Higher and Equivariant Bundles

Urs Schreiber on joint work with Hisham Sati
NYU AD Science Division, Program of Mathematics \& Center for Quantum and Topological Systems
New York University, Abu Dhabi

talk via:

Higher Structures Seminar @ Feza Gürsey Center for Math and Physics

Istanbul, 8 Feb 2022
slides and pointers at: ncatlab.org/schreiber/show/Higher+and+Equivariant+Bundles

This talk is

a gentle exposition of the most basic concept underlying these articles:

$$
\begin{array}{rc}
\text { Principal } \infty \text {-bundles } & \text { [arXiv:1207.0248/49] } \\
\text { Equivariant Principal } \infty \text {-bundles } & \text { [arXiv:2112.13654] } \\
\text { Proper Orbifold Cohomology } & \text { [arXiv:2008.01101] }
\end{array}
$$

following
Diff. Cohomology in a Cohesive ∞-Topos [arXiv:1310.7930]

Motivation, Overview, Summary and Outlook - in one single slide:

Generalized Cohomology Theories \leftrightarrow Cohesive Higher Fiber Bundles
otivation, Overven, Sumary and Outook - in one single slide.
Con

Motivation, Overview, Summary and Outlook - in one single slide:

Generalized Cohomology Theories \leftrightarrow Cohesive Higher Fiber Bundles

Here "generalized" subsumes "Whitehead-generalized cohomology" (\leftrightarrow spectra) but goes further:

Cohomology	\leftrightarrow	Higher Bundles
non-abelian	\leftrightarrow	general fibers
twisted	\leftrightarrow	associated
differential	\leftrightarrow	cohesive
G-equivariant	\leftrightarrow	sliced over $\mathbf{B} G$

Motivation, Overview, Summary and Outlook - in one single slide:

Generalized Cohomology Theories \leftrightarrow Cohesive Higher Fiber Bundles

Here "generalized" subsumes "Whitehead-generalized cohomology" (\leftrightarrow spectra) but goes further:

Cohomology	\leftrightarrow	Higher Bundles
non-abelian	\leftrightarrow	general fibers
twisted	\leftrightarrow	associated
differential	\leftrightarrow	cohesive
G-equivariant	\leftrightarrow	sliced over $\mathbf{B} G$

A major phenomenon/subtlety is that the last two aspects go hand-in-hand:
Proper G-equivariance corresponds to the cohesive slice over $\mathbf{B} G$, while

Borel equivariance corresponds just to the slice of shapes.

Part I - Invitation

Part II - Application

Part I - Invitation

which walks you from scratch through just the definition of equivariant principal 2-bundles with simple but key examples; the main claim being that this is the good definition ${ }^{\mathrm{TM}}$:
transparent, elegant, universal, generalizable \& indeed: practical.

2-Groupoids

2-Groupoids are the algebra of 2-dimensional pasting, such that all composition is associative and invertible:
E.g. homotopy classes of surfaces Σ rel boundary paths γ in a topological space:

2-Groupoids - Examples.

For G a group, there is its delooping 1-groupoid $\mathbf{B} G$:

$$
g_{i} \in G
$$

2-Groupoids - Examples.

For G a group, there is its delooping 1-groupoid $\mathbf{B} G$:

$g_{i} \in G$

For A an abelian group there is the double delooping 2-groupoid $\mathbf{B}^{2} A=\mathbf{B}(\overbrace{\mathbf{B} A})$:

2-Groupoids - Examples.

For $G C A$ is a linear action, i.e. by group automorphisms, there is the delooping 2-groupoid $\mathbf{B}(\underbrace{(\mathbf{B} A) \rtimes G}) \simeq\left(\mathbf{B}^{2} A\right) / / G$ of the semidirect product 2-group:

2-Groupoids - Examples.

This is a special case of the delooping of the automorphism 2-group of a group Γ :

$$
\mathbf{B}(\operatorname{Aut}(\mathbf{B} \Gamma))=\mathbf{B}(\overbrace{\operatorname{Aut}(\Gamma) / / \Gamma})
$$

	$\alpha \in \operatorname{Aut}(\Gamma)$
	$\gamma \in \Gamma$
	$\Gamma \xrightarrow{\operatorname{Ad}} \operatorname{Aut}(\Gamma)$

2-Groupoids - Examples.

This is a special case of the delooping of the automorphism 2-group of a group Γ :

$$
\mathbf{B}(\operatorname{Aut}(\mathbf{B} \Gamma))=\mathbf{B}(\overbrace{\operatorname{Aut}(\Gamma) / / \Gamma})
$$

	$\alpha \in \operatorname{Aut}(\Gamma)$
	$\gamma \in \Gamma$
	$\Gamma \xrightarrow{\operatorname{Ad}} \operatorname{Aut}(\Gamma)$

NB: Always need to choose whether actions are right- or left-actions, hence whether group multiplication is opposite or aligned to arrow composition. Before long we want structure groups to act from the left and equivariance groups to act from the right.

2-Groupoids - Examples.

Notice:
(1) $(\mathbf{B} A) \rtimes G$ is a non-abelian 2-group iff G is a non-abelian group;

2-Groupoids - Examples.

Notice:
(1) $(\mathbf{B} A) \rtimes G$ is a non-abelian 2-group iff G is a non-abelian group;
(2) its delooping sits in this fiber sequence:

$$
\begin{gathered}
\mathbf{B}((\mathbf{B} A) \rtimes G) \\
\| \\
\mathbf{B}^{2} A \xrightarrow[\in \text { KanFib }]{\text { fib }(p)}\left(\mathbf{B}^{2} A\right) / / G \xrightarrow{p} \mathbf{B} G
\end{gathered}
$$

2-Groupoids - 2-Functors

A 2 -functor is a map between 2-groupoids respecting identities and compositions.

2-Groupoids - 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and compositions.
E.g.: if $\mathbb{Z} \backslash \mathbb{Z}_{2}$ by sign inversion, and $G \stackrel{\sigma}{\rightarrow} \mathbb{Z}_{2}$ a homomorphism then 2nd group cohomology of G with coefficients in $G_{\sigma} \mathbb{Z}$ is 2-functors:

2-Groupoids - 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and compositions.
E.g.: if $\mathbb{Z} \supseteq \mathbb{Z}_{2}$ by sign inversion, and $G \xrightarrow{\sigma} \mathbb{Z}_{2}$ a homomorphism then 2nd group cohomology of G with coefficients in $G_{\sigma} \mathbb{Z}$ is 2-functors:

||| associativity

$\mapsto \quad$ cocycle condition III

2-Groupoids with smooth structure.

A smooth 2-groupoid \mathscr{X} is given by a rule which to each chart $\mathbb{R}^{n}, n \in \mathbb{N}$ assigns the plain 2-groupoid $\operatorname{Probe}\left(\mathbb{R}^{n}, \mathscr{X}\right)$ of ways of smoothly mapping \mathbb{R}^{n} into the would-be \mathscr{X}

2-Groupoids with smooth structure.

A smooth 2-groupoid \mathscr{X} is given by a rule which to each chart $\mathbb{R}^{n}, n \in \mathbb{N}$ assigns the plain 2-groupoid $\operatorname{Probe}\left(\mathbb{R}^{n}, \mathscr{X}\right)$ of ways of smoothly mapping \mathbb{R}^{n} into the would-be \mathscr{X} and to each smooth map of charts a 2 -functor of pre-composing such probes

such that this respects composition and identities of smooth functions f.

2-Groupoids with smooth structure.

A smooth 2-groupoid \mathscr{X} is given by a rule which to each chart $\mathbb{R}^{n}, n \in \mathbb{N}$ assigns the plain 2-groupoid $\operatorname{Probe}\left(\mathbb{R}^{n}, \mathscr{X}\right)$ of ways of smoothly mapping \mathbb{R}^{n} into the would-be \mathscr{X} and to each smooth map of charts a 2 -functor of pre-composing such probes

such that this respects composition and identities of smooth functions f.
So $\operatorname{Probe}(*, \mathscr{X})=\operatorname{Probe}\left(\mathbb{R}^{0}, \mathscr{X}\right)$ is the underlying 2-groupoid and the system of $\operatorname{Probe}\left(\mathbb{R}^{\bullet>0}, \mathscr{X}\right)$ is smooth structure on it.

2-Groupoids with smooth structure.

A smooth 2-groupoid \mathscr{X} is given by a rule which to each chart $\mathbb{R}^{n}, n \in \mathbb{N}$ assigns the plain 2-groupoid $\operatorname{Probe}\left(\mathbb{R}^{n}, \mathscr{X}\right)$ of ways of smoothly mapping \mathbb{R}^{n} into the would-be \mathscr{X} and to each smooth map of charts a 2 -functor of pre-composing such probes

such that this respects composition and identities of smooth functions f.
So $\operatorname{Probe}(*, \mathscr{X})=\operatorname{Probe}\left(\mathbb{R}^{0}, \mathscr{X}\right)$ is the underlying 2-groupoid and the system of $\operatorname{Probe}\left(\mathbb{R}^{\bullet>0}, \mathscr{X}\right)$ is smooth structure on it.

Grothendieck (1965): "functorial geometry"
common jargon: "pre-2-stacks on the site of Cartesian spaces"

2-Groupoids with smooth structure - Examples.

If X is a smooth manifold, then as a smooth 2-groupoid it's this assignment:

$$
\mathrm{X}: \mathbb{R}^{n} \mapsto \operatorname{Probe}\left(\mathbb{R}^{n}, \mathrm{X}\right):=C^{\infty}\left(\mathbb{R}^{n}, \mathrm{X}\right)
$$

$$
\mathbf{x} \in C^{\infty}\left(\mathbb{R}^{n}, \mathrm{X}\right)
$$

2-Groupoids with smooth structure - Examples.

If X is a smooth manifold, then as a smooth 2-groupoid it's this assignment:

$$
\mathrm{X}: \mathbb{R}^{n} \mapsto \operatorname{Probe}\left(\mathbb{R}^{n}, \mathrm{X}\right):=C^{\infty}\left(\mathbb{R}^{n}, \mathrm{X}\right)
$$

$$
\mathbf{x} \in C^{\infty}\left(\mathbb{R}^{n}, \mathrm{X}\right)
$$

If Γ a Lie group, then the sets of smooth functions $C^{\infty}\left(\mathbb{R}^{n}, \Gamma\right)$ are plain groups, and the smooth delooping groupoid $\mathbf{B} \Gamma$ is:
$\mathbf{B} \Gamma: \mathbb{R}^{n} \mapsto \operatorname{Probe}\left(\mathbb{R}^{n}, \mathbf{B} \Gamma\right):=\mathbf{B}\left(C^{\infty}\left(\mathbb{R}^{n}, \Gamma\right)\right)$

2-Groupoids with smooth structure - As smooth homotopy types.

Smooth 2-groupoids are models for smooth 2-stacks aka smooth homotopy 2-types

2-Groupoids with smooth structure - As smooth homotopy types.

Smooth 2-groupoids are models for smooth 2-stacks aka smooth homotopy 2-types
A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib	projective fibration	iff for each \mathbb{R}^{n}, every $k+1$-morphism in Probe $\left(\mathbb{R}^{n}, \mathscr{Y}\right)$ that starts at k-morphisms which come from Probe $\left(\mathbb{R}^{n}, \mathscr{X}\right)$ lifts compatibly to a $k+1$-morphism in Probe $\left(\mathbb{R}^{n}, \mathscr{X}\right)$
LWEq	local weak equivalence	iff for every \mathbb{R}^{n} there exists an open ball $0 \in \mathbb{D}_{\varepsilon}^{n} \stackrel{i}{\hookrightarrow}$ that Probe $\left(\mathbb{R}^{n}, f\right)$ such is a weak homotopy equivalence namely an iso on the evident homotopy groups
PrjCof	projective cofibration	if (Dugger's sufficient condition): for all k, the spaces of k-morphisms are disjoint unions of charts \mathbb{R}^{n} (for any n-s)

2-Groupoids with smooth structure - As smooth homotopy types.

Smooth 2-groupoids are models for smooth 2-stacks aka smooth homotopy 2-types A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib	projective fibration	iff for each \mathbb{R}^{n}, every $k+1$-morphism in $\operatorname{Probe}\left(\mathbb{R}^{n}, \mathscr{Y}\right)$ that starts at k-morphisms which come from Probe $\left(\mathbb{R}^{n}, \mathscr{X}\right)$ lifts compatibly to a $k+1$-morphism in Probe $\left(\mathbb{R}^{n}, \mathscr{X}\right)$
LWEq	local weak equivalence	iff for every \mathbb{R}^{n} there exists an open ball $0 \in \mathbb{D}_{\varepsilon}^{n}{ }_{\varepsilon}^{i} \mathbb{R}^{n}$ such that Probe $\left(\mathbb{R}^{n}, f\right)$ namely an iso on the evident homotopy groups
PrjCof	projective cofibration	if (Dugger's sufficient condition): for all k, the spaces of k-morphisms are disjoint unions of charts \mathbb{R}^{n} (for any n-s)

Fact/Def.: Maps ϕ of 2-stacks and their homotopy fibers are modeled by pullbacks of this form:
(because 2-stackification $\operatorname{HoFib}_{y}(\phi) \longrightarrow \hat{*} \underset{\in \mathrm{LWEq}}{\stackrel{\text { fib. resolution }}{\leftrightarrows}} *$ is an ∞-lex reflection)
$\varnothing \xrightarrow[\in \text { PrjCof }]{\text { cof. domain }}$

$$
*
$$

(pb)

2-Groupoids with smooth structure - Homotopy fiber sequences.

2-Groupoids with smooth structure - Homotopy fiber sequences.
$\mathrm{U}_{1} \xrightarrow[\begin{array}{c}\text { locally trivial } \\ \text { circle-extension }\end{array}]{\longrightarrow} \Gamma / \mathrm{U}_{1}$ smooth group

2-Groupoids with smooth structure - Homotopy fiber sequences.

For example, write $\mathrm{U}_{n}, n \in \mathbb{N} \sqcup\{\omega\}$
for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$
\mathrm{U}_{n}: \mathbb{R}^{k} \mapsto \operatorname{Probe}\left(\mathbb{R}^{k}, \mathrm{U}_{n}\right):=C^{0}\left(\mathbb{R}^{k}, \mathrm{U}_{n}\right)
$$

2-Groupoids with smooth structure - Homotopy fiber sequences.

For example, write $\mathrm{U}_{n}, n \in \mathbb{N} \sqcup\{\omega\}$ for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$
\mathrm{U}_{n}: \mathbb{R}^{k} \mapsto \operatorname{Probe}\left(\mathbb{R}^{k}, \mathrm{U}_{n}\right):=C^{0}\left(\mathbb{R}^{k}, \mathrm{U}_{n}\right)
$$

Then we have the following long fiber sequence of smooth 2-groupoids:

2-Groupoids with smooth structure - Homotopy fiber sequences.

For example, write $\mathrm{U}_{n}, n \in \mathbb{N} \sqcup\{\omega\}$
for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$
\mathrm{U}_{n}: \mathbb{R}^{k} \mapsto \operatorname{Probe}\left(\mathbb{R}^{k}, \mathrm{U}_{n}\right):=C^{0}\left(\mathbb{R}^{k}, \mathrm{U}_{n}\right)
$$

Then we have the following long fiber sequence of smooth 2-groupoids:

This is all compatible with complex conjugation, so that there is a map like this:

$$
\mathbf{B P U}_{n} / / \mathbb{Z}_{2} \underset{\epsilon \mathrm{LWEq}}{ } \longrightarrow \mathbf{B}^{2} \mathrm{U}_{1} / / \mathbb{Z}_{2}
$$

2-Groupoids with smooth structure - Čech groupoids.

For X a smooth manifold with $\left\{\mathrm{U}_{i} \hookrightarrow \mathrm{X}\right\}_{i \in I}$ a good open cover, in that

$$
\left(\mathbf{x},\left(i_{1}, \cdots, i_{n}\right)\right) \in C^{\infty}\left(\mathbb{R}^{m}, U_{i_{1}} \cap \cdots \cap U_{i_{n}}\right) \quad \Rightarrow \quad U_{i_{1}} \cap \cdots \cap U_{i_{n}} \simeq \mathbb{R}_{\operatorname{diff}}^{\operatorname{dim}(X)}
$$

2-Groupoids with smooth structure - Čech groupoids.

For X a smooth manifold with $\left\{\mathrm{U}_{i} \hookrightarrow \mathrm{X}\right\}_{i \in I}$ a good open cover, in that

$$
\left(\mathbf{x},\left(i_{1}, \cdots, i_{n}\right)\right) \in C^{\infty}\left(\mathbb{R}^{m}, U_{i_{1}} \cap \cdots \cap U_{i_{n}}\right) \quad \Rightarrow \quad U_{i_{1}} \cap \cdots \cap U_{i_{n}} \simeq \mathbb{R}_{\text {diff }} \mathbb{R}^{\operatorname{dim}(\mathrm{X})},
$$

we have the smooth $\check{\text { Cech }} 2$ 2-groupoid:

which is a projectively cofibrant resolution of X .

2-Groupoids with smooth structure - Čech cocycles.

Smooth 2-functors from such a Čech resolution $\widehat{\mathrm{X}} \rightarrow \mathrm{X}$
to the delooping $\mathbf{B} \boldsymbol{\Gamma}$ of a Lie group
are cocycles in the Čech cohomology of X with coefficients in Γ :

$$
\widehat{\mathrm{X}} \xrightarrow{\text { smooth functor }=\text { Čech cocycle }} \mathbf{B} \Gamma
$$

Čech relations

cocycle condition

Principal bundles via smooth groupoids - Universal principal bundles.

The inclusion of the unique base point into $\mathbf{B} \Gamma$ has the following fibrant resolution:

Principal bundles via smooth groupoids.

The homotopy fiber of a 2 -functor $=$ Čech cocycle is equivalently the principal bundle P it classifies:
principal bundle

Principal bundles via smooth groupoids.

The homotopy fiber of a 2 -functor $=$ Čech cocycle is equivalently the principal bundle P it classifies:

principal bundle

Principal bundles via smooth groupoids.

The homotopy fiber of a 2 -functor $=$ Čech cocycle is equivalently the principal bundle P it classifies:

principal bundle

Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles immediatly generalizes to give principal 2-bundles:
E.g. for the structure 2-group $\operatorname{Aut}(\mathbf{B} \Gamma)$
these are equivalently Giraud's non-abelian gerbes:

Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles immediatly generalizes to give principal 2-bundles:
E.g. for the structure 2-group $\operatorname{Aut}(\mathbf{B} \Gamma)$
these are equivalently Giraud's non-abelian gerbes:

While it's tradition to be esoteric about this simple affair, here to highlight that this is really about twisted cohomology:

Principal 2-bundles via smooth 2-groupoids - Example: Twisted cohomology.

For structure 2-group $\operatorname{Aut}(\mathbf{B} \mathbb{Z}) \simeq(\mathbf{B} \mathbb{Z}) \rtimes \mathbb{Z}_{2}$, with $\mathbf{B A u t}(\mathbf{B} \mathbb{Z}) \simeq\left(\mathbf{B}^{2} \mathbb{Z}\right) / / \mathbb{Z}_{2}$ and $\widehat{\mathrm{X}} \xrightarrow{\sigma} \mathbf{B} \mathbb{Z}_{2}$ a double covering, then
2nd integral cohomology of X with local coefficients is smooth 2-functors:

Principal 2-bundles via smooth 2-groupoids - Example: Twisted cohomology.

For structure 2-group $\operatorname{Aut}(\mathbf{B} \mathbb{Z}) \simeq(\mathbf{B} \mathbb{Z}) \rtimes \mathbb{Z}_{2}$, with $\mathbf{B A u t}(\mathbf{B} \mathbb{Z}) \simeq\left(\mathbf{B}^{2} \mathbb{Z}\right) / / \mathbb{Z}_{2}$ and $\widehat{\mathrm{X}} \xrightarrow{\sigma} \mathbf{B} \mathbb{Z}_{2}$ a double covering, then
2nd integral cohomology of X with local coefficients is smooth 2-functors:

$\left(\mathbf{B}^{2} \mathbb{Z}\right) / / \mathbb{Z}_{2}$

III Čech relations

\longmapsto

Principal 2-bundles via smooth 2-groupoids - Example: Jandl gerbes.

For structure 2-group $\operatorname{Aut}\left(\mathbf{B U}_{1}\right) \simeq\left(\mathbf{B U}_{1}\right) \rtimes \mathbb{Z}_{2}$, with $\mathbf{B A u t}\left(\mathbf{B U}_{1}\right) \simeq\left(\mathbf{B}^{2} \mathrm{U}_{1}\right) / / \mathbb{Z}_{2}$ and $\widehat{\mathrm{X}} \xrightarrow{\boldsymbol{\sigma}} \mathbf{B} \mathbb{Z}_{2}$ a double covering, then
2nd U_{1}-valued cohomology of X with local coefficients is smooth 2-functors:

$\left(\mathbf{B}^{2} U_{1}\right) / / \mathbb{Z}_{2}$

III Čech relations

\longmapsto

Principal 2-bundles via smooth 2-groupoids - Punchline.

So:

Non-abelian 1-cohomology is modulated by 1-stacks $\mathbf{B} \Gamma$, abelian 2-cohomology is modulated by 2 -stacks $\mathbf{B}^{2} A$, etc.

Higher fiber/principal bundles are bundles of such moduli stacks, hence are families of moduli stacks that vary over the base space, hence locally modulate cohomology as before, but now subject to global twists.

Principal 2-bundles via smooth 2-groupoids - Equivariance.

Finally, the higher topos of smooth 2-groupoids has equivariance natively built into it: just let domain spaces be groupoids, too.

Principal 2-bundles via smooth 2-groupoids - Equivariance.

Finally, the higher topos of smooth 2-groupoids has equivariance natively built into it: just let domain spaces be groupoids, too:
For $\mathrm{X} २ G$ a smooth action of a finite group on a smooth manifold. there exists an equivariant good open cover

and its equivariant Čech groupoid:

Principal 2-bundles via smooth 2-groupoids - Equivariance.

For $\mathrm{X} २ G$ a smooth manifold and $(\Gamma / / C) \downarrow G$ a smooth 2-group both equipped with smooth G-action, a G-equivariant Γ-principal 2-bundle on X is modulated by a smooth 2 -functor like this:

Principal 2-bundles via smooth 2-groupoids - Equivariance.

For $\mathrm{X} २ G$ a smooth manifold and $(\Gamma / / C) \downarrow G$ a smooth 2-group both equipped with smooth G-action, a
G-equivariant Γ-principal 2-bundle on X is modulated by a smooth 2 -functor like this:

equivariant Čech relations

equivariant 2-cocyle condition

Principal 2-bundles via smooth 2-groupoids - Equivariant examples.

E.g. an equivariant PU_{ω}-bundle
over the point, where $\widehat{* / G}=\mathbf{B} G$,
is a projective G-representation:

Principal 2-bundles via smooth 2-groupoids - Equivariant examples.

E.g. an equivariant PU_{ω}-bundle
over the point, where $* \widehat{/ / G}=\mathbf{B} G$,
is a projective G-representation:

Principal 2-bundles via smooth 2-groupoids - Equivariant examples.

E.g. an equivariant PU_{ω}-bundle
over the point, where $* \widehat{/ G}=\mathbf{B} G$,
is a projective G-representation:

This happens to encode all about quantum symmetries of gapped systems (cf. Freed \& Moore 2013 , good review in Thiang 2018, §4,).

Part I - Invitation

Part II - Application

Part II - Application

 which provides a brief outlook on how the above technology gives a transparent construction of twisted equivariant KR-theory.
Twisted equivariant KR-theory - As a single diagram of smooth groupoids.

The "smooth" (namely continuous-diffeological) group $\mathrm{PU}_{\omega}^{\mathrm{gr}}$ canonically acts on
the "smooth" space Fred of Fredholm operators on a \mathbb{Z}_{2}-graded Hilbert space.
Sections of the corresponding associated equivariant bundles are cocycles for twisted equivariant Real K-theory (generalizing Pavlov 2014, §3.19):
twisted equivariant KR-cohomology

Twisted equivariant KR-theory - Outlook.

This transparent formulation serves to reveal that there is more quantum physics encoded in twisted equivariant KR-theory than has previously bee uncovered.

To be discussed in:
H. Sati, \& U. S.: Anyonic Defect Branes in Twisted equivariant K-Theory

