.
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Example 7.1 (Chern-Dold character on Topological Modular Forms). The connective
ring spectrum tmf of fopological modular forms [Hopkins (1995), §9][Hopkins (2002), §4]
(see [Douglas et al. (2014)]) is, essentially by design, such that under rationalization it
yields the graded ring of rational modular forms (e.g. [Douglas and Henriques (2011), p.

2]) * topological mo(l[z:ia':'l‘tzlrnls deg=8 deg=12
modular forms (,)@ﬂR ;;\ ::1\
o (tmf) ———————> rnf.]R ~ ]R[ C4 5 Co }

(7.5)

It follows that the Chern-Dold character (Def. 7.3) on tmf takes values in real cohomology
with coefficients in modular forms

Chern-Dold character
on topological modular forms

chy,

tmf

tmf®(—) H*(—;mfL). (7.6)

(This is often considered over the rational numbers, sometimes over the complex numbers
[Berwick-Evans (2013), Fig. 1]; we may just as well stay over the real numbers, by Remark
5.2, to retain contact to the de Rham theorem.)

By Theorem 7.4, this is an instance of the non-abelian character map:

Chern-Dold character on
topological nodular forms

L]
chg ¢ ~  chyyy, .

Example 7.1 (The Hurewicz/Boardman homomorphism on topological modular
forms). The spectrum tmf (Example 7.1) carries the structure of an Ee.-ring spectrum
(Ex. 2.10) and hence receives an essentially unique homomorphism of ring spectra from
the sphere spectrum: .
2280 = S — > tmf.

This is also known as the Hurewicz homomorphism or rather the Boardman homomor-
phism (e.g. [Adams (1974), §I1.7][Kochman (1996), §4.3]) for tmf. The Boardman ho-
momorphism on tmf happens to be a stable weak equivalence in degrees < 6, in that it
is an isomorphism on stable homotopy groups in these degrees [Hopkins (2002), Prop.
4.6][Douglas et al. (2014), §13]:

s Te<6(€mr)
Toce = Te<6(S) —_— To<g(tmf) .

Hence (by Prop. 1.20) when X0 is a manifold of dimension dim(X) < 6 44 = 10, then
the Boardman homomorphism identifies the stable Cohomotopy (Example 2.13) of X'0 in
degree 4 with tmf* (X 10):

stable Boardman homomorphism {mf-cohomology
4-Cohomotopy 4 in degree 4
~

o4 (x10) = s4(x10) ot mf*(x10) . .7

h%

Hgp (X'0)

In this situation, the character map from Example 7.1 extracts exactly the datum of a real
4-class.
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Remark 7.4 (Clarifying the role of tmf in string theory). Ever since the famous com-
putation of [Witten (1987)] (following [Schellekens and Warner (1986)] [Schellekens and
Warner (1987)]) showed that the partition function of a 2d super-conformal field the-
ory lands in modular forms, and since the theorem of [Ando e al. (2001)][M. Ando
and Rezk (2010)] showed that, mathematically, this statement lifts through (what we call
above) the tmf-Chern-Dold character (7.6), there have been proposals about a possible role
of tmf-cohomology theory in controlling elusive aspects of string theory (see [Kriz and
Sati (2005)][Sati (2010)][Douglas and Henriques (2011)][Stolz and Teichner (2011)][Sati
(2014)][Gaiotto and Johnson-Freyd (2022)][Gukov et al. (2021)][Sati (2019)]). While
good progress has been made, it might be fair to say that the situation has remained in-
conclusive.

(i) Non-abelian enhancement of tmf*(X ). But with the non-abelian generalization (Def.
IV.2) of the Chern-Dold character in hand, we may ask for a non-abelian enhancement
(Example 2.19) of tmf-theory on string background spacetimes. By Example 7.1, this is,
in degree 4, equivalent to asking for a non-abelian enhancement of stable Cohomotopy
theory (Example 2.20). This exists (not uniquely but) canonically: given by actual Co-
homotopy theory (Example 2.7). We work out the non-abelian character map on twisted
4-Cohomotopy in Example 12.1 below. The concluding Prop. 12.1 shows that this does
capture crucial non-linear phenomena of non-perturbative string theory.

(i) Non-Torsion classes in tmf®. Part of the statement (7.7) is that the higher non-torsion
generators (7.5) of 7, (tmf) (hence the actual or “non-topological” modular forms) do not
contribute to tmf* on 10-manifolds: These start to contribute only on manifolds of dimen-
sionl 4 4 deg(c4) = 12, where, in string theory language, one computes not fluxes of fields
but their (Green-Schwarz-)anomaly densities. Indeed, the original computation of what
came to be known as the “Witten genus” interprets it as the generating function for just
these anomalies [Schellekens and Warner (1986)][Schellekens and Warner (1987)][Lerche
et al. (1988)][Sati (2011)]. While the character map (7.6) still applies in these higher di-
mensions, the non-abelian enhancement by Cohomotopy is restricted exactly to dimension
10, and is what makes the character pick up just those non-linear relations, discussed in
chapter 12, that are expected to cancel the anomalies [Fiorenza et al. (2020b)][Fiorenza
et al. (2022)][Sati and Schreiber (2020a)].

(iii) Torsion classes in tmf®. Indeed, the deep motivation behind topological modular
forms is the suggestion that these capture mathematical aspects of 2d supersymmetric field
theories even in their non-rational torsion elements — and the beauty of (7.7) is to show
that in the relevant degrees and dimensions these aspects are equivalently seen in Cohomo-
topy. Concretely, a famous conjecture orginating with [Stolz and Teichner (2011)][Douglas
and Henriques (2011)] and cast in more pronounced form in [Gaiotto and Johnson-Freyd
(2022), §5] says that the elements of tmf®(X) correspond bijectively to, roughly, the defor-
mation classes of 2-dimensional supersymmetric field theories with target space X. Specif-
ically the torsion elements in 73 (tmf) ~ m3(S) ~ Z/24, have, conjecturally, been identi-
fied, with certain supersymmetric SU(2)-WZW models [Gaiotto ef al. ([2021] ©2021), p.
17][Gaiotto and Johnson-Freyd (2019)][Johnson-Freyd (2020)], whose “meaning”, how-
ever, has remained somewhat elusive. But under the equivalence (7.7) with Cohomotopy,
these same elements could be understood in [Sati and Schreiber (2021a)] in their role in
non-perturbative string theory.
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Example 7.1 (Chern-Dold character on integral Morava K-theory). We highlight
that a particularly interesting example of the Chern-Dold character, which is not widely
known, is that on integral Morava K-theory, whose codomain in real cohomology has a
rich coefficient system. Morava K-theories K(n) [Johnson and Wilson (1975)] (reviewed
in [Wiirgler (1991)][Rudyak (1998), §IX.7]) form a sequence of spectra labeled by chro-
matic level n € N and by a prime p (notationally left implicit). Their coefficient ring is pure
torsion, and hence vanishes upon rationalization. However, there is an integral version
K (n), highlighted in [Kriz and Sati (2004)][Sati (2010)][Buhné (2011)][Sati and Wester-
land (2015)][Grady and Sati (2017)], which has an integral p-adic coefficient ring:

K(n)s = Zplvn,vy '], with deg(v,) =2(p" —1). (7.8)

This theory more closely resembles complex K-theory than is the case for K(n); in fact, for
n =1, it coincides with the p-completion of complex K-theory.

Therefore, the Chern-Dold character (Def. 7.3) on integral Morava K-theory [Grady
and Sati (2017), p. 53] is of the form

chyor @ K(n)(=) ——— H* (= Qp[va, vy 1] @ R), (7.9)

where we used (7.8) in (7.2) together with the fact that the rationalization of the p-adic
integers is the rational (here: real, by Remark 5.2) p-adic numbers! Zp @R ~ Qp @ R.

Now Q, is not finite-dimensional over Q, whence @, ® R is not finite-dimensional
over R, so that the classifying space for integral Morava K-theory is not of R-finite type
(Def. 5.1). Therefore, our proof of the non-abelian de Rham theorem (Theorem 6.5), being
based on the fundamental theorem of dgc-algebraic rational homotopy theory (Prop. 5.6),
does not immediately apply to integral Morava K-theory coefficients; and hence the non-
abelian character on integral Morava K-theory with de Rham codomain, in the form defined
in Def. IV.2, is not established here. While this is a purely technical issue, as discussed in
Remark 5.1, further discussion is beyond the scope of the present article.

'Note, parenthetically, that the classical Chern character ch itself can be extended to cohomology
theories with values in graded Q-algebras; see, e.g., [Maakestad (2017)].
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Chapter 8

Chern-Weil homomorphism

We prove (Theorem 8.6) that the non-abelian character subsumes the Chern-Weil homo-
morphism (recalled as Prop. 8.3, review in [Chern (1951), §III]J[Kobayashi and Nomizu
(1963), §XII][Chern and Simons (1974), §2][Milnor and Stasheff (1974), §C][Fiorenza
et al. (2012), §2.1]) in degree-1 non-abelian cohomology.

Chern-Weil theory. For definiteness, we recall the statements of Chern-Weil theory that
we need to prove Theorem 8.6 below.

Remark 8.1 (Attributions in Chern-Weil theory).

(i) What came to be known as the Chern-Weil homomorphism (recalled as Def. 8.3 below)
seems to be first publicly described by H. Cartan (in May 1950), in his prominent Séminaire
[Cartan (1950), §7], published as [Cartan (1951)]. Later that year at the ICM (in Aug.-Sep.
1950), Chern discusses this construction in a talk [Chern (1952), (10)], including a brief
reference to unpublished work by Weil (which remained unpublished until appearance in
Weil’s collected works [Weil (2014)]) for the proof that the construction is independent
of the choice of connection (which is stated with an announcement of a proof in [Cartan
(1950), §71).

(ii) The new result of Chern’s talk was the observation [Chern (1952), (15)] — later called
the fundamental theorem in [Chern (1951), §IIL.6], recalled as Prop. 8.5 below — that
this differential-geometric construction coincides with the topological construction of real
characteristic classes (Example 2.17). This crucially uses the identification [Chern (1952),
(11)] of the real cohomology of classifying space BG with invariant polynomials, later
expanded on by Bott [Bott (1973), p. 239]. (Various subsequent authors, e.g. [Freed
(2002), (1.14)], suggest to prove Chern’s equation (15) by making sense of a connection
on the universal G-bundle — which is possible though notoriously subtle, e.g. [Mostow
(1979)] - but the proof in [Chern (1952)] simply observes that for any fixed bound < d
on the dimension of the domain space, the classifying space for G-principal bundles may
be truncated to a d + 1-dimensional sub-complex (as follows by the cellular approxima-
tion theorem [Spanier (1966), p. 404]), this carrying a smooth G-principal bundle with
ordinary connection, which is universal for G-principal bundles over < d-manifolds. This
argument was later worked out in [Narasimhan and Ramanan (1961)][Narasimhan and Ra-
manan (1963)][Schlafly (1980)]).

(iii) It is this fundamental theorem [Chern (1952), (15)][Chern (1951), §111.6] which allows

149
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to identify the Chern-Weil homomorphism as an instance of the non-abelian character, in
Theorem 8.6 below.

Notation 8.1 (Principal bundles with connection). For G € LieGroups and X €
SmthMfds, we write

GConnections(X),.. ——> GBundles(X), . 8.1

for the forgetful map from the set of isomorphism classes, over X, of G-principal bun-
dles equipped with principal connections (review in [Nakahara (2003), §9][Rudolph and
Schmidt (2017), §1]) to the underlying bundles without connection, .

The function (8.1) is surjective and admits sections, corresponding to a choice of the class
of a principal connection on any class of G-principal bundles.

Definition 8.1 (Invariant polynomials [Weil (2014)][Cartan (1950), §7]). For g €
LieAlgebras, , , we write

R, fin
inv®(g) := Sym(bzg*)G € geAlgs:’
for the graded sub-algebra (4.9) on those elements in the symmetric algebra (4.12) of the

linear dual of g shifted up (Def. 4.4) into degree 2, which are invariant under the adjoint
action of G on g*.

Definition 8.2 (Characteristic forms [Cartan (1950), §7][Chern (1952), (10)]). Let G be

a finite-dimensional Lie group with Lie algebra g, and let P £ X be G-principal bundle
with connection V (Def. 8.1). Then for @ € inv?" (g) an invariant polynomial (Def. 8.1), its
evaluation on the curvature 2-form Fy € QZ(P) ® g of the connection yields a differential
form
o(Fy) € Q(X) > (P)

which, by the second condition on an Ehresmann connection, is basic, namely in the image
of the pullback operation along the bundle projection p, as shown. Regarded as a differen-
tial form on X, this is called the characteristic form corresponding to ®.

Lemma 8.1 (Characteristic de Rham classes of characteristic forms [Weil
(2014)][Chern (1952), p. 401][Chern (1951), §111.4]). The class in de Rham cohomol-
0

i [0(Fe)] € HR(X)
of a characteristic form in Def. 8.2 is independent of the choice of connection V and

depends only on the isomorphism class of the principal bundle P.

Definition 8.3 (Chern-Weil homomorphism [Cartan (1950), §7][Chern (1952), (10)]).
Let G be a finite-dimensional Lie group, with classifying space denoted BG. The Chern-
Weil homomorphism is the composite map

el WG+ GBundles(X ), — GConnections(X ), —= Hom (inv*(g), H§z (X))

homomorphism

invariant de Rham class of
principal bundle with connection polynomial characteristic form
Pl RV (o~ [oF)]).

8.2)
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where the first map is any section of (8.1), given by choosing any connection on a given
principal bundle; and the second map is the construction of characteristic forms according
to Def. 8.2. (The Hom on the right is that in gcAlgsz°.) By Lemma 8.1 the second map is
well-defined (and its composition with the first turns out to be independent of the choices
made, by Prop. 8.5 below).

That this construction is useful, in that it produces interesting real characteristic classes of
G-principal bundles (Example 2.17), is the following statement:

Proposition 8.4 (Abstract Chern-Weil homomorphism [Chern (1952), (11)][Chern
(1951), S$IIL5][Bott (1973), p. 239]). Let G be a finite-dimensional, compact Lie group,
with Lie algebra denoted g. Then the real cohomology algebra of its classifying space BG
is isomorphic to the algebra of invariant polynomials (Def. 8.1):

inv®(g) ~ H*(BG;R) € gcAlgs:"’. (8.3)

We can also obtain the following:

Proposition 8.5 (Fundamental theorem of Chern-Weil theory [Chern (1952),
(15)][Chern (1951), §I11.6] (Rem. 8.1)). Let G be a finite-dimensional compact Lie group.
Then the Chern-Weil homomorphism (Def. 8.3) coincides with the operation of pullback of
universal characteristic classes along the classifying maps of G-bundles (Example 2.17),

in that the following diagram commutes:
pullback of

universal characteristic classes
along classifying map (2.22)

H(X; BG) P Hom(H*(BG;R), H*(X; R))
en T: :i 8.3) (8.4)
CWG . o
GB und]es(x )/ ~ Chern-Weil homomorphism (8.2) Hom (mv‘ (g ); HdR (X))

Here the isomorphism on the left is from Example 2.2, while that from the right is from
Prop. 8.4 and using the de Rham theorem.

Example 8.1 (Characteristic forms of classical Lie groups (e.g. [Nakahara (2003), Ex.
11.5-7])). Let G = SU(n) be the special unitary group, for n € N. Then the fundamental
Chern-Weil theorem Prop. 8.5 identifies, for any connection V (8.2), on a given SU(n)-
principal bundle, with associated curvature differential form

Q*(X:u(n)) —— Q*(X; Matyn(C)) (8.5)

Fy — ((FV)ab)lga,bgn

the following (de Rham cohomology classes of) classical characteristic forms (Def. 8.2):
(i) Chern forms. The real-cohomology images of the first couple Chern classes
¢i € H?(BU(n); Z) are identified with the de Rham cohomology classes Wy (€i) =

[ci(V)] € HZ (X) of the polynomials in the curvature differential form (8.5) which are
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the homogeneous components of the following total Chern form !

(V) ==Y (V) = det(1+ L Fy) .
keN S~
deg=2k
(ii) Pontrjagin forms. When the structure group G is reduced along the canonical inclusion

SO(n) < SU(n) of the special orthogonal group, then the real images of the first couple
Pontrjagin classes py € H*(BSO(n); Z) are identified with the de Rham cohomology
classes of the corresponding Chern forms (8.6), up to a signs:

ewWsom (k) = [pe(V)] = (=D![en(wV)] € Hig (X).

One finds
D1 (V) = —ﬁ tr(FV /\Fv) s
. (8.6)
pz(V) = 1% <U‘(FV /\Fv) /\tl‘(Fv/\Fv) —Z-U‘(FV /\Fv/\Fv/\Fv)) .
The following rational combination of these forms plays a central role in chapter 12:
I(V) = 35 (p2(V) = 1p1(V) Api(V)) - (8.7)

(iii) Euler form. If, moreover, n = 2k is even, then the real image of the Euler class
Xn € H"(BSO(n); Z) is identified with the de Rham cohomology class

cWsom) (Xn) = [Xa(V)] € Hir(X)
of the Pfaffian wedge-product polynomial of the matrix (8.5):
12
Zor(V) = W Y s20(0)- (Fy)o(1)o2) A W) o3)0@) A AR ) 6(n-1)0(n) -
oeSym(n)
(8.8)
Chern-Weil homomorphism as a special case of the non-abelian character.

Lemma 8.2 (Sullivan model of classifying space). Let G be a finite-dimensional, com-
pact and simply-connected Lie group, with Lie algebra denoted g. Then the minimal Sul-
livan model (Def. 4.22) of its classifying space BG is the graded algebra of invariant
polynomials (Def. 8.1), regarded as a dgc-algebra with vanishing differential:

(inv(g),d =0) ~ CE(IBG) € dgcAlgs:". (8.9)
Proof. According to [Félix ef al. (2008), Example 2.42], we have

CE(IBG) ~ (H*(BG;R),d =0). (8.10)

I'The standard normalization factor i /27 appearing here results from identifying U(1) with R /hZ for
the choice h = 2.
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The composition of (8.10) with the isomorphism (8.3) from Prop. 8.4 yields the desired
(8.9). O

Lemma 8.3 (Non-abelian de Rham cohomology with coefficients in a classifying
space). Let G be a finite-dimensional, compact and simply-connected Lie group, with
Lie algebra denoted g. Then the non-abelian de Rham cohomology (Def. 6.3) with coef-
ficients in the rational Whitehead Lw-algebra |BG (Prop. 5.11) of the classifying space is
canonically identified with the codomain of the classical Chern-Weil construction (8.2):

nonabelian traditional codomain of
de Rham cohomology Chern-Weil construction
Hggr (X: IBG) ~ Hom(inv*(g), Hr (X)) (8.11)

Proof. Consider the following sequence of natural bijections:
Hgr (X: BG) = dgeAlgs; " (CE(IBG) , Qi (X)),
~ dgeAlgs:"( (inv*(g), d = 0), Qfx (X))/

~ goAles;” (i (9), Qi (Ko,

~ gcAlgs:’ (inv'(g) ; (Qr (X)closed)/w)
~ gcAlgs;* (inv®(g) , Hig (X))
=: Hom(inv*(g) , Hig (X))

Here the first line is the definition (Def. 6.3). After that, the first step is Lemma 8.2. The
second step unwinds what it means to hom out of a dgc-algebra with vanishing differential
(which is generator-wise as in Example 6.2), while the third and fourth steps unwind what
this means for the coboundary relations (which is generator-wise as in Prop. 6.4). The last
line just matches the result to the abbreviated notation used in (8.2). O

Theorem 8.6 (Non-abelian character map subsumes Chern-Weil homomorphism).
Let G be a finite-dimensional compact, connected and simply-connected Lie group, with

Lie algebra g. Let X € Ho (ASetsQu)ﬁnl‘L_?nil (Def. 5.1) be equipped with the structure of a
smooth manifold. Then the non-abelian character chgg (Def IV.2) on non-abelian cohomol-
ogy (Def. 2.1) of X with coefficients in BG coincides with the Chern-Weil homomorphism
cwg (Def. 8.3) with coefficients in G, in that the following diagram (of cohomology sets)
commutes:

non-abelian character

H(X; BG) e Hgr(X: [BG)

(2_7)T: :\L 8.11) (8.12)

GBundles(X),. e Hom (inv*(g), Hj (X))

Chern-Weil homomorphism

Here the isomorphism on the left is from Example 2.2, while that on the right is from Lemma
8.3.
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Proof. First, notice that BG is simply connected (hence nilpotent), by the assumption that
G is connected, and that it is of finite rational type by Prop. 8.4. Hence, with Def. 5.1,

ﬁnQ

BG € Ho(ASetSQU)ZLnﬂ.

(8.13)

Now, by Definition IV.2, the non-abelian character map on the top of (8.4)

R
chgg : H(X;BG) _(se)_ H(X; LgBG) —— Hyg (X; Lg BG)

sends a classifying map

X —>BG € H(X;BG) = Ho(ASetsq,) (X, BG)

first to its composite with the rationalization map (Def. 5.2). By the fundamental theo-
rem (Theorem 5.6 (i), using (8.13)), this is given by the derived adjunction unit Dnggs of
DBexppp, 4 Qpy 4g (5.16):

DgrBG ~ D
X —5> BG — =% DBexppy 0 Q8 45 (BG)

€ Ho(ASetsqu) (X, LgBG) = H(X; LrBG).

Moreover, by part (ii) of the fundamental theorem, the adjunct of the morphism Dnpg o ¢
under (5.16) is

L] C* L] >
Qb (X) <—— Qpr(BG) € Ho( (dgCAlgsnin)trinj)
(using that Q]’,LdR(]D)nR) is an equivalence, by reflectivity of rationalization (5.2)). Hence
it is the pullback operation of rational cocycles on BG along the classifying map c. Sending
this further along the isomorphism to the bottom right in (8.4) (via Theorem 6.5 and Lemma
8.3) gives, by (6.18):

chpg : ¢ = Qip(X) <—— Qp x(BG) <—— inv*(g) € Ho ((dgeAlgs;") ini) -
(8.14)
In conclusion, we have found that the commutativity of (8.12) is equivalent to the statement
that the characteristic forms obtained by the Chern-Weil construction (8.2) represent the
pullback (8.14) of the universal real characteristic classes on BG along the classifying map
¢ of the underlying principal bundle (Example 2.17). This is the case by the fundamental

theorem of Chern-Weil theory, Prop. 8.5. O

Example 8.1 (de Rham representative of tangential Sp(2)-twist). For X a smooth 8-
dimensional spin manifold equipped with tangential Sp(2)-structure 7 (3.33), Thm. 8.6
says that there exists a smooth Sp(2)-principal bundle on X equipped with an Ehresmann
connection V such that the R-rationalization (Def. 5.7) of the twist T corresponds, under
the non-abelian de Rham theorem (Theorem 6.5) to a flat [BSp(2)-valued differential form
whose components are the characteristic forms of the Sp(2)-principal connection V:
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H(X;BSp(2)) (@*H(X; LgBSp(2)) ~ Har(X;[BSp(2))

TaR g, /[dip =0
T — Lpt — Q% (X)) <=R|*® 2
R iR (X) {%m}/(d xg:o>

(V) <=—1p

Xg(V) <— X3

Here on the right we are using [Cadek and VanZura (1998), Thm . 8.1] (see [Fiorenza et al.
(2022), Lemma 2.12]) to identify generating universal characteristic classes on BSp(2):

1 pi is the first Pontrjagin class (see Ex. 8.1) and Xg = (1p) — (%pl)z) is the Euler 8-

class, which here on BSp(2) happens to be proportional to I3 (8.7), see [Fiorenza et al.
(2020b), Prop. 3.7].
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Chapter 9

Cheeger-Simons homomorphism

We show (Theorem 9.9) that the non-abelian character map induces secondary non-abelian
cohomology operations (Def. 9.7) which subsume the Cheeger-Simons homomorphism,
recalled around (9.41) below, with values in ordinary differential cohomology, recalled
around (9.27) below. We follow [Fiorenza et al. (2012)] [Sati et al. (2012)][Schreiber
(2013)] where the Cheeger-Simons homomorphism, generalized to higher principal bun-
dles, is called the co-Chern-Weil homomorphism. Underlying this is a differential enhance-
ment of the non-abelian character map (Def. 9.2), and an induced notion of differential
non-abelian cohomology (Def. 9.3) on smooth co-stacks (recalled as Prop. 1.24).

The differential non-abelian character map. We introduce (in Def. 9.2 below) the dif-
ferential refinement of the non-abelian character map; given as before by rationalization,
but now followed not by a map to non-abelian de Rham cohomology, but to its refine-
ment by the full cocycle space of flat non-abelian differential forms (Def. 9.1 below). It is
this refinement of the codomain of the character map that allows it to be fibered over the
smooth space (Ex. 1.26) of actual flat non-abelian differential forms (instead of just their
non-abelian de Rham classes), thus producing differential non-abelian cohomology (Def.
9.3 below).

Definition 9.1 (Moduli co-stack of flat L..-algebra valued forms [Schreiber (2013),
4.4.14.2]). Let A € ASets be of connected, nilpotent, R-finite homotopy type (Def. 5.1).
By means of the system of sets (Def. 6.1)

X — -Q-dR(X; [A) € Sets

of flat non-abelian differential forms with coefficient in the Whitehead L.-algebra IA of A
(Prop. 5.11), which are contravariantly assigned to smooth manifolds X, we consider in
Ho(SmthStackse) (Def. 1.25):

(i) the smooth space (Ex. 1.26) of flat |A-valued differential forms

QdR(f; [A)ﬂa[ = (Rn = (A[k] — Qqr (Rn§ [A)ﬂat>> ) 9.1

regarded as a simplicially constant simplicial presheaf (1.69);
(ii) the smooth oo-stack of flat (A-valued differential forms (Example 6.5)

157
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. k.
Bexp(l4) = (R" (Al - Qur (R" x A% rA)ﬂm)> ©:2)

which to any Cartesian space assigns the simplicial set that in degree k is the set of flat [A-
valued differential forms on the product manifold of the Cartesian space with the standard
smooth k-simplex AF C RK,
(iii) the canonical inclusion

smooth space of smooth o-stack of
flat [A-valued forms " flat [A-valued forms
atlas
Q(—;1A) e »Bexp(IA) 93)

(R” . (A[k] — Qqr (R"; [A)ﬂat)) - (R” - (A[k]a > Qqr (R x A% [A)ﬂm))

exhibiting Q(—;[A) (9.1) as the presheaf of O-simplices in the simplicial presheaf
bBexp(IA) (9.2) (more abstractly: this is the canonical atlas of the smooth moduli eo-stack,
see [Sati and Schreiber (2020c), Prop. 2.70]).

Lemma 9.1 (Moduli co-stack of flat forms is equivalent to discrete rational co-stack).
For A € Ho (ASetsQu)inﬁ il
forms into smooth differential forms followed by pullback along Prak)

Disc(LgA) 9.4)
1
Disc o DBexppy, o CE(IA) bBexp(IA)
| |

(]R" — (A[k] — Qprar (A% [A)ﬂat>) & (R" = <A[k} = Qqr (R" x A% [A)ﬂat))

(Def. 5.1), the evident inclusion (by inclusion of polynomial

ewW

of the image under Disc (1.85) of the dg-algebraic model (5.17) for the rationalization of
A (Def. 5.2), given by the fundamental theorem (Prop. 5.6), into the moduli oo-stack of flat
[A-valued differential forms (Def. 9.1) is an equivalence in Ho(SmthStacks..) (Def. 1.25).

Proof. By Prop. 5.10, the inclusion is for each R" a weak equivalence (5.28) in ASetsq,
(Example 1.2), hence is a weak equivalence already in the global projective model struc-
ture on simplicial presheaves, and therefore also in the local projective model structure
(Example 1.20). O

Lemma 9.2 (Moduli «-stack of closed differential forms is shifted de Rham complex).
ForneN,

(i) we have an equivalence in Ho(SmthStackss) (Def. 1.25) from the moduli oo-stack
bB exp(b”R) of flat differential forms (Def. 9.1) with values in the line Lie (n+ 1)-algebra
b"R (Example 4.12) to the image under the Dold-Kan construction (Def. 1.30) of the
smooth de Rham complex Q3 (—) (Example 4.9).

(ii) This is naturally regarded as a presheaf on CartSp (1.66) with values in connective
chain complexes (Example 1.27) (i.e., with de Rham differential lowering the chain degree)
shifted up in degree by n+ 1 and then homologically truncated in degree 0, as shown below.
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bBexp(b"R) — DK| l(-) € Ho(SmthStackse)

La

QS]J{I (7)clsd

Proof. This follows by an enhancement of the proof of Prop. 6.4. First observe, with
Example 6.2, that the simplicial presheaf

Bexp('R)(—) = (Alk] = Q5" (=) x 4% ) ©9.5)

naturally carries the structure of a presheaf of simplicial abelian groups, given by addition
of differential forms. Therefore, by the Dold-Kan Quillen equivalence (Prop 1.28), it is suf-
ficient to prove that we have a quasi-isomorphism of presheaves of chain complexes from
the corresponding normalized chain complex (1.86) of (9.5) to the shifted and truncated de
Rham complex itself:

N(A[k] — Q1 () x A")md)

d d d
(..._>()_>()—>,Q2R(—) _’Q(liR(_) — "'ﬁgggl(_)clsd>'

9.6)

We claim that such is given by fiber integration of differential forms over the simplices A:

First, to see that fiber integration does constitute a chain map, we compute for @ €
QiR ((—) x Ak)clsd on the left of (9.6):

Akaw = (—1)’</Mw = d/AkaL 9.7

where the first step is the definition of the differential in the normalized chain complex
(1.86) and the second step is the fiberwise Stokes formula (6.12).
Finally, to see that [,. is a quasi-isomorphism, notice that the chain homology groups

on both sides are
R|k=n+1
Hi(—) = .
0 | otherwise

over each Cartesian space: For the left hand side this follows via the weak equivalence
(5.28) from the fundamental theorem (Prop. 5.6) via Example 5.4, while for the right hand
side this follows from the Poincaré lemma.
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Hence it is sufficient to see that fiber integration over A"t! is an isomorphism on the
(n+ 1)st chain homology groups. But a generator of this group on the left is clearly given
by the pullback pr},..; @ of any ® € Qgg '(A"*1) of unit weight and supported in the interior
of the simplex. That this is sent under [4..1 to a generator £1 € R o~ QgR(—)clsd on the
right follows by the projection formula (6.13). O

Remark 9.1 (Moduli of closed forms via stable Dold-Kan correspondence). Expressed
in terms of the stable Dold-Kan construction DK (Prop. 1.29) via the derived stabilization
adjunction (Example 1.19), Lemma 9.2 says, equivalently, that:

Bexp(v'R) = RQ”(DKy(Q(-) 26" 'R)) € Ho(SmthStacks..), (9.8)

where now Qi (—) € PSh(CartSp7 ChainComplexesR) is in non-positive degrees, with
QgR(—) in degree 0, and where b"+!R (Def. 4.4) is concentrated on R in degree n+ 1.

Definition 9.2 (Differential non-abelian character map [Fiorenza et al. (2015d), §4]).

Given A € Ho (ASetSQu)glenﬂ (Def. 5.1), the differential non-abelian character map in A-

cohomology theory, to be denoted chy, is the morphism in Ho(SmthStacks..) (1.83) from
Disc(A) (1.85) to the moduli eo-stack of flat [A-valued forms bBexp([A) (9.2) given by the

composite
coefficient space as moduli co-stack of
geometrically discrete flat [A-valued
moduli co-stack differential non-abelian character map differential forms
chy
1 9.9
bBexp(lA) ©:9)
. 9.4) Tew
) Disc(nfSR) . DiscoBexpPL(p‘“‘“)_
Disc(A) Disc o Bexppg 0 Qpy 4r(A) ——— DiscoBexppy o CE(lA)

L (5.31) j‘
Disc(Dn}SdR)
R-rationalization (5.21)

of

(a) the image under Disc (1.85) of the derived adjunction unit DR (1.38) of the PS de
Rham adjunction (5.26), specifically with (co-)fibrant replacement p™™ being the minimal
Sullivan model replacement (4.51); (recalling that Bexpp; is a contravariant functor), with
(b) the weak equivalence from Lemma 9.1.

Remark 9.2 (Differential non-abelian character map is independent of choices). The
differential non-abelian character map (Def. 9.2) is independent, up to equivalence, of the
choice of comparison morphism p™™ to a minimal model for the coefficients, since, by
(4.52) in Prop. 4.23, any two choices factor through each other by an isomorphism of
dgc-algebras.

It is this uniqueness which makes minimal models provide canonical form coefficients
for non-abelian differential cohomology, see also the second item of Ex. 9.1 below.
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Differential non-abelian cohomology.

Definition 9.3 (Differential non-abelian cohomology [Fiorenza et al. (2015d), §4]). For
Ac Ho(ASetsQu)f;n&i1 (Def. 5.1) we say that:

(i) the moduli oo-stack of QA-connections is the object Agifr € Ho(SmthStacks.) in the
homotopy category of smooth co-stacks (Def. 1.25), which is given by the homotopy pull-
back (Def. 1.15) of the smooth space of flat non-abelian differential forms Qqg (—; [A) g
(9.3) along the differential non-abelian character map chy (Def. 9.2):

moduli o-stack [A-valued smooth space of
of QA-connections curvature forms flat [A-valued forms 9.10
Agiff Qar (= (A)flar ©.10)
Fy
universal characteristic class hpb
in non-abelian A-cohomology ic/‘ (bpb) \L atlas
. chy
Disc(A) bBexp(lA)
differential non-abelian

moduli «-stack of

character map flat [A-valued forms

(i) the differential non-abelian cohomology of a smooth es-stack 2~ € Ho(SmthStacks..)
(1.83) with coefficients in A is the structured non-abelian cohomology (Remark 2.3) with
coefficients in the moduli co-stack A 4;¢ of QA-connections (9.10), hence the hom-set in the
homotopy category of eo-stacks (Def. 1.25) from 2 to Agir

H(2;A) := H(Z;Adqsr) = Ho(SmthStackse) (2, Agi)- 9.11)

(iii) We call the non-abelian cohomology operations induced from the maps in (9.10) as
follows (see (0.16)):

(a) characteristic class: ﬁ(%;A) L H(Shp(%);A) (Def. 2.1) (9.12)
~ (Fa)« .
(b) curvature: H(%;A) E— QdR(&V; [A)ﬂat (Def. 6.1) (9.13)
. . ~ (chpocy).
(¢) differential character: H(%;A) —_— HdR(%”; [A) (Def. 6.3) (9.14)

In differential enhancement of Example 2.10, we have the following:
Differential generalized cohomology.

Example 9.1 (Differential Whitehead-generalized cohomology). Let E°® be a gener-
alized cohomology theory (Example 2.10) with representing spectrum E (2.13) which is
connective and whose component spaces E, are of finite R-type, so that their connected

components are, by Example 5.1, in Ho(ASetsQu)f;le:‘nﬂ (Def. 5.1).

(i) Then differential non-abelian cohomology, in the sense of Def. 9.3, with coeffi-
cients in the component spaces E,, coincides with canonical differential generalized
E-cohomology in the traditional sense of [Hopkins and Singer (2005), §4.1][Bunke
(2013), Def. 4.53][Bunke and Gepner (2012), §2.2][Bunke e? al. (2016), §4.4]:

generalized
differential cohomology

E'(=) ~ H(—E,). (9.15)
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(ii) Here “canonical”, in the sense of [Bunke (2013), Def. 4.46], refers to choosing the
curvature differential form coefficients to be o (E) ® R (instead of some chain com-
plex quasi-isomorphic to this). By Example 5.6, this choice corresponds in our Def.
9.3 to the minimality (Def. 4.22) of the minimal Sullivan model CE(IE,) for E,, (Prop.
5.11) that controls the flat L.-algebra valued differential forms Qqgr (—; [Ep)fat (Def.
6.1) in the top right of (9.32).

(iii) Hence for canonical/minimal curvature coefficients, we have from Ex. 5.6, Lem. 9.2
and Rem. 9.1 that

pBexp(IE,) ~ RQ™ <DKS[(QQR(—)®Z n.(En))> € Ho(SmthStacks..)  (9.16)
Qur (=3 E,) g, = RQ™ (DKSt (Qr(—) @: T (En)) S0) € Ho(SmthStacks..) . (9.17)

(iv) With this, the equivalence 9.15 follows by Ex. 5.7 and observing that the defining
homotopy pullback diagram (9.10) for differential non-abelian cohomology with co-
efficients in A := E,, (1.65) is the image under RQ™ (1.64) of the defining homotopy
pullback diagram for canonical differential £-cohomology according to [Hopkins and
Singer (2005), (4.12)] [Bunke (2013), Def. 4.51][Bunke et al. (2016), (24)], and us-
ing that right adjoints preserve homotopy pullbacks:

F,
(Eo)dift ——— Qar (—31E0)fat

CE, \L (hpb) \Lallas

Disc(Ey) ——— bBexp(IEp)
chE0

moduli co-stack

of QE(-connections (9.18)
Diff(E,can) —— (Qfr(—) ®: T (E))

~ RQ” l (o) i

Disc(E) R Qi (—) @2 T (E)

<0

“differential function spectrum”
of differential generalized E-cohomology

The same applies to (Ey)qitf, by replacing E with DX"E (1.64) on the right of (9.18).

Remark 9.3 (The canonical atlas for the moduli stack of connections). The operation
(—)<o0 in (9.17) is the naive truncation functor on the category of chain complexes

(=)o

ChainComplexes,, ChainComplexes:*
o o o_ o_
(-~-i>V1i>Vo—'>Vf1—z>Vf1—>~-) — (Vo—l>V,1—2>V,1—>--~).

In contrast to the homological truncation involved in Q% (1.93), this naive truncation is
not homotopy-invariant and does not have a derived functor. Instead, as seen from (9.17)
and (9.3), once regarded in differential non-abelian cohomology, this operation serves to
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construct the canonical atlas [Sati and Schreiber (2020c¢), Prop. 2.70] of the moduli eo-stack
of flat [E,,-valued differential forms. Via the defining homotopy pullback (9.10), (9.18) this
becomes hallmark of differential cohomology: Differential cohomology is the universal
solution to lifting the values of the character map from cohomology classes to cochain
representatives, namely to curvature forms.

In differential enhancement of Example 2.11 and Example 7.1, we have:

Example 9.1 (Differential complex K-theory). With the coefficient space A := KUy =
Z x BU (2.15) for topological complex K-theory (Example 2.11), the corresponding differ-
ential non-abelian cohomology theory (Def. 9.3) is, by Example 9.1, differential K-theory,
whose diagram (0.16) of cohomology operations is of this form (see [Hopkins and Singer
(2005)][Bunke and Schick (2009)][Bunke and Schick (2012)][Grady and Sati (2017)])

Fxu,

(23 KUy) =KU'(2) ———{ {Fu € Qk(2) | 4P =0} 9.19)

i |

h
KU%(2') 2 kEBI\IH(?ﬁ(%)v
€

where the bottom map is the ordinary Chern character from Example 7.1, and the curvature
differential forms are identified as in Example 6.6.

Remark 9.4 (Differential K-theory via equivalence classes of principal connections).

In our context of non-abelian cohomology it is worth highlighting the well-known fact
that differential K-theory classes (Ex. 9.1) may equivalently be expressed ([Karoubi
(1987)][Lott (1994)][Simons and Sullivan (2010)][Bunke ef al. (2016), §6], brief review
in [Bunke and Schick (2012), §4.1]) in terms of equivalence classes of vector bundles with
connection, hence equipped with principal connections (Nota. 8.1) on the underlying U(n)-
principal bundles.

Examples of differential non-abelian cohomology. In differential enhancement of Ex-
ample 2.2, we have:

Proposition 9.4 (Differential non-abelian cohomology of principal connections). Let
G be a compact Lie group with classifying space BG (2.8). Then there is a natural map
over smooth manifolds X, shown dashed in (9.20), from equivalence classes of G-principal
connections (Notation 8.1) to differential non-abelian cohomology with coefficients in BG
(Def. 9.3) which covers the classification of G-principal bundles by plain non-abelian co-
homology with coefficients in BG (Example 2.2), in that the following diagram commutes:

differential
non-abelian cohomology

GConnections(X) /. — — — — — > H(X;BG) (9.20)
cos::-e}i‘elznn \L i CBG
GBundles(X) ;. ————— H(X; BG)

non-abelian cohomology
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Proof. By Lemma 8.3, the differential form coefficient in the given case is

Qar (—;1BG)far ~ Hompg (inV' (9) QER(—)clsd) :
Therefore, with Example 5.4, we find that
(A[k] — Homg (inv*(g), Q&R(Ak)clsd)> o~ HK(inv”(g),n) € Ho(ASetsqy)
k
is a product of Eilenberg-MacLane spaces (2.6) for real coefficient groups spanned by

the invariant polynomials, and so the defining homotopy pullback (9.10) is here of the
following form:

BGift —————— Homg (inv*(g) , Qg (~)eisa) 9:21)

\L (hpb)

Disc(BG)

Disc( I1 K(inv”(g),n)> ,

(ck)ken keN

where the bottom map classifies the real characteristic classes of BG via Example 2.1. It
follows by Example 1.12 that maps into BGyj¢r are equivalence classes of triples

)‘(, 7(?); >HomR(inv'(g)7QER(_)clsd)
H(X;BG) ~ { (f,0,(o)) f‘v c i
BG Disc( K (inV"(g),n))
keN

(9.22)
consisting of (a) a classifying map f for a G-principal bundle (Example 2.2), (b) a set of
closed differential forms o labeled by the invariant polynomials, and (c¢) a set of cobound-
aries ¢ in real cohomology between these differential forms and the pullbacks f*cy.

Now, given a G-connection V on a G-principal bundle f*EG over X, we obtain such
a triple by (a) taking f to be the classifying map of the underlying G-principal bundle,
(b) taking oy := i (Fy) to be the characteristic forms (Def. 8.2) of the connection, and
(c) taking ¢ to be given by the relative Chern-Simons forms [Chern and Simons (1974)]
between the given connection and the pullback along f of the universal connection (see
Remark 8.1). This construction is an invariant of the isomorphism class of the connection
(see [Hopkins and Singer (2005), p. 28]) and hence defines the desired map (9.20):

GConnections(X) /., H(X; BG) (9.23)
[f*EG,V] — (s (esk (Vo f* Vuniv), (@ (Fy))]
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Remark 9.5 (The role of principal connections in non-abelian differential cohomol-
ogy).

(i) It seems unlikely that the map (9.20) in Prop. 9.4 would not be a bijection, but we do
not have a proof that it is, in general. A notable case where it is known to be a bijection is
the abelian case of the circle group G = U(1); this case is Prop. 9.5 below.

(ii) However, Thm. 9.9 below shows that the image of G-principal connections in differen-
tial non-abelian cohomology H (X ;BG) , under this map (9.20), supports the construction of
all the secondary characteristic classes of G-principal bundles, hence retains all the relevant
information extractable from G-principal connections.

(iii) On the other hand, for each Lie group G with Lie algebra denoted g, there exists a
smooth stack (Prop. 1.24)

BGeomn ~ Q'(—:g)/G € Ho(SmthStacks..) (9.24)

which is the moduli stack of smooth G-principal connections ([Fiorenza et al. (2012), Def.
3.2.4][Freed and Hopkins (2013)], exposition in [Fiorenza et al. (2015b), §2.4]) in that it
not only makes the analogue of the map (9.20) provably a bijection

GConnections(X) J~ — % H (X ;,BGconn) c Sets

but even such that the full mapping space (1.79) into it is equivalent ([Fiorenza et al. (2012),
Prop. 3.2.5]) to the groupoid (via Ex. 1.3) of gauge transformations between G-principal
connections:

GConnections(X) —— Maps(X;,BGconn) € Ho(ASetsqy) -

(iv) But, while BG.onn can explicitly be defined as in (9.24), it seems to lack (unless G
is abelian, see Prop. 9.5) a more general abstract characterization of the kind that defines
BGyigr in (9.21), via the systematic Def. 9.3. In particular, it is the construction principle of
BG g — but apparently not that of BG¢onn — which properly generalizes from ordinary non-
abelian Lie groups to higher non-abelian groups [Fiorenza et al. (2012), §4.3] such as the
String 2-group (Ex. 2.4), again for the fact that BG4 canonically supports the secondary
characteristic classes: see [Fiorenza et al. (2014b), §3-4].

In differential enhancement of Example 2.7, we have:

Example 9.1 (Differential Cohomotopy [Fiorenza et al. (2015d)]). The canonical dif-
ferential enhancement of (unstable) Cohomotopy theory (Example 2.7) in degree n is dif-
ferential non-abelian cohomology (Def. 9.3) with coefficients in S":

differential
Cohomotopy

m(—) = H(—8").

(i) By Example 6.4, a cocycle 63 € 7*(X) in differential 4-Cohomotopy has as curvature
(9.10) a pair consisting of a differential 4-form G4 and a differential 7-form G, satisfying
the Cohomotopical Bianchi identity shown here:
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differential cohomotopical curvature
4-Cohomotopy Feq ,
=4 .
T (X) Q(X, IS )ﬂal
. G1(Gs), ., dG7(C3) = —G4(C3) AG4(C3)
G — e Q4 (X) ~ .
cohomotopically G4(C3) dG4(CG3) =0

charge-quantized
C3-field

(9.25)
Such differential form data is exactly what characterizes the flux densities of the C3-field in
11-dimensional supergravity (up to the self-duality constraint G; = xG4). By comparison
with Dirac’s charge quantization (0.2), we thus see that a natural candidate for charge
quantization of the supergravity Cz-field is (nonabelian/unstable) 4-Cohomotopy theory b
[Sati (2018), §2.5][Fiorenza et al. (2017), §2][Braunack-Mayer et al. (2019), §3] (review
in [Fiorenza et al. (2019), §7]) or rather: differential 4-Cohomotopy theory 74 [Fiorenza
et al. (2015d), p. 9][Grady and Sati (2021a), §3.1].
(ii) The consequence of this Cohomotopical charge quantization is readily seen from the
Hurewicz operation on Cohomotopy theory (Example 2.21): The de Rham class of the
4-flux density is constrained to be integral, hence to be in the image of the de Rham homo-
morphism (Example 7.1) and its cup square is forced to vanish

[G4(C3)] € H*(X;Z) — Hz(X), [G4(C3)] U [Ga(C3)] = 0. (9:26)

This innocent-looking but non-linear cup-square relation is the source of the “quadratic
functions in M-theory” [Hopkins and Singer (2005)], revealed here as originating from a
deep phenomenon in unstable, hence “non-abelian”, homotopy theory, revolving around
Hopf maps and Massey products [Kriz and Sati (2005), §4.4][Sati and Schreiber (2021a)]
(see [Grady and Sati (2018a)] for differential refinement).

(iii) Passing from 11-dimensional supergravity to M-theory, the curvature data in (9.25) is
expected (see [Fiorenza et al. (2020b), Table 1]) to be subjected to more refined topolog-
ical constraints, forcing the class of G4 to be integral up to a fractional shift by the first
Pontrjagin class of the tangent bundle, and deforming its cup square to a quadratic function
with non-trivial “background charge”. We see, in Prop. 12.1 below, that these more subtle
M-theoretic constraints on the Cs3-field flux densities are, once more, imposed by charge
quantization in — hence lifting through the non-abelian character map of — the correspond-
ing twisted non-abelian cohomology theory, namely: tangentially twisted 4-Cohomotopy
[Fiorenza et al. (2020b)][Fiorenza et al. (2022)] (Example 12.1 below).

Ordinary differential cohomology. The ordinary differential cohomology H* (X) [Si-
mons and Sullivan (2008)] of a smooth manifold X combines ordinary integral cohomol-
ogy classes (Example 2.1) with closed differential forms that represent the same class in
real cohomology, in that it makes a diagram of the following form commute:
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ordinary
differential cohomology
curvature

H.(X) Q(.iR(X>clsd
s, | (... - ©.27)
H* (X Z) rationalization H*(X;R)

In fact, differential cohomology is universal with this property, but not at the coarse level
of cohomology sets shown above (where the universal property is shallow) but at the fine
level of complexes of sheaves of coefficients (i.e. of moduli co-stacks), as made precise in
Prop. 9.5 below (see Rem. 9.6).

In degree 2, ordinary differential cohomology classifies ordinary U(1)-principal bun-
dles (equivalently: complex line bundles) with connection [Brylinski (1993), §II], and the
curvature map in (9.27) assigns their traditional curvature 2-form. In degree 3, ordinary dif-
ferential cohomology classifies bundle gerbes with connection [Murray (1996)][Schweigert
and Waldorf (2011)] with their curvature 3-form. In general degree, it classifies higher bun-
dle gerbes with connection [Gajer (1997)], or equivalently higher U(1)-principal bundles
with connection [Fiorenza et al. (2013), 2.6].

One construction of ordinary differential cohomology over smooth manifolds is given
in [Cheeger and Simons (1985), §1], now known as Cheeger-Simons characters. An
earlier construction over schemes, now known as Deligne cohomology (Example 9.1),
due independently to [Deligne (1971), §2.2][Mazur and Messing (1974), §3.1.7][Artin
and Mazur (1977), §111.1] and brought to seminal application in [Beilinson (1984)] (re-
view in [Esnault and Viehweg (1988)]), is readily adapted to smooth manifolds [Brylinski
(1993), §1.5][Gajer (1997)]. The advantage of Deligne cohomology over Cheeger-Simons
characters is that is immediately generalizes from smooth manifolds to smooth eo-stacks,
[Fiorenza et al. (2012), §3.2.3][Fiorenza et al. (2013), §2.5], such as to orbifolds [Sati and
Schreiber (2021b)] and to moduli oo-stacks of higher principal connections where it yields
higher Chern-Simons functionals [Sati er al. (2012)][Fiorenza et al. (2014b)][Fiorenza
et al. (2015b)][Fiorenza et al. (2015a)], as well as allowing for twists in a systematic man-
ner [Grady and Sati (2018c)][Grady and Sati (2019a)].

In differential enhancement of Example 2.9, we have:

Example 9.1 (Ordinary differential cohomology on smooth ~-stacks [Fiorenza et al.
(2012), §3.2.3][Fiorenza et al. (2013), §2.5]). Letn e N.

(i) The smooth Deligne-Beilinson complex in degree n+ 1 is the presheaf of connective
chain complexes (Example 1.27) over CartSp (1.66) given by the truncated and shifted
smooth de Rham complex (Example 4.9) with a copy of the integers included in degree
n+1 (as integer valued O-forms, hence as smooth real-valued functions constant on an
integer):

DB = (= 050> 2 Q(-) = Qlp(-) S L () ). 028)

(ii) The de Rham differential in degree O gives a morphism of presheaves of complexes
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n+1 (0,0,-,0.d) n+1
DB —————— Q! (—)awa 9.29)

from the Deligne-Beilinson complex (9.28) to the presheaf of closed (n + 1)-forms, re-
garded as a presheaf of chain complexes in degree 0.

(iii) Ordinary differential cohomology is sheaf hypercohomology with coefficients in the
Deligne complex. This means that if we look at the Deligne-Beilinson complex (9.28) as
a smooth co-stack (Prop. 1.24) by first applying the Dold-Kan construction from Exam-
ple 1.30 and then co-stackifying the resulting simplicial presheaf, then ordinary differen-
tial cohomology is stacky non-abelian cohomology (Remark 2.3) with coefficients in the
Deligne-Beilinson complex:

Deligne-Beilinson

diiferex:;;::ili':::l:ixnolngy (‘orll?v:ls;]:;&u complex
A"(2) = Ho(SmthStacks.) (2 , L' o DK(DBL™!)).  (9.30)

(iv) The curvature map on ordinary differential cohomology is the cohomology operation
induced by (9.29):

ordinary
differential cohomology

Hrtl (3{)

curvature

‘Q’g}—;l (‘%)clsd

Ho(SmthStacks..) <&V Lioe o DK (DB ! ))

Ho(SmthStacks.. ) (2", Lio.oDK(d))

Ho(SmthStacks..) (%,LIOC o DK (@1 ( f)clsd)> .
9.31)

Proposition 9.5 (Differential non-abelian cohomology subsumes differential ordinary
cohomology [Fiorenza et al. (2012), Prop. 3.2.26]).

Let n € N and consider A = B"U(1) ~ K(Z,n+ 1) (Example 2.9). Then:

(i) Differential non-abelian A-cohomology (Def. 9.3) coincides with ordinary differential
cohomology (Def. 9.1):

ordinary
differential cohomology

H™Y(2) ~ H(2;B"U(1)). (9.32)

(ii) The abstract curvature map in differential A-cohomology (9.10) reproduces the ordi-
nary curvature map (9.31).
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Proof. In order to compute the defining homotopy pullback (9.10), we use the Dold-Kan
correspondence (Prop. 1.27) to obtain a convenient presentation of the differential character
map along which to pull back:

(a) Since the Dold-Kan construction DK (Def. 1.30) realizes homotopy groups from
homology groups (1.88), and since Eilenberg-MacLane spaces are characterized by their
homotopy groups (2.6), we have the vertical identifications on the left of the following

diagram:
ChH"U(l)

Disc (B"+12) ————— Disc(B"'R) ——————— bBexp(b"R)
[ . [ Jie =
Z R Qi (-)
1 l la (9.33)
0 0 Qir(-)

pk| | — — spKk| | |&—— s DK Ld
1 l d
0 0 Qi (<)ersa

Under this identification, it is clear that the rationalization map ngl,% 11y (Def. 5.2) is pre-
sented by the canonical inclusion of the integers into the real numbers, as on the bottom
left of (9.33).

Moreover, the right vertical equivalence in (9.33) is that from Lemma 9.2.

(b) Since the differential character (9.9) in the present case evidently comes from a
morphism of (presheaves of) simplicial abelian groups, with group structure given by addi-
tion of ordinary differential forms (Example 6.2), we may, using the Dold-Kan correspon-
dence (Prop. 1.27), analyze the remainder of the diagram on normalized chain complexes
N(-) (1.87).

Using this, it follows by inspection of the bottom map in (9.9) that the bottom right
square in (9.33) commutes, with the bottom morphism on the right being the canonical
inclusion of (presheaves of) chain complexes.

Now to use this presentation for identifying the resulting homotopy fiber product
(9.10):
(i) Since the DK-construction (Def. 1.30), applied objectwise over CartSp, is a right Quillen
functor into the global model structure from Example 1.20, and since co-stackification
preserves homotopy pullbacks (Lemma 1.5), it is now sufficient to show, by definition
(9.30), that the homotopy pullback (Def. 1.15) along the bottom map in (9.33), formed in
presheaves of chain complexes is the Deligne-Beilinson complex DB 1! (9.28).

For this it is sufficient, by (1.42), to find a fibration replacement of the bottom map in (9.33)
whose ordinary fiber product with Qggl (—=)cisd is the Deligne-Beilinson complex. This is
provided by a mapping cylinder construction (e.g. [Weibel (1994), §1.5.5]) shown here:
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Z 0
b o 1
Q% (—) 0 0
1d : 1
Qir(-) 0 0
pErtl | L ! !
1 !
Q' (=) 0 (9.34)
1d 1
QSR(7> QSE] (7)clsd
il\L (vb) \Li
Z Z @ Qg(-) Qi (-)
1 b Al - 14
0 Q(—) © Qp(-) o Qip(-)
! ld Aia ld : 14
0 Qr(-) © Qi(-) Pr Qir(-)
! O R TSI ! N I
. ew . . . € Fib .
1 a7l 14
0 Q' (=) ® Qir(-) Qir(=)
1 a7 14
0 Qir(—) QU (=) et

By direct inspection, we see in this diagram that:

o the total bottom morphism is the total bottom morphism from (9.33), factored
as a weak equivalence (quasi-isomorphism) followed by a fibration (positive de-
greewise surjection);

o the ordinary pullback of this fibration is the Deligne-Beilinson complex DB/ !
(9.28), as shown, which therefore represents the homotopy pullback (since all
chain complexes are projectively fibrant), by Def. 1.15.

o the top morphism out of this (homotopy-)pullback coincides with the curvature
map (9.29) on the Deligne complex — which, under the following implication of
claim (i), implies claim (ii).

(i) The image of this homotopy pullback (9.34) under L' o DK is still a homotopy pullback
(because DK is a right Quillen functor by construction (1.91) and using Lem. 1.5) and
hence exhibits the Deligne coefficients (9.30) for ordinary differential cohomology as a
model for the differential B"*!Z-cohomology according to Def. 9.3:
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Deligne complex as smooth co-stack

Fyni1y
¢ o DK (DB H) i Qur (=3 1B™'Z)
(9.35)
lCBnJrI VA (hpb) l
; 1 1
Disc(B"117Z) F— bBexp(IB"17)
This implies claim (i), by the definitions. O

Remark 9.6 (The commuting square of ordinary (differential) cohomology groups).
The image of the homotopy-pullback square (9.35) under the hom-functor
Ho(SmthStacks. ) (X, —) out of a smooth manifold X gives the commuting square of ordi-
nary (differential) cohomology groups shown in (9.27). Since the hom-functor of a homo-
topy category does not preserve homotopy pullbacks, in general (only the mapping space
functor (1.79) does), the square (9.27) in cohomology is not itself a pullback, in general.

Secondary non-abelian cohomology operations. We define secondary non-abelian co-
homology operations (Def. 9.7 below) which generalize the classical notion of secondary
characteristic classes (Theorem 9.9, see Remark 9.7 for the terminology) to higher non-
abelian cohomology. To formulate the concept in this generality, we need a technical con-
dition (Def. 9.6) which happens to be trivially satisfied in the classical case (Lemma 9.3
below):

ﬁnQ

1 (Def. 5.1),

we say that an absolute minimal model for a morphism A; —c> A; in ASets is a mor-

Definition 9.6 (Absolute minimal model). For A;,A; € Ho(ASetsq,)

phism [A; —c> [A; between the respective Whitehead Lo.-algebras (Prop. 5.11) which
makes this square

min

o P,
Qrpr (A1) =<——— CE(14))

A
T \ ¢ € dgcAlgs:’
Qigp (A2) =—— CE([A2)

min

Az

and hence the square on the right of the following diagram commute:

Dn}\’LdR

1

Ay =" —— Bexppy 0 QO jr (A1) — Bexpp (i) —> Bexppy o CE(IA})
\

cl Bexpp, © Uy (0) | Bexppy o CE(0)
Y

i R——> Bexpp 0 Qp 4r (A2) — Bexpp(Pfi") — Bexppy o CE(l4,),

TRt Tawty T

PLdR
Dn A,

As

€ ASets
(9.36)
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hence a morphism that yields a transformation between exactly those derived adjunction
units D PLAR (1.38) of the PL-de Rham adjunction (5.14) that are given by minimal fibrant
replacement.! In this case, the commuting diagram (9.36) evidently extends to a strict
transformation between the differential non-abelian characters (9.9) on the A; (Def. 9.2),
in that the following diagram of simplicial presheaves (Def. 1.22) commutes:

ch
Disc(A;) —————> bBexp(IA,)

Disc(c)l bBeXp(c)i € PSh(CartSp, ASets). (9.37)
chA2

Disc(Ay) —————— = bBexp(lAy)

In differential enhancement of Def. 2.3, we have:

Definition 9.7 (Secondary non-abelian cohomology operation). Let A —> A, in
ASets, with induced cohomology operation (Def. 2.3)

H(—A)) —— H(—Ay),

have an absolute minimal model ¢ (Def 9.6). Then the corresponding secondary non-
abelian cohomology operation is the structured cohomology operation (Remark 2.3)

(caift)+

H(—A)) H(—;Ay) (9.38)

secondary
non-abelian character

on differential non-abelian cohomology (Def. 9.3) which is induced, as in (2.25), by the
dashed morphism cgjs in the following diagram, which in turn is induced from ¢ and ¢
(9.37) by the universal property of the defining homotopy pullback operation (9.9):

secondary/differential

cohomology operation (A 1 )dlff 7777777777 > (A2 )dlﬁ (9‘39)

Di
plain/primary Disc (Al ) ISC(C) Disc (Az)

cohomology operation

chA2
transformation of

© pBexp(IA,).

The left and right squares are the homotopy pullback squares defining differential non-
abelian cohomology (Def. 9.3) while the bottom square is the transformation of differential
non-abelian characters (Def. 9.2) from (9.37).

"Notice that the existence of morphisms ¢ making this diagram commute is not guaranteed:; it is only
the existence of the relafive minimal morphism [4, (c) from Prop. 5.16 which is guaranteed to make
the square (5.53) commute.
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In differential enhancement of Examples 2.21, 7.1, we have:

Example 9.1 (Secondary non-abelian Hurewicz/Boardman homomorphism to differ-
ential K-theory). Consider the map

4 ez‘U
§* ———=BU

€ Ho(ASetsqu)

from the 4-sphere to the classifying space of the infinite unitary group (2.16) which classi-
fies a generator in 7y (BU) ~ 7. By Example 5.3 and Examples 5.6, 6.6 the corresponding
Whitehead L..-algebras (Prop. 5.11) are as shown here:

CE(Is*) CE(IBU) ~ ® CE(IK(Z,2k))
keN
H u
R|@7| /(A7 =—ouN 0y m)]g : : 9.40
Wy / dwys=0 fa, / dfy =0 (9.40)

2 df, =0

The morphism shown in (9.40) evidently restricts to the relative rational Whitehead Lo.-
algebra inclusion (Prop. 5.16) on the factor K(R,4) C LgBU and is zero elsewhere, hence
fits into the required diagram (9.36) exhibiting it as an absolute minimal model (Def. 9.6)
for e4BU (by the commuting diagram in Prop. 4.24).

Cheeger-Simons homomorphism. Where the construction of the Chern-Weil homomor-
phism (Def. 8.3) invokes connections on principal bundles without actually being sensitive
to this choice (by Prop. 8.5), the Cheeger-Simons homomorphism [Cheeger and Simons
(1985), §2][Hopkins and Singer (2005), §3.3] (based on [Chern and Simons (1974)]) is a
refinement of the Chern-Weil homomorphism, now taking values in differential ordinary
cohomology (Example 9.1), that does detect connection data (hence “differential” data):

. differential
Cheeger-Simons cohomology

homomorphism

GConnections(X) /.. o Homg, <H *(BG;Z), H*(X) )
cn:}:lregcﬁ:un i/ curvature map
N (9.41)
GBundles(X) /., — Homp (iHV’ (9), Hig (X ))
homomorphism de Rham

cohomology

We discuss how the general notion of secondary non-abelian cohomology operations (Def.
9.7) specializes on ordinary principal bundles to the Cheeger-Simons homomorphism, and
hence generalizes it to higher non-abelian cohomology:

Lemma 9.3 (Characteristic classes of G-principal bundles have absolute minimal mod-
els). Let G be a connected compact Lie group with classifying space BG (2.8). Forn € N,
let [c] € H"™'(BG; Z) be an indecomposable universal integral characteristic class for
G-principal bundles (Example 2.3). Then every representative classifying map

BG % Bn+IZ
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has an absolute minimal model in the sense of Def. 9.6.

Proof. By Lemma 8.2, the minimal Sullivan model for BG has vanishing differential, while
the minimal Sullivan model of B"*!Z is a polynomial algebra on a single degree n+ 1
generator (by Example 5.4), whose inclusion is already the relative minimal Sullivan model
[gir17(c) (Prop. 5.16) of c. Therefore, setting

CE(c) := CE(lg15(c)) = Rlc]/(dc=0) —— inv*(g) (9.42)

gives the required morphism of minimal models that makes makes the square (9.36) com-
mute, by (5.53). O

In differential enhancement of Example 2.14 we have:

Definition 9.8 (Secondary characteristic classes of differential non-abelian G-
cohomology). Let G be a connected compact Lie group with classifying space BG (2.8).
By Lemma 9.3), the construction of secondary characteristic classes (Def. 9.7, on differen-
tial non-abelian G-cohomology (Example 9.4) yields a Z-linear map of the form

(7>diff

H*(BG,;Z) ~ H(BG;B*Z) H (BGgitr; B°Z) = H(BGaisr; B Zgisr) ,

where on the right we have the ordinary differential non-abelian cohomology (Prop.
9.5) of the moduli oo-stack BGgis (9.10). Combined with the composition operation in
Ho(SmthStacks.,) (Def. 1.25) this gives a map

idx (—)aite
—

H(X; BG) xH (BG; B*Z) H (X; BGigr) x H (BGgifr; B® Zair)

which is Z-linear in its second argument, and whose hom-adjunct is

A(x: BG) — =) Homg, (H(BG: B°Z), H(X: B°Z)). (9.43)

Theorem 9.9 (Secondary non-abelian cohomology operations subsume Cheeger-
Simons homomorphism). Let G be a connected compact Lie group, with classifying
space denoted BG (2.8). Then the canonical construction (9.43) of secondary charac-
teristic classes on differential non-abelian G-cohomology (Def. 9.8) coincides with the
Cheeger-Simons homomorphim (9.41), in that the following diagram commutes:

differential
ordinary
Cheeger-Simons cohomology

homomorphism . ~o
Homy, (H*(BG:Z), H*(X) ) (9.44)

(9.20) \L TZ (9.32)

_ Tl Homy (H(BG: B2) A(X: B°T))

GConnections(X) /.

H(X; BG)
differential non-abelian
cohomology

secondary
non-abelian cohomology operations
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where on the left we have the map from G-connections to differential non-abelian G-
cohomology from Prop. 9.4, and on the right the identification of ordinary differential
cohomology from Prop. 9.5.

Proof. Letc€ H (BG; B'Z) be a characteristic class, and let (f*EG,V) be a G-principal
bundle equipped with a G-connection. By Prop. 9.4, its image in differential non-abelian
cohomology is given by the first map in the following diagram

GConnections(X)/N _— ﬁ(X; BG) (cam)- ﬁ(X; B”"HZ) ~ I-AI”H(X)
[f*Eva] i [f: (Csk(vvf*vuniv» (wk(FV))] i [f*c, Csc(v7f*vuniv)> C(FV)}
(9.45)

Here the triple of data are the three components (Example 1.12) of a map into the defining
homotopy pullback of differential non-abelian cohomology (9.22). Therefore, the sec-
ondary operation induced by the transformation (9.39) of these homotopy pullbacks, which
in the present case is of this form:

secondary
characteristic class

BGuifr o B Zgigy (9.46)
CBG \ Cpntlz, \
Qar (=3 1BG) flat i Qar (—: 1B Z) 1y
BG chamcteri:ic class B"+ 1 Z
chyi1y
chpg

bBexp(IBG) bBexp(IB"17Z),

Cy

acts (a) on the first component in the triple by postcomposition with ¢, hence as
fe ffei=cof

and (b) on the other two components by composition with ¢, which by (9.42) corresponds
to projecting out the Chern-Simons form and characteristic form corresponding to c, re-
spectively. This is shown as the second map in (9.45). Hence we are reduced to showing
that the total map in (9.45) gives the Cheeger-Simons homomorphism. This statement is
the content of [Hopkins and Singer (2005), §3.3]. O

Remark 9.7 (Secondary characteristic classes of G-connections). The traditional rea-
son for referring to the Cheeger-Simons homomorphism (9.44) as producing secondary
invariants is that Cheeger-Simons classes csg(P,V) € H(X) may be non-trivial even if the
underlying characteristic class cwg(P) (the “primary” class) vanishes. In this case the
csg(P, V) are also called Chern-Simons invariants.

(i) This happens, in particular, when the G-connection V is flat, F(V) = 0 (by Def.
8.2). Such secondary Chern-Simons invariants exhibit some subtle phenomena ([Reznikov
(1995)][Reznikov (1996)][Iyer and Simpson (2007)][Esnault (2009)]).
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(ii) In fact, the proof of Theorem 9.44, via the triples (9.22) of homotopy data, shows that,
in this case, csg(P, V) measures how (or “why”) cwg(P) vanishes, namely by which class
of homotopies.

(iii) Here we may understand secondary classes more abstractly, and explicitly related to
the non-abelian character map: Where a (primary) non-abelian cohomology operation, ac-
cording to Def. 2.3, is induced by a morphism of coefficient spaces (2.20), a secondary
non-abelian cohomology operation, according to Def. 9.7, is induced (9.38) by a mor-
phism of non-abelian character maps (9.37) — hence by a morphism of morphisms — on
these coefficient spaces.

(iv) Note that classical secondary cohomology operations themselves admit differential
refinements. For instance, for the case of Massey products as secondary operations for the
cup product this is worked out in [Grady and Sati (2018a)]. While these can also fit into
our context on general grounds, we will not demonstrate that explicitly here.
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We introduce the character map in twisted non-abelian cohomology (Def. V.3) and then
discuss how it specializes to:

chapter 10 — the twisted Chern character on (higher) K-theory;

chapter 12 — the twisted character on Cohomotopy theory.

Rationalization in twisted non-abelian cohomology. In generalization of Def. IV.1 we
now define rationalization of local coefficient bundles (3.2). This operation is transparent
in the language of oo-category theory (Rem. 1.2), where it simply amounts to forming the
pasting composite with the homotopy-coherent naturality square of the R-rationalization
unit nR (from Def. 5.7):

T-twisted cocycle with -twisted cocycle with rationalized local coefficients Ly (p)
local coefficients p
Naya
X P A)G A)G Lr(A/G)
x % rationalization
— (V.1)

BG

k
LgBG

Slightly less directly but equivalently, this is the composite of (a) derived base change

(Ex. 1.7) along n%% from the slice over BG to the slice over Lgx BG, (b) followed by the

composition with its derived naturality square, now regarded as a morphism in the slice

over LrBG:

T-twisted cocycle with
local coefficients p

XA————————>A/G A)G

N 4
o

LgrBG
(V.2)
t-twisted cocycle with
local cmg(icienl.\ P n}//G
X — AJG Lg(A//G)
composition =
e \\?\\\ %//Z/:
BG
Nig l
LgBG

It is in this second form that the operation lends itself to formulation in model category
theory (Def. V.2 below). For that we just need to produce a rectified (strictly commuting)
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model of the n®-naturality square:

Definition V.1 (Rectified rationalization unit on coefficient bundle). Consider a local
coefficient bundle (3.2) in Ho (ASetsQu)inl?‘ml (Def. 5.1) with its minimal relative Sullivan
model (5.53), (given by Prop. 5.16) T

PX““E,G
A————>A)G Oy r (4//G) =< CE(u(4/G))  (V.3)

local coefficient bundle l P Qp r(P) T T CE(Ip)
min

PBG

BG, Qg (BG) <———— CE(I(BG))

Then the composite of the image of (V.3) under Bexpp with the Qp; ;n — Bexppy -
adjunction unit (from Prop. 5.5):

Dngje ~ nf//c\

A /|G —n& > Bexppy 0 Qpy g (A G) bewn. (7} Bexppy o CE(I,6(A//G))
DnELdR = p l Bexppy, 0 QF’I_dR(p)l Bexpypy, o CE(Ip) l

BG —nf™ — Bexppy 0 QP 4r (BG) —bewn (vji)> Bexppy o CE(I(BG))

/
(V.4)

is, after passage (1.24) to the classical homotopy category (Example 1.14), the naturality
square of the rationalization unit on p (5.1), namely of the derived adjunction unit (1.38)
n® = DPLRAR (ysing, with Prop. 4.21, that the right part of (V.4) is the image under Bexppr,
of a fibrant replacement morphism.)

PLAR

Dnge™® = g

Definition V.2 (Rationalization in twisted non-abelian cohomology). Given a local
coefficient bundle p and its rectified rationalization unit ID)nELdR (Def. V.1) we say that
rationalization in twisted non-abelian cohomology with local coefficients p (Def. 3.2) is
the twisted non-abelian cohomology operation (Def. 3.6)

(Dt o (=) o B(ngg),

(np), : HY(X:A) HY7(X; LpA) (V.5)
given by the composite of

(a) derived left base change D(ngRG)g (Ex. 1.7) along the rationalization unit (5.1) on the
classifying space of twists,

(b) with the rectified rationalization unit (V.4) on the coefficient bundle, regarded as a
morphism in the homotopy category (1.24) of the slice model category (Example 1.5) of
ASetsq, (Example 1.2) over Bexppy o CE(IBG)).
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Remark V.1 (Rationalization of coefficients and/or of twists). Def. V.2 rationalizes both
the coefficients as well as their twist. This is of interest because:
(a) the joint rationalization is defined canonically, in fact functorically, as highlighted
around (V.1);
(b) the rationalized twisting appears in the archetypical examples (such as the twisted Chern
character on degree-3 twisted K-theory, chapter 10) and gives the Bianchi identities on
higher form field/flux data relevant in applications to physics (see chapter 12).

One may also consider rationalization of just the coefficients, keeping non-rationalized
twists; but, in general, this requires making a choice, namely a choice of dashed morphisms
in the following transformation diagram of local coefficient bundles:

local coefficient

bundle n} ’ ) .
A————— Lr(A) e,
Jhoﬁb(p) lhoﬁb(PR)
€ Ho (ASetsQu) . (V.6)
AJG oo > (LeA) |G
lp | p®
BG _ BG non-rationalized

twist
The homotopy-commutativity of the bottom square expresses that and how rationalization
commutes with twisting.

Given such a choice, then using the bottom square (V.6) in place of the rationalization
unit’s naturality square on the right of (V.1) produces a definition, directly analogous to
Def. V.2, of rationalization of just the A-coefficients in twisted A-cohomology. This is also
of interest (see for instance the case of twisted KO-theory in [Grady and Sati (2019d), Prop.
4]), but currently we do not further expand on this generalization here.

Twisted non-abelian character map. In generalization of Def. IV.2, we set:

Definition V.3 (Twisted non-abelian character map). Let X € Ho(ASetsQu)lilenil (Def.
5.1) equipped with the structure of a smooth manifold, and o

A——A)G (V.7)
local coefficient bundle ¢P

BG

be a local coefficient bundle (3.2) in Ho (ASetsQu)Iilenil (Def. 5.1). Then the twisted non-

abelian character map in twisted non-abelian cohomology is the twisted cohomology op-
eration

twisted non-abelian twisted non-abelian twisted non-abelian
cohomology (ngﬁ ) B real cohomology de Rham cohomology
=~ T
———— HI*7(X; LgA) ——— H{®(X;A)  (V.8)
twisted non-abelian
de Rham theorem

wisted
non-abelan chy : HY(X; A)

character map rationalization

from twisted non-abelian A-cohomology (Def. 3.2) to twisted non-abelian de Rham coho-
mology (Def. 6.9) with local coefficients in the rational relative Whitehead L..-algebra [p
of p (Prop. 5.18) which is the composite of

(i) the operation (V.5) of rationalization of local coefficients (Def. V.2),

(ii) the equivalence (6.51) of the twisted non-abelian de Rham theorem (Theorem 6.15).
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Chapter 10

Twisted Chern character on higher
K-theory

We discuss (Prop. 10.1) how the twisted non-abelian character map reproduces the twisted
Chern character in twisted topological K-theory [Bouwknegt et al. (2002), §6.3][Mathai
and Stevenson (2003)][Atiyah and Segal (2006), §7] — see also [Tu and Xu (2006)][Mathai
and Stevenson (2006), §6][Freed er al. (2008), §2][Bressler et al. (2008)] [Gomi and
Terashima (2010), §4][Karoubi (2012), §8.3][Grady and Sati (2019c¢), §3.2][Grady and
Sati (2019b)]. Then we also consider (Prop. 10.2) the twisted character on twisted iterated
K-theory [Lind et al. (2020), §2.2].

Character maps on higher-twisted ordinary K-theories.

Remark 10.1 (Twisted Chern character via twisted characteristic forms). The twisted
Chern character on twisted K-theory was first proposed in [Bouwknegt e al. (2002)] via
a natural twisted generalization of the component-wise construction (7.4) of the ordinary
Chern character in terms of characteristic curvature forms. Briefly, given a degree-3 twist
73 € H3(X;Z) on a (compact) smooth manifold, then every class [(V{,V5)] € KUB(X)
in 73-twisted KU-theory (Ex. 3.4) may be represented by a pair (Vi,V) of 73-twisted
complex vector bundles ([Lupercio and Uribe (2004), §7.2]), generally of infinite rank
(“bundle gerbe modules” [Bouwknegt ez al. (2002), §4]). Now given a choice of lift of 73
through the characteristic class map (9.27) to a Deligne cocycle [ho,A;, B, Hs] (Ex. 9.1)
with respect to some open cover p : (LU;U;) — X (Ex. 1.24), hence in particular including
a choice of “local B-field” B,, then one may further choose B;-twisted connections V;
[Mackaay (2003)] on the twisted vector bundles, inducing curvature 2-forms F;:

By € Q*(U), F € Q*(U;End(V;)). (10.1)
Now it turns out [Bouwknegt ez al. (2002), Prop. 9.1] that

o the following trace (10.2) of differences of wedge-product exponentials of these
2-forms (10.1) is well defined (i.e., the trace exists, which is non-trivial since the
twisted vector bundles in general have infinite rank)

exp(By) Atr(exp(Fy) —exp(F2)) = p*ch®(V},V,) € Q>*(U) (10.2)
and equals the pullback p*(—) to the given cover of an even-degree differential

form on the base space X,

183
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e which is closed in the Hz-twisted de Rham complex (6.39)

(d —H3A\)chB2(V,v,y) = 0,.

e and whose resulting twisted de Rham cohomology class (Def. 6.10) is indepen-
dent of the choices made:

ch®(Vy,Va) = [ch®2(V1, V)] € Hii™(X). (10.3)

This class (10.3) was proposed [Bouwknegt ef al. (2002), p. 26] to be the twisted Chern
character of the twisted K-theory class [(V},V2)].

A more intrinsic characterization of the twisted Chern character was later found in
[Freed et al. (2008), §2]. This is the form in which one recognizes the twisted Chern
character as an example of the twisted non-abelian character map (Def. V.3), in twisted
enhancement of Example 7.1:

Proposition 10.1 (Twisted Chern character in twisted topological K-theory). Con-
sider twisted complex topological K-theory KU®(—) (Example 3.4), for degree-3 twists
given (via Example 2.8) by

T € H(—; B*U(1)) ~ H(—:,2),

and regarded, via (3.17), as twisted non-abelian cohomology with local coefficients in 7. X
BU /) B*U(1) (3.16). Then the twisted non-abelian character map (Def. V.3) chy. gy is
equivalent to the traditional twisted Chern character ch® on twisted K-theory with values
in Hx-twisted de Rham cohomology (Def. 6.10):

twisted non-abelian twisted
character map Chern character

T ~ T
chy py =~ ch".

Proof. That the codomain of the twisted non-abelian character map chy. . is indeed H3-
twisted de Rham cohomology is the content of Prop. 6.11. With this, and due to the
twisted non-abelian de Rham theorem (Theorem 6.15), it is sufficient to see that the gen-
eral rationalization map of local non-abelian coefficients from Def. V.2 reproduces the
rationalization map underlying the twisted Chern character. This is manifest from compar-
ing the rationalization operation (V.1), that is made formally precise by Def. V.2, to the
description of the twisted Chern character as given in [Freed ez al. (2008), (2.8)-(2.9)]. O

Remark 10.1 (Twisted Pontrjagin character in twisted KO-theory). Similarly, an anal-
ogous statement holds for the twisted Pontrjagin character (as in Example 7.1) on twisted
real K-theory [Grady and Sati (2019d), Prop. 2].

Example 10.1 (Twisted Chern character on higher Cohomotopy-twisted K-theory).
For k € N, consider the cohomotopically-twisted complex K-theory from Ex. 3.6.

(i) For A € m2+1 (X) a Cohomotopy class (Ex. 2.7) regarded now as a twist, the corre-
sponding twisted non-abelian character map (Def. V.3) lands, by Theorems 6.5, 6.9 and
Examples 5.4, 5.3, in Agqgr =: Hp1-twisted de Rham cohomology (Example 6.7, Prop.
6.13):
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twist in Cohomotopy higher Cohomotopy-twisted K-theory higher twisted de Rham cohomology

chf;
Aen® I (x)  KUMX) = H*(X;KUp) —% HA®(X;1KUg) =~ H* (X)),
twisted
character map

(10.4)
(i) A map of this form has been defined in [Macdonald et al. (2021), §2.2], by direct
construction on form representatives. However, [Macdonald et al. (2021), Thm. 4.19]
implies that this component construction coincides with the rationalization map (Def. V.2)
on the local coefficient bundle (3.25), up to application of the de Rham theorem. Therefore,
the twisted character map (10.4) obtained as a special case of Def. V.3, reproduces the
MMS-Character [Macdonald et al. (2021), §2.2] on higher Cohomotopy-twisted K-theory.

Remark 10.1 (Charge quantization of spherical T-duality in M-theory). For k = 3, the
character map (10.4) on 7-Cohomotopy-twisted K-theory is a candidate for charge quan-
tization (0.2) of the super-rational M-theory fields participating in 3-spherical T-duality
over 11-dimensional super-spacetime, as derived in [Fiorenza er al. (2020a), Prop. 4.17,
Rem. 4.18] (review in [Sati and Schreiber (2018), (8), (19)]). However, the 7-Cohomotopy-
twisted K-theory character has some spurious fields of 2-periodic degree in its image, which
are not seen in the physics application, where the field degrees are 6-periodic [Sati (2009),
§3][Fiorenza et al. (2020a), (65)]. Another candidate for charge-quantization of the super-
rational M-theory fields participating in 3-spherical T-duality, possibly more accurately
reflecting the physics, is the character map on twisted higher K-theory [Lind et al. (2020)],
which we turn to next (Prop. 10.2).

Character map on twisted higher K-theory.

Remark 10.1 (Higher twisted de Rham coefficients inside rational twisted iterated
K-theory). There is a non-trivial twisted cohomology operation (Def. 3.6) from (a)
twisted non-abelian de Rham cohomology (Def. 6.9) with coefficients in the relative ratio-
nal Whitehead L..-algebra (Prop. 5.16) of the coefficient bundle (3.27) of twisted iterated
K-theory (Ex. 3.7) to (b) higher twisted de Rham cohomology (Def. 6.12) regarded as
twisted non-abelian de Rham cohomology via Prop. 6.13):

H (=5 1K (ku)y ) W (= @v*r), (10.5)
keN

given, under the twisted non-abelian de Rham theorem (Theorem 6.15) by the LSW-
character from [Lind ez al. (2020), §2.2] applied to rational coefficients.

Proposition 10.2 (Twisted Chern character in twisted iterated K-theory). ForrecN,
r > 1, consider twisted iterated K-theory (K°»2(ku)) " (Example 3.7), for degree-(2r+1)
twists given (via Example 2.9) by

t € H(—B¥U(1)) ~ H* " (-,2),

and regarded, via Example 3.7, as twisted non-abelian cohomology with local coefficients

in (K°>=2(ku)),. Then the twisted non-abelian character map (Def. V.3) ch,

0 K°2r-2 (ku)o
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composed with the projection operation (10.5) onto higher twisted de Rham cohomology,
(Def. 6.12) from Lemma 10.1, is equivalent to the LSW character map chy,_ [Lind et al.
(2020), Def. 2.20] restricted along the connective inclusion

twisted twisted non-abelian
LSW character character map
T ~ T
chy, ; ~ ¢ o chge, (ku)o*
projection onto
higher twisted
de Rham cohomology

Proof. After unwinding the definitions, the statement reduces to the commutativity of the
square diagram in [Lind et al. (2020), p. 15]: The top morphism there is the plain rational-
ization map (Def. V.2), the right vertical morphism is ¢, from Lemma 10.1 before passing

from real to de Rham cohomology, the left morphism is restriction to the connective part
and the bottom morphism is the LSW character. O



December 12, 2023 20:14 ws-book9x6 The character map in nonabelian cohomology:
(twisted, differential, and generalized) cherndold 'ws'book page 187

Chapter 11

Twisted differential non-abelian character

We introduce twisted differential non-abelian cohomology (Def. 11.2 below) and discuss
how the corresponding twisted differential non-abelian character subsumes existing con-
structions on twisted differential K-theory (Examples 11.1 and 11.1 below).

Twisted differential non-abelian cohomology. From the perspective of structured non-
abelian cohomology (Remark 2.3) that we have developed, it is now evident how to canon-
ically combine

(a) twisted non-abelian cohomology (Def. 3.2) with

(b) differential non-abelian cohomology (Def. 9.3) to get
twisted differential non-abelian cohomology:

Definition 11.1 (Differential non-abelian local coefficient bundles). Let

A— > A)G

local coefficient bundle il P

BG

be a local coefficient bundle (3.2) in Ho (ASetsQu)inﬁml (Def. 5.1).

(i) By Lemma 5.4, with Def. V.1, and using that B_eXpPL preserves fibrations (Prop. 5.10),
this induces a homotopy fibering (Def. 1.14) in Ho(SmthStacks..) (Def. 1.25) of differen-
tial non-abelian character maps (Def. 9.2) of this form:

differential non-abelian character map
with coefficients in fiber space atlas

Disc(A) - bBexp(14) 22 Qyr(—: 14) ar
‘A

C hofib((1p). )
hoﬁb(Dism e hofib((ip) —

P A A/ G
DISC (A // G) twisted di]tl'ferential non-abelian bB CXp ( [(A // G) ) E QdR (7 ’ [BG (A // G) ) flat
character map
Disc(p) (p). (Ip).
g
Disc(BG) Swo bBexp(IBG) <—— Qur(—; IBG)far

differential non-abelian character map atlas
with coefficients in space of twists

(11.1)
(ii) Here the twisted differential non-abelian character map chﬁGG is defined just as in

Def. 9.2, but with coefficients the relative Whitehead Loo-algebra [36(A / G) (Prop. 5.16),

187
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as opposed to the absolute Whitehead L..-algebra [(A /G) (Prop. 5.11).

Remark 11.1 (Differential local coefficient bundles). Since homotopy limits commute
over each other, passage to the homotopy fiber products (Def. 1.15) formed from the hor-
izontal stages of (11.1) yields a homotopy fibering (Def. 1.14) of moduli eo-stacks of co-
connections (9.10) of this form:

QdR(_? [BG(A//BG))ﬂal

atlas\
pBexp(lis(A/G))

BG
FA//G

hofib(pgifr
Agiff —> (A//G) diffss 56

moduli co-stack of Ca)G
QA-connections \ ChA//G

Disc(A / G) l (1),

differential non-abelian

local coefficient bundle Pitt

Disc(p) Qar (—:1BG) g,

/ atlas
Fpg \

BGgitt vBexp(IBG)

moduli w-stack of CBG chpg
G-connections

Disc(BG)
(11.2)

Definition 11.2 (Twisted differential non-abelian cohomology). Given a differential
non-abelian local coefficient bundle pgis (11.2) according to Def. 11.1, we say that:

(i) A differential twist on a 2 € Ho(SmthStacks.) (Def. 1.25) is a cocycle Ty;s¢ in differ-
ential non-abelian cohomology with coefficients in BG (Def. 9.3)

[tairr] € H(Z:BG). (11.3)

(ii) The tyige-twisted differential non-abelian cohomology with local coefficients in pgjsr is
the structured (Remark 2.3) 74;¢-twisted non-abelian cohomology (Def. 3.2) with coeffi-
cients in pgifr, hence the hom-set in the homotopy category (Def. 1.8) of the slice model
structure (Def. 1.5) of the local projective model structure SmoothStacks.. on simplicial
presheaves over CartSp (Example 1.20) from gigr (11.3) to pgigr (11.2):

twisted differential
non-abelian cohomology

ﬁrdm-( P A) := Ho (SmthStacksc{oBGdiff)(Tdifh Paitt)

differential cocycle

. 7/ — > (A Gty (11.4)
Tdiff %
differential dim:emial local
twist B Gdiff coefficients
homotopy

relative BG ;¢
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(iii) The twisted non-abelian cohomology operations induced from the maps in (11.2) we
call (see (0.16)):

= (o).

(a) characteristic class: H Tairt (5&”; A) — > H" (Shp(,%”); A) (Def. 3.2)

(11.5)
A~ F/:dR:: (Ff/?(:)* T,

(b) curvature: HT“'“(%;A) —QF (3&”; [A)ﬂat (Def. 6.7)

(11.6)

ohf:= (e ;ockG ) |

(¢) differential character: ﬁf‘““(ﬁf;A) _— Hgl‘g‘ (3&”; [A) (Def. 6.9)
(11.7)

Twisted differential non-abelian cohomology as non-abelian co-sheaf hypercohomol-
ogy. While the formulation of twisted differential non-abelian cohomology as hom-sets in
a slice of SmoothStacks.. (Def. 11.2) is natural and useful, we indicate how this is equiv-
alently incarnated as a non-abelian sheaf hypercohomology over 2. This serves to make
the connection to existing literature (in Example 11.1 below), but is not otherwise needed
for the development here. We shall be brief, referring to [Sati and Schreiber (2020c)] for
some technical background that is beyond the scope of our presentation here.

Proposition 11.3 (Etale co-topos over co-stacks [Sati and Schreiber (2020¢), Prop. 3.33,
Rem. 3.34]). For Z € Ho(SmthStacks..) (Def. 1.25) let

Ho(Ety) B Ho(SmthStackséo‘%')

be the full subcategory of the homotopy category (Def. 1.8) of the slice model structure
over 2" (Example 1.5) of the local projective model structure on simplicial presheaves
(Example 1.20) on those & — Z which are local diffeomorphisms ([Sati and Schreiber
(2020c), Def. 3.26]).

(i) The inclusion Di g~ is a left-exact homotopy co-reflection, in that it preserves finite ho-
motopy limits and has a derived right adjoint REt (sending co-bundles to their co-sheaves
of co-sections).

(ii) There is a global section functor RI 9~ from Ho (Et 3{) to Ho (ASetsQu) (Example 1.14)
which also admits a left exact left adjoint:

co-bundles over 2" Dij co-sheaves over 2 A;g'
p ) D

Ho (SmthStacksLx ) 1 Ho(Ety) 1 Ho(ASetsqy) -
N — &,

co-sheaf of local sections "
global sections

11.8
Definition 11.4 (Non-abelian «-sheaf hypercohomology over oco-stacks). Given (,%’ e)
Ho(SmthStacks.) (Def. 1.25) and &7 € Ho(Etgg) (Prop. 11.3) we say that the set of

connected components of the derived global sections (11.8) of <7 over 2~

H(Z o) = m(RT, (/)
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is the non-abelian oo-sheaf hypercohomology of 2" with coefficients in <7

Lemma 11.1 (Twisted differential non-abelian cohomology as non-abelian co-
sheaf hyper-cohomology). Given a differential twist Tgier (11.3) on some Z €
Ho(SmthStackse) (1.83) consider the object

A

= Taiff

:= RLclICnstnty- (RTj(A/ G)aitr) € Ho(Ety) (11.9)
in the étale oo-topos over Z Prop. 11.3. The non-abelian oo-sheaf hypercohomology (Def.

11.4) of Ar,,, over X~ coincides with the Tgi-twisted differential non-abelian cohomology
of Z (Def. 11.2):
non-abelian twislefi differential
co-sheaf hyper y nor logy
HORF%-(AQM) ~ HT‘““(%,A). (11.10)
Proof. As in [Sati and Schreiber (2020c), Remark 3.34]. O

It is useful to decompose this construction of twisted differential cohomology via co-
sheaf hypercohomology again as a homotopy pullback of corresponding co-sheaves repre-
senting plain twisted cohomology and plain twisted differential forms:

Remark 11.1 (Homotopy pullback of -o-sheaves representing twisted differential co-
homology). Given a differential twist Tgi¢r (11.3) on some 2~ € Ho(SmthStacks..) (1.83)
with components (7, Tqr, L, T) (Example 1.12),

(i) Consider the pullback of stacks over 2" in the following diagram

D7*Disc(A/ G) Disc(A/G)
D(L, 7)*bBexp(1,,A /G) bexp (I, (A/G))

J, \
X T Disc(BG)
\

DTCTRQdR (7; Lo (A//G))ﬂat Qdr (7; Lo (A//G))ﬂat
o

bBexp(IBG)

N7 T

Q’dR (—; [BG)

TaR

Here the right hand side is (11.1) and all front-facing squares are homotopy pullbacks (Def.
1.15).

(ii) By commutativity of homotopy limits over each other, these form a homotopy pullback
square as on the right of the following diagram, which gives, under the derived right adjoint
RLclICnstnt (11.8) a homotopy pullback diagram of co-sheaves of sections:
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Ay — Q(—; 1A)

—=Tdiff flat 1 R

| -]

Ay —— bBexp([A)L

T

(11.11)
R73(A ) G)aisi —> RTiQar (—3156(A4/G))

RLclICnstst l (hob) l € Ho(Ety ).
R7*(A/G) — R(L,7)*bBexp(I(A//G))

Here the top left item A, from (11.9) is the co-sheaf whose global sections give the Tyjg-
twisted differential cohomology, by Lemma 11.1.

In differential enhancement of Prop. 3.5 and in twisted enhancement of Example 9.1,
we have:

Example 11.1 (Twisted differential generalized cohomology). Let 2" = X be a smooth
manifold (Ex. 1.21), R an E.-ring spectrum (Ex. 2.10), and let

Ey ———— (Ro)/GL(1,R)

RT*pg l (hpb) lpR

X ————= BGL(L,R)

be a twist for twisted generalized R-cohomology over X (3.21), as in Lemma 3.5.

(i) Then the corresponding homotopy pullback diagram (11.11), which exhibits, by Lemma
11.1, twisted differential non-abelian cohomology (Def. 11.2) with coefficients in Ej as co-
sheaf hypercohomology (Def. 11.4), is the image under RQY of the homotopy pullback
diagram of sheaves of spectra considered in [Bunke and Nikolaus (2019), Def. 4.11], shown
on the right below, for canonical/minimal differential refinement as in Example 9.1:

_— Q(f; [Ro)

Ro,.. flat g, Diff (E) —————— H.<

l (hpb) \L R Qx oo l (hpb) l

Ry, —— bBexp([RO)L . Disc(E) ————— H.#
- R

1

This is the twisted/parametrized analog of the relation (9.18).
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(ii) Accordingly, the twisted differential generalized R-cohomology according to [Bunke
and Nikolaus (2019), Def. 4.13] is subsumed by twisted differential non-abelian cohomol-
ogy, via Lemma 11.1.

In differential enhancement of Prop. 10.1 and in twisted generalization of Example
9.1, we have:

Example 11.1 (Twisted Chern character in twisted differential K-theory). Consider
again the local coefficient bundle

KUy —— KU /BU(1)

\P

B2U(1)

for complex topological K-theory (Example 3.4). By Example 11.1, the twisted differential
non-abelian cohomology theory (Def. 11.2) induced from these local coefficients is twisted
differential K-theory, as discussed in [Carey et al. (2009)] for torsion twists (review in
[Bunke and Schick (2012), §7]). By the diagram (0.16) of cohomology operations on
twisted differential cohomology, one may regard the corresponding twisted curvature map
(11.6)

. (R).

Kran (2) = Qi (271 KUp) 4,

(with values in flat Tqr ~ Hz-twisted differential forms, by Example 6.6) as an incarna-
tion of the Chern character map on twisted differential K-theory. Unwinding this abstract
construction produces the perspective taken in [Carey er al. (2009), p. 2][Park (2018)] for

torsion twists, and in [Bunke and Nikolaus (2019), p. 6] for general twists.

However, in the spirit of the Cheeger-Simons homomorphism (9), any lift of a cohomol-
ogy operation (here: rationalization) to differential cohomology should be enhanced all the
way to a secondary cohomology operation (Def. 9.7, now to be generalized to a twisted
secondary cohomology operation, Def. 11.6 below) whose codomain is itself a (twisted)
differential cohomology theory. The twisted Chern character enhanced to a secondary co-
homology operation this way is Example 11.1 below, following the perspective taken in
[Grady and Sati (2019c¢), §3.2][Grady and Sati (2019b), §2.3].

Secondary twisted non-abelian cohomology operations. We introduce the twisted gen-
eralization of secondary non-abelian cohomology operations (Def. 11.6 below). This re-
quires the following twisted analog of the technical condition in Def. 9.6:

Definition 11.5 (Twisted absolute minimal model). For

A)G) ———> 43 /Gy
pll pzl € ASets

BG) —————— BG,
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a transformation (3.29) between local coefficient bundles (3.2), and for ¢;, an absolute min-
imal model (Def. 9.6) of the map c;, between spaces of twists, hence with induced trans-
formation (9.37)

Disc(cp)

Disc(BG) Disc(BG>)
bBexp(IBG ) T) bBexp(IBG )

between the differential character maps (Def. 9.2) on the spaces of twists, we say that a
corresponding twisted absolute minimal model is a lift of ¢;, to a morphism

(s, (A1 /G1) — — —'— = > I, (A1 | G1) (11.12)

between the relative rational Whitehead L..-algebras of the local coefficient bundles (Prop.
5.16) which
(i) yields a transformation

Disc(A /Gy) piselcr) Disc(A2/G,)
Chjf}/ G Chﬁff/ Ga
bBexp(lss, (A1/G1)) — — — — — — — > bBexp(lpc, (A2 G2))

of the twisted differential characters (11.1) (thus being an “absolute minimal model for ¢,
relative to ¢;”),

(ii) is compatible with the transformation of the differential characters on the twisting space,
in that the following cube commutes:
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Disc(A1 /G1) —— 2 Dise(4,//Ga)

AN

56,
ch, 2

A2/ Gy

BG,
ChA]//Gl

P2
P1 ‘
J bexp (I, (A1 /Gr)) — J
Disc(BG) ) &) ), bise(BGy)
atlas ~ ( Ly, P2 )
\ (L, 1) N chgg, ‘
AN (1)«

ehy, Q= b, (A1/G1)) gy
| N

bexp(IBG,)

vexp (I, (A2/ G2))

N

atlas

Q(—; [BG2 (AZ//GZ))ﬂal

bexp(IBG)

(L, P1)+ (L, P2)+

. .
Nl |

Q(—; [BGY)far . Q(—; [BG2)ar
(11.13)

At the level of dgc-algebras, the condition that ¢, (11.12) is a twisted absolute minimal
model for the transformation of local coefficient bundles means equivalently that it makes
the following cube commute:

Qp g (A1//G1) = Qhale) —————— Qpy 4 (42 Ga)
I~ i~
P Qpr(p2) P2/
Qb ar(P1) ‘
CE(li, (A1/G1)) = — — — —cmT — = = — CE(Li,(A2//G2))
'Q‘l.)LdR (BGI ) Qprar(cr) Ql.)LdR (BGz)

\ CE(1py) \ CE(1py)

J l P5G, l

CE(IBG,) % CE(IBG,)
(11.14)

In differential enhancement of Def. 3.6 and in twisted generalization of Def. 9.7, we
set:

Definition 11.6 (Twisted secondary non-abelian cohomology operations). Let
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A]//Gl — >AZ//GZ

P1 l lPQ € ASets

<

BG) ———— =BG,
be a transformation (3.29) between local coefficient bundles (3.2), together with an absolute
minimal model ¢;, (Def. 9.6) for the base map, and a compatible twisted absolute minimal
model ¢; (Def. 11.5) for the total map. Then forming stage-wise homotopy pullbacks (Def.
1.15) in the required commuting cube (11.13) yields a transformation of corresponding
differential coefficient bundles (11.2):

(e )aite

(A1) G)ditr ———— (A2// G2)air
(p,)dml l(pz)m € PSh(CartSp, ASets) . (11.15)

(BG1)ditt ———— (BG2) it
(cp)aifr

This yields, in turn, a natural transformation of twisted differential non-abelian cohomol-
ogy sets (Def. 11.2), hence a twisted secondary non-abelian cohomology operation, by
pasting composition, hence by right derived base change (Ex. 1.7) along (py)gis fol-
lowed by composition with (c;)g;f regarded as a morphism in the slice (Example 1.5) over
(BG1)difr:

((er)aitro (=) o ((P1)aite)..

ﬁfdiff(%;Al) I:\I(Ub)diffofdiff(%;Az).

In differential enhancement of Prop. 10.1, we have:

Example 11.1 (Twisted differential character on twisted differential K-theory). Con-
sider the rationalization (Def. 5.2) over the actual rational numbers (see Remark 5.2) of
the local coefficient bundle (3.16) for degree-3 twisted complex topological K-theory (Ex-
ample 3.4).

(i) This is captured by the diagram

Q
”fuo /BU(1)

KUy /BU(1) L, (KUp/BU(1))
pJ{ iLRp (11.16)
B2U(1) T L, (B*U(1))

regarded as a transformation of local coefficient bundles from twisted K-theory to twisted
even-periodic rational cohomology:
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L,KUy ~ Q" ( Pr*HQ ) ,
k
::HperQ
(ii) Since rationalization is idempotent (5.2), which here means that L, o L, =~ L;,in

this situation an absolute minimal model (Def. 9.6) of the base map ¢, = ngU(l) and a

twisted absolute minimal model (Def. 11.5) of the total map ¢; = nlﬂé JBU(1) exist and are
given, respectively, simply by the identity morphisms

¢p := idipy(y) and &= id[BZU(l)(KO//BU(I))'

(iii) Therefore, the induced twisted secondary cohomology operation Def. 11.6 exists, and
is for each differential twist Ty a transformation

Tdiff ._ R
chyg' = (WKO//BUm)M LTy

I/(\Tdiff(%') Hper@ Q (ﬁ)f) (11.17)

from twisted differential K-theory to twisted differential periodic rational cohomology the-
ory.

(iv) This is the twisted differential Chern character map on twisted differential complex
K-theory as conceived in [Grady and Sati (2019c), §3.2][Grady and Sati (2019b), Prop.
4]. The analogous statement holds for the twisted differential Pontrjagin character (as in
Example 7.1) on twisted differential real K-theory [Grady and Sati (2019d), Thm. 12].

(v) Notice that this construction is close to but more structured than the plain curvature
map on twisted differential K-theory (Example 11.1): If we considered the transformation
of local coefficients as in (11.16) but for rationalization L, over the real numbers (Remark
5.2), then the induced twisted secondary cohomology operation would be equivalent to
the twisted curvature map. Instead, (11.17) refines the plain curvature map to a twisted
secondary operation that retains information about rational periods.
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Chapter 12

Twisted character on twisted differential
Cohomotopy

Cohomotopical character maps. We discuss here (Example 12.1 below) the twisted non-
abelian character map on tangentially twisted Cohomotopy (Example 3.8) in degree 4, and
on Twistorial Cohomotopy (Example 3.11). We highlight the induced charge quantization
(Prop. 12.1 below) and comment on the relevance to high energy physics (Remark 12.1).

These twisted non-abelian cohomotopical character maps have been introduced and an-
alyzed in [Fiorenza et al. (2020b)] and [Fiorenza et al. (2022)]. The general theory of non-
abelian characters developed here shows how these cohomotopical characters are cousins
both of generalized abelian characters such as the Chern character on twisted higher K-
theory (chapter 10), notably of the character on topological modular forms (by Example
7.1, and Remark 7.4) as well as of non-abelian characters such as the Chern-Weil homo-
morphism (chapter 8) and the Cheeger-Simons homomorphism (chapter 9).

197
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Proposition 12.1 (Charge quantization in tangentially twisted Cohomotopy [Fiorenza
et al. (2020b), Prop. 3.13][Fiorenza et al. (2022), Cor. 3.11]). Consider the twisted non-
abelian character maps (Def. V.3) in tangentially twisted Cohomotopy and in Twistorial
Cohomotopy from Example 12.1.

(i) A necessary condition for a flat Sp(2)-twisted [S*-valued differential form datum
(G4,Gn) to lift through the tangentially twisted cohomotopical character map (i.e. to be
in its image) is that the de Rham class of Ga, when shifted by the fourth fraction of the
Pontrjagin form (Ex. 8.1), is in the image, under the de Rham homomorphism (Example
7.1), of an integral class:

[Gs—1p1(V)] € HYX;Z) —— Hi(X). (12.1)

(i) A necessary condition for a flat Sp(2)-twisted ICP3-valued differential form datum
(G4,G7,F>,H3) to lift through the character map in Twistorial Cohomotopy is that the de
Rham class of G4 shifted by the fourth fraction of the Pontrjagin form (Ex. 8.1) is in the
image, under the de Rham homomorphism (Example 7.1), of an integral class, and as such
equal to the [P>] cup-square:

[Gs—1p(V)] = [RAR] € HiR(X). (12.2)

Twisted differential Cohomotopy theory.

Definition 12.2 (Differential twists for twistorial Cohomotopy). Let X® be an 8-
dimensional smooth spin manifold equipped with tangential Sp(2)-structure 7 (3.33). By
(3.12) in Example 3.2, by (3.31) in Example 3.9, and by (2.7) in Example 2.2, we have

[7] € H%(X;0(n)/Sp(2)) B, H(X®;BSp(2)) ~ Sp(2)Bundles(X),..
(12.3)
This gives, in particular, the class of a smooth principal Sp(2)-bundle P — X to which the
tangent bundle TX is associated. With (8.1), we may choose an Sp(2)-connection V on P,
and, by Prop. 9.4, this connection has a class [ty in differential non-abelian cohomology

(Def. 9.3) with coefficients in BSp(2):

H(X®; BSp(2)) ~ Sp(2)Bundles(X*®), . < Sp(2)Connections(X®),_ - > H(x%;BSp(2))
(7] [P] [V [Taise] -

Any such T4;¢r serves as a differential twist (11.3) for twistorial Cohomotopy in the follow-
ing.

In twisted generalization of Example 9.1, we have:

Example 12.1 (Differential twistorial Cohomotopy). Let X3 be a spin 8-manifold
equipped with tangential Sp(2)-structure 7 (3.33), and with a corresponding differential
twist Tgifr (Def. 12.2).
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Jers

(i) Consider the local coefficient bundle (3.28), $* — $* /Sp(2) =% BSp(2), for rangen-

tially twisted 4-Cohomotopy (Example 3.8) pulled back along BSp(2) — BSpin(5) —
BO(5). This induces, via Def. 11.2, a twisted differential non-abelian cohomology theory

T Wit (—), which we call tangentially twisted differential 4-Cohomotopy, whose value on
manifolds 2" = X8 x R¥ sits in a cohomology operation diagram (0.16) of this form:

differential

tang. twisted tang. twisted tang. twisted cohomotopical Bianchi identities (Example 6.8)
4-Cohomotopy  cohomotopical .
4 curvature 2G d2G; = —(G4— ipt (V) A (Ga+ 1p1(V)) = Xs(V)
=T 75 o (g 7 4— zP1 4T 7P1 8
_—
7 Taier () " €QR(2)
i 4 d G4=0
F.
54
4
chT4 4
5 T,
() Hy® (27518%).
tang. twisted clmr:acler map tang. twisted
4-Cohomotopy on tang. twisted Cohomotopy de Rham cohomology
(Example 3.8) (Example 12.1) (Def 6.9)

(12.4)

.o . . 3 3 JCPB .
(i) Consider the local coefficient bundle (3.35) CP°> — CP- /Sp(2) — BSp(2) for twisto-
rial Cohomotopy (Def. 3.11). This induces, via Def. 11.2, a twisted differential non-abelian

cohomology theory 7 %iff(—), which we call differential twistorial Cohomotopy, whose
value on manifolds 2" = X® x R¥ sits in a cohomology operation diagram (0.16) of this

form:
twistorial Bianchi identities (Example 6.8)
differential 1
twistorial o Hs, dHy=Gs—g3p1(V) - NP
Cohomotopy twistorial
< ’ curvature F dF =0
Taiff 2 o -
7 z) R s d2Gy = —(Gy— p (V) A (Ga+ Lp1 (V) = X5(V
F& 7, 7=—(G4—5P1(V)) A (Ga+ 5p1(V)) = X3(V)
Gy d G4=0
chis T 3
TNL) Hi® (275 1CP%).
. . character map " G
Comomntats on twistorial Cohomotopy de Rl
3 e e Rham cohomology
(Example 3.11) (Def 6.9)

(12.5)

Proposition 12.3 (Twisted secondary cohomology operation induced by twistor fibra-
tion). The defining twisted non-abelian cohomology operation (3.36) from twistorial Co-
homotopy (Example 3.11) to tangentially twisted 4-Cohomotopy (Example 3.8), induced by
the Sp(2)-equivariantized twistor fibration ty /| Sp(2) (3.35) refines to a twisted secondary
cohomology operation (Def. 11.6) from differential twistorial Cohomotopy to differential
twisted Cohomotopy (Example 12.1):
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s
differential  —p cp
s F () —— L ()

Cohomotopy

isted s along twisted primary
twisted secondary . e 2 P Y
cohomology operation «lﬂ //Sp<2) )diff)a( S[):ZA:elqlll;;rln‘ptlzed (IH //Sp( ))* cohomology operation
N wistor fibration

| .
s . Cr
T Thir (,% ) s s ( %)
4-Cohomotopy
Proof. By Def. 11.6 we need to show that we have a twisted absolute minimal model (Def.

11.5) for the Sp(2)-equivariantized twistor fibration (3.35). By (11.14) this means that we
can find a morphism

e (CP3//SP(2)) ***** > lpsp) (54//SP(2)) (12.6)

between the relative Whitehead Lo.-algebras (Prop. 5.16) of the two local coefficient bun-
dles, which makes the following cube of transformations of derived PL-de Rham adjunction
units commute:

Bexppo Qe (11/50(2))

Bexppy 0 Qpy 4z (CP /Sp(2)) Bexppp 0 Qpy 4r (S*/Sp(2))
AN N

mingsp (2 MNBSp(2)
Bexpp | P..,3 Bexppy | P
PeL | Pep jspo PeL\ P jspo

N
Bexppy oCE(11//1Sp(2))
Bexppr  CE 1y, (CP?/Sp(2)) ) = -P2mm il oy » Bexppr o CE (L, (5*/p(2)))

Bexpp oQpy g (-’ -p3 )

Bexppy, 0 Qpy g (SP(2)) == Bexppy 0 Qppgr (Sp(2))
AN N
Bexpp (i) Bexpu (P
N N
Bexppy o CE(ISp(2 Bexppy, o CE(ISp(2
PL PL

But, from Example 6.8, we see that the total object of the relative Whitehead L..-algebra of
CP? // Sp(2), relative to [BSp(2), coincides with that relative to ls,() (S* /Sp(2)). There-
fore, we may take the twisted absolute minimal model (12.6) to be equal to top arrow in
Example 6.8. This makes the front square commute by construction, and it being a relative
minimal model for 57/ Sp(2) implies by Prop. 4.24 that there is an essentially unique top
left morphism such that the top square commutes. O

Remark 12.1 (Lifting against the twisted differential twistor fibration). In terms
of differential moduli co-stacks (11.1), the result of Prop. 12.3 with Example 12.1 says
that lifting a twisted differential Cohomotopy cocycle 63 with 4-flux density G4 against
the twisted differential refinement (11.15) of the equivariantized twistor fibration (3.35)
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to a differential twistorial Cohomotopy cocycle (63,62,6 1) involves, on twisted curva-
ture forms (11.6) the appearance of a 2-flux density F, and of a 3-form H3 such that
dH3 = G4 — %pl(V) - ANF.

lift of C-field through
twistor fibration

R x X8 — — — — — — — > (CP? /Sp(2)) st

(tI-H//SP(2>>d - twisted differential

twistor fibration

R>! > X* (T-f;eld (S4 // Sp(z))dif‘f

Remark 12.1 (M-theory fields and Hypothesis H). In summary, we have found:
(i) A cocycle 63 in tangentially twisted differential 4-Cohomotopy (Example 12.1) has as
curvature/character forms (11.6):
(a) a closed 4-form Gy, hence a 4-flux density,
(b) a non-closed 7-form G7,
satisfying the following Bianchi identities (Example 12.1) and integrality conditions (Prop.

differential flat twisted cohomotopical
tang. twisted 4-Cohomotopy . ’i“r‘“l‘}m differential forms
~ ”L'A (non-abelian character form representative) TaR 4
diff ( 5 )
T an(2) QR (X3 157) oy

shifted C-field flux quantization
[Ga— (@)  eH'(X;Z)
@) — |9 ]d =0
2G7
d2Gy = —(Gs— 1p1()) A (G4 + 1 p1(0)) —24I5()
C-field tadpole cancellation & M5 Hopf WZ term level quantization
(12.7)
where the characteristic forms py, p, and Ig are from Ex. 8.1.
(ii) Lifting this cocycle through the twisted differential twistor fibration (Prop. 12.3) to a
cocycle (63,3\2,21) in differential twistorial Cohomotopy (Example 12.1) involves (Re-
mark 12.1) adjoining to the 4-flux density G4:
(c) a closed 2-form curvature F», hence a 2-flux density,
(d) a non-closed 3-form Hj,
such that these curvature/character forms satisfy the following Bianchi identities (Example
12.1) and integrality conditions (Prop. 12.1):
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differential flat twistorial
twistorial Cohomotopy curvature differential forms
é\rd’ff % (non-abelian character form representative) QTdR [(C 3
i .
( ) dR (X ; ICP )ﬂat

dH3 =Gy — ip1(0)— B AP,
Horava-Witten Green-Schwarz mechanism
(G~ tpi(o)] = [FAR] cH'(x:2)
GuF, | d Ga=0, dF =0,
2G; | d2G7 = —(Ga— L1p1(@)) A (Ga+ ipi(@)) —2415(0)
C-field tadpole cancellation & M5 Hopf WZ term level quantization
(12.8)
(iii) With these cohomotopical curvature/character forms interpreted as flux densities, this
is the Bianchi identities and charge quantization expected in M-theory on the supergravity
C-field (C3), the heterotic B-field (B,) and the heterotic §(U(1)?) C Eg gauge field (A)),
with the following prominent features:

Hj,

(6371?2721) —

(a) The charge quantization:

is expected for the C-field in the M-
theory bulk

([Witten (1997b), (1.2)] [Witten
(1997a), (1.2)D

M [Gs—1p1(V)] eHY2:2)

is expected on heterotic boundaries
([Horava

and Witten (1996), (1.13)], review
in [Fiorenza et al. (2022), §1])

@) [Gi—ipi(V)]=RAR]|eHY2:2)

(12.9)
(b) The quadratic functions:

constitute the Hopf Wess-Zumino

term or Page charge
. } ([Aharony (1996), p. 11] [In-
@M Gy~ (Gam %pl (@) A (G + %p' (@) triligator (2000)], see [Fiorenza
+ 2455 (w) et al. (2021b)][Sati and Schreiber

(2021b)])

constitute the 2nd Chern class of a

U(1) CcSU(2) C Eg-bundle [Ander-
son et al. (2011)] [Anderson et al.
(2012)] [Fiorenza et al. (2022), (7)]

2) B w— hAP

(12.10)
(iv) These are necessary, not yet sufficient constraints on cohomotopical lifts. Further
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constraints follow by Postnikov tower analysis [Grady and Sati (2021a)] and coincide with
further expected conditions in M-theory (see [Fiorenza et al. (2020b), Table 1]).

All this suggests the Hypothesis H [Fiorenza et al. (2020b)][Fiorenza et al. (2021b)][Sati
and Schreiber (2020b)][Sati and Schreiber (2022)][Braunack-Mayer et al. (2019)][Sati
and Schreiber (2021b)][Fiorenza et al. (2022)][Fiorenza et al. (2021c)][Sati and Schreiber
(2021a)], following [Sati (2018), §2.5], that the elusive cohomology theory which con-
trols M-theory in analogy to how K-theory controls string theory is: (twisted, equivariant,
differential) non-abelian Cohomotopy theory.

Cohomotopical character into K-theory. We may regard the secondary non-abelian
Hurewicz/Boardman homomorphism (Example 9.1) from differential 4-Cohomotopy (Ex-
ample 9.1) to differential K-theory (Example 9.1), as a non-abelian but K-theory valued
character, lifting the target of the cohomotopical character (Example 12.1) from rational
cohomology to K-theory (compare [Burton et al. (2021), Fig. 1]):

<o . differential differential
fhtterentml K-theory rational cohomology
Cohomotopy (EKU )4 0 - ch _— 0
~4 diff g diff
) KU (2) HperQ (27)  (12.11)
differential non-abelian differential
Boardman homomorphism Chern character
(Example 9.1) (Example (11.1))
charge-quantization charge-quantization
<~~~ <~~~ A~

in M-theory in string theory

(i) Lifting through this differential Boardman homomorphism induces secondary charge
quantization conditions on K-theory, analogous to (0.2) but invisible even in generalized
cohomology, instead now coming from non-abelian cohomology theory.

(ii) In the plain version (12.11) (i.e. disregarding twisting and equivariant enhancement)
the effect of (eKU)ﬁiff on curvature forms (9.13) is (by Example 9.1) to forget the quadratic
function (12.10) on G4 and to inject what remains as the 4-form curvature component Fy
in differential K-theory:

differential differential

Cohomotons secondary non-abelian K-theory
4 Py Boardman homomorphism —0
™HZ) " KU (2)
(exu) e
F,
( s )* curvatures/flux densities (F KU())*
2Gq, | d2G7 =—G4 NGy -
d Gu—0 (Fa) |dFoy =0 .
Gy 4= Gy — Fy
G7— 0

(12.12)
This is a ‘cohomotopical enhancement’ of the reduction in [Diaconescu et al. (2002)] of
Eg bundles in M-theory to the K-theory of type IIA string theory, now characterized by
higher Postnikov stages of the Boardman homomorphism [Grady and Sati (2021a)]. The
remaining RR-flux components in {F;} are also found in the cohomotopical character,
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through cohomological double dimensional reduction formulated in parametrized homo-
topy theory: this is discussed in detail in [Braunack-Mayer et al. (2019)].

(iii) The twisted generalization of the non-abelian Boardman homomorphism in (12.11)
and (12.12) is more subtle, since the degree-3 twist of K-theory does not arise from the
tangential twist of Cohomotopy, but arises, together with the further RR-flux components,
from S!-equivariantization/double dimensional reduction of Cohomotopy [Fiorenza et al.
(2017)][Braunack-Mayer et al. (2019)], reproducing the reduction of Eg bundles from M-
theory to type IIA in [Mathai and Sati (2004)].

Outlook: Equivariant enhancement. The twisted non-abelian character theory presented
here enhances further to proper (i.e. Bredon-style not Borel-style) equivariant non-abelian
cohomology on orbi-orientifolds, by combining it with the techniques developed in [Huerta
et al. (2019)][Sati and Schreiber (2020c)] (essentially: parametrizing the construction
here over the orbit category of the equivariance group). The resulting character map in
equivariant non-abelian cohomology is discussed in [Sati and Schreiber (2020a), §2,3].
For example, the equivariant enhancement of the cohomotopical character into K-theory
(12.11), lifting the RR-fields in equivariant K-theory through the equivariantized enhance-
ment of the Boardman homomorphism on the left of (12.11), enforces [Sati and Schreiber
(2020b)][Burton et al. (2021)] “tadpole cancellation” conditions expected in string theory
at orbifold singularities.
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