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some ground state for erm) - ¢ another ground state for
fixed defect positions ]1(]( fl ) > adi fixed defect positions

ki,ka,--- at time f, k1,kz,--- at time &

Figure 1 — Adiabatic braid quantum gate. Schematically indicated 1s the unitary transformation induced on the topolog-
ically ordered ground state (as discussed below in §3.3) of an effectively 2-dimensional topological semi-metal (as in §3.1)
under adiabatic braiding (Rem. 1.1) of nodal points in the Brillouin torus (Rem. 3.9).
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This part 1s
a lightning indication of
how diffeological spaces fit
into the scheme of things,

following:

Equivariant Principal oo-bundles [arXiv:2112.13654]
Proper Orbifold Cohomology [arXiv:2008.01101]
Diff. Cohomology in a Cohesive oo-Topos [arXiv:1310.7930]
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https://ncatlab.org/schreiber/show/Equivariant+principal+infinity-bundles
https://ncatlab.org/nlab/show/shape+via+cohesive+path+infinity-groupoid#Clough21
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https://ncatlab.org/nlab/show/Global+Homotopy+Theory+and+Cohesion
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https://ncatlab.org/schreiber/show/Proper+Orbifold+Cohomology
https://ncatlab.org/schreiber/show/Equivariant+principal+infinity-bundles

0 — Cohesive o-Topoi

I — Equivariant co-Bundles

II — TED-K-Theory

IIT — Anyonic Defect Branes

IV — Quantum Computation



This part 1s
a gentle exposition of
the most basic concept
underlying these articles:

Principal oo-bundles [arXiv:1207.0248/49]
Equivariant Principal oo-bundles [arXiv:2112.13654]
Proper Orbifold Cohomology |arXiv:2008.01101]

following

Diff. Cohomology in a Cohesive oo-Topos [arXiv:1310.7930]


http:/ncatlab.org/schreiber/show/Principal+infinity-bundles
http://ncatlab.org/schreiber/show/Equivariant+principal+infinity-bundles
http://ncatlab.org/schreiber/show/Proper+Orbifold+Cohomology
http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
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Motivation, Overview, Summary and Outlook — in one single slide:

Generalized Cohomology Theories <« Cohesive Higher Fiber Bundles

Here “generalized” subsumes “Whitehead-generalized cohomology” («— spectra)
but goes further:

Cohomology < Higher Bundles
non-abelian < general fibers
twisted — associated
differential — cohesive
<

G-equivariant sliced over BG

A major phenomenon/subtlety 1s that the last two aspects go hand-in-hand:

Proper G-equivariance corresponds to the cohesive slice over BG,
while

Borel equivariance corresponds just to the slice of shapes.



2-Groupoids

2-Groupoids are the algebra of 2-dimensional pasting,
such that all composition is associative and invertible:

In general we need n-groupoids forn € {1,2,3,--- oo}
but for sake of exposition we may focus on n = 2.



2-Groupoids

2-Groupoids are the algebra of 2-dimensional pasting,
such that all composition is associative and invertible:

Accurate 1ntuition:
homotopy classes of surfaces X relative boundary paths y
in a topological space:

X

1

2

Y
1 7 V1 7
DD
3\\>Y3\\>Z

X

3



2-Groupoids — Examples.

For G a discrete group, there 1s its delooping 1-groupoid —
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2-Groupoids — Examples.

For G a discrete group, there 1s its delooping 1-groupoid —| BG |:
L
V Y gieG
o > @
81°82
For XD G a G-action on a set X there is
its action groupoid or homotopy quotient —| X /| S |.
X-81
81 g2 8§ €G
H xeX
X 2122 7 X81°82

Hence: BG ~ x//G.




2-Groupoids — Examples.

For A an abelian group there 1s the double delooping 2-groupoid

B’A = B(BA)
o : > o .

yi
\

al+an

~

~

a; € A



2-Groupoids — Examples.

For AY G a linear action, i.e. by group automorphisms,
there is the delooping 2-groupoid B((BA) x G) ~ (B*A) /G

of the semidirect product 2-group:

8
S a N /\
o 8 > @
NS

= aj —I—a2
8

8182

() ag () aj [ p— al+gi Cl2
PRI N A% \/

8182



2-Groupoids — Examples.

This 1s a special case of the delooping of the automorphism 2-group of a group I

_A\

B(Aut(BI)) = B(Aut(T’)/T)

TN o € Aut(I)
(BI) “y (BI) yer
~_ " r 24 Aut(T)
Adyo
o (0%) oo

./“%\./“n\. ~ .m.
A g Y S



2-Groupoids — Examples.

This 1s a special case of the delooping of the automorphism 2-group of a group I

_/A\

B(Aut(BI)) = B(Aut(T)/T)

TN o € Aut(I)
(BI) “y (BI) yer
~_ 7 — r 24 Aut(T)
Adyo
(041 (0] oo
o “7’1 o “}’2 o = o yo(p e
Ady o Adfy2 °X0%) Ady1 o0 OAdy2 oX0/)

NB: Always need to choose whether actions are right- or left-actions,
hence whether group multiplication is opposite or aligned to arrow composition.
Before long we want structure groups to act from the left
and equivariance groups to act from the right.



2-Groupoids — Examples.

Notice:

(1) (BA) x G is a non-abelian 2-group iff G is a non-abelian group;



2-Groupoids — Examples.

Notice:

(1) (BA) x G is a non-abelian 2-group iff G is a non-abelian group;

(2) its delooping sits 1n this fiber sequence:

B((BA)%G)

|
) fib(p) 2 p \
BA / (B A)//G cKanFib » BG
() /J.la\( () —> () /Ea\( ()

\:/ \E/

8
() /Ha\( () —> () g



2-Groupoids - 2-Functors.

A 2-functor 1s a map between 2-groupoids respecting identities and composition.
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2-Groupoids - 2-Functors.

A 2-functor 1s a map between 2-groupoids respecting identities and composition.

E.g.: if Z) 7Z, by sign inversion, and G 27 a homomorphism then
2nd group cohomology of G with coefficients in G (Z is 2-functors:

2-functor = 2-cocycle
BG -----=---=C s (B%A) ) Z,
Bo
<
o o o > @
'\ \ / AN G(gZ) /
i
$7
&
81 o(g1) 2/ G&g\% ., o(g3)
/ \ &
818283 v g 1°82°83) v
o o ® o
] assomatlwty —> cocycle condition ||
o > @ o o
N \ 82 / N \ g2 /
(o) g’L‘
g1 R0, o(g1) @2 et o(g3)
recall that this )
/ \ I-morphism acts C%
818283 v onc(e2:83)" c(g1°82°83) v




2-Groupoids with smooth structure.

A smooth 2-groupoid X 1s given by a rule
which to each chart R”, n € N, assigns the plain 2-groupoid Probe(R", Z7)
of ways of smoothly mapping R” into the would-be 2
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A smooth 2-groupoid X 1s given by a rule
which to each chart R”, n € N, assigns the plain 2-groupoid Probe(R", Z7)
of ways of smoothly mapping R” into the would-be 2

and to each smooth map of charts a 2-functor of pre-composing such probes

n n set of probes
achart IR = Pr Obe(R ’ ‘%) by this chart
5 =
%lf f F
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such that this respects composition and identities of smooth functions f.
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A smooth 2-groupoid X is given by a rule
which to each chart R”, n € N, assigns the plain 2-groupoid Probe(R", Z")
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2-Groupoids with smooth structure.

A smooth 2-groupoid X is given by a rule
which to each chart R”, n € N, assigns the plain 2-groupoid Probe(R", Z")
of ways of smoothly mapping R” into the would-be 2

and to each smooth map of charts a 2-functor of pre-composing such probes

n n set of probes
achart IR = Pr Obe(R 7 ‘%) by this chart

another ny
chart

— Probe(R™, Z")

such that this respects composition and identities of smooth functions f.

So Probe(*, 2°) = Probe(R", 27) is the underlying 2-groupoid

and the system of Probe(IR*>", 27) is smooth structure on it.

Grothendieck (1965): “functorial geometry”

common jargon: “pre-2-stacks on the site of Cartesian spaces”


https://ncatlab.org/nlab/show/functorial+geometry

2-Groupoids with smooth structure — Examples.

It X 1s a topological space, then as a smooth 2-groupoid 1t’s this assignment:

X : R" — Probe(R" X):=C"(R" X)

/ H \ x € C" (R",X)

X X

It X 1s a smooth manifold, then as a smooth 2-groupoid it’s this assignment:

X : R" — Probe(R" X) :=C”(R", X)

/ H \ x € C*(R",X)

X X

(also known as X 1n its incarnation as a diffeological space).



2-Groupoids with smooth structure — Examples.

If I" a Lie group, then the sets of smooth functions C*(R”,I") are plain groups,
and the smooth delooping groupoid BI 1s:

B[ : R" — Probe(R", B):=B(C=(R",T))

V Y % € C*(R",T)

® )
-7




2-Groupoids with smooth structure — Examples.

If I" a Lie group, then the sets of smooth functions C*(R”,I") are plain groups,
and the smooth delooping groupoid BI is:

B[ : R" — Probe(R", B):=B(C=(R",T))

V Y % € C(R",T)

® )
-7

If V is a I'-representation, then the smooth moduli space of V -valued differential forms
1S
QgR(_;V)//F R e QﬁR(R”;V)//F

Wy N

S

ny Oa- 112

v € C=(R",T)
W € QgR(Rn;V)
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A smooth 2-functor 2~ A 9% 1is called:

iff for each R”,
PriFib projective every k+ 1-morphism in Probe(R", %) that starts
fibration at k-morphisms which come from Probe(R", 27)
lifts compatibly to a k + 1-morphism in Probe(R", Z")
iff for every R”
local there exists an open ball 0 € D7 L, R” such
LWEq|| | eak equivalence | that Probe(R", f);; is a weak homotopy equivalence
namely an 1so on the evident homotopy groups
L if (Dugger’s sufficient condition):
: projective .
PrjCof cofibration for all £, the spaces of k-morphisms are
disjoint unions of charts R" (for any n-s)
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A smooth 2-functor 2~ L 9% 1is called:

iff for each R”,
PriFib projective every k + 1-morphism in Probe(R", %) that starts
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2-Groupoids with smooth structure — As smooth homotopy types.

Smooth 2-groupoids are models for smooth 2-stacks aka smooth homotopy 2-types

A smooth 2-functor 2~ L 9% 1is called:

iff for each R”,
PriFib projective every k + 1-morphism in Probe(R", %) that starts
) fibration at k-morphisms which come from Probe(R”, Z)
lifts compatibly to a k + 1-morphism in Probe(R", Z")
iff for every R”
[ WEq|| local there exists an open ball 0 € D <, R” such
41| weak equivalence | that Probe(R", f) i is a weak homotopy equivalence
namely an 1so on the evident homotopy groups
S if (Dugger’s sufficient condition):
. projective .
PrjCof . for all &, the spaces of k-morphisms are
cofibration L . N
disjoint unions of charts R"” (for any n-s)

Fact/Def.: Maps of 2-stacks and their homotopy fibers are modeled by
pullbacks of this form:

(because 2-stackification
1s an co-lex reflection)

@ cof. domain

HOFiby ((P ) y :k\ y fib. resolution

cLWEq

S
l (pb) J/E Prj Fib /
- ¢ s

€PrjCof

s ?
smooth 2-functor EPI’J Flb




2-Groupoids with smooth structure — As smooth homotopy types.

Smooth 2-groupoids are models for smooth 2-stacks aka smooth homotopy 2-types

A smooth 2-functor 2 A 9% 1is called:
iff for each R",

PrjFib ]I;Zj];ﬁ Definition/Example:
For 2~ projectively cofibrant )
and % projectively fibrant

local | the smooth mapping 2-stack 1s modeled by

weak

LWEq
Map(c%/”\, @) : R" — Hom(ﬁ”\x ]R{”,@) K

2-groupoid of smooth 2-functors

PriCof|| £'/¢

cofibrTror — :
fibrTTo disjoint unions of charts R" (for any n-s)
Fact/Det.: Maps of 2-stacks and their homotopy fibers are modeled by
ullbacks of this form: HoFib s F L resolution
p (because 2—3tackiﬁgation Y ((P ) ELVVEq
is an co-lex reflection) J/ o J/EprJFlb , /

. o (z) / fib.
. d i - i
CO omain \ {%’ > @ co-domain \ *

€PrjCof smooth 2-functor €PrjFib




2-Groupoids with smooth structure — Homotopy fiber sequences.

U(l) — I' —» T"/U(1) smooth group
locally trivial
circle-extension TELWEq

[/U(1) gz, BU(1) — BT — B(I/U(1))

/I\ELWEq

BI'/BU(1) - g e132U(1)
classifying

the extension



2-Groupoids with smooth structure — Homotopy fiber sequences.

U(l) — I' —» T"/U(1) smooth group
locally trivial
circle-extension TELWEq

[/U(1) gz, BU(1) — BI' — B(I/U(1))

/I\ELWEq
C Y 7 )
I BI/BU(1) — B?U(1)
¢ I 7] classifying
the extension

I

Y ° ® °

. 1

c-v [ o Py



2-Groupoids with smooth structure — Dixmier-Douady class.

For example, write U(n), n € NU{w}
for the unitary group on a countably-dimensional complex Hilbert space
and regard this as a smooth group by its “continuous diffeology”:

U(n) : R* — Probe(R¥, U(n)) := C*(R*, U(n))



2-Groupoids with smooth structure — Dixmier-Douady class.

For example, write U(n), n € NU{w}
for the unitary group on a countably-dimensional complex Hilbert space
and regard this as a smooth group by its “continuous diffeology”:

U(n) : R* — Probe(R¥, U(n)) := C°(R¥, U(n))
Then we have the following long fiber sequence of smooth 2-groupoids:
U(l) <« U(n) —» PU(n)
TELWEq
U(n)/U(1) - BU(1) - BU(n) —— BPU(n)
TELWEq

BU(n) /BU(1) — B2U(1)



2-Groupoids with smooth structure — Dixmier-Douady class.

For example, write U(n), n € NU{w}
for the unitary group on a countably-dimensional complex Hilbert space
and regard this as a smooth group by its “continuous diffeology”:

U(n) : R* — Probe(R¥, U(n)) := C*(R*, U(n))

Then we have the following long fiber sequence of smooth 2-groupoids:

U(l) < U(n) —» PU(n)
TELWEq
U(n)/U(1) - BU(1) - BU(n) —— BPU(n)
TELWEq

BU(n) /BU(1) — B?U(1)

This 1s compatible with complex conjugation, so we have a map of 2-stacks like this:

universal Dixmier-Douady class

BPU(n) | Z> < PD . B2U(1))Z,

cLWEq




2-Groupoids with smooth structure — Cech groupoids.

For X a smooth manifold with {U,- — X}i .; @ good open cover, 1n that

(X, (lla,ln)) c Cw(Rm,Uilﬂ'“ﬂUin) = Uilﬂ...mUin d;EfRdim(X),
i



2-Groupoids with smooth structure - Cech groupoids.

For X a smooth manifold with {U,- — X}i .; @ good open cover, in that
(X7 (il,"',in)) < Cw(Rm,Uilﬂ'--ﬂUin) = Ui, N---NU;, d’_\_EfRdim(X)a
1
we have the smooth Cech 2-groupoid:

Cech 2-groupoid of
good open cover

AN .
@ N X cofibrant resolution N X smooth manifold regarded
. as smooth 2-groupoid
€PrjCof cLWEq sroup
(x, /)

- /I\

which 1s a projectively cofibrant resolution of X.

(x, i) U

(x,(i.k))

~

(x,k)



2-Groupoids with smooth structure — Cech cocycles.

Smooth 2-functors from such a Cech resolution X - X
to the delooping BI" of a Lie group

are cocycles in the Cech cohomology of X with coefficients in I

smooth functor = Cech cocycle

X >  BI'
(x, /) o
7 % S %
NS & —> R %
S (i) N\ A ~
\
X.1 s (x. k ° s
( Y ) (x,(i,k)) ( Y ) ,ylk(x)

Cech relations cocycle condition



Principal bundles via smooth groupoids — Universal principal bundles.

The 1nclusion of the unique base point into BI" has the following fibrant resolution:

*
cLWEq
N y. ’yl
N VN
universal Y " > YN

r-principal bundle | €PyFib

in its stacky incarnation 1

)
BI' %HX
o > @

"2




Principal bundles via smooth groupoids.

The homotopy fiber of a 2-functor = Cech cocycle is equivalently
the principal bundle P it classifies:

principal bundle

Z \ Z
P \ELWEq P /4 EF \ELWEq *
J/ J/ (pb) €PrjFib
X < X s Bl

cLWEq Cech cocycle



Principal bundles via smooth groupoids.

The homotopy fiber of a 2-functor = Cech cocycle is equivalently
the principal bundle P it classifies:

B —— %o Yie(x)

Vit ()
principal bundle
Y, \ Y,
>

P \ELWEq P 7 EF SCLWEq
J/ J/ (pb) PrjFib
X < X - > Bl v

cLWEq Cech cocycle

~

(x) e
A = AR
()

> (x,k) Yik (%)




Principal bundles via smooth groupoids.

The homotopy fiber of a 2-functor = Cech cocycle is equivalently
the principal bundle P it classifies:

((x, ) % %J ety (3)
(0.5) 3 (b7 1) Ko e )
. principal bundle -

P <eLWEq P > EI Sciweq ¥
l J/ (pb) cPrjFib
l A \ELWEq A Cech cocyc>le Bl "
(x.J) Y
= AN
. > ®

(x,1) > (x,k) Vi (x)



Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles

immediatly generalizes to give principal 2-bundles:



Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles

immediatly generalizes to give principal 2-bundles:

E.g. for the structure 2-group Aut(BI')

these are equivalently Giraud’s non-abelian gerbes:

principal 2-bundle

P <€LWEq P > EAut(BI') Wi
\L J/ (pb) J/EPUFlb /
X < X > BAut(BI')

cLWEq Cech cocycle

While it’s tradition to be esoteric about this simple affair,

here to highlight that this 1s really about twisted cohomology:




Principal 2-bundles via smooth 2-groupoids — Example: Twisted cohomology.

For structure 2-group Aut(BZ ) ~ (BZ ) x Z,

with BAut(BZ ) ~ (B2Z ) //Z, and X % BZ, a double covering, then
2nd integral cohomology of X with local coefficients 1s smooth 2-functors:

AN

Y Smooh f'ﬁ‘fci"f:_é_efh_zf"_czcl;’ (B2 7 )/ Zo

~

(o)
* gz, &



Principal 2-bundles via smooth 2-groupoids — Example: Twisted cohomology.

For structure 2-group Aut(BZ ) ~ (BZ ) x Zs,

with BAut(BZ ) ~ (B?Z ) //Z, and X % BZ, a double covering, then
2nd integral cohomology of X with local coefficients 1s smooth 2-functors:

X Smooth Zfunctor _C_efh_z_“’_“Zc"’ (B2 7 )/ Zo

~

c
Bz, &

(X7 ]) > (X’k) ! \ / X

o) T G\ 0 ()
~ N
(x, 1) s (x,1) . %ux .o
Il Cech relations — cocycle condition ||
1 \ o > @
(x:\]) /’ (xak) T \ij(x)
(X

% b 01 (x)

0;j(x) Q 7 (1
/ recall that this y )
1-morphism acts
v
on ¢ j; (x)! . (x) \ <




Principal 2-bundles via smooth 2-groupoids — Example: Jandl bundle gerbes.

For structure 2-group Aut(BU(1)) ~ (BU(1)) x Z,,

with BAut(BU(1)) ~ (B2U(1))//Z, and X 2 BZ, a double covering, then
2nd U(1)-valued cohomology of X with local coefficients is smooth 2-functors:

AN

smooth 2-functor = Cech 2-cocycle
X o mirane (BPU(L) 2
P Bz,
(X7 ]) > (x’ k) ! \ / X
\ Gij {/é(* ) . \4 7@ (x)
\ / | W
(x, 1) s (x,1) . %ux .o
Il Cech relations — cocycle condition ||
1 \ o > @
(xj\]) 7 (X,k) \ij(x)
/ T ()

C. C
Oij (x) QQ\ //@ Okl (x)
/ recall that this %
1-morphism acts
v
on ¢ j; (x)! . (x) \ <




Principal 2-bundles via smooth 2-groupoids — Example: Twisted cohomology.

For equivariant de Rham coefficients with G CV a representation of a finite group:

(x,1) > (x,1)

Il Cech relations

(%,J) > (%K)

smooth functor = Cech 1-cocycle

> Qi (—V) /G

w] (X) Ok ? (Ok(X)
| / 6%< I
w; (x) o > ()

cocycle condition |
@;(x) o > W(x)




Principal 2-bundles via smooth 2-groupoids — Punchline.

So:

Non-abelian 1-cohomology is modulated by 1-stacks BI,
abelian 2-cohomology is modulated by 2-stacks B?A, etc.

Higher fiber/principal bundles are bundles of such moduli stacks,
hence are families of moduli stacks that vary over the base space,
hence locally modulate cohomology as before,

but now subject to global twists.



Principal 2-bundles via smooth 2-groupoids — Equivariance.

Finally, the “higher topos” of smooth 2-groupoids
has equivariance natively built into 1t:  just let domain spaces be groupoids, too.



Principal 2-bundles via smooth 2-groupoids — Equivariance.

Finally, the “higher topos” of smooth 2-groupoids
has equivariance natively built 1nto 1t:  just let domain spaces be groupoids, too:

For X2 G a smooth action of a finite group on a smooth manifold.

. G G
there exists an I_(I % >
equivariant good open cover icr "

and its equivariant Cech groupoid:

action groupoid

@ N )?\G cofibrant resolution , X G
€PrjCof / €LWEq /
(xvi)'gl
(x,1) g8 —— (x,1)-81-82 X- gl
N

Eﬁ (x,7) - &1 ;? X — 818 —> X-81°82
= ~ 7\, 5

~ / ~




Principal 2-bundles via smooth 2-groupoids — Equivariance.

For X2 G a smooth manifold and I'Y G a smooth 2-group
both equipped with smooth G-action, a
G-equivariant I -principal 2-bundle on X 1s modulated by a smooth 2-functor like this:

modulating map

/

BG



Principal 2-bundles via smooth 2-groupoids — Equivariance.

For X2 G a smooth manifold and I') G a smooth 2- group
both equipped with smooth G-action, a
G-equivariant I -principal 2-bundle on X 1s modulated by a smooth 2-functor like this:

X)G -=---- ,;;dm;t;,;,;i;,"; BI'/G
BG
(xai)'gl N : O
2\ & ) N (e
2% CH &
(%, ) 8182 — (X,1) - 81" &2 . Pu(g1-82) — ®
2 —>
_ LA - =
= (x,))-81 | O ' =
~ . / / \/ .\/ 1 // \ 1
(x, /) e (%) g1g . s o
px(gl'gZ)

equivariant Cech relations equivariant 2-cocyle condition



Principal 2-bundles via smooth 2-groupoids — Equivariance.

For X2 G a smooth manifold and I'Y G a smooth 2-group
both equipped with smooth G-action, a
G-equivariant I -principal 2-bundle on X 1s modulated by a smooth 2-functor like this:

X))G ~—mmmmmmm e » B[ /G ~ B(I'x G)

modulating map

~

BG

on the right we have equivalently the semidirect product 2-group.



Principal 2-bundles via smooth 2-groupoids — Equivariance.

For X2 G a smooth manifold and I'Y G a smooth 2-group
both equipped with smooth G-action, a
G-equivariant I -principal 2-bundle on X 1s modulated by a smooth 2-functor like this:

)(/'/\C; eg. equivariant real bundle gerbe y B2U( 1 ) //Z2 ~ B (BU( 1) > Zz)

modulating map

~

BZ,

on the right we have equivalently the semidirect product 2-group.



Principal 2-bundles via smooth 2-groupoids — Associated 2-bundles.

homotopy quotient of
A // (F X G) smooth 2-groupoid A
universal equivariant
associated A-fiber bundle

X/G . . B(I'x G)

modulating map

/

BG

A fibration over that 1s equivalently
an equivariant o-action (I' x G) CA
embodied by its universal associated 2-bundle.



Principal 2-bundles via smooth 2-groupoids — Associated 2-bundles.

homotopy quotient of
E // G > A // (F X G) smooth 2-groupoid A
associated equivariant (pb) universal equivariant
A-fiber 2-bundle associated A-fiber bundle
e —— "L'
X/G . » B(I'x G)
modulating map

T~

BG

Its pullback 1s

the equivariant A-fiber 2-bundle

which 1s associated to

the given equivariant principal 2-bundle.



Principal 2-bundles via smooth 2-groupoids — Associated 2-bundles.

= = homotopy quotient of
E // G > A // (F X G) smooth 2-groupoid A
7 me -
section / Wt oﬁ.“%&““‘?/ - : -
I 6\1\(““ _ - universal equivariant
\ o - associated A-fiber bundle
\ -

e //

X/G - : » B(T'x G)

modulating map

T~

BG

The equivariant sections are equivalently
the lifts of the modulating map.



Twisted equivariant non-abelian cohomology.

homotopy quotient of
A // (F X G) smooth 2-groupoid A

E\\Y . “i
coc‘l :q\).“] ‘A‘ﬁ‘; - >7
\) -
1_\*}‘1"5‘6\\0“\0\0%‘}/ -7 universal equivariant
A -7 associated A-fiber bundle
e — - -~ "L'
X/)G . » B(I'x G)
twist

Equivalently, these are the cocycles of
T-twisted G-equivariant A-cohomology.



Twisted equivariant non-abelian cohomology.

/
homotopy quotient of
A // <F X G) smooth 2-groupoid A
ae w {\a‘“
twisted equivariant c"c%_ec\““’?,g% -
COhOIIlOlOgy set < N‘S‘s&,“\o\ofg -7 uniyersal equivariant
AT X o - associated A-fiber bundle
¢X) =9 i
X/)G — » B(I'x G)
\ BG

Equivalently, these are the cocycles of
T-twisted G-equivariant A-cohomology.

\

/
/ “~htpy



0 — Cohesive o-Topoi

I — Equivariant co-Bundles

II — TED-K-Theory

IIT — Anyonic Defect Branes

IV — Quantum Computation



This part 1s a
quick motivation and exposition of
twisted equivariant KR-theory
following these articles:

Equivariant Principal oo-bundles [arXiv:2112.13654]
Anyonic Defect Branes in TED-K-Theory [arXiv:2203.11838]

The TED character map (in preparation)


http://ncatlab.org/schreiber/show/Equivariant+principal+infinity-bundles
http://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHOS82]). The vacua of the free Dirac quantum field
in a classical Coulomb background...

ur, VT single
electron/positron
Ul vl wavefunction

K PO JO )

Coulomb
potential




Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHOS82]). The vacua of the free Dirac quantum field
in a classical Coulomb background are characterized by Fredholm operators...

finite-dimensional kernel Fredholm operator finite-dimensional cokernel

ker(F) < > H dE— »  coker(F)

bounded linear

_/\

weH |V (9]F|y) =0 weH | Vy (WF|p) =0




Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHOS2]). The vacua of the free Dirac field
in a classical Coulomb background are characterized by Fredholm operators

finite-dimensional kernel Fredholm operator finite-dimensional cokernel
F
ker(F') « > H — H »  coker(F)
bounded linear

N\

yeH |V (9|F|y) =0 yEH |V (W|F|¢p) =0

on the single-electron/positron Hilbert space:

single electron
Hilbert space

electron states in ker< F ) SN "}-[ P

dressed vacuum

= o =
Fredbtfled Yacyy itron states i
— m L)) positron states in
:7—[ Opepatw _7‘[ —> COker( F ) dressed vacuum
single positron
Hilbert space
total charge in number of electrons in number of positrons in
dressed vacuum dressed vacuum state dressed vacuum state
ind(F) = dim(ker(F)) — dim(coker(F))

— dim(coker(F *)) — dim(ker(F *))



Quantum symmetries.

On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group ‘a&&\% o O@Q a0
U x U, e
X ( Zz X ZQ )
U(1) —~— O~
{e,P}  {eT}
group of quantum symmetries
C:=prr, pP|U,U]|:=U, U]|-P, T-|U,U



Quantum symmetries.

On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group 6“% Q\?f
U(H) x U(H) i e
X ( Zy x Z )
o (xZe
{G,P } {e,T}

group of quantum symmetries

C:=prr, pP|U,U]|:=U, U]|-P, T-|U,U

naturally acts by conjugation:

U, ,U_ F — U 'oFoU_
C-[Uy,U_] F — U 'oFoU,
P U U F —— U 'oF*oU,
T-[U,U_] F — U 'oFoU_



Twisted equivariant KR-theory — As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute rwisted equivariant KR-cohomology:

KR

T
G

(X) :

\

. 7 ©
orbi- e c°°
orientifold ~
X/G >
twist T

/ “~htpy



Twisted equivariant KR-theory — As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KR

T
G

(X) :

\

& 7
Q
3 & d |
8
> Qqﬁ d & universal bundle of
_Q‘b{“b\ or 7 QJ& self-adjoint odd Fredholm operators
ARSI over moduli stack of quantum symmetries
S S
Q‘ 4 \62:\
orbi- 7 /codc \l,
orientifold ~
. U(H)xU(H)
X/G —— B « {e,P} x {e,T}
twist T U( 1)

/ “~htpy



Twisted equivariant KR-theory — As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KR

T
G

(X) :

\

» 7
Q
3 & d |
8
> Qqﬁ d & universal bundle of
_Q‘b{“b\ or 7 QJ& self-adjoint odd Fredholm operators
ARSI over moduli stack of quantum symmetries
S S
Q‘ 4 \62:\
orbi- 7 /codc \l,
orientifold ~
. U(H)xU(H)
X/G —— B x{e,P} x{e,T}
twist T U( 1)

Qbo’?q'
NG 3
Gy

B({e,C} x {e,T})

/ “~htpy



CPT Quantum symmetries.

pure quantum T-symmetry

B({e,T}) — L —T B(
s v
B({e, P} x{e,T})

U(H) x U(H)
U(1)

x {e, T}) —— B(BU(1) x {e, T'})

Let’s use the previous machinery to compute the possible quantum T-symmetries...



CPT Quantum symmetries.

B({e,7}) ——1 >B<
~ /

T

T

O\
/
! \
7

pure quantum T-symmetry

B({e, P} x{e,T})

T

T

/
\
/
-

e —~H—r o

~)

o <—~H— @

~)




CPT Quantum symmetries.

pure quantum T-symmetry

rer . o (UEOXUED) .
B({e,T})\ / B( 0 { ,T}) —— B(BU(1) x {e, T'})
B({e, P} x{e,T})

S

o —~)—> @
4
o
)74
(@)
o <—~H— @
]
e —~N)—> @
Y
<o= 3
%

N
N
<7 e o
AN [ 1)

T T T e T T | T
/ f

~ ~ \'4 ~

° ° ° T > @ ° T > @

So ¢ = ¢ and hence there are two choices for quantum T-symmetry, up to homotopy:

T?=+1 and similarly C?=+1.



Example — Orientifold KR-theory

Let I be Inversion action on 2-torus T2 ~ R? /72 and trivial action on observables

2 I 72 0 LN 0
T > T FlredC /Fred(C

If T acts as 7 on T2, then KRT*=+1ig Atiyah’s Real K-theory aka orienti-fold K-theory:

( )

Fredg//(U(ﬂ{) x{e,T})

—_— i
—
—_—
—
—
—
—_—
—
—
—
—
—_—

KR(T°2) =~ | T2 ffe, o L BUH) x (e, T} (

/ / “~htpy




Example — Orientifold KR-theory

Let I be Inversion action on 2-torus T2 ~ R? /72 and trivial action on observables

0
Fred o

. 0
> Fred -

F F.

—

If T acts as 7 on T2, then KRT*=+1ig Atiyah’s Real K-theory aka orienti-fold K-theory:

y

T02) ~
KR(T ) = T2/{e.} . T2=+1
11)6 .

N

Fredg//(U(ﬂ{) x{e,T})

!

— B(U(%) x{e,T}) >

/ / “~htpy

But what happens on /-fixed loc1 1.e.

?

on “‘orientifolds”



CPT Quantum symmetries — 10 global choices.

(following [FM12, Prop. 6.4])

Equivariance group G=|| {e} | {eP} {e,T} {e,C} {e,T} x{e,C}
)
Realization as "= 1 -1 +1 -1 -1 +1
uantum symmetr
q ymmety 2 = o I T I O I A S N B
E ;= iTCp
E,= iCp iCp
E = Pp Cp CB | CP
Maximal induced
. . 0
Chfford action E.o= B B B (g —[3> B B B B B B
anticommuting with
all G-invariant odd E. = (0 1) C Cp | CB
I
Fredholm operators i ! 9 P
E.p= (? 5) iCB iCB
0 -T Fap
Eyy= 0 ) i7C
_ 0 iT
Eva= (if o)
rtwisted Gequvariant— ype ||l g0 | ku! || ko' | KO* | KO? | KOS | KO! | KO | KO® | KO
KR-theory of fixed loci




7

bounded opers. F: 9 % 7> bounded oper. Ey, -+ E,: 7* % 7>
A ~ graded comm. .
selfadjoint— F* =F :=F+F" | poF__Fop WM (antiself-adjoint  (E;)* =sgn;-E;
| Fredholm dim (ker(F)) < oo Cliffrdgen.  Ej0Ej+EjoE; =2sgn;-§;j |
_. —p
=: Fred,
E = iTCP
E_2 = ié\ B 16 B
E = PB Cp Cp | Cp
Maximal induced
Clifford action Eio= B B B (ﬁ 0 ) B B B B B B
anticommuting with 0 -p
all G-invariant odd E. = (0 1) Cp CB | CB
1 pu—
Fredholm operators i L0
0 i P A
Ey= (1 (1)) iCp iCp
_ 0 -T AN
0 iT
Era= (if 0 )
T-twisted G-equivariant T 0 1 0 4 0) 6 1 3 5 7
. = ||| KUY | KU KO KO KO~ | KO® | KO' | KO’ | KO’ | KO
KR-theory of fixed loci




Example — T I-equivariant KR-theory is KO"-theory.

The combination 7" -1

acts trivially on the domain space and
by complex conjugation on observables.

Hence (T - I)-equivariant (72 = +1)-twisted KR-theory is KO°-theory:

KO (X)

y

|
S
X
%
\
~
o
~N
I~
—
\
\

Fredg//(U(,’?{) x {e,T})

-7
- ‘
-
—
-
-
-
—
-
-
-
-
-
-
-

T2=+1 - B(U(H) x{e,T})
O’I?Iosac,ioh . 0‘“?\0“?;‘2\2
Ve /\}pace COTvli)tllllled W/
B{e, T}

N

/ / ~htpy



Example — 7'/-equivariant KR-theory of punctured torus.

So the T'I-equivariant (fz = +1)-twisted KR-theory of the N-punctured torus is
KR(fz = +1) (ﬁZ \ {kla o ;kN})
~ KO°(T?\ {ki,--- ,kn})
~ 0 1
~ KO'(\/, ,S:) =1

:@Zz

I+N

S)

o > ] [ P ®
S A A A @ A

o > o [ > ®

ﬁ\fz ifz\{kl} ﬁf2\{16171627163} ﬁz\{kh”')kn}
~ Slvslvs? ~ §, VS ~ SIVSvStvs! ~ s!
Sta}le Sa \/Sb \/Sblllk htpy a b htpy a b htpy \/1+n



The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

BU(H) —— B(U(H)/U(1)) —2 B>U(1)



The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

BU(H) —— B(U(H)/U(1)) —2 B>U(1)

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles equivariant bundle gerbes

o Map(f//\c;,B(U(}[)/Uu))) DD., noMap(f//\G,BzUa))



The B-field twist.

Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field.

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class
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Hence the
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of a G-orbi-singularity of shape X
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The B-field twist — Inner local systems — The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:
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-
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vie lh®v
. P pi®2(C) - @ pi®A(C)
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For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:
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"
BG llpec BPU(H)
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stable G-representation

P, pi ® *(C) > @, pi @ (*(C)

F lp]-1
Fre : -
dbo/m action of group character on equivariant Fredholm operator
0
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ol .pi ®0*(C) > @, pi®*(C)
691 pl®€ (C) @l p ! ® E (C tensoring with unit of group character ‘ @l p ! ® E (C
p] ti;/];ll.l/g[ 10 .L'I[
¥ l‘{[[or
@01 2(C) @, pilg)sid st g o ®,pilg)eid

x 1 j
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One aspect of these twistings becomes transparent under the Chern character:

This 1s the hidden 1-twisting in TED-K — that we will next relate to anyons. ——

inner local system

-twisted K-theory 1-twisted periodic de Rham cohomology
n—+ [a)l] twisted equivariant . +2d ° .
KUCK (X) Chern character ! d?ZHn ( dR (X’ C) ) d —I_ r- wl /\ )

of A-type singularity
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This part 1s a brief indication
of a few aspects discussed in:

Anyonic Defect Branes in TED-K-Theory [arXiv:2203.11838]


http://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
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Anyons in condensed matter & string theory.

In solid state physics

anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics 1s that of
Wilson lines in s1(2)-CS theory.
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(numerical simulation from arXiv:1901.10739)


https://arxiv.org/abs/1901.10739

Anyons in condensed matter & string theory.

In solid state physics In string theory
anyons are presumed pointlike defects exotic branes of codimension=2,
in gapped topological phases of such as D7-branes @ ALE in 9+1 D
effectively 2-dimensional materials or M3 = M5 1 M5 branes in 5+1 dim,
whose adiabatic dynamics is that of are thought to carry SL(2)-charges
Wilson lines in su(2)-CS theory. and to be anyonic [dBS13, p.65]
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Anyons in condensed matter & string theory.

In solid state physics

anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics 1s that of
Wilson lines in su(2)-CS theory.

In string theory

exotic branes of codimension=2,

such as D7-branes @ ALE in 9+1 d
or M3 = M5 | M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it 1s expected that:

ground state wave functions of
4 spin=w; Suyk-anyons at
positions z, in transverse plane

space of “conformal blocks”

>~ ConfBlck® STk (W,2)

As the positions z, move, these spaces constitute braid group representations.

Previously Open Question: Is this structure at all reflected in TED-K-Theory?

Yes! ——
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Consider
K = k+2 “level”

wy € {0,--- k} “weights”

zi € Az,--,zvt “punctures”
. Wy dz
1 o K z2—2] ==
. - \
su(2)-affine deg=1 I-twisted deg=1 |
conformal blocks  natural de Rham cohomology
1 oo inclusion 1 . .
CnfBlck —, (W,Z) > H ( R(C\{Z}),d+ o A ) [FSV94, Cor. 3.4.2]
2
natural
inclusion 1 .
c » KU T ((CC \{Z}) x *//Cy; C) [SS22, Prop. 2.16]

inner local system-twisted deg=1

K-theory of A,_;-singularity (as explained above)
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inner local system-twisted deg=n K-theory
of configurations in A, _{-singularity

The previous statement is subsumed since C?r}lf(X) = X.
I
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are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ay, 1-orbi-singularities.

This 1s compatible with traditional brane charge quantization (only) in degree 1
while in general degree it 1s compatible under Hypothesis H, which asserts [SS19]
that quantum states of branes are in the generalized cohomology of

Cohomotopy cocycle spaces of spacetime:

3-Cohomotopy cocycle space 3-Cohomotopy cocycle space
for codim=1 branes for codim-2 branes

orggrli(ilgll)l(l).?nttig?nsg?ec e1:3103fne Map* <R+ /J\\(Ccpt, S3 ) = Map* (chtj/i(c-f- ) S 3 ) =
Hn{lConf} (C) ~ HnCOnfn (C; cht) X HnConfn (R; Ccpt)

11,, Conf, (>|<; (R x C)Cpt)

Fiber product of respective configuration spaces
(of un-ordered points escaping to transverse infinity)
reflecting the brane intersections

MK6
The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
their transverse plane.

g.: f ~
“g (Lo (O

7\
~"

X1 < x < x3 R —
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For expository outlook on

Topological Quantum Programming in TED-K [arXiv:2209.08331]

SCC.

ncatlab.org/nlab/files/CQTS-InitialResearcherMeeting-Schreiber-220914.pdf



https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/files/CQTS-InitialResearcherMeeting-Schreiber-220914.pdf
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slides and pointers at: ncatlab.org/schreiber/show/TED+cohomology



https://nyuad.nyu.edu/en/research/faculty-labs-and-projects/center-for-quantum-and-topological-systems.html
https://diffeology.net/index.php/seminar/
https://diffeology.net/
https://ncatlab.org/schreiber/show/TED+cohomology

