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Abstract.

The aim of topological data analysis (TDA) is to provide qualitative anal-
ysis of large data/parameter sets in a way which is robust against uncer-
tainties and noise. This is accomplished using tools and theorems from the
mathematical field of algebraic topology. While a tool called persistent
homology has become the signature method of TDA, it tends to produce
answers that are either hard to interpret or impossible to compute.

Both problems are solved by a variant method [FK17] which we may
call persistent cohomotopy: A first result shows [FKW18] that this new
method provides computable answers to the concrete question of detect-
ing whether there exist data+parameters that meet a prescribed target in-
dicator precisely, even in the presence of uncertainty and noise.

More generally, efficient data analysis will require further refining persis-
tent cohomotopy to twisted equivariant cohomotopy [SS-Orb, §5]. Curi-
ously, this has profound relations (Hypothesis H) to formal high energy
physics and quantum materials, connecting to which might serve to fur-
ther enhance the power of topological data analysis.
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Find data meeting prescribed target with uncertainties – The problem.
Given high-dimensional data+parameters and a handful of indicators
subject to uncertainty & noise. Can a given target be met?

target

B n
r

data+parameters
∼ meeting target

high dimensional
data+parameters

X indicator
f Rn

low dimensional
indicator values
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Find data meeting prescribed target with uncertainties – The problem.
Given high-dimensional data+parameters and a handful of indicators
subject to uncertainty & noise. Can a given target be met?

target

B n
r

data+parameters
∼ meeting target

high dimensional
data+parameters

X indicator
f Rn

low dimensional
indicator values

e.g. risk & reward
with uncertainties

(cf. [DTU, Fig. 3]
[CEK97, Fig. 3/4])
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Find data meeting prescribed target with uncertainties – The strategy.
Use mathematical tools from algebraic topology (e.g. [Ca09][Ou15]):

topology: robustness under mild deformations: algebraic: tractable invariants

data points:
homology/
homotopy

data+parameters:
topological
space

data values:
co-homology/
co-homotopy
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Find data meeting prescribed target with uncertainties – The strategy.
Use mathematical tools from algebraic topology (e.g. [Ca09][Ou15]):

topology: robustness under mild deformations: algebraic: tractable invariants

traditional approach of
persistent homology:

see how apparent cycles
of fuzzy data points
persist across resolutions

−−−−−−!

data points:
homology/
homotopy

data+parameters:
topological
space

data values:
co-homology/
co-homotopy

6



Persistent homology – cycles of fuzzy data points.
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Persistent homology – cycles of fuzzy data points.
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Persistent homology – cycles of fuzzy data points.

so persistent homology allows to
detect apparent cycles in the data

fascinating – but

implication for practical data analysis
needs to be figured out by other means
and often remains mysterious.

let’s recall the practically relevant question
−−−−!
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Find data meeting prescribed target with uncertainties – The problem.
Given high-dimensional data+parameters and a handful of indicators
subject to uncertainty & noise. Can a given target be met?
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Find data meeting prescribed target with uncertainties – The strategy.
Use mathematical tools from algebraic topology:

topology: robustness under mild deformations: algebraic: tractable invariants

data points:
homology/
homotopy

data+parameters:
topological
space

data values:
co-homology/
co-homotopy
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Find data meeting prescribed target with uncertainties – The strategy.
Use mathematical tools from algebraic topology:

topology: robustness under mild deformations: algebraic: tractable invariants

novel approach of
persistent cohomotopy:

find shape of data with
fixed indicator value
under given uncertainties

data points:
homology/
homotopy

data+parameters:
topological
space

data values:
co-homology/
co-homotopy
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Persistent cohomotopy – The idea.
1. Narrow in on potentially successful data points within given uncertainty.
2. Indicator winding guarantees that at least one is successful with certainty.

= data+parameters meet target

x

f (x)

target

uncer
tain
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−r
X/gray ≃ S1

R
1 /
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≃

S1

[ f ]r =+1 ∈

cohomotopy︷ ︸︸ ︷
π

1(X/gray
)

unit winding
⇒ success guaranteed
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Persistent cohomotopy – Results.

Theorem [FK17][FKW18]: For dim(X)≤ 2n−4
the persistent cohomotopy [ f ]r is computable,
hence the success guarantee is decidable.

Bonus: Persistence of [ f ]• yields the max. tolerable uncertainties.
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Cohomotopy – the general story.
The power of cohomotopy follows
general principles of algebraic topology:

homology generalized homology homotopy

co-homology generalized co-homology co-homotopy

twisted
cohomology

equivariant
cohomology

twisted
cohomotopy

equivariant
cohomotopy

twisted equivariant
cohomology

twisted equivariant
cohomotopy

[SS-Orb, §5]

coarser finer

yetfiner

du
al

ity

for data points

for data values
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cohomotopy

[SS-Orb, §5]

coarser finer

yetfiner

du
al

ity

enhance

for data points

for data values

99



Cohomotopy – the general story.
The power of cohomotopy follows
general principles of algebraic topology:

homology generalized homology homotopy

co-homology generalized co-homology co-homotopy

twisted
cohomology

equivariant
cohomology

twisted
cohomotopy

equivariant
cohomotopy

twisted equivariant
cohomology

twisted equivariant
cohomotopy

[SS-Orb, §5]

coarser finer

yetfiner

du
al

ity

enhance

for data points

for data values

100



Cohomotopy – the general story.
The power of cohomotopy follows
general principles of algebraic topology:

homology generalized homology homotopy

co-homology generalized co-homology co-homotopy

twisted
cohomology

equivariant
cohomology

twisted
cohomotopy

equivariant
cohomotopy

twisted equivariant
cohomology

twisted equivariant
cohomotopy

[SS-Orb, §5]

coarser finer

yetfiner

du
al

ity

enhance further

for data points

for data values

101



Cohomotopy – further enhancements: twisting.
Often indicator values include tangent vectors to a manifold
for example: global wind velocity

clim
ate model parameters

X ×
points on earth’s surface

S2
local data values (velocity

vectors)

R2 ×
O(2)

global twist

(sin
ce earth

isn’t flat)

Fr(S2)

BO(2)

f = wind velocity

twist by
sphere tangent bdl

In such case
indicator winding is in tangentially twisted cohomotopy

([FSS-Char][FSS19][FSS21a][FSS21b]).
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Cohomotopy – further enhancements: equivariance.

Often data arises in multiple copies XN = X ×·· ·×X , where
the order of the copies must not matter X × X × X · · · × X × X

this means that indicator values must by equivariant
under the action of the permutation group SymN :

XN
(
Rn

)N
.

SymN

f

equivariant indicators

SymN

In this situation
indicator winding is in equivariant cohomotopy ([SS20a][BSS21]).

In general, indicator values are both: equivariant and twisted.
In this general case
indicator winding is in twisted equivariant cohomotopy ([SS-Orb, §5]).
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Conclusion.

• Topological data analysis brings power tools of algebraic topology

to robustly detect global structure in large data.

Popular persistent homology is only the coarsest of these tools.

Novel persistent homotopy is a much finer tool, but

its output still hard to interpret in practice of data analysis.

Practically relevant question of data meeting target indicators

is answered instead by co-homology and the finer co-homotopy.

Basics of persistent cohomotopy have been developed [FK17]

and proven to be practically useful (computable) [FKW18].

General applications will require twisted & equivariant cohomotopy [SS-Orb].

At CQTS we plan to develop the refined tool of

persistent twisted equivariant cohomotopy for practical TDA.
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