Higher and Equivariant Bundles

Urs Schreiber on joint work with Hisham Sati

NYU AD Science Division, Program of Mathematics

& Center for Quantum and Topological Systems

New York University, Abu Dhabi

talk via:

Higher Structures Seminar @

Feza Gürsey Center for Math and Physics

Istanbul, 8 Feb 2022

slides and pointers at: ncatlab.org/schreiber/show/Higher+and+Equivariant+Bundles

This talk is a gentle exposition of the most basic concept underlying these articles:

Equivariant Principal ∞-*bundles* [arXiv:2112.13654] Proper Orbifold Cohomology [arXiv:2008.01101]

Principal ∞ -*bundles* [arXiv:1207.0248/49]

following

Diff. Cohomology in a Cohesive ∞ -Topos [arXiv:1310.7930]

Generalized Cohomology Theories \leftrightarrow **Cohesive Higher Fiber Bundles**

Generalized Cohomology Theories \leftrightarrow **Cohesive Higher Fiber Bundles**

Here "generalized" subsumes "Whitehead-generalized cohomology" (\leftrightarrow spectra) but goes further:

Cohomology \leftrightarrow Higher Bundlesnon-abelian \leftrightarrow general fiberstwisted \leftrightarrow associateddifferential \leftrightarrow cohesiveG-equivariant \leftrightarrow sliced over BG

Generalized Cohomology Theories \leftrightarrow **Cohesive Higher Fiber Bundles**

Here "generalized" subsumes "Whitehead-generalized cohomology" (\leftrightarrow spectra) but goes further:

Cohomology	\leftrightarrow	Higher Bundles
non-abelian	\leftrightarrow	general fibers
twisted	\leftrightarrow	associated
differential	\leftrightarrow	cohesive
G-equivariant	\leftrightarrow	sliced over B G

A major phenomenon/subtlety is that the last two aspects go hand-in-hand:

Proper *G***-equivariance** corresponds to the **cohesive slice** over **B***G*, while

Borel equivariance corresponds just to the **slice of shapes**.

Part I – Invitation

Part II – Application

Part I – Invitation

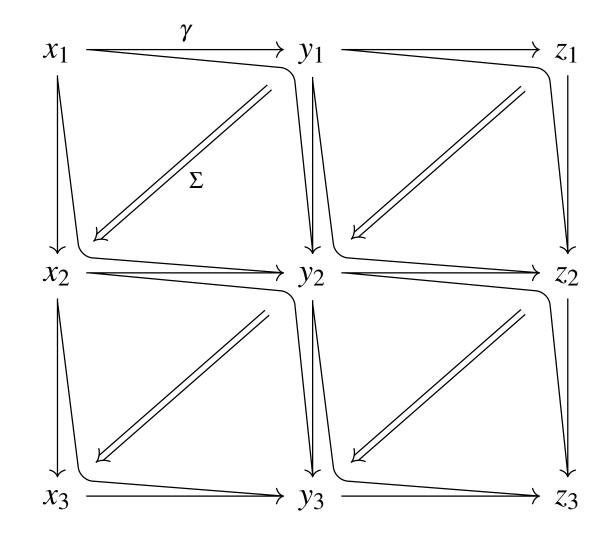
which walks you from scratch through just the definition of equivariant principal 2-bundles with simple but key examples;

the main *claim* being that this is the *good definition*[™]: transparent, elegant, universal, generalizable & indeed: practical.

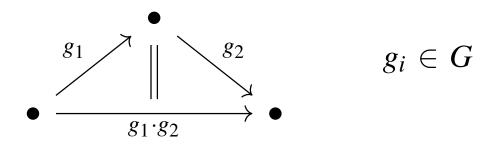
2-Groupoids

2-Groupoids are the algebra of 2-dimensional pasting, such that all composition is associative and invertible:

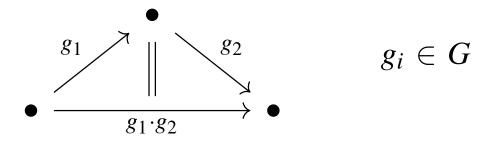
E.g. homotopy classes of surfaces Σ rel boundary paths γ in a topological space:



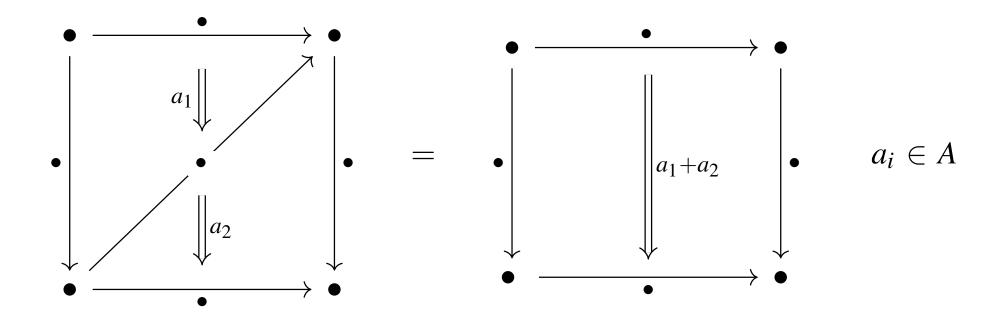
For *G* a group, there is its *delooping 1-groupoid* **B***G*:



For G a group, there is its *delooping 1-groupoid* **B**G:



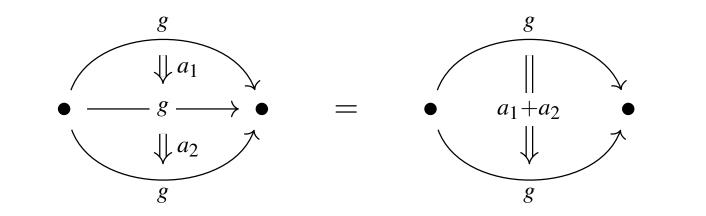
For *A* an *abelian* group there is the *double delooping 2-groupoid* $\mathbf{B}^2 A = \mathbf{B}(\overbrace{\mathbf{B}A}^{"2-group"})$:

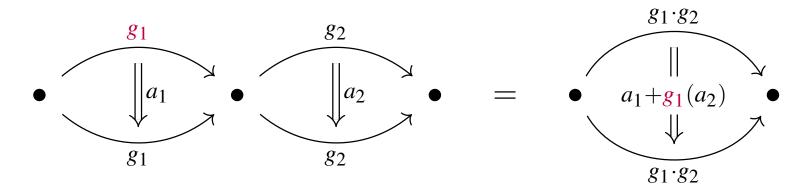


For $G \subset A$ is a linear action, i.e. by group automorphisms,

there is the delooping 2-groupoid $\mathbf{B}((\mathbf{B}A) \rtimes G) \simeq (\mathbf{B}^2 A) // G$

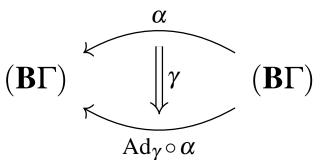
of the *semidirect product 2-group*:

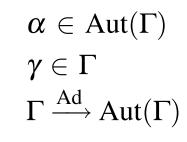


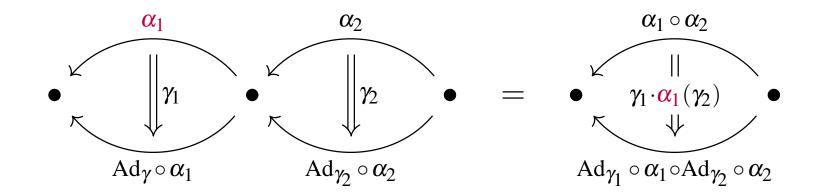


This is a special case of the delooping of the *automorphism 2-group* of a group Γ :

$$\mathbf{B}\left(\mathrm{Aut}(\mathbf{B}\Gamma)\right) = \mathbf{B}\left(\overbrace{\mathrm{Aut}(\Gamma)/\!\!/\Gamma}\right)$$

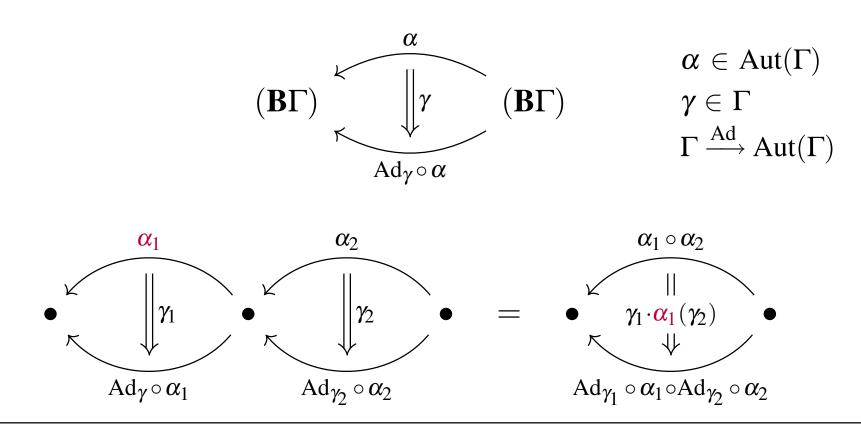






This is a special case of the delooping of the *automorphism 2-group* of a group Γ :

$$\mathbf{B}\left(\mathrm{Aut}(\mathbf{B}\Gamma)\right) = \mathbf{B}\left(\overbrace{\mathrm{Aut}(\Gamma)/\!/\Gamma}\right)$$



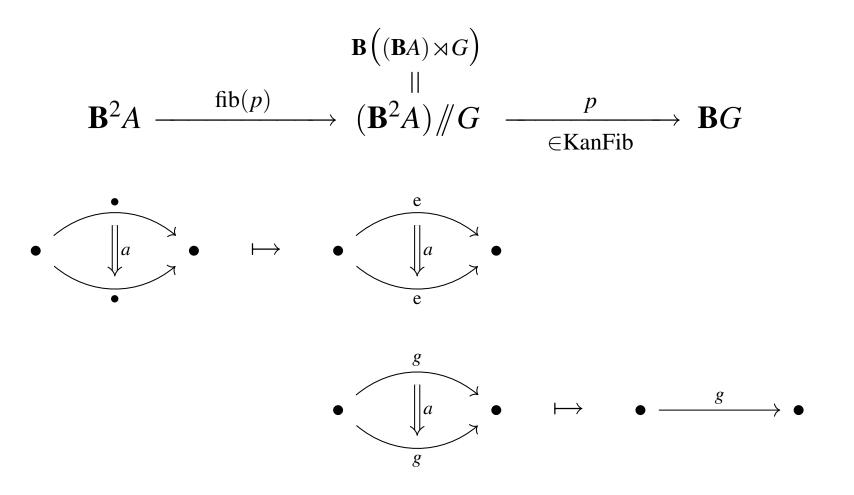
NB: Always need to choose whether actions are right- or left-actions, hence whether group multiplication is opposite or aligned to arrow composition. Before long we want *structure groups* to act *from the left* and *equivariance groups* to act *from the right*.

Notice:

(1) (BA) \rtimes G is a non-abelian 2-group iff G is a non-abelian group;

Notice:

- (1) (BA) \rtimes G is a non-abelian 2-group iff G is a non-abelian group;
- (2) its delooping sits in this fiber sequence:



2-Groupoids – 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and compositions.

2-Groupoids – 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and compositions.

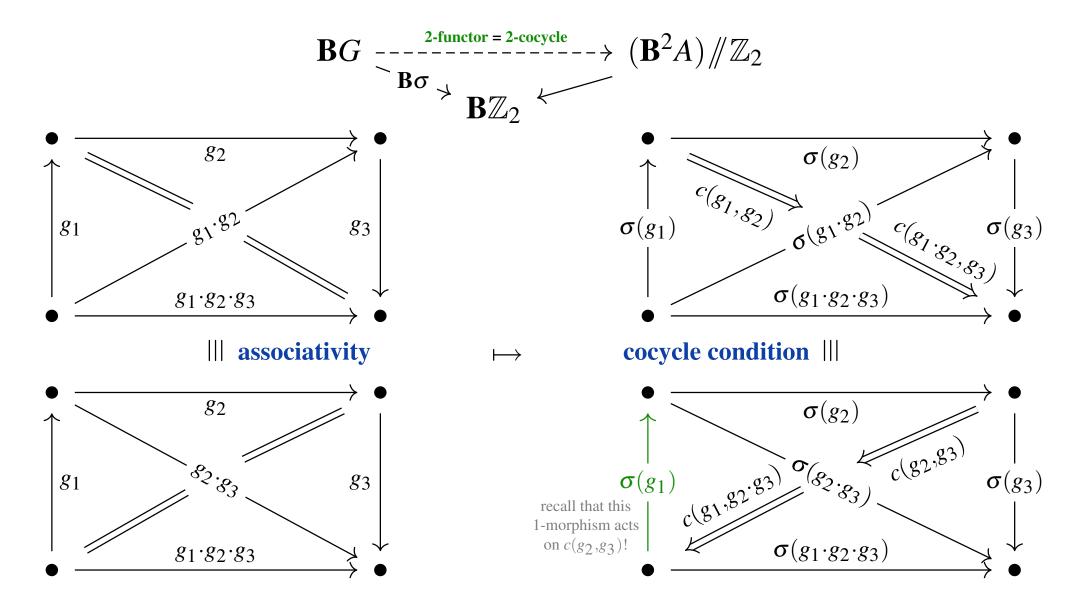
E.g.: if $\mathbb{Z} \supseteq \mathbb{Z}_2$ by sign inversion, and $G \xrightarrow{\sigma} \mathbb{Z}_2$ a homomorphism then **2nd group cohomology** of *G* with coefficients in $G_{\sigma} \subset \mathbb{Z}$ is 2-functors:

$$\mathbf{B}G \xrightarrow{\mathbf{2-functor} = \mathbf{2-cocycle}}_{\mathbf{B}\sigma} (\mathbf{B}^2 A) /\!\!/ \mathbb{Z}_2$$

2-Groupoids – 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and compositions.

E.g.: if $\mathbb{Z} \supseteq \mathbb{Z}_2$ by sign inversion, and $G \xrightarrow{\sigma} \mathbb{Z}_2$ a homomorphism then **2nd group cohomology** of *G* with coefficients in $G_{\sigma} \subset \mathbb{Z}$ is 2-functors:



A smooth 2-groupoid \mathscr{X} is given by a rule

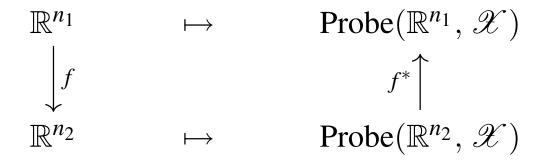
which to each chart \mathbb{R}^n , $n \in \mathbb{N}$ assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$

of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$ assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$ of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

and to each smooth map of charts a 2-functor of pre-composing such probes

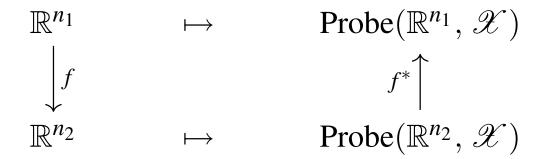


such that this respects composition and identities of smooth functions f.

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$ assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$ of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

and to each smooth map of charts a 2-functor of pre-composing such probes



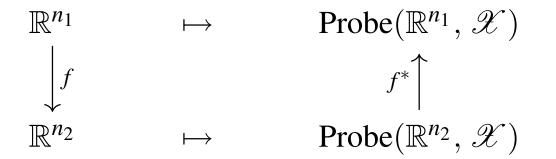
such that this respects composition and identities of smooth functions f.

So $Probe(*, \mathscr{X}) = Probe(\mathbb{R}^0, \mathscr{X})$ is the underlying 2-groupoid and the system of $Probe(\mathbb{R}^{\bullet>0}, \mathscr{X})$ is *smooth structure* on it.

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$ assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$ of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

and to each smooth map of charts a 2-functor of pre-composing such probes



such that this respects composition and identities of smooth functions f.

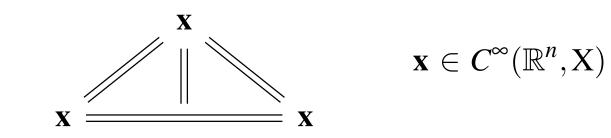
So $Probe(*, \mathscr{X}) = Probe(\mathbb{R}^0, \mathscr{X})$ is the underlying 2-groupoid and the system of $Probe(\mathbb{R}^{\bullet>0}, \mathscr{X})$ is *smooth structure* on it.

Grothendieck (1965): "functorial geometry"

common jargon: "pre-2-stacks on the site of Cartesian spaces"

If X is a smooth manifold, then as a smooth 2-groupoid it's this assignment:

X :
$$\mathbb{R}^n \mapsto \operatorname{Probe}(\mathbb{R}^n, X) := C^{\infty}(\mathbb{R}^n, X)$$



If X is a smooth manifold, then as a smooth 2-groupoid it's this assignment:

X :
$$\mathbb{R}^{n} \mapsto \operatorname{Probe}(\mathbb{R}^{n}, \mathbf{X}) := C^{\infty}(\mathbb{R}^{n}, \mathbf{X})$$

$$\mathbf{X} = \mathbf{X} \quad \mathbf{X} \in C^{\infty}(\mathbb{R}^{n}, \mathbf{X})$$

If Γ a *Lie* group, then the sets of smooth functions $C^{\infty}(\mathbb{R}^n, \Gamma)$ are plain groups, and the *smooth delooping groupoid* **B** Γ is:

$$\mathbf{B}\Gamma : \mathbb{R}^{n} \mapsto \operatorname{Probe}(\mathbb{R}^{n}, \mathbf{B}\Gamma) := \mathbf{B}(C^{\infty}(\mathbb{R}^{n}, \Gamma))$$

$$\bullet \underbrace{\gamma_{1}}^{\gamma_{1}} \underbrace{||}_{\gamma_{1} \cdot \gamma_{2}}^{\gamma_{2}} \bullet \qquad \gamma_{i} \in C^{\infty}(\mathbb{R}^{n}, \Gamma)$$

2-Groupoids with smooth structure – As smooth homotopy types.

Smooth 2-groupoids are *models* for *smooth 2-stacks* aka **smooth homotopy 2-types**

2-Groupoids with smooth structure – As smooth homotopy types.

Smooth 2-groupoids are *models* for *smooth 2-stacks* aka **smooth homotopy 2-types** A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib		iff for each \mathbb{R}^n ,	
	projective fibration	every $k + 1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{Y})$ that starts	
	fibration	at <i>k</i> -morphisms which come from $Probe(\mathbb{R}^n, \mathscr{X})$	
		lifts compatibly to a $k+1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{X})$	
LWEq <i>local</i> <i>weak eq</i>		iff for every \mathbb{R}^n	
	local	there exists an open ball $0 \in \mathbb{D}_{\mathcal{E}}^n \xrightarrow{l} \mathbb{R}^n$ such	
	weak equivalence	that $Probe(\mathbb{R}^n, f)_{ i }$ is a weak homotopy equivalence	
		namely an iso on the evident homotopy groups	
PrjCof	projective cofibration	if (Dugger's sufficient condition):	
		for all k, the spaces of k-morphisms are	
		disjoint unions of charts \mathbb{R}^n (for any <i>n</i> -s)	

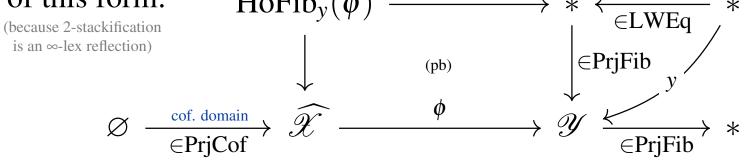
2-Groupoids with smooth structure – As smooth homotopy types.

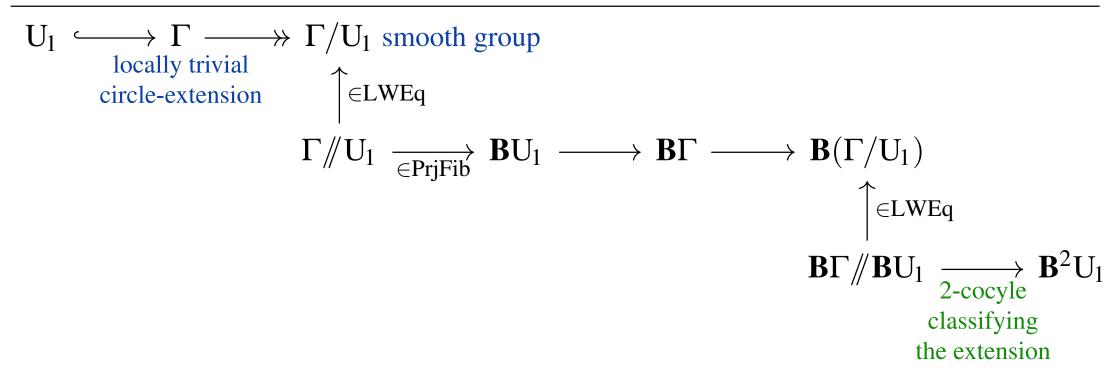
Smooth 2-groupoids are *models* for *smooth 2-stacks* aka **smooth homotopy 2-types**

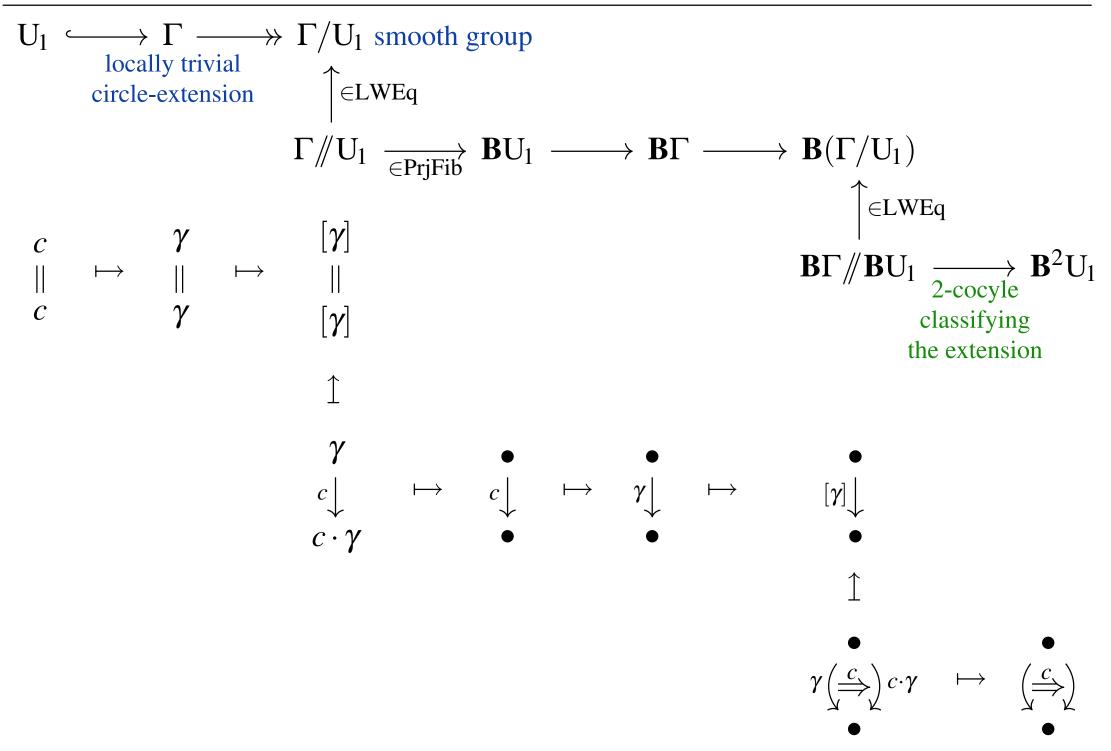
A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib		iff for each \mathbb{R}^n ,
	projective fibration	every $k + 1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{Y})$ that starts
	fibration	at <i>k</i> -morphisms which come from $Probe(\mathbb{R}^n, \mathscr{X})$
		lifts compatibly to a $k + 1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{X})$
LWEq <i>local</i> <i>weak equivalence</i>	iff for every \mathbb{R}^n	
	local weak equivalence	there exists an open ball $0 \in \mathbb{D}_{\mathcal{E}}^n \xrightarrow{i} \mathbb{R}^n$ such
		that $Probe(\mathbb{R}^n, f)_{ i }$ is a weak homotopy equivalence
		namely an iso on the evident homotopy groups
PrjCof	projective cofibration	if (Dugger's sufficient condition):
		for all k, the spaces of k-morphisms are
		disjoint unions of charts \mathbb{R}^n (for any <i>n</i> -s)

Fact/Def.: *Maps* ϕ of 2-stacks and their *homotopy fibers* are *modeled* by pullbacks of this form: HoFib_y(ϕ) $\longrightarrow \hat{*} \xleftarrow{\text{fib. resolution}} *$







For example, write U_n , $n \in \mathbb{N} \sqcup \{\omega\}$

for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

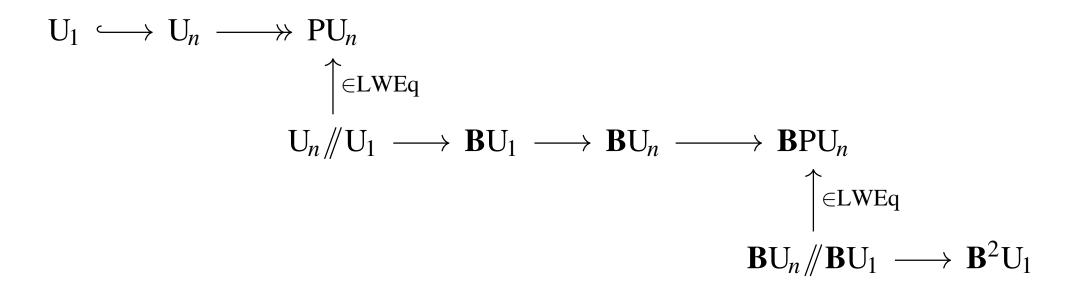
$$\mathbf{U}_n : \mathbb{R}^k \mapsto \operatorname{Probe}(\mathbb{R}^k, \mathbf{U}_n) := C^0(\mathbb{R}^k, \mathbf{U}_n)$$

For example, write U_n , $n \in \mathbb{N} \sqcup \{\omega\}$

for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$\mathbf{U}_n : \mathbb{R}^k \mapsto \operatorname{Probe}(\mathbb{R}^k, \mathbf{U}_n) := C^0(\mathbb{R}^k, \mathbf{U}_n)$$

Then we have the following long fiber sequence of smooth 2-groupoids:



For example, write U_n , $n \in \mathbb{N} \sqcup \{\omega\}$

for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$\mathbf{U}_n : \mathbb{R}^k \mapsto \operatorname{Probe}(\mathbb{R}^k, \mathbf{U}_n) := C^0(\mathbb{R}^k, \mathbf{U}_n)$$

Then we have the following long fiber sequence of smooth 2-groupoids:

$$\begin{array}{cccc} U_{1} & \longrightarrow & PU_{n} \\ & & \uparrow \in LWEq \\ & & U_{n} /\!\!/ U_{1} \longrightarrow BU_{1} \longrightarrow BU_{n} \longrightarrow BPU_{n} \\ & & \uparrow \in LWEq \\ & & & BU_{n} /\!\!/ BU_{1} \longrightarrow B^{2}U_{1} \end{array}$$

This is all compatible with complex conjugation, so that there is a map like this:

$$\mathbf{BPU}_n /\!\!/ \mathbb{Z}_2 \xleftarrow[\in \mathsf{LWEq}]{} \longrightarrow \mathbf{B}^2 \mathrm{U}_1 /\!\!/ \mathbb{Z}_2$$

2-Groupoids with smooth structure – Čech groupoids.

For X a smooth manifold with $\{U_i \hookrightarrow X\}_{i \in I}$ a good open cover, in that

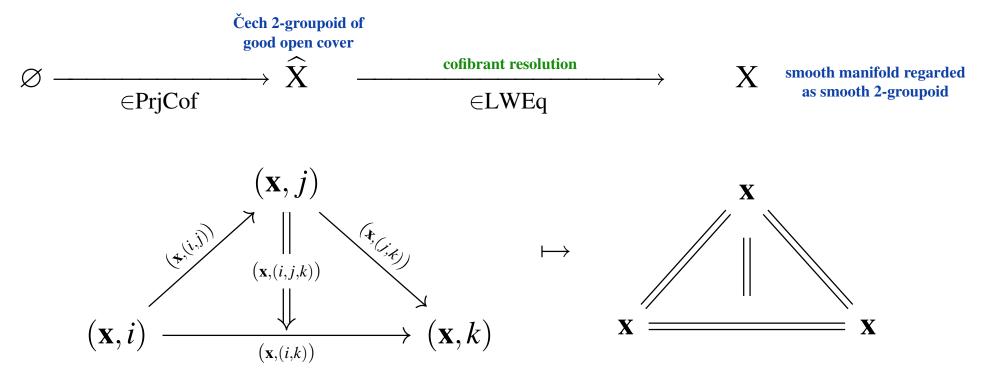
$$(\mathbf{x},(i_1,\cdots,i_n)) \in C^{\infty}(\mathbb{R}^m, U_{i_1}\cap\cdots\cap U_{i_n}) \Rightarrow U_{i_1}\cap\cdots\cap U_{i_n} \simeq \mathbb{R}^{\dim(X)}$$

2-Groupoids with smooth structure – Čech groupoids.

For X a smooth manifold with $\{U_i \hookrightarrow X\}_{i \in I}$ a good open cover, in that

$$(\mathbf{x},(i_1,\cdots,i_n)) \in C^{\infty}(\mathbb{R}^m, U_{i_1}\cap\cdots\cap U_{i_n}) \Rightarrow U_{i_1}\cap\cdots\cap U_{i_n} \underset{\text{diff}}{\simeq} \mathbb{R}^{\dim(X)},$$

we have the smooth *Čech 2-groupoid*:



which is a projectively cofibrant resolution of X.

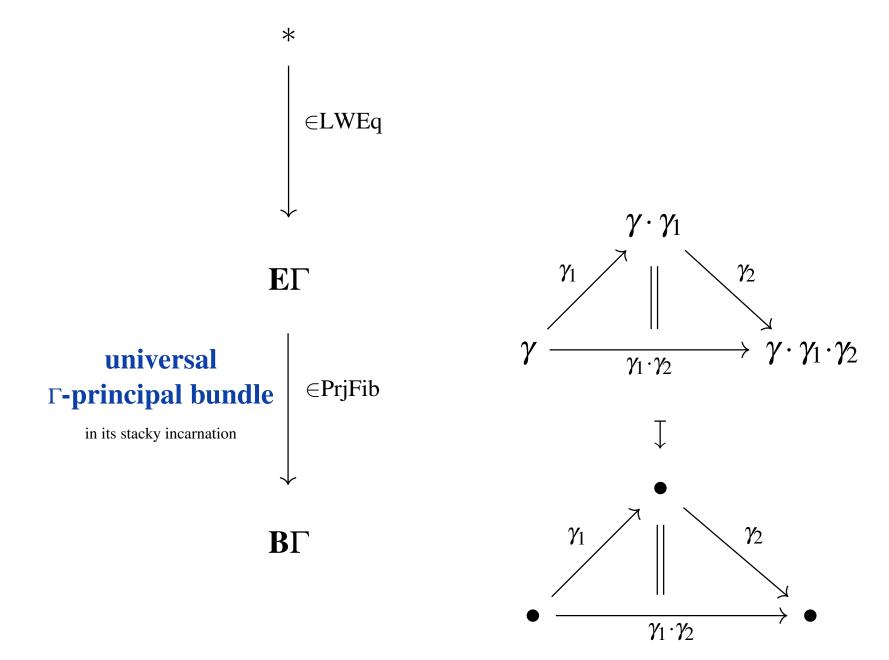
2-Groupoids with smooth structure – Čech cocycles.

Smooth 2-functors from such a Čech resolution $\widehat{X} \to X$ to the delooping **B** Γ of a Lie group are *cocycles* in the *Čech cohomology* of X with coefficients in Γ :



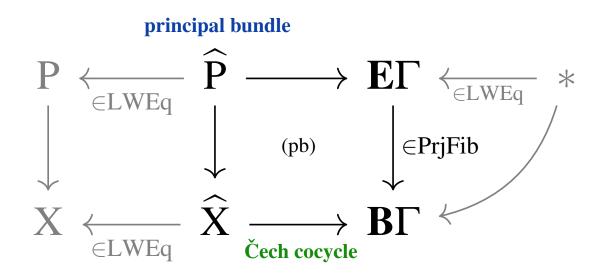
Principal bundles via smooth groupoids – Universal principal bundles.

The inclusion of the unique base point into $\mathbf{B}\Gamma$ has the following *fibrant resolution*:



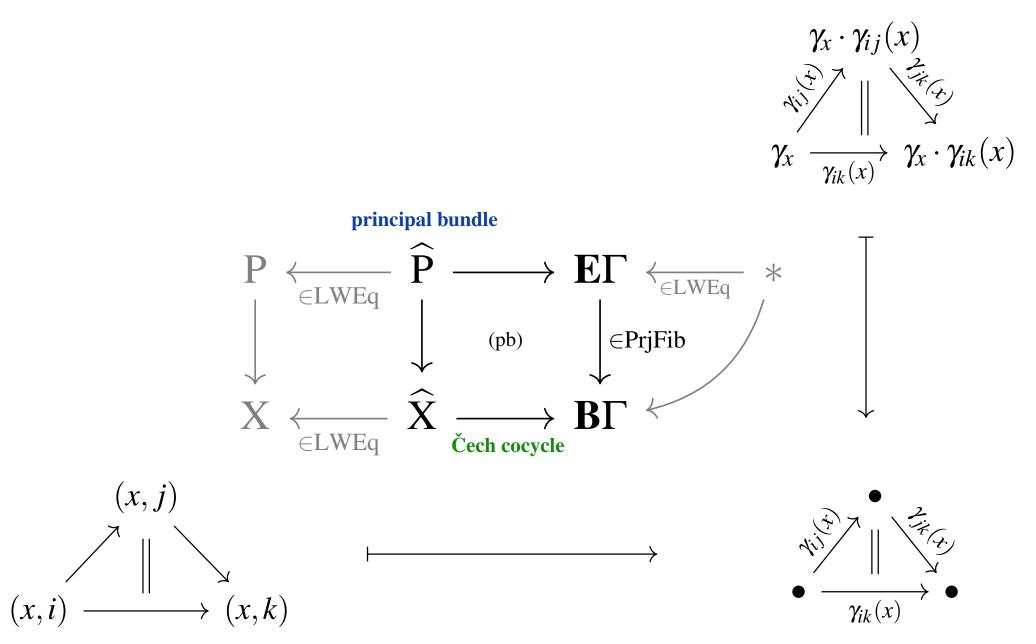
Principal bundles via smooth groupoids.

The *homotopy fiber* of a 2-functor = Čech cocycle is equivalently *the principal bundle* P *it classifies*:



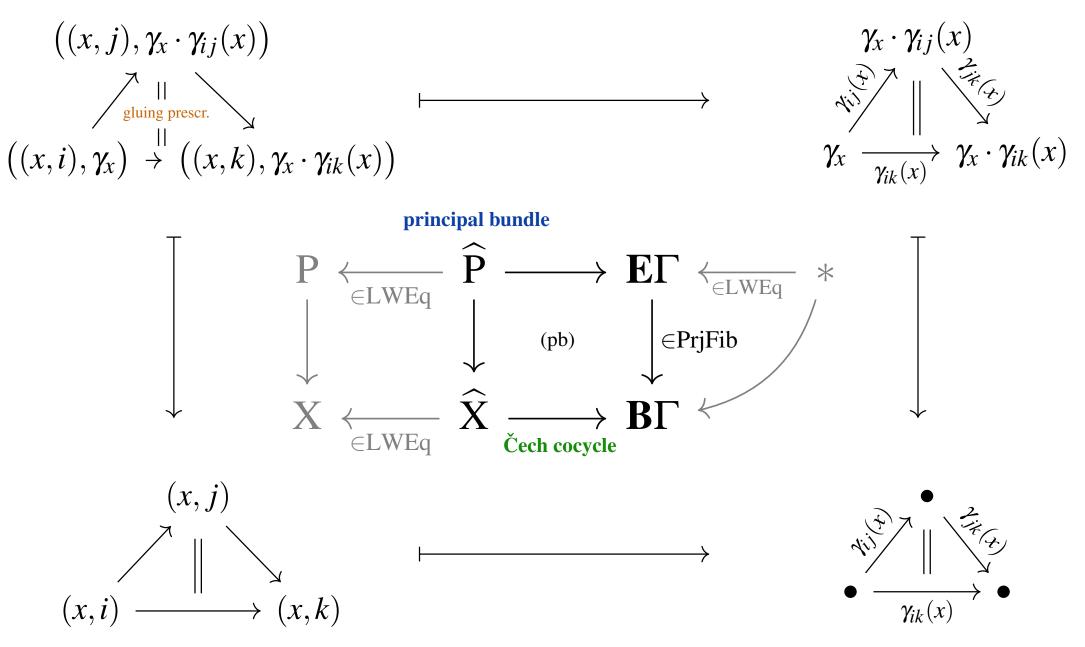
Principal bundles via smooth groupoids.

The *homotopy fiber* of a 2-functor = Čech cocycle is equivalently *the principal bundle* P *it classifies*:



Principal bundles via smooth groupoids.

The *homotopy fiber* of a 2-functor = Čech cocycle is equivalently *the principal bundle* P *it classifies*:

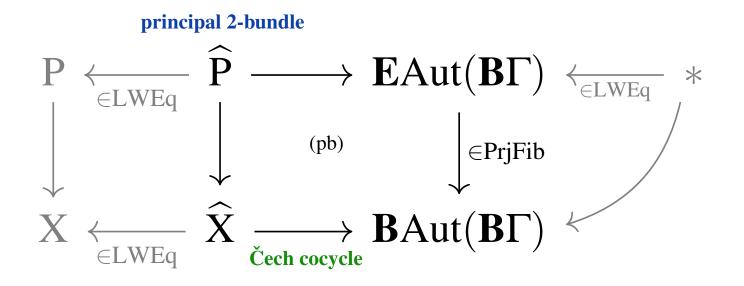


Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles immediatly generalizes to give principal 2-bundles:

E.g. for the structure 2-group $\text{Aut}(B\Gamma)$

these are equivalently Giraud's non-abelian gerbes:

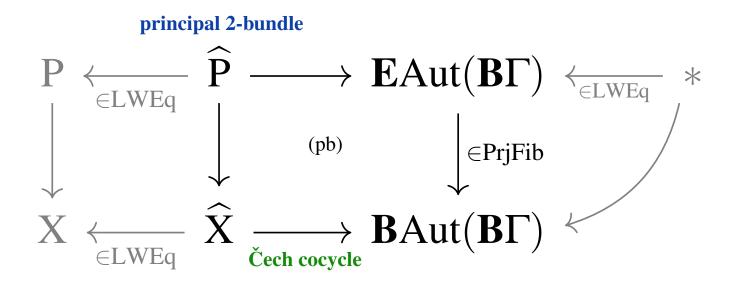


Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles immediatly generalizes to give principal 2-bundles:

E.g. for the structure 2-group $\text{Aut}(B\Gamma)$

these are equivalently Giraud's non-abelian gerbes:



While it's tradition to be esoteric about this simple affair,

here to highlight that this is really about *twisted cohomology*:

Principal 2-bundles via smooth 2-groupoids – Example: Twisted cohomology.

For structure 2-group Aut($\mathbf{B}\mathbb{Z}$) \simeq ($\mathbf{B}\mathbb{Z}$) $\rtimes \mathbb{Z}_2$, with \mathbf{B} Aut($\mathbf{B}\mathbb{Z}$) \simeq ($\mathbf{B}^2\mathbb{Z}$)// \mathbb{Z}_2 and $\widehat{X} \xrightarrow{\sigma} \mathbf{B}\mathbb{Z}_2$ a double covering, then

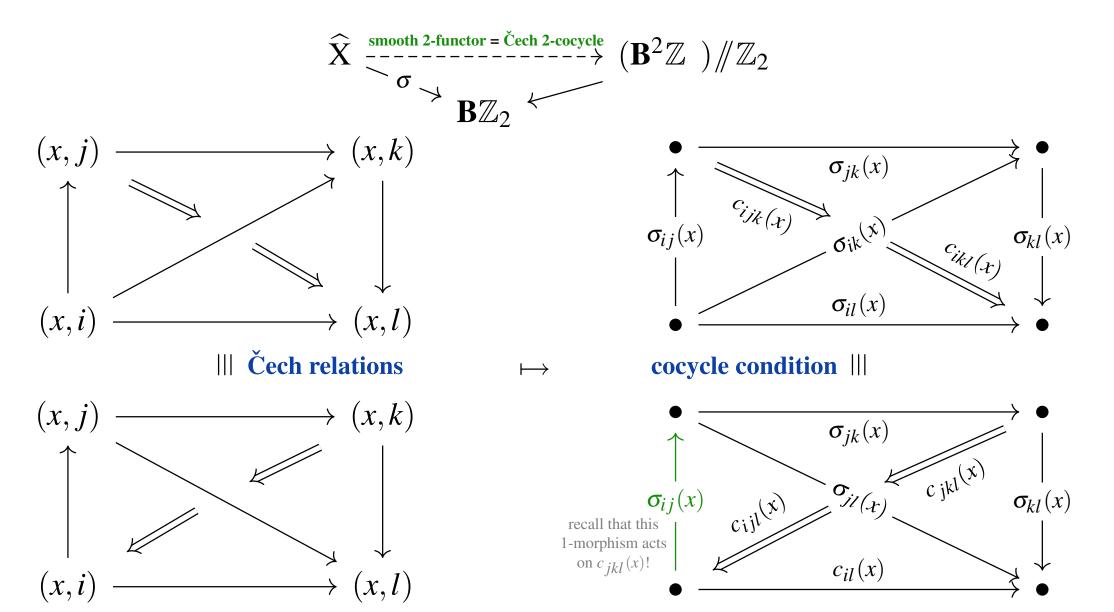
2nd integral cohomology of X with local coefficients is smooth 2-functors:

$$\widehat{\mathbf{X}} \xrightarrow{\text{smooth 2-functor} = \check{\mathbf{Cech 2-cocycle}}}_{\sigma} (\mathbf{B}^2 \mathbb{Z}) /\!\!/ \mathbb{Z}_2$$

Principal 2-bundles via smooth 2-groupoids – Example: Twisted cohomology.

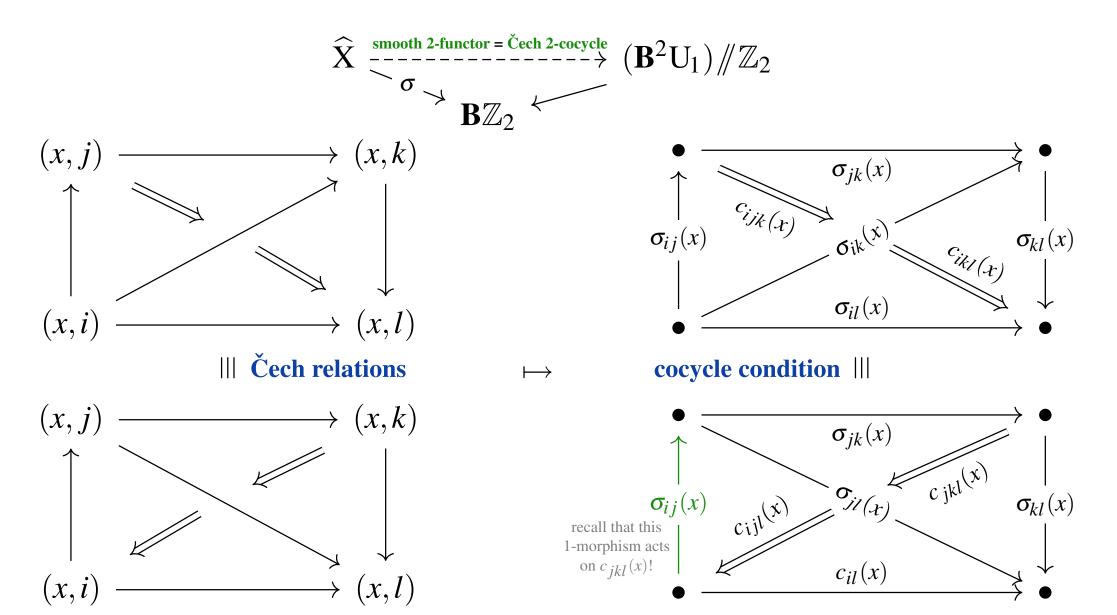
For structure 2-group Aut($\mathbf{B}\mathbb{Z}$) \simeq ($\mathbf{B}\mathbb{Z}$) $\rtimes \mathbb{Z}_2$, with \mathbf{B} Aut($\mathbf{B}\mathbb{Z}$) \simeq ($\mathbf{B}^2\mathbb{Z}$)// \mathbb{Z}_2 and $\widehat{X} \xrightarrow{\sigma} \mathbf{B}\mathbb{Z}_2$ a double covering, then

2nd integral cohomology of X with local coefficients is smooth 2-functors:



Principal 2-bundles via smooth 2-groupoids – Example: Jandl gerbes.

For structure 2-group Aut($\mathbf{B}U_1$) $\simeq (\mathbf{B}U_1) \rtimes \mathbb{Z}_2$, with $\mathbf{B}Aut(\mathbf{B}U_1) \simeq (\mathbf{B}^2U_1)/\!/\mathbb{Z}_2$ and $\widehat{X} \xrightarrow{\sigma} \mathbf{B}\mathbb{Z}_2$ a double covering, then **2nd** U₁-valued cohomology of X with local coefficients is smooth 2-functors:



So:

Non-abelian 1-cohomology is modulated by 1-stacks $\mathbf{B}\Gamma$, abelian 2-cohomology is modulated by 2-stacks \mathbf{B}^2A , etc.

Higher fiber/principal bundles are *bundles of such moduli stacks*, hence are families of moduli stacks that vary over the base space, hence locally modulate cohomology as before, but now subject to global twists.

Finally, the higher topos of smooth 2-groupoids

has *equivariance* natively built into it: just let domain spaces be groupoids, too.

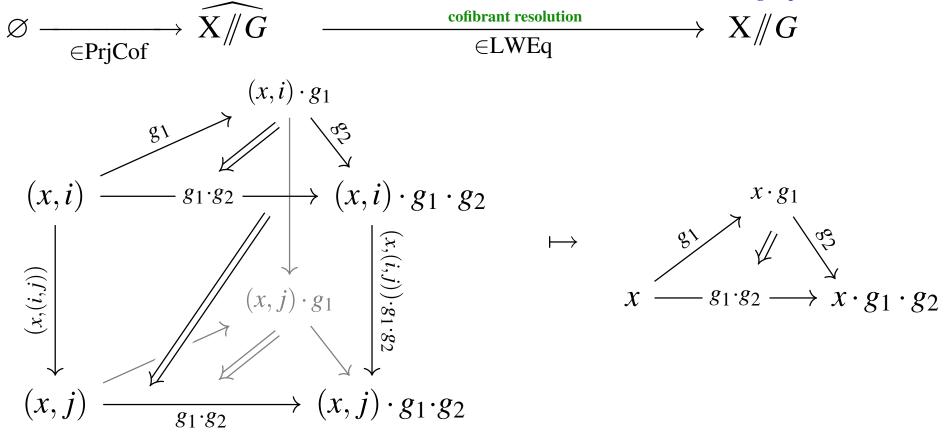
Finally, the higher topos of smooth 2-groupoids has *equivariance* natively built into it: just let domain spaces be groupoids, too:

For $X \supseteq G$ a smooth action of a finite group on a smooth manifold.

there exists an *equivariant good open cover*

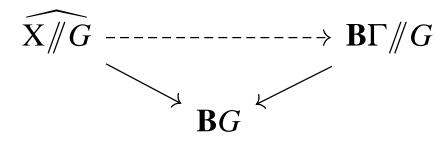
and its equivariant Čech groupoid:

action groupoid



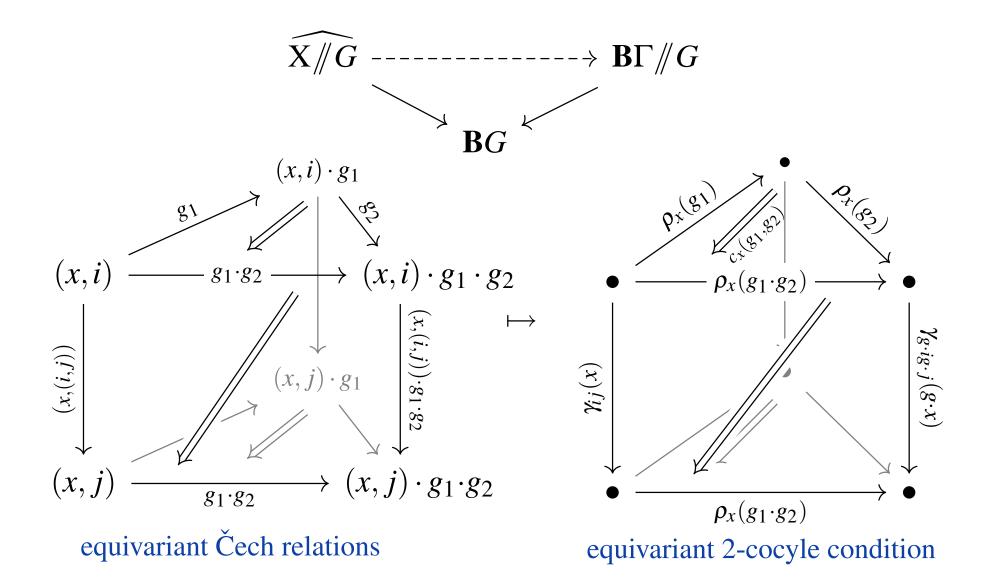
For X \supset *G* a smooth manifold and $(\Gamma // C) \supset$ *G* a smooth 2-group both equipped with smooth *G*-action, a

G-equivariant Γ -principal 2-bundle on X is modulated by a smooth 2-functor like this:



For X \supset *G* a smooth manifold and $(\Gamma // C) \supset$ *G* a smooth 2-group both equipped with smooth *G*-action, a

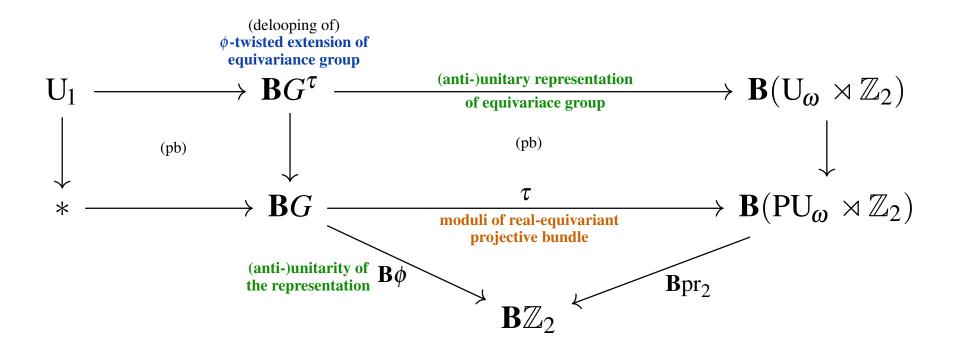
G-equivariant Γ -principal 2-bundle on X is modulated by a smooth 2-functor like this:



E.g. an equivariant PU_{ω} -bundle

over the point, where $\widehat{*//G} = \mathbf{B}G$,

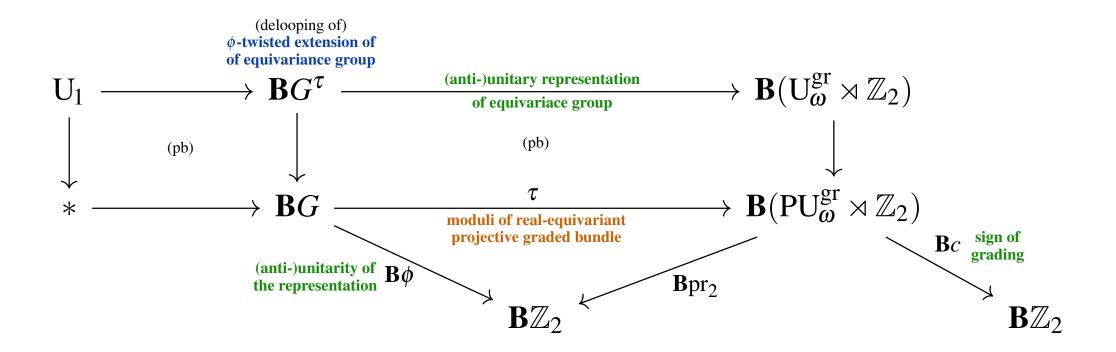
is a projective G-representation:



E.g. an equivariant PU_{ω} -bundle

over the point, where $\widehat{*//G} = \mathbf{B}G$,

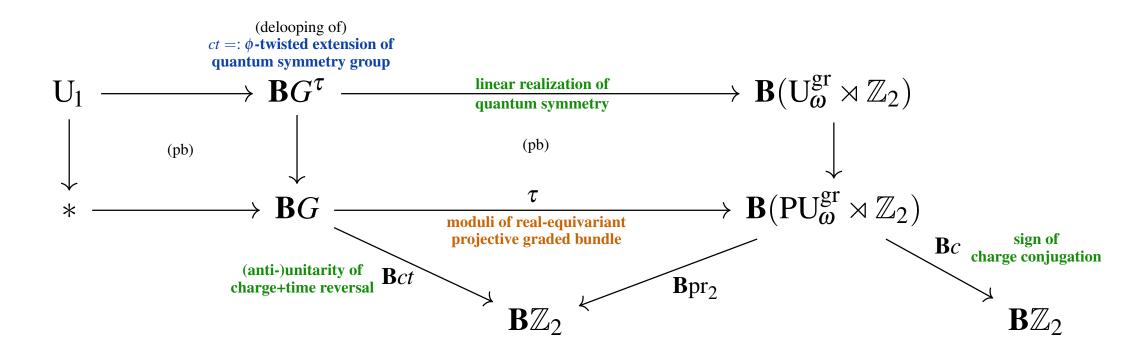
is a projective G-representation:



E.g. an equivariant PU_{ω} -bundle

over the point, where $\widehat{*//G} = \mathbf{B}G$,

is a projective G-representation:



This happens to encode all about *quantum symmetries of gapped systems* (cf. Freed & Moore 2013, good review in Thiang 2018, §4,).

Part I – Invitation

Part II – Application

Part II – Application

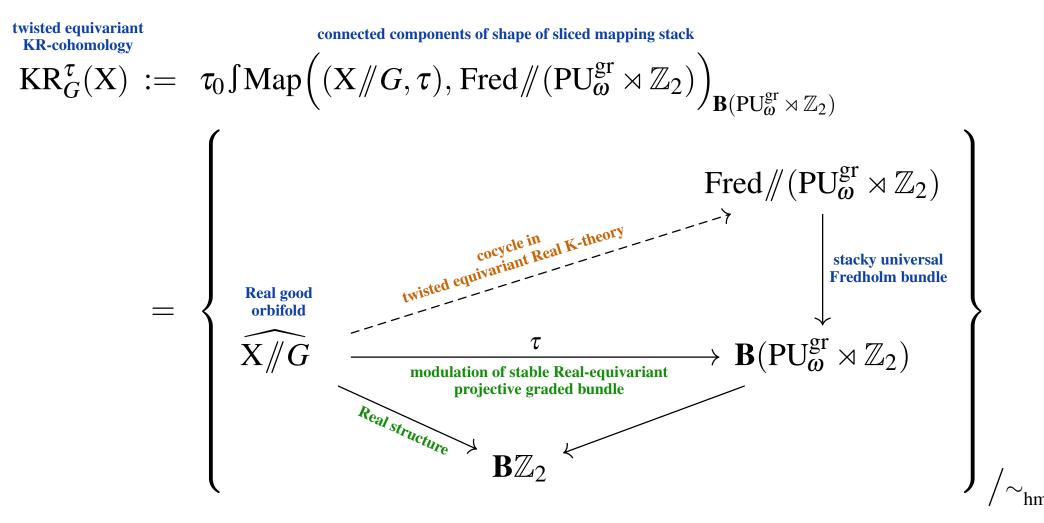
which provides a brief outlook on how the above technology gives a transparent construction of twisted equivariant KR-theory.

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

The "smooth" (namely continuous-diffeological) group PU_{ω}^{gr} canonically acts on

the "smooth" space Fred of Fredholm operators on a \mathbb{Z}_2 -graded Hilbert space.

Sections of the corresponding *associated equivariant bundles* are cocycles for *twisted equivariant Real K-theory* (generalizing Pavlov 2014, §3.19):



This transparent formulation serves to reveal that there is more quantum physics encoded in twisted equivariant KR-theory than has previously bee uncovered.

To be discussed in:

H. Sati, & U. S.: Anyonic Defect Branes in Twisted equivariant K-Theory

