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Abstract: Fractional quantum Hall (FQH) states are topological phases with anyonic
excitations that form representations of the braid group. In these notes, we give a brief
introduction to applications of conformal field theories (CFT) to FQH systems. The wave
functions of different FQH states are shown to be conformal blocks of rational CFT, and the
anyonic excitations correspond to their primary fields. The fusion and braiding properties
of the Pfaffian state and the idea of bulk-edge correspondence are discussed with the aid of
CFT.
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1 Introduction

Symmetry, correlation, and topology are three principal themes in contemporary condensed
matter theories. No area can exemplify these themes better than the rapidly developing
theories of topological phases, especially the phases with intrinsic topological orders. Quasi-
particle excitations with fractional charges and fractional statistics are a key characteriza-
tion of a topologically ordered phase. Famous examples include fractional quantum Hall
(FQH) systems, quantum spin liquids, and Kitaev’s toric code. These fractional excitations
can form a representation of the braid group. They are called abelian anyons if the repre-
sentation is one dimensional. This type of anyons emerges in most FQH states. Nonabelian
anyons, which form a nonabelian representation of the braid group, have been thought
to be a cornerstone of fault-tolerant quantum computing, since their topological braiding
properties are insensitive to local perturbations [1]. The ν = 5/2 FQH state is generally
believed to carry nonabelian anyons. Another well-known example is 2D topological p-wave
superconductors which carry Majorana zero modes.

FQH states can be studied using rational conformal field theories (RCFT). These are
the conformal field theories (CFT) with a finite number of primary fields. The connection
between them was first studied explicitly in the context of FQH systems by Moore and
Read [2]. The Moore-Read Pfaffian state is one of the promising candidates for the ν = 5/2
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FQH state.1 The wave functions of these states can be expressed as holomorphic conformal
blocks of the U(1)2 × Z2 CFT. The fractional statistics of the nonabelian anyons can be
studied using the tools from CFT. Other states with nonabelian anyonic excitation can
also be constructed by tensoring or cosetting Wess-Zumino-Witten (WZW) models. For
example, Z3-Read-Rezayi states, which carry Fibonacci anyons, can be constructed by the
SU(2)3/U(1)-coset WZW model.

In these notes, we give a short introduction to the application of CFT to FQH states.
We first briefly review the FQH effect, anyons, and the braid group. Then we discuss the
application of RCFT to general FQH states based on conformal blocks before we move on
to the fusion and braiding of nonabelian anyons. Since our focus is on the intuitive physical
picture, a brief summary of the more technical CFT language is given in the appendix. We
also comment on the bulk-edge correspondence, and then end the notes by pointing out
some directions of recent progress in research related to nonabelian anyons.

2 Fractional Quantum Hall States and Anyons

2.1 Fractional Quantum Hall States

A reputed signature of the quantum Hall effect (QHE) is the quantization in the Hall
conductance of a two-dimensional electron gas in a strong magnetic field: σ = νe2/h, where
ν is the filling factor of Landau levels. For integral quantum Hall systems, ν = 1, 2, 3, . . . As
for FQH systems, ν = 1/3, 2/3, 2/5, . . ., fractions with odd integral denominators, with the
exception of ν = 5/2. This FQH state is exactly where peculiar nonabelian anyons emerge.

The basic physics of a 2D electron gas under an applied magnetic field can be captured
by the following Hamiltonian

H =
1

2m
(p− e

c
A)2 + Vee, (2.1)

where we have assumed that the magnetic field is strong enough so that all electrons are
polarized.

On the one hand, the integral QHE can be explained just using the first term. Under
the symmetric gauge, the eigenfunctions of the Hamiltonian are given by

Φn = exp

(
−|z|

2

4

)
(D̃z)

nf(z) (2.2)

where n indexes the Landau level, D̃z = ∂z − 1
2 z̄, and f(z) is any holomorphic function.

We have taken the magnetic length lB =
√
|c~/eB| = 1. Every Landau level has the same

degeneracy. The N -electron wave function of the ν = 1 state takes the form

Φ(z1, . . . , zN ) =
∏

1≤i<j≤N
(zi − zj) exp

(
−
∑
i

|zi|2

4

)
, (2.3)

1Other more recent candidates include the anti-Pfaffian state [3, 4] and the particle-hole symmetric
Pfaffian state [5].
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a Slater determinant of concentric wave functions of different radii. The integral QHE is
very interesting in its own right, but they do not support anyonic excitations.

On the other hand, the FQHE is strictly a result of strong correlations between elec-
trons; in other words, Vee is an essential player in the game. With a filling factor ν = 1/m,
the ground state is well approximated by the celebrated Laughlin wave function

Φm({zi}) =
∏

1≤i<j≤N
(zi − zj)m exp

(
−
∑
i

|zi|2

4

)
, (2.4)

regardless of the details in interaction. The quasiparticle excitations are gapped. An
elementary excitation is a quasihole created by an adiabatic insertion of a flux quantum
hc/e, say, at η. Then the wave function is given by

Φ+
m(η; {zi}) =

N∏
j=1

(zi − η)Φm({zi}). (2.5)

The wave function with two quasiholes was shown by Halperin to be

Φ++
m (u,w; {zi}) = N0(u− w)1/m

N∏
j=1

[(u− zj)(w − zj)] exp

(
− 1

4m
(|u|2 + |w|2)

)
Φm({zi}),

(2.6)
where N0 is normalization constant. By using the plasma analogy, it can be shown that
quasiholes carry a fractional charge of q = +e/m. Combining m quasiholes yields a hole
of positive e (as opposed to an electron). It is also known that when two quasiholes are
exchanged, they gain a nontrivial phase θ = π/m in the wave function, i.e.,

Φ++
m (u,w; {zi}) = exp

(
iπ
m

)
Φ++
m (w, u; {zi}). (2.7)

This feature can already be seen from the factor (u − w)1/m in Eq. 2.6: Since m > 1,
transporting a quasiparticle around another will encounter the nonlocal branch cut, a mon-
odromy ! This is an indication that the quasihole excitations are anyons with nontrivial
braiding properties, which we will discuss a bit more now.

2.2 Anyons and the Braid Group

Elementary particles in nature are usually either bosons or fermions, but it is also known
that anyons can exist in (2 + 1)D. When the path of circling one particle around another
cannot be deformed continuously to a point, there may be a nontrivial Berry phase as-
sociated with it from the exchange (or the rotation – two exchanges) similar to that in
Eq. 2.7.

Let us be more concrete and introduce the braid group. Imagine that we have N
particles with a thread attached to each one of them, and we can swap any two arbitrarily.
Unlike pure permutations, however, now we have to distinguish clockwise rotations from
counterclockwise ones (see Fig. 1). It is easy to see that these operations form a group, the
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braid group BN . This group is generated by σi, (1 ≤ i ≤ N − 1), operations that exchange
particle i and i+ 1 counterclockwisely with relations indicated in Fig. 1:

σiσj = σjσi for |i− j| ≥ 2, (2.8)

and
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ N − 1. (2.9)

Figure 1. Braid group relations.
(a) Two independent operations. (2)
σ1σ2 6= σ2σ1. (3) σ1σ2σ1 = σ2σ1σ2.

If a many-body state φ(z1, . . . , zi, . . . , zj , . . . , zN )

∈ H transforms like Eq. 2.7, then they form a
one-dimensional representation of the braid group:
ρ : BN → Aut(H), with

ρ(σij)φ(z1, . . . , zi, . . . , zj , . . . , zN ) =

exp(imθ)φ(z1, . . . , zj , . . . , zi, . . . , zN ). (2.10)

Herem is the net number of times that the operation
σij exchanges particle i with particle j counterclock-
wisely. θ = 0, π correspond to a system of bosons
and of fermions, respectively. Other θ’s yields the
so-called fractional statistics, and the particles are
abelian anyons because in this case the representa-
tion is abelian. More generally, we can consider a
multi-dimensional representation

ρ(σij)φp(z1, . . . , zi, . . . , zj , . . . , zN ) =∑
q

Bpqφq(z1, . . . , zi, . . . , zj , . . . , zN ). (2.11)

Now B is a matrix representation that can be non-
abelian. The states of the representation necessarily
correspond to nonabelian anyons, the unique properties of which are what will be discussed
more.

3 Fractional Quantum Hall States and Conformal Field Theories

There are many ways to analyze a FQH system (see, e.g., Fradkin [6] and Tong [7] for more
discussions). In this section, we will only discuss FQH states from a RCFT perspecttive.
The approach was first initiated by Moore and Read [2] and it is particularly useful in
discussing nonabelian FQH states. We provide a short summary of the basic information
of RCFT needed in Appendix.

3.1 Conformal Blocks

Moore and Read’s insight came from the realization that Laughlin/Halperin states can be
recast as expectation values of the CFT of a compactified chiral boson. Indeed, the wave
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functions in Eq. 2.4 and Eq. 2.5 can be written, respectively, as

Φm({zi}) =

〈(
N∏
i=1

ei
√
mϕ(zi)

)
exp

(
−
∫
d2z′
√
mρ0ϕ(z′)

)〉
(3.1)

and

Φ+
m(z0; {zi}) =

〈
exp

(
i√
m
ϕ(z0)

)( N∏
i=1

ei
√
mϕ(zi)

)
exp

(
−
∫
d2z′
√
mρ0ϕ(z′)

)〉
, (3.2)

where ρ0 = 1/2πm is the density of a uniform neutralizing charge background and ϕ(z) is
a chiral bosonic field in 2 dimensional Euclidean space with the correlation

〈ϕ(z1)ϕ(z2)〉 = − ln(z1 − z2). (3.3)

Its associated vertex operator Ve = exp[i
√
mϕ(zi)] creates an electron, and the vertex

operator Vh = exp[iϕ(zi)/
√
m] creates a quasihole. The Halperin state, Eq. 2.6, can be

obtained if one more quasiparticle vertex operator Vh is inserted into Φ+
m(z0; {zi}).

As we have mentioned, the charge of a quasihole in this case is e/m, and therefore m
quasiparticles can fuse into a hole of positive charge e, consistent with the fact Ve = (Vh)m.
The hole of a positive charge e can be regarded as part of the condensate formed by the
underlying electrons. We may regard them as the identity operator in the fusion process.
As a result, (Vh)i, (i = 0, 1, . . . ,m− 1) are all the distinct primary operators that we have,
which means that we have a RCFT with m primary fields. Moreover, the bosonic field
has to be compactified on a circle with radius R = 1/

√
m since ϕ → ϕ + 2π(1/

√
m)

leaves Ve invariant. Identifying the right-hand side of Eq. 3.2 and Eq. 3.3 as a holomorphic
conformal block of the U(1)m RCFT, we succeed in connecting some FQH states to a RCFT
of compacted bosons. Is the converse statement also true? In other words, given a plausible
RCFT, can we also construct a different FQH state? Moore and Read shown that this may
be possible.

The Moore-Read Pfaffian state, constructed from the Laughlin state, has the form

ΦMR({zi}) = Pf
(

1

zi − zj

)
Φm({zi}). (3.4)

The Pfaffian is the the fully antisymmetric product of an square skew matrix, which in this
case is given by

Pf
(

1

zi − zj

)
=

1

2N/2(N/2)!

∑
P

sgn(P )

N/2∏
r=1

1

zP (2r−1) − zP (2r)
. (3.5)

We assumed N to be even. Note that if m is odd, ΦMR is totally symmetric and it describes
a bosonic FQH state. To describe a fermionic FQH state, m has to be even.

We know from CFT that the Pfaffian is simply the correlation function of free chiral
Majorana fermion fields

〈χ(z1) . . . χ(zN )〉 = Pf
(

1

zi − zj

)
. (3.6)

Therefore, the Pfaffian state is the holomorphic conformal block of the CFT of a free
compactified boson field and a free Majorana fermion.
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3.2 Nonabelian Anyons

Now let us consider the excitations on the Pfaffian state. The anyons in the state include
not only the usual abelian ones, but also Ising anyons, a name received because of their
connection with the 2D Ising model (see, e.g., [8]). Indeed, imposing the locality of the
operators with respect to the electron operator, which in this case is given by φe(z) =

χ(z) exp(i
√
mϕ(z)), we can show there are four types of allowed operators:

1. The identity (vacuum), I;

2. the σ particle (nonabelian anyon) σ(z) exp(iϕ(z)/2
√
m) with charge e/2m;

3. the Majorana fermion χ(z) with a neutral excitation;

4. The Laughlin quasiparticle (vortex) exp(iϕ(z)/
√
m) with charge e/m and abelian

fractional statistics θ = π/m.

It is found the the usual excitation state

Φ+
m(η; {zi}) =

N∏
j=1

(zi − η)Pf
(

1

zi − zj

)
Φm({zi}) (3.7)

can be interpreted as an excited state with two quasiparticle

Φ2qh
m (η1, η2; {zi}) = Pf

(
(zi − η1)(zj − η2) + (zj − η1)(zi − η2)

zi − zj

)
Φm({zi}), (3.8)

for, when η1 = η2 = η, we retrieve the original state in Eq. 3.7. Now these quasiparticles
carry charge e/2m each. They are simply the σ particles mentioned above, and the wave
function Φ2qh

m (η1, η2; {zi}) indeed can be written as a conformal block of the Ising model
together with a chiral bosonic CFT:

Φ2qh
m (η1, η2; {zi}) = 〈σ(η1)σ(η2)χ(z1) . . . χ(zN )〉Ising CFT

×

〈
e

i
2
√
m
ϕ(η1)e

i
2
√
m
ϕ(η2)

(
N∏
i=1

ei
√
mϕ(zi)

)
exp

(
−
∫
d2z′
√
mρ0ϕ(z′)

)〉
U(1)m

. (3.9)

Given four quasiparticles, an excited state can be constructed in three different ways
because of different pairing. For example, we can construct a state like

Φ(12)(34)
m (η1, η2, η3, η4; {zi}) = Pf(12),(34)(z)Φm({zi}), (3.10)

where

Pf(12),(34)(z) = Pf
(

(zi − η1)(zi − η2)(zj − η3)(zj − η4) + (i↔ j)

zi − zj

)
. (3.11)

We can similarly construct Pf(13),(24)(z) and Pf(14),(23)(z) as well. These three states are
not totally linearly independent since one can show that

Pf(12),(34) − Pf(14),(23) =
η14η23

η13η24
(Pf(12),(34) − Pf(13),(24)) (3.12)

where ηij = ηi− ηj . One can actually show that there are 2n−1 linearly independent states
with 2n quasiholes [9]. To confirm that these anyons are nonabelian anyons, let us see how
they fuse and braid.
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3.3 Fusion and Braiding

Two quasiholes can fuse into other quasiholes. Adiabatically braided at low temperature
(to avoid collective excitations and other quasiparticle excitations), they form a nontrivial
representation of the braid group. The fusion and braiding of the quasiholes in the Pfaffian
state follow those of free chiral bosons and free Majorana fermions in the RCFT we discussed
above. In general, the fusion algebra of different anyons φi can be expressed as

φi × φj =
∑
k

Nk
ijφk. (3.13)

For example, for abelian FQH states, the quasiholes satisfy the fusion rule

(Vh)i × (Vh)j = (Vh)(i+j) mod m, (3.14)

with (Vh)0 identified with Ve. In this case, there is only one fusion channel for each pair.
Interpret it in a reverse way. A quasihole can split into two quasiholes without help from
other quasiholes. If there exists any pair of i and j such that dim(Hij) =

∑
kN

k
ij > 1, then

the anyons can form a nonabelian representation of the braid group.
The commutativity and the associativity of fusion require that

Nk
ij = Nk

ji. (3.15)

and ∑
l

Nm
il N

l
jk =

∑
n

Nn
ijN

m
nk. (3.16)

The fusion of n anyons gives a Hilbert space with dimension

dim(Hi1,i2,...,in) =
∑

j1,...,jn−2

N j1
i1i2

N j2
j1i3

. . . N
jn−1

jn−2in
. (3.17)

In particular, if i1 = . . . = in ≡ i, then dim(Hi1,i2,...,in) = dni , as n→∞, where di is called
the quantum dimension of anyons of type i. The fusion matrix, F , and the braid matrix,
B, can be defined as in RCFT, In this case, every primary field corresponds to an anyon,
and every conform block to a wave function. The system of consistent equations imposed
by pentagon relations and hexagon relations can be used to solve for explicit expressions of
the matrices (see, e.g., [9]).

Using the OPE (see Appendix), one can show that, in the Pfaffian state, neglecting the
the abelian Laughlin quasiparticle, the three particles left form a closed fusion algebra

σ × σ = 1⊕ χ, σ × χ = σ, χ× χ = I. (3.18)

The first fusion rule tells us that the σ anyons have more than one fusion channel. The last
rule says that two Majorana fermions can fuse into a condensate. Also, we can see

dim(H2n
σ ) = dim(H2n+1

σ ) = 2n, dim(Hnχ) = 1, dim(HnI ) = 1. (3.19)

The total Hilbert space seems to have a dimension of 2n. However, the braiding of particles
preserves the parity of the number of anyons in a state, thus cutting the dimension of the
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invariant Hilbert space by half, consistent with what we mentioned earlier. This can be
shown using the Bratteli diagram (see [1]). It is an important property that the correlation
function of the anyons vanishes unless they fuse into the identity operator, I. The dimension
of the Hilbert of the Ising anyons is just the number of channels how N σ fields fuse
into I. It is more intuitive to see it if we map the anyons to states in a topological p-
wave superconductor, knowing that they both belong to the same universal class. The
nonlocalilty of the states and the topological nature of the Hilbert space can also be seen
more directly using the Majorana zero-mode interpretation in that context (see [10, 11]).

Let us consider the states with four quasiholes again. In this case, we already know
that there are only two linearly independent states. Let us denote them as Φ4qh

+ and Φ4qh
− .

Nayak and Wilczek [9] showed that they can be written down as

Φ4qh
± =

(η13η24)1/4

(1 +
√

1∓ x)1/2

(
Φ(13),(24) ±

√
1− x Φ(14),(23)

)
where x is the cross ratio. Once again, we see that both Φ4qh

+ and Φ4qh
− have a branch cut,

a sign of fractional statistics. A braiding operation acting on the two dimensional Hilbert
space as a unitary and nonabelian matrix rotate the basis formed by the conformal blocks.
For example, the action of switching η1 and η3 is given by

B =
1

2
exp

(
iπ
(

1

8
+

1

4m

))(
1 1

−1 1

)
. (3.20)

3.4 Bulk-Edge Correspondence

It is know that the low energy effective field theory of an abelian FQH state is a Chern-
Simon (CS) theory, a topological field theory with fractional excitations when coupled with
matter. With time reversal invariance explicitly broken, the edge states of an abelian FQH
system form a chiral Luttinger liquid, the physics of which is captured by a chiral bosonic
WZW model, the same model whose conformal blocks yield the wave functions of different
bulk states. Meanwhile, it is also know that there is a one-one correspondence between a
(2+1)D CS theory with a boundary and the 2D WZW model that lives on that boundary
[12]. This bulk-edge correspondence is reminiscent of the holographic principle.

The correspondence may be generalized to the nonabelian case except now there are
some subtleties. For m = 1, the bosonic Pfaffian state is still described by a CS theory in
the bulk and by SU(2)2 WZW model on the boundary. We cannot naively generalize this
to the case where m > 1. It turns out that the correct effective theory is a coset CS theory
and a coset WZW model. For example, the fermionic Moore-Read state is described by
the chiral (SU2/U(1)2)× U(1)8 CS theory [13]. The corresponding CFT is the simply the
Ising×U(1)2 coset WZW model, as (SU2/U(1)2)×U(1)8 ' Z2×U(1)2. The edge states of
the Pfaffian state consist of a chiral Majorana fermionic field and a free compactified chiral
bosonic field, coinciding with the picture we drew from the conformal block representation.

The expectation of a Wilson loop in the CS theory gives a topological invariant that is
directly linked to the braiding of the anyons. The correspondence maps Wilson lines in the
CS theory to primary operators of the WZW theory, and the braiding of the Wilson lines
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to that of conformal blocks. Fusion and braid matrices are in one-one correspondence. In
general, it is natural to conjecture that: ‘The edge states are described physically by the
same RCFT that describes the bulk mathematically.’ [2]

4 Discussion

We briefly discussed some applications of RCFT to FQH states. All the information of
anyons is encoded in the anyon species, fusion rules, the fusion matrix, and the braiding
matrix. In particular, we shown that the wave function of the Pfaffian state can be con-
sidered as a holomorphic conformal block of the Ising × U(1)m CFT. In this state, each
particle is paired with another. We can generalize this state to states with n-particle clus-
ters. These states, called Read-Rezayi states, can be obtained from conformal blocks of the
tensor product of a chiral bosonic U(1)m CFT and a Z3 parafermionic CFT. The excita-
tions of these states contain the so-called Fibonacci anyons, the simplest anyons of a single
type, τ , satisfying the fusion rule, τ × τ = I + τ . They are an interesting research topic for
universal quantum computing [14].

We did not discuss the interpretation of the Pfaffian state as a p-wave condensate of
composite fermions. A topological px + ipy superconductor contains Majorana zero mode
in its vortices. These Majorana fermions obey exactly the same nonabelian statistics of the
Ising anyons. A similar interpretation of the Read-Rezayi states has also been discussed
recently [14]. Recent progress in realizing Majorana fermions in condensed matter systems
paves the way for the future of fault-tolerant quantum computing [15].

Another different but certainly interesting perspective is offered by surface states of
a symmetry protected phase. It is proposed that the protected gapless surface states can
be gapped without breaking the symmetries, provided they become topologically ordered.
These surface states, called T-Pfaffian states, also constain nonabelian anyons in their
spectrum [16]. The interplay between bulk states and their corresponding surface states is
a hot ongoing research topic.

A Appendix: Basic Information of Rational Conformal Field Theory

For a detailed discussion on CFT, we refer to [8, 17].
RCFT contains a finite number of primary fields {φi}. If T (z) is the holomorphic part

of the energy-momentum tensor, then each mode operator Ln is given by

Ln =
1

2πi

∮
w
dz (z − w)n+1T (z). (A.1)

L̄n can also be defined similarly. A general descendant field, φ−k1,...,−kn;−k̄1,...,−k̄m
i , can be

written as

φ
{k,k̄}
i (z, z̄) ≡ φ−k1,...,−kn;−k̄1,...,−k̄m

i (z, z̄) = (L−k1 . . . L−knL̄−k̄1 . . . L̄−k̄mφi)(z, z̄). (A.2)

A primary field, φi, together with its descendant fields, constitutes a conformal family, [φi].
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Recall that conformal invariance tells us that

〈φi(zi, z̄i)φj(zj , z̄j)〉 =
δijδhi,hjδh̄i,h̄j

z
hi+hj
ij z̄

h̄i+h̄j
ij

, (A.3)

where (hi, h̄i) is the conformal dimension (weight) of φi and zij = zi − zj . Note that we
have chosen the basis of the primary fields such that Cij = δij .

The three-point correlation function takes the form

〈φi(zi, z̄i)φj(zj , z̄j)φk(zk, z̄k)〉 =
Cijk

z
hi+hj−hk
ij z

hj+hk−hi
jk z

hk+hi−hj
ki z̄

h̄i+h̄j−h̄k
ij z̄

h̄j+h̄k−h̄i
jk z̄

h̄k+h̄i−h̄j
ki

,

(A.4)
where Cijk is the structure constant. One can show that the OPE of two primary fields has
a general form

φi(zi, z̄i)φj(zj , z̄j) =
∑
p

∑
{k,k̄}

Cpij
β
p,{k}
ij β̄

p,{k̄}
ij φ

{k,k̄}
p (zj , z̄j)

z
hi+hj−hp−K
ij z̄

h̄i+h̄j−h̄p−K̄
ij

, (A.5)

where K =
∑

i ki and K̄ =
∑

i k̄i. We also have introduced coefficients βp,{k}ij and β̄p,{k̄}ij

which are functions of the central charges and the conformal dimensions. They are totally
fixed by requiring that both sides match. Therefore, the three-point correlation functions of
the operator algebra can be determined by the central charges, the conformal dimensions,
and Cpij . In general, the OPE of any two conformal fields implies the following fusion algebra

[φi]× [φj ] =
∑
k

Nk
ij [φk], Nk

ij ∈ Z+
0 . (A.6)

In principle, any n-point correlation functions can then be calculated by using the OPE
of primary fields recursively. In some CFTs, the structure constants are fully determined
by the constraint equations imposed by the crossing symmetries.

The conformal invariance requires the four-point function

〈φi(z1, z̄1)φj(z2, z̄2)φk(z3, z̄3)φl(z4, z̄4)〉 (A.7)

to depend only on the cross ratios

x =
z12z34

z13z24
, x̄ =

z̄12z̄34

z̄13z̄24
. (A.8)

We can map the four coordinates of the primary fields conformally to z1 = 0, z2 = x, z3 = 1

and z4 =∞, and similarly for z̄i. By applying the OPE to different pairs, we obtain different
forms of the correlation functions, but they should be consistent. These cross symmetries
therefore lead to constraint equations on the structure constant. For example, if we use
OPE on φi(z̄1, z̄1)φj(z̄2, z̄2) and φk(z̄3, z̄3)φl(z̄4, z̄4), we obtain

〈φi(z1, z̄1)φj(z2, z̄2)φk(z3, z̄3)φl(z4, z̄4)〉 =
∑
p

CpijC
p
klF

kl
ij (p|x)F̄klij (p|x̄), (A.9)
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where the intermediate index p runs over all primary fields, and Fklij (p|x) and F̄klij (p|x̄) are
called conformal blocks. Similarly, if we use OPE on φjφk and φiφl, the conformal blocks
are F jkil (p|1 − x) and F̄ jkil (p|1 − x̄); if we choose φjφl and φiφk, the conformal blocks are
F jlik(p|1/x) and F̄ jlik(p|1/x̄).

Since the number of primary fields is finite, there are only a finite number of interme-
diate p’s. Fklij (p|x)’s, therefore, form a finite dimensional vector space. F jkil (p|1 − x) and
F jlik(p|1/x) are simply other choices of basis. The expansions

Fklij (p|x) =
∑
q

Fpq

(
j k

i l

)
F jkil (q|1− x) (A.10)

and

Fklij (p|x) =
∑
q

Bpq

(
j k

i l

)
F jlik(q|1

x
) (A.11)

define the fusion matrix, F , and braiding matrix, B, respectively. These matrices also
satisfy the so-called pentagon relations and hexagon relations.
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