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Abstract

I will review the theory of a Green-Schwartz supersymmetric closed membrane embedded
in flat superspace in eleven dimensions. After performing a gauge-fixing, we obtain a theory
which can be viewed as a limit of SU(N) matrix models, where N tends to infinity. This
regularisation procedure, and especially the role of the gauge groups, shall be the central
topic of the thesis. Finally we discuss this procedure in the case of membranes embedded in
superspaces with compactified bosonic directions.
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1 INTRODUCTION

1 Introduction

In order to consistently combine the microscopic description interacting particles, quantum field
theory, with the behaviour of spacetime and matter at large scales which is ruled by general rel-
ativity, a theory of stringlike objects seems to be the most promising candidate. String theory
replaces the worldline of a particle with a 2-dimensional worldsheet swept out by a one-dimensional
object, and particle states arise from the vibrating modes of the string. Originally, this concept
was introduced to explain the observed relation between mass and spin of hadrons. Although
little success was achieved in this direction, the string model would soon become a very popular
and promising theory for the description of nature at its most fundamental level. Its biggest
advantage is the combination of diffeomorphism invariance, resulting in graviton states, with a
simple harmonic oscillator spectrum which arises after an appropriate gauge fixing. The less at-
tractive feature is the fact that its quantum mechanics is Lorentz invariant only in 26-dimensional
Minkowski target space. One can include worldsheet spinors carrying a spacetime vector index in
a supersymmetric fashion; this results in the so-called Ramond-Neveu-Schwarz (RNS) superstring.
Again, requiring the angular momenta and Lorentz boost operators to obey the Lorentz algebra
restricts the dimension of the background, to 10-dimensional Minkowski space this time.

The massless states of the RNS superstring are recognised to constitute a ten-dimensional super-
gravity multiplet: an irreducible representations of the super-Poincaré algebra in ten dimensions.
A supergravity theory is a field theory which is locally invariant under a super-extension of the
isometry group1 of some spacetime. The resulting algebra is called supercommutative, and such
algebras were all classified in [1]. Accordingly, supergravity theories can only exist in certain
spaces of particular dimensions. Group-theoretical arguments show that the maximal dimension
of Minkowski spacetime which allows a supergravity theory (with a finite number of fields) is not
ten, but eleven. The eleven-dimensional supergravity Lagrangian was found in [2], and is believed
to be the most fundamental theory because upon compactification and dimensional reduction var-
ious lower-dimensional supergravity theories can be deduced from it.

The superstring theories (there are several inequivalent ones, corresponding to different choices of
boundary conditions of the spinors), not only generate the particle content of the supergravities
based on ten-dimensional Minkowski space, but also generate the dynamics. The supergravity
equations of motion follow from renormalisation conditions on the background fields in the ac-
tion of a superstring moving in such a supergravitating target space. The connection is even
more apparent in the Green-Schwartz formulation of a superstring, based on a mapping from
the worldsheet into a supermanifold, whose geometry determines the supergravity background.
With ten-dimensional supergravity being the classical limit of superstring theory, the rôle of the
eleven-dimensional theory was not understood. The superspace formulation has a geometric con-
straint that implies closedness of a super four-from. This allows a Green-Schwartz coupling to
a 2-dimensional extended supersymmetric object [3], called the supermembrane. The idea to re-
place fundamental particle states with the vibration modes of a membrane goes way back before
string theory to the fifties, and is due to Dirac [4] in an attempt to describe the electron. The
bosonic theory of membranes had little success, until the supermembrane was proposed as the
eleven-dimensional alternative to superstrings. However, the Green-Schwartz supermembrane suf-
fers several disadvantages. As opposed to string theory, which upon a suitable gauge fixing turns
into a quantum system of free harmonic oscillators, the supermembrane exhibits a nonlinear higher
order interaction term. The potential which governs its local self-interaction has flat directions,
which cause every state of macroscopic area to be unstable, and the mass spectrum is continuous
without a gap between massless and massive states [5]. These cumbersome features make a parti-
cle interpretation of the vibrating supermembrane modes difficult, if not impossible. It seems as
if the description of a single membrane already incorporates multiple membrane states, because

1This can be generalised to ’conformal group’
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1 INTRODUCTION

cutting and gluing stringlike spikes costs no energy. At the time of these discoveries, pursuing
this path seemed hopeless and supermembrane theory was declared dead. Yet some features of
the ground state were deduced by rewriting the supermembrane action as gauge theory of area-
preserving diffeomorphisms [6]. Area-preserving diffeomorphisms are smooth bijective mappings
(with smooth inverse) from the membrane spacesheet to itself in such a way that a given vol-
ume element is left invariant. Roughly speaking, these mapping are generated by Hamiltonian
or divergence-free vector fields on the spacesheet. ’Approximating’ the infinite dimensional gauge
group by SU(N) as N −→ ∞ provides insight to the quantum mechanics, but far more impor-
tantly it clears the way to a new physical interpretation of the continuous spectrum and the rôle
of the supermembrane w.r.t. superstring theory. The SU(N) gauge theories which are used to
approximate the membrane dynamics are called matrix models, and they arise by a dimensional
reduction of ten-dimensional SU(N) super-Yang-Mills theory to a point in space. They gained
interest in the nineties, during the ’second string revolution’, as it was discovered they constituted
the low-energy effective theory describing an ensemble of N Dirichlet particles of Type IIA string
theory.

Dirichlet branes [7] were acknowledged as a necessary ingredient to any string theory when T -
duality was discovered. T -Duality is based on the observation that a compactified closed-string
theory (as opposed to ordinary field theories) ’grows’ an extra dimension as the compactification
radius tends to zero (as it does if the radius tends to infinity). Even stronger, compactified string
theories with a radius R and α/R are equivalent up to a bijective mapping of the Hilbert spaces.
Open strings with von Neumann boundary conditions which ensure momentum conservation at
the endpoints however behave differently: in the R −→ 0 limit their endpoints get restricted to
the uncompactified sector; in the T -dual picture it corresponds to an open string whose endpoints
are restricted to some extended volume, in other words, the von Neumann boundary conditions
are replaced by Dirichlet boundary conditions. The existence of a static object on which strings
end and transfer momentum to is in contradiction with special relativity. Hence the D-branes
must be dynamical. As previously the massless states of the string governed the geometry of the
background, now the massless states may be seen to govern the D-brane dynamics. More precisely,
the massless modes in compactified directions become embedding coordinates of the brane, and
the remaining massless states are identified as U(N) gauge fields, where N is the number of branes
one is considering. Requiring the branes to be charged under the R-R fields, each string theory
type constitutes a particular set of such D-branes, and in particular the type IIA string model can
incorporate D-particles, D-membranes and D-fourbranes and D-sixbranes.

The low-energy effective action of the branes is given by super-Yang-Mills theory reduced to the
worldvolume of the branes. Here the matrix models come back in the picture: ordinary type
IIA superstrings may be considered living on a very large 9-dimensional torus, whose low-energy
effective action under T -duality is described by an ensemble of D0-branes, namely the matrix
model. The connection between the supermembrane and the system of D-particles is only one of the
fruits of dualities and D-brane physics. Eleven-dimensional supergravity came back in the picture
when it was realised as the strong coupling limit of type IIA string theory [8]. Hence the eleven-
dimensional world and (type IIA) ten-dimensional models are somehow connected: wrapping a
supermembrane’s spacesheet along a compactified dimension gives a fundamental type IIA string,
and wrapping eleven-dimensional supergravity on a small circle yields type IIA supergravity in ten
dimensions. Conversely in the strong coupling limit the type IIA string grows an extra dimension,
and becomes effectively eleven-dimensional supergravity in the low-energy limit. Furthermore all
kinds of dualities between the different types of string theory appeared, which provided arguments
in favour of a unifying eleven-dimensional theory called M-Theory [9], producing all the string
theories and supergravities by taking appropriate limits and compactifications. Motivated by the
relations between type IIA string theory, eleven-dimensional supergravity and the matrix models,
the authors of [10] made a bold conjecture that matrix theory captures all the degrees of freedom
of M-theory in the infinite (longitudinal) momentum limit.
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Figure 1: The framework of M-theory. The relations are discussed in the text. The dotted arrow is the subject of
this thesis.

The rôle of supermembranes in this framework deserves attention, as they may be the key ingredi-
ent to a definition of M-theory. It is therefore essential to understand the matrix regularisation of
a membrane, and how it should be performed on membranes moving in target spaces with compact
directions. Especially the harmonic vector fields, Hamiltonian vector fields on the spacesheet which
are not the gradient of a function, seem to have no place in the matrix truncation of the membrane
algebra. This causes problems if one attempts to regularise wrapped membranes. The goal of this
thesis is to review the membrane theory, with special attention to the harmonic diffeomorphism
generators. We will include them explicitly in the gauge theory of area-preserving diffeomorphisms,
and carefully study the obstructions to their matrix regularisation. Finally we will try to set up a
general framework for a regularisation procedure of supermembranes in compactified target space,
including harmonic vector fields. The paper is written for both physicists and mathematicians. In
the first chapter some basic mathematical and physical aspects of supersymmetric field theories
are treated. We start with the definition of supermanifolds and superalgebras. The second and
third section are about Clifford algebras, spinor representations, and adjoints and inner products
on these spinor modules. Then we put this information at work when we define superextensions
of Poincaré algebras and their representations. Subsequently all this is embedded in a consistent
geometrical framework and we are able to study the geometry of the supermanifolds. At the end of
the first chapter we give a short summary of classical field theory. The second chapter starts with
eleven-dimensional supergravity both in the ordinary formulation as well as the supermanifold
formalism. These theories provide essential insight in the Lagrangian governing the supermem-
brane, which is studied in the second section. After a gauge-fixing, we describe the gauge theory
of area-preserving diffeomorphisms in the final section. The third chapter covers the core of the
paper: in its second section we introduce the matrix model and discuss its relation to the APD
gauge theory. The third section is entirely devoted to the mathematics behind the regularisation.
Finally, we consider winding membranes, and show how they provide the solution for the harmonic
vector fields.
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2 PRELIMINARIES

2 Preliminaries

2.1 Supermanifolds

2.1.1 Graded Vector Spaces

A supermembrane, the object of interest of this thesis, is an object defined by a mapping from
an ordinary 3-manifold (the worldvolume) to an ambient curved space (the embedding space or
background) which is parameterised by some ordinary, commuting (’bosonic’) coordinates and a
number of anticommuting (’fermionic’) coordinates. In this section we shall make an attempt
to rigorously define this setting by means of the theory of supermanifolds. Then this theory is
applied to the spinor bundle over a pseudo-Riemannian manifold, collecting the anticommuting
coordinates in a representation of the orthogonal group on the tangent space. A super vector
space is a vector space V with a direct sum V = V0 ⊕ V1. We shall call V0 the even component
and V1 the odd one. A homogeneous element v, which is either in V0 or V1, is given a definite
parity P(v), which takes the value i if v is in Vi. The super vector space V is called a Z2-graded
algebra if it is equipped with a product such that ViVj ⊂ V(i+j)mod2. The resulting algebra is
called supercommutative if for all homogeneous elements v, w in V we have vw = (−1)P(v)P(w)wv.

The most basic supercommutative algebra is the Grassmann algebra
∧
V over an n-dimensional

vector space V over a field F . It is the linear sum of the exterior algebras of V [11],

∧
V =

∞⊕
p=0

p∧
V ,

p∧
V = (⊗pV )/W p , (2.1.1)

where W p is the linear space spanned by p-fold products of the form

v1 ⊗ . . .⊗ vp ∈ ⊗pV with vi = vj for some 1 ≤ i < j ≤ p . (2.1.2)

By definition
∧0

V ' F . The p-th exterior algebra is an F -linear vector space, rôle of the zero
element is played by the elements of W p. We define the ’wedge’ product by

x1 ∧ x2 ∧ . . . ∧ xp = [x1 ⊗ x2 ⊗ . . .⊗ xp] , (2.1.3)

where the right-hand side is the equivalence class in
∧
V containing x1 ⊗ . . .⊗ xp. By definition,

(u+ v)∧ (u+ v) = 0 and by linearity we see u∧ v+ v∧u = 0: the wedge product is antisymmetric
in all factors and contains therefore the necessary property for the construction of graded vector
spaces. A basis (e1, . . . en) of V provides d generators θi = [ei] of the Grassmann algebra and the
p-fold ordered wedge products of these classes are a basis of

∧p
V . Hence

dim(
p∧
V ) =

(
n

p

)
, (2.1.4)

and consequently
∧p

V ' ∧n−p
V and dim(

∧
V ) = 2n. An arbitrary element of

∧
V can thus be

uniquely decomposed as

z =
∑

α∈(Z2)n

cαθ
α , where θα = θα1

1 ∧ . . . ∧ θαn
n αi ∈ {0, 1} . (2.1.5)

The even and odd subspaces are easily identified as the subspaces spanned by the θα with α1 +
. . .+ αn respectively even and odd.

9



2.1 Supermanifolds 2 PRELIMINARIES

2.1.2 Supermanifolds

We proceed with the construction of superspaces with nontrivial geometries, so-called superman-
ifolds. In our definition we shall closely follow [12], which is simple and rigourous. The super-
manifold formalism is founded on an ordinary smooth manifold, the body manifold, on which a
Z2-graded algebra is constructed. The topology on the resulting supermanifold shall be inherited
from the underlying body manifold; this is assured by the use of sheaf theory:

Definition. Let X be a topological space with topology T (the set of open subsets of X). A
sheaf of algebras is a map A : T −→ C , where C is a collection of algebras over some field F , such
that for each open U ⊆ X, A is an algebra and the empty set is mapped to the trivial algebra
A(∅) = 0, and for all open V ⊆ U ⊆ X, there is an algebra morphism (the ’restriction map’)
ρUV : A(U) −→ A(V ) which satisfies

1. for all open U ⊆ X, ρUU = IdA(U),

2. for all open W ⊆ V ⊆ U ⊆ X, ρUW = ρV W ◦ ρUV ,

3. if {Uα}α∈A is an open covering of an open U ⊆ X and s ∈ A(U) such that ρUUα
(s) = 0 for

all α ∈ A, then s = 0, and if sα ∈ A(Uα) satisfies ρUα(Uα∩Uβ)(sα) = ρUβ(Uα∩Uβ)(sβ) then
there exists an s ∈ A(X) such that ρUUα(s) = sα.

Analogously one defines sheaves of groups, rings, modules etc. One may also replace ’algebras’
in the definition above with Z2-graded algebras. An important example of a sheaf of algebras
is C∞M for a smooth manifold M , which assigns to each open U ∈ M the algebra C∞(U) (the
algebra multiplication being multiplication of real-valued functions). A smooth vector bundle
π : E −→ M gives rise to a sheaf of C∞(M)-modules E , which assigns to each open U ⊆ M the
vector space Γ(U,E), the space of local smooth sections of the bundle. If n is the rank of the
vector bundle and U suitably small, we can choose a local basis of vector fields and a local section
e can then be written as (e1(x), . . . , en(x)) where ei ∈ C∞(U). The natural multiplication by an
element f ∈ C∞M (U) acts uniformly on all the components, so as a module, Γ(U,E) is a rank n
free C∞(U)-module. The sheaf E is called a rank n locally free sheaf of modules. Conversely, any
rank n locally free sheaf of modules over C∞M determines a unique rank n vector bundle E over
M . We can associate an exterior algebra

∧
E to E by applying (2.1.1) to the fibers. This gives

rise to a sheaf of algebras
∧ E which assigns to each open U ⊆M the space of sections Γ(U,

∧
E)

(such a space is an algebra under the the pointwise wedge product). Now let M0 be a smooth
d-dimensional manifold and A a sheaf of Z2-graded algebras,

Definition. The pair Md|n = (M0,A) is called a (smooth) supermanifold of dimension d|n if for
each p ∈ M0 there exists an open neighbourhood U of p and a rank n free sheaf of C∞U -modules
EU such that A(U) ' ∧ EU . Local sections of A are called (C∞) superfunctions on Md|n.

The isomorphism has to be an Z2 graded algebra isomorphism. A local section of A is to be
understood as an element of A(U). As mentioned earlier, there exist unique vector bundles EU

which give rise to EU by setting EU (V ) = Γ(V,EU ) for all open V ⊆ EU . Let (θ1, . . . , θn) define
a local trivialisation of EU : we have the vector space isomorphism EU ' U × 〈θ1, . . . , θn〉, where
the latter factor denotes the vector space spanned by the antisymmetrised tensor products of the
generators θi. Moreover, let {xµ} be a coordinate chart over U . We call (x1, . . . , xd, θ1, . . . , θn)
a local coordinate chart of the supermanifold Md|n. Elements of A(U) can be uniquely written
as in (2.1.5), where the cα are smooth real-valued functions of the coordinates (x1, . . . , xd). The
evaluation map ε : A(U) −→ C∞(U) puts all the cα zero, except for c0...0, which is left invariant
by ε. So if we view a superfunction as a map from M0 to the Grassmann superspace generated by
the θi, ε maps a function pointwise to its body fB . A superfunction f on U is called homogeneous
if f ∈ A0(U) or f ∈ A1(U), and the algebra subscript is the degree of f .

10



2 PRELIMINARIES 2.1 Supermanifolds

2.1.3 The Tangent Sheaf

The stalk of a sheaf at a point p ∈ M0 is the set Ap of equivalence classes [U, f ] with U ⊆ M0

open and f ∈ A(U) under the equivalence relation

[U, f ] ∼ [V, g]⇔ ∃W ⊂ U ∩ V : W is open, p ∈W and ρUW f = ρV W g . (2.1.6)

If A(U) = Γ(U,E), then the stalk at p is the set of all classes of sections which coincide in
some neighbourhood of p. The stalks of the sheaf exhibit a natural algebra structure by the
multiplication

[U, f ][V, g] = [U ∩ V, ρU(U∩V )(f)ρV (U∩V )(g)] . (2.1.7)

Note that U ∩V 6= ∅ because p belongs to both open sets. From this moment, we shall denote the
elements of the stalk with their second entry, omitting the maximal neighbourhood on which they
are defined (which can be made arbitrarily small and still yield a representative of the equivalence
class). The evaluation map induces a surjective map εp : Ap −→ F : εp([U, f ]) = ε(f)(p). The
tangent space at p ∈Md|n is a graded vector space whose even and odd subspaces are defined as

TpM
d|n
i = {F -linear v : Ap −→ F | v(fg) = v(f)εp(g) + (−1)iP(f)εp(f)v(g)} , (2.1.8)

for i = 0, 1. The defining equation only holds for homogeneous f but can obviously be extended
to all of Ap by linearity. By construction, the tangent space only depends on an arbitrarily small
neighbourhood of p, as is the case for ordinary manifolds. The super analog of the tangent bundle,
the tangent sheaf, is defined as

TMd|n = (DerMd|n)0 + (DerMd|n)1 , (2.1.9)

where

(DerMd|n)i = {F -linear X : A(M) −→ A(M) | X(fg) = X(f)g + (−1)iP(f)fX(g)} . (2.1.10)

Its elements are called super vector fields. A local super coordinate system (xµ, θj) gives rise to a
canonical basis of vector fields ∂/∂xµ ∈ (DerMd|n)0, ∂/∂θj ∈ (DerMd|n)1 which act on a section
f ∈ A(U) by

∂f

∂xµ
=

∑

α∈(Z2)n

∂fα

∂xµ
(x1, . . . , xd)θα

∂f

∂θj
=

∑

α∈(Z2)n

αj(−1)α1+...+αj−1fα(x1, . . . , xd)θα1
1 . . . θ

αj−1
j−1 θ

αj+1
j+1 . . . θαn

n (2.1.11)

In physics the odd vector field operators defined above are called left derivatives. These fields form
a local basis of TMd|n(U); each local vector field can be uniquely written as

X =
d∑

µ=1

Xµ(x1, . . . , xd, θ1, . . . , θn)
∂

∂xµ
+

n∑

j=1

Yj(x1, . . . , xd, θ1, . . . , θn)
∂

∂θj
, (2.1.12)

where Xµ and Yj are elements of A(U). The vector field (2.1.12) is even if the Xµ are even and
the Yj are odd, and it is odd if the Xµ are odd and the Yj are even. More generally, a (d+n)-tuple
of local vector fields (v1, . . . , vd+n) ∈ ⊗d+nTMd|n(U) is called a local frame field if (v1, . . . , vd)
is a basis of the even subsheaf and (vd+1, . . . , vd+n) a basis of the odd subsheaf. The evaluation
map may be lifted to the tangent space at p ∈ Md

0 ⊂ Md|n by setting ε(v)(ε(f)) = v0(f). This
yields an isomorphism (TpM

d|n)0 ' TpM
d
0 , where TpM0 is the ordinary tangent space to the body

submanifold Md
0 . For the tangent sheaf a similar lifting is possible: ε(X)(ε(f)) = ε(X0(f)), but

it does not induce an isomorphisms of sheaves because there is for example no analog of the even
vector field Y j∂/∂θj with Yj odd in the space of sections of TMd

0 .

11



2.1 Supermanifolds 2 PRELIMINARIES

The cotangent bundle T ∗Md|n is defined in the usual manner as the dual sheaf of A-modules which
consists of graded linear maps

ω : TMd|n(U) −→ A(U) : 〈ω, fX〉 = (−1)P(ω)P(f)f〈ω,X〉 , (2.1.13)

for arbitrary f ∈ A0(U)∪A1(U) (extended to A(U) by F -linearity). In the above we have denoted
the linear graded duality pairing by 〈 . , . 〉. Similarly vector fields act on these super 1-forms.
Note that the rules above imply 〈ω,X〉 = (−1)P(X)P(ω)〈X,ω〉. There is no natural construction
of an exterior algebra on the super (co-) tangent bundle; we want to preserve the Z2-gradation
and impose a Z-gradation, which leaves two possible sign conventions: either one chooses odd
elements of the super vector space to commute with the odd ones under the wedge product, or
one lets them anti-commute. Our choice shall be the last one; we define

v ∧ w = v ⊗ w − (−1)P(v)P(w)w ⊗ v (2.1.14)

for homogeneous elements v, w of a super vector space V . The resulting Grassmann algebra∧
V is a Z graded algebra of which all the homogeneous components carry a Z2-gradation. For

u ∈ (
∧p

V )0 ∪ (
∧p

V )1 and u ∈ (
∧q

V )0 ∪ (
∧q

V )1 the sign rule reads

u ∧ v = (−1)P(u)P(v)+pqv ∧ u . (2.1.15)

Analogously to the theory of differential forms, the (super-) wedge product gives rise to a sheaf of
Z-graded algebras

∧
T ∗Md|n(U) =

0∧
T ∗Md|n(U)⊕

1∧
T ∗Md|n(U)⊕ . . .⊕

d+n∧
T ∗Md|n(U) , (2.1.16)

where we have the vector space isomorphisms
∧1

T ∗Md|n(U) ' T ∗Md|n(U),
∧0

T ∗Md|n(U) '
C∞(U) and

∧p
T ∗Md|n(U) ' ∧d+n−p

T ∗Md|n(U). The exterior differential on this sheaf of alge-
bras is uniquely determined by d2 = 0 and

d|V0 T∗Md|p : A(U) −→ ∧1
T ∗Mn|p(U) : 〈X, df〉 = X(f) for all X ∈ TMd|n(U),

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ for all α ∈ ∧p
T ∗Mn|p(U) . (2.1.17)

From now on we shall use the notation
∧p

T ∗Md|n(U) = Ωp
M (U). With these definitions one

may extend the Poincaré lemma and de Rham cohomology to spaces of super forms. The interior
product is generalised to a morphism of sheaves ιX : Ωp

M (U) −→ Ωp−1
M (U) for X ∈ TMd|n(U) and

p ≥ 1 satisfying

ιXf = 0 for all f ∈ Ω0
M (U) = A(U) ,

ιXω = X(ω) for all ω ∈ Ω1
M (U) ,

ιX(α ∧ β) = ιX(α) ∧ β + (−1)p+P(X)P(α)α ∧ ιXβ for α ∈ Ωp
M (U) .

(2.1.18)

2.1.4 Super-Lie Algebra Structure

Recall that for an ordinary manifold, coordinate frames in overlapping charts are related by an
element of GL(d). What is the superspace analogue of this group action? Let A = A0 ⊕ A1

be a supercommutative Z2-graded algebra (the direct sum is F -linear). We define Mat(r, s,A)
the vector space of A-valued r × s matrices. This set is an A-module by defining the (left)
multiplication (aM)ij = aMij . A partition r = d+ n, s = k + l gives rise to a Z2-graded module
structure on Mat(r, s,A) by setting Mat(d|n, k|l,A) = G0 ⊕G1, with

G0 =
{ (

a b
c d

)
|a ∈ Mat(d, k,A0), b ∈ Mat(d, l,A1), c ∈ Mat(n, k,A1), d ∈ Mat(n, l,A0)

}
,

G1 =
{ (

a b
c d

)
|a ∈ Mat(d, k,A1), b ∈ Mat(d, l,A0), c ∈ Mat(n, k,A0), d ∈ Mat(n, l,A1)

}
.

12



2 PRELIMINARIES 2.2 Clifford Algebras

A Z2-graded module structure simply means that AiGj = G(i+j) mod 2, and it trivially follows from
the graded structure of A. On the module Mat(m|n,A) ≡ Mat(m|n,m|n,A) of square matrices
we can consistently define a matrix multiplication. One easily sees that this turns Mat(d|n,A)
into an associative supercommutative Z2-graded algebra with a unit element 1 ∈ Mat(d|n,A)0.
Using the matrix multiplication we can define a bracket [X,Y ] = XY − Y X which is symmetric
in the odd subspaces,

Definition. A super Lie algebra is a Z2-graded vector space V = V0 ⊕ V1 equipped with a
super Lie bracket [ . , . ]. A super Lie bracket is a bilinear form V × V −→ V such that for all
X,Y, Z ∈ V0 ∪ V1 (i.e. homogeneous elements) we have

1. P([X,Y ]) = (P(X) + P(Y )) mod 2,

2. [Y,X] = (−1)1+P(X)P(Y )[X,Y ],

3. [X, [Y, Z]] = [[X,Y ], Z] + (−1)P(X)P(Y )[Y, [X,Z]].

The super vector space Mat(d|n,A) equipped with the bilinear bracket induced by matrix multipli-
cation is a super Lie algebra, which we shall denote with gld|n(A). We shall define gld|n = gld|n(R)
(its even part consists of R-matrices with an d × d and an n × n block on the diagonal, its odd
elements have n×d and d×n matrices on the off-diagonal). Another example is the tangent sheaf
TMd|n(U), acting on A(U) equipped with the bracket

[X,Y ] ∈ TMd|n(U) : [X,Y ](f) = X(Y (f))− Y (X(f)) for all f ∈ A(U) . (2.1.19)

The even part of the Z2-graded Lie algebra defined above exponentiates to an ordinary group.
This group is a subgroup of

GLd|n(A) = (Mat(d|n,A))0 ∩Mat×(d|n,A) , (2.1.20)

where Mat×(d|n,A) denotes the subspace of invertible elements of the super matrix algebra.
We obtain a sheaf of groups by setting G`d|n(U) = GLd|n(A(U)). As is the case for ordinary
manifolds, this sheaf of groups has a natural action on the tangent sheaf, and is the super analog
of the structure group of the tangent bundle.

2.2 Clifford Algebras

2.2.1 Definition of Clifford Algebras

Let V be an d-dimensional vector space over a commutative field F (we shall only consider R or
C) and q : V → F a quadratic form on V . The Clifford algebra C`(V, q) over V is the vector space
[13]

C`(V, q) =
T (V )
W

≡ (
⊕∞

r=0⊗rV )
W

, (2.2.1)

where W is the ideal generated by all elements of the form v⊗ v− q(v) with v ∈ V . We define the
Clifford product by v ·w = [v⊗w], the equivalence class in C`(V, q) containing v⊗w, for arbitrary
v, w ∈ T (V ). Then we have

v · v = q(v) (2.2.2)

for all v ∈ V ↪→ C`(V, q). Note that associativity of the Clifford product is guaranteed by
associativity of the tensor product and the rule [u] · [v] = [u ⊗ v] for u, v ∈ T (V ). Equivalently,
the bilinear form g : V ⊗ V −→ F : g(v, w) = q(v + w)− q(v)− q(w) defines an inner product on
V , and the generating Clifford algebra relation is expressed in terms of this map by

v · w + w · v = 2g(v, w) , (2.2.3)

13



2.2 Clifford Algebras 2 PRELIMINARIES

for v, w ∈ V ↪→ C`(V, g). Obviously, the Clifford algebra does not possess a Z-grading. However,
C`(V, g) exhibits a natural Z2-gradation, induced by the extension of the linear map α : V →
V : α(v) = −v to an algebra automorphism of C`(V, g). We call the Clifford elements for which
α(v) = v even and the ones for which α(v) = −v odd. Since α is idempotent, there is a direct sum
decomposition into the even and odd Clifford algebras,

C`(V, g) = C`0(V, g)⊕ C`1(V, g) , C`i(V, g) = 1
2 (Id + (−1)iα)C`(V, g) . (2.2.4)

C`0(V, g) is a subalgebra, C`1(V, g) is not. The link with the first section is provided by the
canonical vector space isomorphism

C`(V, g) '−→
∧
V . (2.2.5)

The isomorphism, call it φ, is uniquely determined by linearity and

φ(v) = v , for v ∈ V
φ(v[1 · v2 . . . vp]) = v1 ∧ v2 ∧ . . . ∧ vp , for vi ∈ C`(V, g) ,

where the brackets around indices denote antisymmetrization with unit weight,

v[1 · v2 . . . vp] =
1
p!

∑

σ∈Sp

sgn(σ)vσ(1) · vσ(2) . . . vσ(p) . (2.2.6)

Hence the Clifford algebra C`(V, g) is a vector space of dimension 2dim V and the completely
antisymmetrized Clifford products of basis vectors of V form a basis of C`(V, g). From this point
we shall no longer explicitly denote the isomorphism φ. Let C`×(V, g) denote the group of all
invertible elements of the algebra w.r.t. the Clifford product (the Clifford group). This is a Lie
group over a vector space of dimension 2d, with Lie algebra the Clifford algebra oven V equipped
with the bracket [u, v] = u · v − v · u. The adjoint representation of C`×(V, g) is an algebra
homomorphism

Ad : C`×(V, g)→ Aut(C`(V, g)) : Adv(x) = v · x · v−1 . (2.2.7)

It can be easily shown that g(v, v) 6= 0 is equivalent to Adv(V ) = V and then Adv is an algebra
isomorphism. Let us denote P (V, q) the subgroup of C`×(V, g) generated by elements satisfying
this property. Furthermore denote Ad0 the adjoint map with the ’target space’ restricted to
V ↪→ C`(V, g):

Ad0 : C`×(V, g)→ Aut(V ) : Ad0
v(x) = Adv(x) . (2.2.8)

Then there is a representation

P (V, q) Ad0

−→ O(V, g) = {Λ ∈ GL(V ) : g(Λu,Λv) = g(u, v)} , (2.2.9)

taking values in the orthogonal or Lorentz group of V (one easily verifies that Adv·w = Adv ◦Adw

and g(Advu,Advw) = g(u,w)). The subgroup of P (V, g) generated by all v ∈ V for which
g(v, v) = ±1, denoted by Pin(V, g), and the subgroup of Pin(V, g) consisting of all elements of
even degree is denoted by Spin(V, g). Restricting the adjoint representation to Spin(V, g) yields a
surjective homomorphism to the special orthogonal group SO(V, g). This can be seen by writing
Ad0

v as Ad0
v(w) = w − 2g(v, w)v, which is nothing but the reflection of w across the hyperplane

perpendicular to v. The Cartan-Dieudonné theorem states that every special orthogonal trans-
formation can be written as an even number of reflections. If we restrict the adjoint map to
Spin+(V, g), the subalgebra of Pin(V, g) of vectors with (positive) unit length, we get a 2 to 1
mapping to SO+(V, g), the orthochronous special orthogonal transformations (v and −v map to
the same automorphism). They are generated by an even number of reflections in planes orthog-
onal to positive length and as well to negative length vectors, or in physics we say time direction
and parity preserving transformations. For completeness we note that one can use the twisted
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adjoint representation Ãdvw = α(v)wv−1 to define a 2 to 1 map from Pin(V, g) to O(V, g). Let
now V = Rr+s and define the non-degenerate metric

g(v, v) = −v2
1 − . . .− v2

s + v2
s+1 + . . .+ v2

s+r ≡ η(r,s)(v, v) . (2.2.10)

The Clifford algebra C`(V, g) shall then be denoted by C`r,s. Taking the field F = C in the
definition (2.2.1) we obtain the complexified Clifford algebra C`(V, g) = C ⊗R C`(V, g). The
isomorphism (2.2.5) implies dimR(C`r,s) = 2r+s = dimC(C`r,s).

2.2.2 Classification

Given a complete orthogonal positively oriented basis e1, . . . , ed of V , the real and complex Clifford
volume elements are defined as

ω = e1 · e2 . . . ed , ωC = is+[ d+1
2 ]e1 · e2 . . . ed , (2.2.11)

where [n/2] denotes the the smallest integer larger then or equal to n/2. For d odd, these are
central elements of the algebra since then they commute with the generators. The complex volume
always squares to one, the real volume element only in certain dimensions,

ω2 = (−1)
d(d+1)

2 +s , ω2
C = 1 . (2.2.12)

So in conclusion, ω is central and unipotent if (r−s) mod 8 = 1 or 5. Note that definition (2.2.11)
is basis independent since 2 positively oriented bases of are linked by an SO(s, r) transformation
and a linear transformation A transforms ω to det(A)ω. If ω2 = 1, we define the real projectors

π± = 1
2 (1± ω) , (2.2.13)

satisfying π+ + π− = 1, (π±)2 = π± and π+ · π− = 0 = π− · π+. Of course, in the complex case
we can always define such operators. Acting with these elements on the Clifford algebra yields
decompositions

C`r,s = C`+r,s ⊕R C`−r,s ,

C`r,s = C`+r,s ⊕C C`−r,s (2.2.14)

into isomorphic subalgebras if d is odd. If the projectors π± are central, the Clifford algebra
contains 2 nontrivial two-sided ideals, and is hence not simple. One can prove that if the subspaces
above are ideals, they are simple and if not, C`r,s contains no other nontrivial ideals. Hence

Result 2.1 If (r − s) mod 8 = 1 or 5, C`r,s is a direct sum of 2 simple components, otherwise it
is simple. If (r − s) mod 2 = 1, C`r,s is a sum of 2 simple components. In the other case it is
simple.

What about the reducibility of the even subalgebras C`0r,s and C`0r,s? In odd dimensions the even
subalgebra does not contain the volume element, and turns out to be simple. In even dimensions
the complex volume elements are obviously central in the even subalgebras and (2.2.12) implies
that ω is unipotent if (r − s) mod 8 = 0, 4, in which cases C`0r,s is a sum of 2 simple components.
These properties may also be deduced from the isomorphisms

C`0r,s ' C`r,s−1 , C`0r,s ' C`r,s−1 . (2.2.15)

If {ei, er+1, f j} is the set of generators of C`r+1,s, then it is not difficult to see that a set of
generators of C`0r+1,s is {er+1ei, er+1f j}. Since these generators mutually anti-commute and
(ep+1ei)2 = −1 = −(ep+1f j) we establish C`0r+1,s ' C`s,r and tensoring both sides with C gives
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the second isomorphism in (2.2.15). An explicit calculation of the multiplication table (see [14])
establishes following isomorphisms,

C`0,1 ' R⊕ R , C`1,0 ' C ,
C`0,2 ' R(2) ' C`1,1 , C`2,0 ' H ,
C`0,4 ' H⊗ R(2) , C`4,0 ' R(4) ,

(2.2.16)

where H is the quaternion algebra and K(n) denotes the algebra of K-valued n × n matrices.
Furthermore we have the important periodicity isomorphisms,

C`r+4,s ' C`r,s ⊗ C`4,0 , C`r,s+4 ' C`r,s ⊗ C`0,4 ,
C`r+1,s+1 ' C`r,s ⊗ C`1,1 , C`r+1,s ' C`s+1,r .

(2.2.17)

The Clifford algebra C`r+4,s is generated by {ei, er+1, er+2, er+3, er+4, f j} where i runs from 1
to r and j from 1 to s and the e’s square to one and the f ’s to minus one. A new set of
generators is {zei, zf j , er+1, er+2, er+3, er+4} where z = er+1er+2er+3er+4. Then the last four
generators commute with the first set of generators, so the algebra can be written as the tensor
product of A, generated by the first set and B, generated by the last ones. One easily sees that
(zei)2 = −(zf j)2 = 1 and the last 4 generators square to one, which proves the first tensor
product. The second one is proven completely analogously. Similarly, if C`r+1,s+1 is generated by
{ei, er+1, f j , fs+1}, then a new set of generators is {zei, zf j , er+1, fs+1} with z = er+1fs+1. One
again easily calculates that the first r+s generators commute with the last 2, and that the squares
of the generators yield the desired tensor product. Finally, if {ei, er+1, f j} is a set of generators
of C`r+1,s, then {er+1, er+1ei, er+1f j} is obviously a set of generators of too. The new ones are
mutually anticommuting and we have (er+1)2 = (er+1f j)2 = 1 and (er+1ei)2 = −1, which are
exactly the defining equations of the generators of C`s+1,r. Using the isomorphisms of algebras

K⊗R(n) ' K(n) , R(n)⊗R(m) ' R(nm) , C⊗C ' C⊕C , H⊗H ' R(4) , C⊗H ' C(2) ,

we obtain a complete classification of Clifford algebras, given by table (2.2.1). Taking the tensor
product of these algebras with C yields the much simpler classification of complex Clifford algebras
of table (2.2.2).

(r − s)mod8 C`r,s n C`0r,s m

0 R(n) 2d/2 R(m)⊕ R(m) 2(d−2)/2

1 R(n)⊕ R(n) 2(d−1)/2 R(m) 2(d−1)/2

2 R(n) 2d/2 C(m) 2(d−2)/2

3 C(n) 2(d−1)/2 H(m) 2(d−3)/2

4 H(n) 2(d−2)/2 H(m)⊕H(m) 2(d−4)/2

5 H(n)⊕H(n) 2(d−3)/2 H(m) 2(d−3)/2

6 H(n) 2(d−2)/2 C(m) 2(d−2)/2

7 C(n) 2(d−1)/2 R(m) 2(d−1)/2

Table 2.2.1: Classification of the Clifford algebras C`r,s. r denotes the number of ’timelike’ directions and s the
number of Euclidean spatial directions, and d = r + s. In the third column the subalgebra of even-fold products of
generators is classified

2.2.3 Representations

An irreducible representation of Pinr,s, shall be called a pinor representation; an irrep of Spinr,s a
spinor representation. We have already encountered two representations: the adjoint representa-
tions of the Pin and Spin groups, which are non-faithful and descend to orthogonal transformations
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(r − s)mod2 C`r,s n C`0r,s m

0 C(n) 2d/2 C(m)⊕ C(m) 2(d−2)/2

1 C(n)⊕ C(n) 2(d−1)/2 C(m) 2(d−1)/2

Table 2.2.2: Classification of the complexified Clifford algebras

on the generating vector space V . The representation theory of an algebra A can be studied by
considering the regular representations of A: left or right ideals Li, Ri together with the left action
ρL : A −→ EndLi : v 7→ Lv where Lv : Li −→ Li : x 7→ vx and similarly the right action defines
a representation on the right ideals. Projectors play a very important rôle in this construction
because they generate ideals. We call P ∈ A a primitive projector if P 2 = P (P is idempotent)
and P cannot be written as the sum of algebraically orthogonal elements. In semi-simple algebras
these give us immediately minimal ideals. The basic theorem, which is proven in Appendix A of
[14] is the following,

Theorem 2.2 If P is an idempotent in a semi-simple algebra A then PAP is a division algebra
iff P is primitive. Moreover, if this is the case, AP is a minimal left ideal and PA is a minimal
right ideal

Recall that a division algebra is a simple algebra of which every nonzero element has an inverse.
This implies that division algebras have no nontrivial left or right ideals: for if B ⊂ A is a left
ideal, and b ∈ B then b−1 ∈ A and hence b−1B ⊆ B. Consequently b−1b = e ∈ B. But then
Ae ⊆ B and therefore B = A, and analogously for right ideals. Hence the n primitive projectors
of C`r,s ' K(n) are

(Pi)mn = δm,nδn,i , (2.2.18)

because PiK(n)Pi ' K. Multiplying a general element of the algebra with Pi from the right gives
an n×n matrix with all entries zero except for the i-th column (taking values in K); these are the
minimal left ideals of the simple Clifford algebras. If C`r,s is the sum of two simple components,
the idempotents above are no longer primitive (since Pi = Pi ·(π+ +π−) and π± are in the centre).
The primitive projectors are now given by

P+
i = Pi · π+ , P−i = Pi · π− . (2.2.19)

One easily shows that in the simple case, the choice of the primitive projector is not important: all
the representations (L,C`r,sPi) and (R,PiC`r,s) are equivalent2. In the semi-simple case however
there are 2 equivalence classes: the left and right actions on the P+

i -projected subspaces are
mutually equivalent, but inequivalent to the left and right actions on the P−i -projected subspaces.
These 2 equivalence classes are called the chiral or Weyl representations. In the following we shall
not bother about the equivalence relation and we say that in the simple case there is a single
representation (ρ, S), and in the semi-simple case there are 2 representations (ρ, S+),(ρ, S−). Let
us now focus our attention to the induced representations on the Spin groups. In even dimensions,
the Clifford volume element is always central in C`0r,s and so is the complex volume element in
the complexified even subalgebra C`0r,s. Hence, when ω2 = 1, there is always a splitting of the
representation S = S+ ⊕ S−. The resulting representations are irreducible if they are induced by
an irreducible representation on C`r,s. The argument is as follows: suppose C`r,s is simple, the
volume element is unipotent and S±, the representations of the even algebra are induced by a
minimal left ideal I ⊆ C`r,s, that is S± = π±I and C`0r,sS

± = C`0r,sπ
±I = π±C`0r,sI = π±I = S±

If W is a minimal left ideal of C`0r,s, either W ⊆ S+ or W ⊆ S− (otherwise W ∩S± would provide

2Two representations ρi : A −→ End(Si) are equivalent iff there exists an intertwining isomorphism φ : S1 −→ S2

such that φ ◦ ρ1(v) = ρ2(v) ◦ φ for all v ∈ A
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us with new left ideals, contradictory toW being minimal). Since S+ and S− have equal dimension
and they sum to I, we must have dim(W ) ≤ 1

2 dim(I). On the other hand, one may verify that the
space W + vW with v an invertible element of C`1r,s, is a left ideal of the entire Clifford algebra.
Hence dim(W + vW ) = 2 dim(W ) ≥ dim(I)3. Hence dim(W ) = 1

2 dim(I) = dim(S±), and by
linearity we must have either W = S+ or W = S−. This proves the irreducibility of S±. If the
Clifford algebra is semi-simple, the projectors are central in the full algebra and hence in the even
subalgebra as well, and the proof can be done analogously. The question is whether the resulting
irreducible representations are equivalent or not. Observe that, for unipotent ω in odd dimensions,
the automorphism α : C`r,s → C`r,s interchanges the factors C`+r,s and C`−r,s, defined in (2.2.14)
since we have in odd dimensions α(ω) = −ω and hence α(π±) = π∓. Suppose now π+ · v is
even. Then π+ · v = α(π+ · v) = α(π+) · α(v) = π− · α(v). The splitting of the representation
ρ(v) = ρ+(v) + ρ−(v) with ρ±(v) = ρ(π± · v) when restricted to the even elements yields the
relation

ρ±(v) = ρ∓(α(v)) (2.2.20)

for v in C`r,s such that π+ · v ∈ C`0r,s. This shows the equivalence of the restrictions of the
irreducible representations to the even algebra in odd dimensions. The real volume element squares
to one for even s if d = 3 or 4(mod4), in the first case the representations are equivalent, in the
second one they can be shown not equivalent. We could have skipped the analysis above by
considering the isomorphism (2.2.15).

2.2.4 The Spin Groups

Obviously, the groups Spinr,s and Spin+
r,s generate the even subalgebra,

1 + Spinr,s + Spinr,s · Spinr,s + . . . = C`0r,s . (2.2.21)

Since Spinr,s is contained in the even Clifford algebra, a left ideal I of C`0r,s is also a left ideal of
Spinr,s. If I is minimal in C`0r,s, it is also minimal in Spinr,s, for if W ⊆ I satisfies Spinr,sW = W ,
we can let (2.2.21) act from the left on W and get W = C`0r,sW , and therefore W = I. The
same statements hold for Spin+

r,s and Pinr,s. So irreducible representations of the even subalgebra
induce irreducible spinor representations. Along the same lines one can show that the irreducible
representations of C`0r,s induce irreducible complex spinor representations, and only split up in
inequivalent irreducible representations if d is even. As already mentioned, there exists a 2-to-1
correspondence between a Spin group and the orthogonal group. Hence spinor representations are
also representations of SO(r, s). The adjoint map Ad0 : Spind−1,1 → SO(d − 1, 1) induces a Lie
algebra isomorphism

spind−1,1
ad0

−→ so(d− 1, 1) (2.2.22)

to the algebra of linear, skew-symmetric endomorphisms of V , which in its turn isomorphic to∧2 Rd. In terms of a basis {eµ}µ=1,...,d of the base space V , so(d − 1, 1) is spanned by the basis
vectors eµ ∧ eν , acting on V by

(eµ ∧ eν)v = η(eµ, v)eν − η(eν , v)eµ = vµeν − vνeµ , (2.2.23)

if v = vµeµ, ηµν = η(eµ, eν) and vµ = ηµνv
ν . In a standard basis (eµ)σ = δσ

µ the rotation
generators in the vector representation are given by (eµ ∧ eν)σρ = δµσδνρ − δνσδµρ. This matrix
generates a rotation in the plane spanned by eµ and eν and one easily verifies the periodicity
property exp(i(θ + 2π)(eµ ∧ eν)) = exp(iθ(eµ ∧ eν)). The isomorphism (2.2.5) maps the Clifford
algebra basis vector 1

2 (eµ · eν − eν · eµ) to 2eµ ∧ eν and its inverse maps eµ ∧ eν to 1
4 [eµ, eν ]. Acting

with the derivative of the Clifford map on these algebras, it induces a representation of the Lorentz
algebra so(S);

ρ : so(d− 1, 1)
(ad0)−1

−→ spind−1,1
∆∗−→ gl(S) . (2.2.24)

3dim(W ) = dim(vW ) because if v has an inverse, the map φ : W → vW : u 7→ v ·u is a vector space isomorphism
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Its basis vectors (the generators of the Lorentz group) are mapped to

Mµν = ρ(eµ ∧ eν) = 1
4 [Γµ,Γν ] ≡ 1

2Γµν , (2.2.25)

where Γµ = ρ(eµ). They satisfy the Lorentz algebra relation

[Mµν ,Mσρ] = ηνσMµρ + ηµρMνσ − ηνρMµσ − ηµσMνρ . (2.2.26)

The factor 1/2 in (2.2.25) is responsible for the double covering of the rotation group by the
spin representation; since (Γµν)2 = 1 for 2 different spacelike basis vectors eµ, eν the generated
group element exhibits 4π-periodicity: exp(i(θ + 2π)Mµν) = − exp(iθMµν). Thus, a spinor (an
element of the representation space S) changes sign under a full rotation. In physics there is a well
known construction the representation of C`r,s. As the target vector space, one takes Cn where
n = 2d/2 in even dimensions and 2(d−1)/2 in odd dimensions. The representation morphism, fully
determined by its mapping of the basis vectors is constructed iteratively in d. One starts in d = 2
with the matrices

Γ1 =
(

0 1
1 0

)
, Γ2 =

(
0 −i
i 0

)
. (2.2.27)

One easily verifies that these matrices C-span a representation of C`0,2. We iteratively construct
a representation of C`0,d for d even as follows:

Γµ = γµ ⊗
(

1 0
0 −1

)
, µ = 1, . . . d− 2

Γd−1 = 1k ⊗
(

1 0
0 −1

)
, Γd = 1k ⊗

(
0 −i
i 0

)
, (2.2.28)

where γµ are the matrices generating C`0,d−2 and k = 2(d−2)/2. If d is odd one takes the (d− 1)-
dimensional basis and adds the Clifford volume element Γ = i(d−1)/2Γ1Γ1 . . .Γd−1 to it. The
reader may quickly verify that the obtained basis satisfies (2.2.3) in Euclidean space. Multiplying
the first r matrices by i, we obtain a set of generators of C`r,s, which is called the Dirac basis.

2.3 Spinor Adjoints and Pairings

2.3.1 Pairings from Involutions

An involution of an algebra A, is a vector space automorphism j : A → A such that j◦j = IdA. To
emphasise the involutary property, we shall denote its image of an element v by vj ≡ j(v). Apart
from the identity automorphism, there are 3 canonical involutions of the real Clifford algebras we
constructed; the map

ξ : T p(V )→ T p(V ) : ξ(x1 ⊗ x2 ⊗ . . .⊗ xp) = xp ⊗ xp−1 ⊗ . . .⊗ x1 (2.3.1)

is clearly an involution on T p(V ). We can linearly extend this map to T (V ), and this induces
an involution ξ on C`(V, g). The second involution is the map α (see the paragraph preceding
(2.2.4)) and the third one is ξ ◦α, which we shall denote by ζ. These are clearly also involutions of
C`r,s, which commute with complex conjugation, which by definition only acts nontrivial on the
first factor of C ⊗ C`r,s = C`r,s. The compositions ξ∗ = ξ ◦ ∗ and ζ∗ = ζ ◦ ∗ are involutions on
C`r,s, regarded as a real algebra. An involution j on A always induces a direct sum decomposition
into j-symmetric and j-skew subspaces (not subalgebras) because a = 1

2 (a+ aj) + 1
2 (a− aj). For

j = α or ξ on C`r,s (or C`r,s) this is the decomposition (2.2.4). In the definition of an involution,
we stressed that it is a vector space automorphism, not necessarily satisfying (ab)j = ajbj under
the algebra multiplication. In particular, the canonical involutions ξ, ζ, ξ∗ and ζ∗ are anti-
automorphisms of the algebra: they satisfy (ab)j = bjaj . We shall call involutions which are
algebra anti-automorphisms anti-involutions of the algebra. Anti-involutions map the centre of
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a simple Clifford algebra to itself. One easily shows that the elements of the centre which are
invariant under such a j form a commutative division algebra E (necessarily isomorphic to R or
C)4, and in such a situation we call j an anti-involution over E . We have the following crucial
result,

Theorem 2.3 If A is simple and i is an anti-involution over E ⊆ CA then j : a 7→ aj is an
anti-involution over E iff there exists an s with si = sj = ±s such that aj = sais−1.

One can find the proof in [14]. Observe that the choice of s is fixed up to left multiplication by an
element of E , which induces an equivalence relation on the space of involutions over E : involutions
i, j related by ai = φ−1(φ(a)j) for some automorphism φ are called equivalent. If A is simple, it
is of the form K(n), and in these algebras we have a canonical involutary anti-automorphism, the
matrix transposition T in a certain matrix basis. Note that T is an anti-involution over the centre
CA of A, which is either R1n or C1n. If we are given an anti-involution j which leaves (only)
central elements invariant, by the theorem above it is equivalent to T , and hence j is transposition
in some other basis. This allows us to choose T more conveniently: let it denote transposition in
a matrix basis in which the primitive idempotent P is diagonal, then by theorem 2.3 there exists
a J ∈ A with Jj = JT = ±J such that PT = P = J−1P jJ from which P j = JPJ−1. The matrix
J allows us to construct pseudo-orthogonal inner products; if ψ ∈ AP , then J−1ψj ∈ PA since
PJ−1ψj = J−1P jψj = J−1(ψP )j = J−1ψj . Hence we define the j-adjoint pairing

( , )j : AP ×AP → PAP : θ, ψ 7→ (θ, ψ)j = J−1θjψ . (2.3.2)

These inner products are nondegenerate, for if (θ, ψ)j = J−1θjψ = 0 for all ψ ∈ AP , then
θjAP = 0, which implies θj = 0 = θ because the regular representation is faithful on the minimal
left ideal AP . For all a ∈ A we have

(θ, aψ)j = (ajθ, ψ)j , (2.3.3)

and for all elements c ∈ K = PAP we have

(θ, ψc)j = (θ, ψ)jc , (θc, ψ)j = c∗(j)(θ, ψ)j , (2.3.4)

with c∗(j) = J−1cjJ defines the induced involution on the division algebra K. Acting on an inner
product, the induced involution switches the the ideals up to a sign:

(θ, ψ)j = ε(j)(ψ, θ)∗(j)j , (2.3.5)

where ε(j) = ±1 is the relative sign between J and Jj . Taking the canonical involutions ξ, ζ
(possibly with conjugation) yields thus various involutions on the division algebra. Since there are
only a finite number of inequivalent involutions on division algebras we can classify the canonical
involutions according to their effect on the division algebra in various dimensions (see appendix
??). The corresponding pairings are spin invariant : for an element σ ∈ Spinr,s we have

(σθ, σψ)ξ = A−1θξσξσψ = A−1θξψ = (θ, ψ)ξ , (2.3.6)

and similarly for ( , )ζ . In fact, it is shown in [14] that these are the only spin-invariant pair-
ings, up to equivalence. For the complexified simple Clifford algebras the construction may be
repeated, using Hermitian conjugation (whose space of invariants is isomorphic to R) instead of
transposition. If J is some anti-involution which leaves the real elements of the centre invariant
(such as there are ξ∗ and ζ∗), it is Hermitian conjugation in some matrix basis and the adjoint
involution of a pseudo-Hermitian inner product.

4A famous theorem by Frobenius states that all division algebras are isomorphic to either R, C or H. Only the
first two of these algebras are commutative.
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Now let the algebra A be the sum of 2 simple components, A = B⊕C = AP ⊕AQ for some central
idempotents P = 1−Q. If j is an involution of A then P j and Qj are central , simple orthogonal
idempotents which sum to 1. Hence A = AP j ⊕AQj is a decomposition into simple components.
Since such a decomposition is unique up to ordering of the factors we have either AP j = B and
AQj = C, or AP j = C and AQj = B. In the former case j just induces an involution on the
components, and in the latter case B is isomorphic to Cj and vice versa. Applied to the primitive
idempotents defined in (2.2.19) we have in the first case (P±i )j = JP±i J

−1 and in the second
case (P±i )j = JP∓i J

−1 for some J satisfying Jj = εJ . It is easily verified that such involutions
are unique up to equivalence. If the simple components are (real) matrix algebras over a division
algebra K, we call involutions which do not preserve the simple components K-swaps. A K-swap
too induces a pairing on minimal left ideals, as is explained in [14]. However, a swap j doesn’t
leave the central idempotents, which span the centres in the simple components (π± is diagonal
in C`±r,s) invariant and hence will not be the adjoint of a pseudo-orthogonal (Hermitian) inner
product on the simple components. In the case that j leaves the simple components invariant the
theory of anti-involutions on simple algebras may be applied to the simple components.

2.3.2 Classification

We shall from now on focus our attention to the complex Clifford algebras C`r,s. For an algebra
C(n), there are 3 inequivalent involutions: transposition, Hermitian conjugation, and their com-
position which is complex conjugation on C in the tensor product C⊗C`r,s. On the abstract level,
there are ξ, ζ, ξ∗, ζ∗ and the compositions ξ ◦ ξ∗ and ζ ◦ ζ∗. These are identified as follows

1. Hermitian conjugation: in even dimensions we have the equivalence of involutions † ∼ ξ∗ ∼
ζ∗. If (r, s) mod 2 = (0, 1) then ξ∗ simply swaps the simple components and ζ∗ ∼ † ⊕ †
and vice versa if (r, s) mod 2 = (1, 0). Restricting the involutions the even subalgebra,
one obviously has ξ0 ∼ ζ0, since α is the identity on C`0r,s. One may calculate that in
odd dimensions the maps (ξ∗)0 ≡ ξ∗|C`0r,s

and (ζ∗)0 ≡ ζ∗|C`0r,s
are equivalent to Hermitian

conjugation, if (r, s) mod 2 = (0, 0) they are Hermitian conjugate and interchange the simple
components. So if r is odd and s even, there is a A+ ∈ C`r,s such that vξ∗ = A+v

†A−1
+ with

(r, s) mod 2 (0,0) (0,1) (1,0) (1,1)

ξ∗ † S † ⊕ † †
ζ∗ † † ⊕ † S †

(ξ∗)0 = (ζ∗)0 † ⊕ † † † S

Table 2.3.1: Classification of ξ∗ and ζ∗ on C`r,s and on C`0r,s (denoted (ξ∗)0 = (ζ∗)0). The letter S denotes a swap
of the simple components.

A†+ = Aξ∗
+ = ±A+ and in the other cases there is an A− ∈ C`r,s such that vζ∗ = A−v†A−1

−
with A†− = Aξ∗

− = ±A− for all v ∈ C`r,s. Corresponding to the construction of (2.3.2),
we establish the Dirac product on a minimal ideal of C`r,s, (θ, ψ) ≡ (θ)Dψ, where we have
defined the Dirac adjoint

(θ̄)D =





A−1
+ θξ∗ = θ†A−1

+ if (r, s) mod 2 = (1, 0)

A−1
− θζ∗ = θ†A−1

− otherwise
. (2.3.7)

Note that the Hermicity property of the Dirac conjugation matrix A is a matter of conven-
tion: multiplying this matrix by i gives an equivalent product with a different symmetry.
Note also that if θ is a spinor representation, the last entry of the last row implies that its
Dirac conjugate flips its chirality.

21



2.3 Spinor Adjoints and Pairings 2 PRELIMINARIES

2. Matrix transposition: in [14] it is shown that ξ and ζ are for the simple Clifford algebras the
adjoint involution to transposition. However, it depends on the dimension of V whether the
induced pairing is symmetric or antisymmetric (in the Dirac pairing case, this was a matter
of convention). In the semi-simple case, the standard involutions are either equivalent to
transposition on the simple components (again with a prescribed symmetry of the associated
product), or a swap. Analogously to the construction of the Dirac conjugate, we notice that

d mod 8 0 1 2 3 4 5 6 7

ξ T+ T+ ⊕ T+ T+ S T− T− ⊕ T− T− S
ζ T+ S T− T− ⊕ T− T− S T+ T+ ⊕ T+

ξ0 = ζ0 T+ ⊕ T+ T+ S T− T− ⊕ T− T− S T−

Table 2.3.2: Classification of ξ and ζ on C`r,s and on C`0r,s (denoted ξ0 = ζ0). Again S denotes a swap of the
simple components, and the subscripts ± denote the symmetry of the associated product.

if d mod 8 = 0, 1, 2, 4, 5 or 6 there is a C+ in the Clifford algebra satisfying C−1
+ vTC+ = vξ,

and if d mod 8 = 0, 2, 3, 4, 6 or 7 there is a C− such that C−1
− vTC− = vξ for all v ∈ C`r,s.

The unitary charge conjugation matrix C± satisfies CT
± = εC±, but here, as opposed to the

Dirac matrix, the symmetry ε is not a matter of convention, but determined by table (2.3.2).
The Majorana conjugate is defined as

(θ̄)M =





C−1
+ θξ = θTC−1

+ if d mod 8 = 1, 5

C−1
− θζ = θTC−1

− otherwise
. (2.3.8)

Again we note that if mod8 = 2 or 6, the associated Majorana pairing is between spinors of
different chirality. The properties of the charge conjugation matrix can be directly deduced
from table (2.3.2),

d mod 8 0 1 2 3 4 5 6 7

C C± C+ C± C− C± C+ C± C−
C−1vTC ±v v ±v −v ±v v ±v −v
CT C± C+ ±C± −C− −C± −C+ ∓C± C−

Table 2.3.3: Classification the charge conjugation matrices. The ±-subscript denotes the sign of the action C−1vT C
for v ∈ V (second row), and the last row gives the symmetry of the associated product.

3. Finally there is the composition of the previous adjoints, called charge conjugation, denoted
‡ = †T = T †. This operation is not ordinary complex conjugation! Complex conjugation ∗
leaves C`r,s invariant (it is therefore called the real subalgebra of C`r,s), and ‡ leaves R(n)
invariant, which is not necessarily equivalent, since the complex structure may originate
from a quaternionic structure. Suppose we have a matrix basis {eij} of C`r,s = C ⊗ R(n).
If a = aije

ij (where we have summation convention) for some complex numbers aij , then
aT = ajie

ij and a† = a∗jie
ij , and hence a‡ = a∗ije

ij . However, the chosen matrix basis may
be complex, in which case a∗ = a∗ij(e

ij)∗ is not equal to a‡. So ‡ simply conjugates matrix
coefficients in some basis, and when this basis is chosen to consist only of real matrices, it
coincides with complex conjugation, and hence ∗ and ‡ are equivalent anti-involutions. Since
such bases always exist there is a unitary transformation matrix (not unique) B ∈ C(n) such
that

a∗ = Ba‡B−1 . (2.3.9)

22



2 PRELIMINARIES 2.3 Spinor Adjoints and Pairings

Of course, the involution ‡ doesn’t induces a bilinear inner product (there is a double trans-
position in its definition, hence it maps minimal left ideals to left ideals). Moreover, it is
not an anti-involution, since (ab)∗ = a∗b∗, so taking the complex conjugate of (2.3.9) doesn’t
give a condition B∗ = εB but rather

B∗ = ηB−1 , η = ±1 . (2.3.10)

The sign η is not a matter of convention; it can be shown that if a simple C`r,s is the
complexification of quaternionic algebra (C(n) ' C⊗H(n/2)), any matrix satisfying (2.3.9)
satisfies B∗B < 0 (no complex rescaling of B can change this). If C`r,s is semi-simple, it
decomposes as C⊗ (R(n)⊗ R(n)), C⊗ (H(m)⊗H(m)) or C⊗ C(k). In the second case we
again have η = −1, and in the last case complex conjugation swaps the simple components.
Hence we can define an involution called charge conjugation on the minimal left ideals

θc = Bθ∗ , (2.3.11)

if the C`r,s is the complexification of a real matrix algebra or a sum thereof. Since ‡ is a
composition of Hermitian conjugation and transposition, its conjugation can be expressed
in terms of the conjugation matrices of the latter involutions. The reader easily verifies

B = C−1A∗ . (2.3.12)

This proves the unitarity of the B-matrix, and one can also deduce the statement made
about the sign of B∗B from the symmetry properties of C.

A number of remarks concerning the constructions above are to be made. The Dirac matrix
representation (2.2.28) has the following Hermicity properties:

(Γµ)† = −Γµ , µ = 0, . . . , r − 1 , (Γµ)† = Γµ , µ = r, . . . , r + s− 1 (2.3.13)

Taking A = Γ0 . . .Γr−1, we see that Hermitian conjugation is an automorphism conjugate to the
inner automorphism associated to this matrix:

(Γµ)† = (−1)rAΓµA
−1 , A† = (−1)rA . (2.3.14)

The reader may verify that the involution A(C`r,s)†A is indeed conjugate to ζ∗ (ξ∗ if (r, s) mod
2 = (1, 0)). This comes down to showing that all the generators are purely imaginary, except if
(r, s) mod 2 = (1, 1), in which case they are real (note that we have only defined A for r > 0).
The involutary property of the charge conjugacy is in the Dirac basis

B∗B = εηr(−1)r(r−1)/2 , (2.3.15)

where ε and η are defined by CT = εC, C−1vC = ηv for v ∈ V ↪→ C`(V ). A representation with the
Hermicity properties above is not unique: acting adjointly with a unitary matrix on the generators,
Γµ 7→ UΓµU

† leaves the algebra relation (2.2.3) and (2.3.13) invariant. Secondly, the Majorana
pairing defines a spin-invariant (complex-) bilinear product on the spinor module, regarded as a
complex vector space, i.e. a morphism S⊗S −→ C. This allows us to identify the spinor module S
with its dual; assuming the base space is a vector space over R and the spinors are representations
of C`(V ) = C`(VC), left module multiplication gives a morphism VC ⊗ S −→ S and hence we
get a morphism φ : S ⊗ S∗ ' S ⊗ S −→ V ∗C ' VC, defined by 〈φ(θ, ψ), v〉 = (ρ(v)θ, ψ)M , where
〈 , 〉 denotes the inner product on VC (the complexified inner product on V ). As a generalisation,
the isomorphism (2.2.6) provides a morphism

∧k
VC ⊗ S −→ C`(V, η) ⊗ S −→ S, which by self-

duality of VC and S induce morphisms φk : S⊗S −→ ∧k
VC, defined by linearity and the relation

φk(θ, ψ)(eµ1 , . . . , eµk
) = (Γµ1,...,µk

θ, ψ)M , or equivalently

φk(θ, ψ) =
1
k!

(θ̄Γµ1...µk
ψ)dxµ1 ∧ . . . ∧ dxµk ≡ θ̄ ∧ Γ(k) ∧ ψ . (2.3.16)

The (skew-) symmetry of these maps can be directly deduced from table (2.3.3) and we have
summarised them in table (2.3.4).
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d mod 8 k even k odd

Morhism Symmetry Morphism Symmetry

0 S± ⊗ S± → ∧kVC (−1)k(k−1)/2 S± ⊗ S∓ → ∧kVC
1 S ⊗ S → ∧kVC (−1)k(k−1)/2 S ⊗ S → ∧kVC (−1)k(k−1)/2

2 S± ⊗ S∓ → ∧kV S± ⊗ S± → ∧kVC (−1)k(k−1)/2

3 S ⊗ S → ∧kVC −(−1)k(k−1)/2 S ⊗ S → ∧kVC (−1)k(k−1)/2

4 S± ⊗ S± → ∧kVC −(−1)k(k−1)/2 S± ⊗ S∓ → ∧kVC
5 S ⊗ S → ∧kVC −(−1)k(k−1)/2 S ⊗ S → ∧kVC −(−1)k(k−1)/2

6 S± ⊗ S∓ → ∧kVC S± ⊗ S± → ∧kVC −(−1)k(k−1)/2

7 S ⊗ S → ∧kVC (−1)k(k−1)/2 S ⊗ S → ∧kVC −(−1)k(k−1)/2

Table 2.3.4: Classification of morphisms S × S → ∧V

2.3.3 Majorana Spinors

When Dirac spinors carry reducible representations of the real subalgebra the irreducible subspaces
are called Majorana representations. This occurs when the real subalgebra is a real matrix algebra
or a direct sum thereof. In this situation the primitive idempotents re invariant under charge
conjugation so that the eigenspaces R-spanned by θ : θc = ±θ contain minimal left ideals. The
intersection with +1-eigenspace is the Majorana subspace, defined by

θc = θ , (2.3.17)

and this condition can only be consistently imposed (i.e. having nontrivial solutions) if B∗B = 1,
excluding irreducible representations of quaternionic algebras. Satisfaction of the Majorana con-
dition (2.3.17) implies that the Dirac and Majorana conjugate coincide: θ = Bθ∗ = C−1A∗θ∗ ⇒
θTCT = θTC−1 = θ†A† = θ†A−1 ⇒ (θ̄)M = (θ̄)D. As it turns out, imposing a reality condition is
quite important and in dimensions and signatures where the equation above is not satisfied, one
can use some tricks to introduce a notion of reality,

1. if (r − s) mod 8 = 0, C`0r,s is semi-simple and the real subalgebras of the components are
real matrix algebras. As explained above, irreducible (chiral) representations of C`0r,s carry
reducible representations of the real subalgebras (complex conjugation leaves the chiral pro-
jectors invariant); the elements in the real, chiral subspaces are Majorana-Weyl spinors,

2. if (r − s) mod 8 = 1 or 7, C`0r,s is simple and the real subalgebras are real matrix algebras,
so irreducible complex spinor representations induce reducible real spinor representations;
the elements in the real subspaces are Majorana spinors,

3. if (r − s) mod 8 = 2 or 6, complex conjugation swaps the simple components of C`0r,s, so
irreducible representations are irreducible w.r.t. c. However, an irreducible representation
of C`r,s, which induces a pinor representation, is reducible when restricted to the real sub-
algebra for signature 2. Since C`0r,s ' C`0s,r, the pinor representation induces a reducible
representation of the real even subalgebra for signature 6 as well. We stress that it is the
representation of the entire Clifford algebra that contains invariant real subspaces, not the
chiral representation of the even subalgebra, and both representations have equal dimen-
sion: half of the dimension of the pinor representation. We denote this situation with M/W.
If we choose the Dirac representation in which A† = (−1)rA and the signature satisfies
(r − s) mod 8 = 2, the condition B∗B = 1 forces us to take C = C+ if d mod 8 = 2, 6 and
C = C− if d mod 8 = 0, 4, or in conclusion C = C−(−1)d/2 . If (r − s) mod 8 = 6, the same
argument gives us C = C(−1)d/2 (see [15] for more explicit treatment).
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4. if (r − s) mod 8 = 3, 4 or 5, the real even subalgebras are quaternionic, so a Majorana con-
dition as in (2.3.17) cannot be imposed (also the real subalgebras of the whole complexified
Clifford algebra possess no reality structure). One can still define a complex structure, not
on the representation S of SpinC(r, s), but on its symplectic extension S̃ ≡ S⊗C2 ' S⊕C S
of SpinC(r, s)⊗ SU(2). We define the involution σ on this representation by (θσ)i ≡ (θi)c =
Ωijθc

j (summing over j), where

Ω =
(

0 1
−1 0

)
. (2.3.18)

The involution σ defines a real structure on S̃, and the real subspace {θ ∈ S ⊕ S : θi =
(θσ)i ⇔ (θi)c = θi} is left invariant by SpinC(r, s) ⊗ USP (2). The group USP (2) is the
group of unitary symplectic 2 × 2 matrices: USP (2) = {A ∈ U(2)|AT ΩA = Ω}. It is a
well-known result of matrix algebra that USP (2N) = SU(2N). The real subspace has half
of the dimension of S̃, which has four times the (real) dimension of the original irreducible
representation S; so to define a real structure on these representations one has to double
the dimension. In the case (r − s) mod 8 = 4, the involution σ leaves the chiral symplectic
subspaces S̃± ≡ S±⊗C2 ' S±⊕CS± invariant; we call these real chiral subspaces symplectic
Majorana-Weyl representations (denoted by SMW), the other cases are referred to as sym-
plectic Majorana (SM). The symplectic metric Ω induces bilinear products S̃ ⊗ S̃ −→ ∧kV
by setting (θ̃, ψ̃) = Ωij(θi, ψj)M . Consequently the symmetry of these products are exactly
opposite to the symmetry of the products on the factors S (cf. table (2.3.4)).

(r − s) mod 8 type η dimension H d0

0 MW ± 2(d−2)/2

{
SO(NL)× SO(NR)
SO(N)

2, 6
0∗, 4∗

1 M (−1)(d−1)/2 2(d−1)/2 SO(N) 1,3
2 M/W (−1)(d+2)/2 2d/2 U(N) 0,4
3 SM (−1)(d−1)/2 2(d+1)/2 USP (2N) 5, 7

4 SMW ± 2d/2

{
USP (2NL)× USP (2NR)
SU(2N)

6
0∗, 4∗

5 SM (−1)(d−1)/2 2(d+1)/2 USP (2N) 5, 7
6 M/W (−1)d/2 2d/2 U(N) 0,4
7 M (−1)(d−1)/2 2(d−1)/2 SO(N) 1,3

Table 2.3.5: Classification of minimal representations in the Dirac basis of generators {Γµ} of C`r,s. The sign η

is defined by C−1ΓT
µ C = ηΓµ (we classified Cη in table (2.3.3)), and it is in the symplectic cases chosen such

that B∗B = 1 is fulfilled. The fourth column gives the dimension of minimal (chiral, or real, or both) spinor
representations of the complexified Clifford algebra. The last column is the isometry group of the space spanned
by N copies of the spinor module equipped with with either an orthogonal ((r − s) mod 8 = 0, 1, 7), a unitary
((r − s) mod 8 = 2, 6) or symplectic ((r − s) mod 8 = 3, 4, 5) metric. The last column represents the dimension of
V0 mod 8 in which the corresponding extension can exist, where stars indicate antichiral extensions

Restricting spinor representations to the real subspace w.r.t. charge conjugation (or some sym-
plectic or chiral variant of this operation, as we explained above) is important because it allows
us to restrict the morphisms of table (2.3.4) to the real subspace of Λk(VC). In the Dirac basis we
have

(aθ, ψ)∗M = (−η)rθ†A−1a‡ψc , (2.3.19)

for any a ∈ C`r,s. Consequently, if θ and ψ are Majorana spinors the Majorana pairing θ̄ψ is
a real number. If (−η)r = −1, we may perform the unitary transformation A 7→ iA ⇒ A−1 7→
−iA−1, B 7→ −iB such that the right-hand side gets multiplied by (−i)2, canceling the minus sign.
From the Hermicity properties of this representation one easily deduces

Γ‡µ = η(−1)rΓµ , Γ‡ = (−1)
d
2 +rΓ , (2.3.20)
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which indeed indicates that the representation is Majorana-Weyl if (r−s) mod 4 = 0. Furthermore,
if θ and ψ are Majorana spinors, (θ̄Γµψ)∗ = (η)r+1(θ̄Γµψ). Hence in all spaces with η = 1 or
r mod 2 = 1 or both which allow Majorana spinors, there is a representation for which the bilinear
map S ⊗ S −→ VC, when restricted to the real subspace of the spinor module, maps to the real
vector space.

2.4 Extensions of the Poincaré Algebra

2.4.1 The Poincaré Algebra

Let V0 be a real vector space with metric η of signature (r, s). The Poincaré group associated to
this space is the isometry group of (V0, η);. It is the semi-direct product5

P (V0) = Spin(r, s)n Trans(V0) , (2.4.1)

where Trans(V0) is the translation group on V0, which is of course isomorphic to V0 itself. The
tangent space at the origin (Id, t0) of this Lie group is the Poincaré algebra, given by the semi-direct
sum

p(V0) = so(r, s) + V0 . (2.4.2)

If we choose an orthonormal basis {Pµ} of the vector space, the Poincaré algebra is spanned by
the generators {Mµν , Pσ} which satisfy the algebra relation

[Pµ, Pν ] = 0 ,
[Mµν , Pσ] = ηµσPν − ηνσPµ ,

[Mµν ,Mσρ] = ηνσMµρ + ηµρMνσ − ηνρMµσ − ηµσMνρ . (2.4.3)

One easily deduces these commutators using (2.2.23) and (2.2.26). The algebra above is essential
for relativistic physics: as we shall see later, it generates a subgroup of automorphism group of
the classical solution space of such a (non-supersymmetric) field theory. The Lie algebra of the
automorphism group will be the direct (commutative) sum of the Poincaré algebra above with
some compact internal symmetry algebra g. Hence the space of classical solutions is an irreducible
representation of the algebra p(V0)⊕ g. The way to find these is Wightman’s little group method.
The mass M2 = PµPµ is a Casimir invariant, i.e. a central element of the universal enveloping
algebra, and hence its eigenspace decomposition spans the whole Hilbert space. A physical re-
quirement is then that the space of classical solutions sits in a dense subset D of the total Hilbert
space spanning the subspaces for which 0 ≤ m <∞ where m is the eigenvalue of M , the so-called
nonnegative energy representations. The resulting stabiliser subgroup of a particular eigenspace
of D characterised by Pµ|φ〉 = kµ|φ〉 therefore depends only on the value m2 = kµk

µ, and we call
these one-parameter set of groups the little groups of the system. In d-dimensional Minkowski
space these little groups split up in 2 isomorphism classes: the massless sector m = 0, where it is
generated by the algebra so(d − 2) + g and the massive sector m > 0 where the Little algebra is
so(d− 1) + g. By the results above, this can be easily shown by choosing a particular momentum
eigenvalue: for kµ =

√
mδµ,d−1, (m > 0) the residual symmetry algebra is quickly seen to be

spanned by all internal symmetry generators and the Lorentz generators Mij with 0 ≤ i, j < d.
For a massless state, say kµ = k(δµ,0 + δµ,d−1) (k 6= 0), the bosonic little group is generated by
the Ta,Mij with 0 < i, j < d − 1 and the Lorentz algebra elements Li = Mi,d−1 −Mi,0. This
group is not semi-simple because the latter generators all commute among themselves; hence for
the massless sector to be a finite-dimensional representation, they must act trivially on physical
states. Consequently, the rotational part corresponding to the massless little group becomes iso-
morphic to so(d− 1).

5Group multiplication on the semi-direct product is given by (A, tu)(B, tv) = (AB, tu ◦ tAv) for A, B ∈ SO(V0)
and tu, tv ∈ Trans(V0) translations corresponding to the vectors u, v ∈ V
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2.4.2 Representations of the Lorentz Algebra

The representation theory of the orthogonal algebra so(d− 2) may be found in several textbooks
(a comprehensive treatment may be found in [16], a more detailed exposition in [17]). It turns out
that even- or oddness of d − 2 is a crucial factor in the highest-weight representation theory. In
the defining representation the basis vectors of so(2n) are given by (Mi,j)k,l = δikδjl − δilδjk, and
therefore the Cartan generator Hj = −iM2j−1,2j has a 1 complex-dimensional eigenspace spanned
by the eigenvectors (| ± ek〉)i = δj,2k−1± iδj,2k satisfying Hj | ± ek〉 = ±δkj |ek〉. Hence the ek form
a basis of it∗ with components the eigenvalues w.r.t. the Cartan basis: (ek)j = ek(Hj) = Hj |ek〉 =
δkj . The eigenvectors of the Cartan generators under the adjoint representation are

Eη1ej+η2ek
= M2j−1,2k−1 + iη1M2j,2k−1 + iη2M2j−1,2k − η1η2M2j,2k , (2.4.4)

with η1, η2 ∈ {−1, 1}. These satisfy

[Hi, Eη1ej+η2ek
] = (η1δij + η2δik)Eη1ej+η2ek

= (η1ej + η2ek)(Hi)Eη1ej+η2ek
. (2.4.5)

Consequently the roots of the algebra are of the form ±ej ± ek. The Killing form, a canonical
inner product on the dual of the Cartan subalgebra satisfies 〈ei, ej〉 = 2δij . Hence we can choose
a system R+ of positive roots associated to the fundamental Weyl chamber; we choose ek ± ej for
k < j. The n simple positive roots are chosen αi = ei − ei+1, i = 1, . . . n− 1 and αn = en−1 + en,
yielding the Dynkin diagram

• • • •

•

•

ttttttttttt

JJJJJJJJJJJ. . .

α1 α2 αn−3 αn−2

αn−1

αn

Simple root vectors which are connected with a line span an angle of 2π/3, the disconnected roots
are orthogonal to each other. Let us now look at the fundamental representations of this group.
One easily calculates the Cartan matrix (see e.g. [18]) and applies its inverse to the set of simple
positive roots given above. The resulting basis of the weight lattice are the fundamental weights

ωj =
j∑

k=1

ek , ω+ =
1
2
( n−1∑

k=1

ek − en

)
, ω− =

1
2
( n−1∑

k=1

ek + en

)
, (2.4.6)

where j = 1, . . . , n− 2. To make sense of the corresponding irreducible representations, we recall
Weyl’s dimension formula,

dimVλ =
∏

α∈R+

〈λ+ δ, α〉
〈δ, α〉 , δ =

1
2

∑

αi∈R+

αi . (2.4.7)

One easily calculates that δ =
∑n−1

j=1 (n− j)ej . Denoting the corresponding fundamental represen-
tation vector spaces with V1, . . . , Vn−2, V+, V−, one finds the dimensions

dimVj =
(

2n
j

)
, dimV+ = 2n−1 = dimV− . (2.4.8)

The weights of the fundamental representations are obtained by letting the Weyl group of mirror
symmetries of the weight lattice act on the fundamental weights. A Weyl reflection w.r.t. a root
α = η1ej + η2ek acts on a lattice basis vector by sαei = (1− δij)(1− δik)ei − η1η2(δijek + δikej).
After some calculations, one finds the following sets of weights:

W (πj) = {±ei1 ± . . .± eij} , W (π±) =
{

1
2 (η1e1 + . . .+ ηnen)

∣∣ ∏n
i=1 ηi = ±1

}
. (2.4.9)
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The dimensions of the associated irreducible representations again arise as the number of states
#W (π). The first n − 2 representations are identified as antisymmetric tensors; the last 2
are the (irreducible) chiral spinor representations. From a closer inspection of the root sys-
tems, one can derive existence and irreducibility properties of real subrepresentations, as is
performed in [16]. The odd-dimensional case is simpler; the Cartan subalgebra is spanned by
−iM1,2,−iM3,4, . . . ,−iM2n−1,2n: the maximal tori of Spin(2n) and Spin(2n+ 1) are isomorphic.
As for Spin(2n), the weight vectors of the Cartan generators in the defining representation form a
basis e1, . . . en of t∗, where (ek)j = Hj(ek) = δkj . Because the Lie algebra contains more generators
than so(2n), there are more co-roots:

Eη1ej+η2ek
= (M2j−1,2k−1 + iη1M2j,2k−1 + iη2M2j−1,2k − η1η2M2j,2k) ,

Fη3ei
= M2i−1,2n+1 + η3iM2i,2n+1 , (2.4.10)

where η1, η2, η3 ∈ {−1, 1} and i, j, k ∈ {1, . . . n}. Under the adjoint representation of the Cartan
generators these transform as

[Hi, Eη1ej+η2ek
] = (η1ej + η2ek)(Hj)Eη1ej+η2ek

,

[Hi, Fη3el
] = η3el(Hi)Fη3el

. (2.4.11)

Hence the roots are ±ei ± ej and ±ek for i, j, k = 1, . . . n. Using 〈ei, ej〉 = 2δij we select the
set of positive roots {ei, ej ± ek, i, j, k = 1, . . . , n, j < k}. It follows that the simple roots are
(α1, . . . , αn) = (e1 − e2, e2 − e3, . . . , en−1 − en, en). Here we observe the structural difference with
the even-dimensional case; the Dynkin diagram looks like

• • • • •. . .

α1 α2 αn−2 αn−1 αn

The double line indicates an angle of 3π/4: cos θn = 〈en−1 − en, en〉/(|en−1 − en||en|) = −1/
√

2.
The fundamental weights of this group are

ωj =
j∑

k=1

ek , ωn =
1
2

n∑

k=1

ek , j = 1, . . . n− 1 . (2.4.12)

The first n− 1 fundamental weights are again associated to antisymmetric tensor representations.
The last weight (2.4.12) is the highest weight of the single irreducible spinor representation, re-
flecting the fact that chiral spinors do not exist in odd dimensions (cf. table (2.3.5)). Using
δ =

∑n
j=1(n+ 1

2 − j)ej one finds via (2.4.7) that the dimension of the spinor representation is 2n.
This can also be seen by looking at the weight spaces the of the representation, which are of the
form

W (πj) = {±ei1 ± . . .± eij} , W (πn) = { 1
2 (e1 ± . . .± en)} . (2.4.13)

General irreducible representations are canonically constructed from the fundamental representa-
tions as Young symmetrised harmonic tensor spaces (cf. [17]). For the special orthogonal group,
a harmonised tensor space H(

⊗k
V ) is the intersection of the kernels of all contraction operators

Cij ,

Cij :
⊗k

V −→⊗k−2
V : v1 ⊗ . . .⊗ vk 7→ g(vi, vj)v1 ⊗ . . .⊗ v̂i ⊗ . . .⊗ v̂j ⊗ . . .⊗ vk . (2.4.14)

Being in the harmonic subspace is therefore equivalent to satisfy all possible vanishing-trace con-
ditions. So the antisymmetric tensor representations are harmonic tensors. The second step is to
make a partition λ of k, a set of non-increasing integers λ1 ≥ . . . ≥ λl such that λ1 + . . .+ λl = k,
and perform a Young symmetrisation on the harmonic tensor product. Such a partition induces
a partition of the tensor product,

⊗k
V =

⊗λ1 V ⊗ . . . ⊗⊗λl V , and is visualised as a Ferrers
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diagram

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

...
...

...
...

...

. . .

. . .λ1 boxes
λ2 boxes

λl−1 boxes
λl boxes

l + 11
2

l

k

Let us denote the column lengths of the diagram above by the non-increasing sequence τ1 ≥ τ2 ≥
. . . ≥ τλ1 . A column permutation is of the form σ1 ⊗ σ2 ⊗ . . . ⊗ σλ1 where each σi ∈ Aut(⊗τiV )
permuting the tensor factors, and analogously we define a row permutation. Let us denote the
sets of these automorphisms by Col(λ) and Row(λ). The Young symmetrised representation space
is the intersection ⋂

σ∈Row(λ)

ker(Id + sign(σ)σ) ∩
⋂

σ∈Col(λ)

ker(Id + σ) . (2.4.15)

In combination with harmonisation this gives irreducible tensor representations with highest weight
λ1e1 + . . . + λlel = τ1ω1 + . . . + τλ1ωλ1 . The fundamental antisymmetric tensor representations
therefore appear as single-column diagrams. There are 2 conventional notations for the irreducible
representations we constructed: either one specifies the partition and denotes the representation
corresponding to the tableau above by (τ1, . . . , τλ1), or one specified the dimension (which is
calculated using the factors over hooks rule, cf. [16]) printed in bold as in (3) = 84 for 2n+1 = 9.
What if we include spinor representations in the tensor products above? As it turns out, the
tensor product of 2 spinor representations decomposes into a sum of one-column diagrams by
(2.3.16) (see [19, 16] for details); hence we may consider just tensor products of spinors with the
representations constructed above. Harmonisation of a spinor times a k-form is nontrivial; the
subspace

H((k)⊗ 2n−1) = {Aµ1...µk
θαdxµ1 ∧ . . . ∧ xµk ⊗Qα ∈

k∧
V ⊗ S(V )|Aµ1...µk

(Γµ1...µk)α
βθ

β = 0}
is invariant under the corresponding representation of the orthogonal group. An important appli-
cation of these products is the Rarita-Schwinger field, which transforms as a spinor times a vector.
One can easily write down the weights of such a tensor product using the following rule: if π1

is a SO-representation with highest weight `1e1 + . . . + `nen and π2 is a SO-representation with
highest weight j1e1 + . . .+ jnen, then are the weights of the SO-representation π1 ⊗ π2 given by
k1e1 + . . .+ knen where ki ∈ {−`i − ji,−`i − ji + 1, . . . , `i + ji − 1, `i + ji}. This formula implies
that all the weights of SO-representations have integer or half-integer coefficients. The highest
eigenvalue of the set of Cartan matrices, which denoted earlier by λ1, is called the spin s of the
representation. Therefore spin numbers are added when taken a tensor product of representations.

2.4.3 The Super-Poincaré Algebra

A relativistic field theory is called supersymmetric if the automorphism group of its classical so-
lution space is a real superextension of a Poincaré algebra,

Definition. A super algebra p = (p0 +C) + p1 is called a real super Poincaré algebra if the even
part is a semi-direct sum of a complexified Poincaré algebra p0 and a central charge algebra C and
under the super bracket we have [C, p1] = [C, V0] = [C,C] = 0 and [p1, p1] ∈ C⊗ (V0⊕C). Reality
is provided by an involution c, which induces complex conjugation and acts as the identity on the
basis vectors of the even part, and admits a nontrivial real subspace of the odd part.

Already from the Jacobi identities one derives much information on the algebra structure: define
p
(0)
1 = {s ∈ p1 : [V0, s] = 0} and p

(i)
1 = {s ∈ p1 : [V0, s] ∈ p

(i−1)
1 }. This is an algebra filtration,
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p
(0)
1 ⊆ p

(1)
1 ⊆ . . . ⊆ p1. It can be shown that this series is finite: at some finite k we then have

p
(k)
1 = p1 Furthermore the filtration is compatible with the conjugation: (p(i)

1 )c = p
(i)
1 , as it acts

as the identity on the momentum generators. From the super Jacobi identities [V0, [p
(0)
1 , p

(0)
1 ]] = 0

and hence [p(0)
1 , p

(0)
1 ] ∈ C⊗(V0⊕C). Furthermore, using [V0, [V0, p

(1)
1 ]] = 0 and the Jacobi identities

one finds

[[V0, p
(1)
1 ], [V0, p

(1)
1 ]] = [V0, [V0, p

(1)
1 ], p(1)

1 ]] = [V0, [V0[p
(1)
1 , p

(1)
1 ]]] ⊆ [V0, [V0, p

(1)
1 ]] = 0 .

Decomposing p
(1)
1 into eigenspaces of the conjugation yields a positive definite bilinear form on

p
(0)
0 on the left hand side. Hence we may conclude that [V0, p

(1)
1 ] = 0, or consequently p

(1)
1 = p

(0)
1 .

The same argument can be applied to all p
(i)
1 , which eventually yields p1 = p

(0)
1 . The important

formula we extract from this are the brackets

[V0, p1] = 0 , [p1, p1] ⊆ C⊗ (V0 ⊕ C) . (2.4.16)

By linearity of the superbracket [p0, p1] ⊆ p1 the odd part must be a representation of the Poincaré
group. From this moment, we assume the underlying vector space to be d-dimensional Minkowski
space. Then p1 is a representation of the Lorentz algebra so(1, d − 1) ⊕ g with a real structure,
or equivalently a tensor product of 2 representations. As for the Poincaré group, we let the
representations of the (orthochronous orientation-preserving) Lorentz group be induced by the
representations of its compact subgroup of rotations. From the algebra structure we conclude that
the generators of the even subalgebra transform as representations with spin smaller then or equal
to 1 under the rotational subalgebra so(d − 1). Since [p1, p1] is a (symmetrised) tensor product
of two representations of the orthogonal group, its spin two times the spin of the representation
p1. Now we use equality (2.4.16), in which the spin of the representations on both sides must
be balanced, and the fact that the spin on the right-hand side is 1. Excluding Lorentz scalars
from p1 (which would lead to a trivial extension), we conclude that the spin of p1 is 1

2 , so the
anticommuting sector is induced by a spinor representation of the rotation group: it is therefore
equivalent to a spinor representation of Spin(1, d − 1). For g trivial and Qα (the supersymmetry
charges) a basis of the spinor representation, we use (2.2.25) to obtain the bracket

[Mµν , Qα] = −1
2
Qβ(Γµν)β

α . (2.4.17)

2.4.4 Superextensions

In the following V0 is a general vector space with a metric of signature (r, s). We examine the
extensions of the Poincaré algebra by a spinor module, as defined above. In general, the tensor
product of 2 spinor representations decomposes into a sum of all fundamental spin-1 represen-
tations of the Lorentz algebra. Finding a superextension of the Poincaré algebra comes down
to symmetrising this decomposition: if the first fundamental representation, V0, drops out under
this procedure, (non-extended) supersymmetry cannot exist (the resulting algebra would simply
be a direct sum modulo central charges). Another, competing requirement of the supersymmetry
algebra is reality: there must exist an involution on the spinor module which induces complex
conjugation on coefficients and which commutes with the action of the spin algebra, such that the
real subspace w.r.t. this involution is nonempty. When the Majorana subspace (+1 eigenspace of
charge conjugation) is nonempty, the bracket of 2 Majorana spinors is real and positive definite;
it looks like

{Qα, Qβ} = (Γµ)αβP
µ +

∑

k>1

(Γµ1...µk
)αβZ

µ1...µk , (2.4.18)

where we have denoted Zµ1...µk = eµ1 ∧ . . . ∧ eµk and the lowered spinor indices are a shorthand
notation: for θ = Qαθ

α, θ̄ = θαQ
α with θα = θβCβα and analogously (Γµ)αβ = Cαγ(Γµ)γ

β etc.
The matrix C is the charge conjugation matrix Cαβ = (Qα, Qβ)M which may be symmetric or
antisymmetric, but always squares to one. The bracket (2.4.18) is provided by the homomorphism
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(2.3.16). The idea of a higher extension is to consistently generalise the anti-commutator above
to the direct sum of several spinor representations. In the Majorana case above, we can take
the tensor product of S with a vector space W carrying a positive definite bilinear pairing g.
Extending the Majorana condition to this tensor product imposes V to be real. The brackets are
extended to

{Qαi, Qβj} = gij(Γµ)αβP
µ + gij

∑

k

(/Zk)αβ , [Mµν , Qαi] = −1
2
Qβi(Γµν)β

α , (2.4.19)

where we have used the shorthand notation /Zk for a rank k central charge contracted with the
k-fold antisymmetrised gamma matrices. There is an extended automorphism group of the brack-
ets above induced by the group SO(W, g), which commutes with the adjoint action of the Lorentz
generators. By definition such a group, if compact, is called the R-symmetry group of the exten-
sion. We can use it to classify the extension: a compact group is the automorphism group of a
bilinear product on some vector space, and given this group the extension is recovered by taking
the tensor product of a single spinor module with its vector representation. For S Majorana and
nonchiral and allowing a symmetric map to V0, g is real and symmetric and the R-symmetry group
is SO(N). This can happen if the (r− s) mod 8 = 1 or 7 and (r+ s) mod 8 = 1 or 3. If the spinor
module is chiral and charge conjugation respects the irreducible subspaces, the Majorana-Weyl
case (r − s) mod 8 = 0, we separate two cases. If d mod 8 = 2, the anti-commutator of spinors
with opposite chirality vanishes: we then have a chiral superalgebra. This allows us to tensor both
irreducible real subspaces with different vector spaces WL and WR. The R-symmetry group turns
into SO(NL) × SO(NR). In the cases d mod 8 = 0, 4, it is the bracket of equal-chirality spinors
that vanishes (cf. (2.3.4)) and we call the algebra anti-chiral. In such cases we obviously must
have NL = NR.

In the complex chiral case (r − s) mod 8 = 2, 6, the real subspace w.r.t. charge conjugation con-
sists of spinors of mixed chirality. The bracket of 2 real spinors breaks up in three pieces, lying
in {S+, S+}+ {S−, S−}+ {S+, S−}. Because charge conjugation switches chiral subspaces, only
the latter space has a real subspace: Poincaré supersymmetry is only consistent if S ⊗ S −→ VC
is nonchiral: S+ ∨ S− −→ V . From table (2.3.4) we read off that this happens if d mod 8 = 0 or
4. Independent left- and right-handed extensions are therefore impossible. If we take the tensor
product of the spinor module by some complex vector space W , it should be equipped with a
positive-definite symmetric Hermitian form g. Hence the automorphism group of the extension
becomes U(N).

If (r − s) mod 8 = 3, 4, 5, the even subalgebra is quaternionic and charge conjugation is not
an involution, since it squares to the map θ 7→ −θ. Extending the module to S ⊕ S gives an
involution (θσ)i = Ωijθc

j , with Ω defined in (2.3.18). This is an extension by a 2-dimensional
vector space with a symplectic metric Ω defined on it. Replacing g by this Ω in (2.4.19) shows
that Poincaré supersymmetry can then exist if (Γµ)αβ is antisymmetric in the spinor indices, i.e. if
(r− s) mod 8 = 3, 5 and d mod 8 = 5, 7, and for (r− s) mod 8 = 4 we obtain a chiral superalgebra
if d mod 8 = 6, while for d = 0, 4 nonchiral superalgebras exist. Higher extensions arise by
extending the two-dimensional vector space to higher even-dimensional vector spaces equipped
with the symplectic metric

Ω =
(

0 1N

−1N 0

)
. (2.4.20)

The new automorphisms on the extended module which leave the supercharge bracket invariant
are unitary transformations L on 2N -dimensional extension vector space W that obey LΩLT = Ω.
This matrix group is called the unitary symplectic group USP (2N), which is isomorphic to
SU(2N). Again, if the algebra is chiral we may choose different extensions for the chiral sub-
spaces, giving us R-symmetry groups of the form SU(2NL) × SU(2NR). These extensions are
summarised in the last column of table (2.3.5). For detailed classifications, see e.g. [20] and [21].
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2.4.5 Representation Theory

Let us now include supersymmetry generators in the little group procedure to find irreducible
representations of the entire super-Poincaré algebra. The reduction of the Lorentz algebra in the
positive energy eigenspaces will lead to a reduction of the supersymmetry. This symmetry breaking
is maximal at the massless level. From the analysis above it is clear that the representation of
the Cartan generators have 2n−1 eigenvalues i/2 and 2n−1 eigenvalues −i/2 on the spinor module
p1 (which was already noted at the end of section (2.2)). One easily verifies that in the chiral
case each irreducible subspace carries a quarter of respective eigenstates. Let S± be two the
eigenspaces of the generator M0,d−1, which then satisfy dim(S±) = 1

2 dim(S) and S+ ⊕ S− =
S, where orthogonality is provided by the spin-invariant bilinear pairing used to construct the
superextension. From the super-Jacobi identities one derives that for θ ∈ S± : [M0,d−1, [θ, θc]] =
±[θ, θc]. Hence, for any state |φ〉 in the total Hilbert space, [θ, θc]|φ〉 is an eigenstate of M0,d−1.
But the only elements in p0 (including central charges) satisfying this eigenstate condition are
c(P 0 ± P d−1), where the sign corresponds to θ ∈ S± and c is a positive real number. Hence,
restricted to the momentum eigenspace D0 characterised by Pµ|φ〉 = k(δµ0 + δµ(d−1))|φ〉, all the
brackets [θ, θc]|φ〉 with θ ∈ S− vanish. Because the super bracket of a spinor and its conjugate
is positive definite, all the elements of S− must be represented by zero on D0. Consequently, the
central charges must be represented by zero on D0: states generated by C acting on D0 are in the
space [S+, S−]|D0〉 = 0, because states in [S±, S±]D0 yield linear combinations of the momenta.
Also in the massive sector with C = 0 half of the supersymmetries are broken. However, in the
massive case we look at the stabiliser of the states in Dm, the momentum eigenspace defined by
Pµ|Dm〉 =

√
mδµ,d−1|Dm〉 for m > 0. Then for θ ∈ S± : [θ, θc] = ±Cm on Dm. We have therefore

equal-dimensional positive and negative eigenvalue subspaces. If we denote S = S0 ⊕ S1, where
S0 annihilates Dm, we conclude dimS0 ≤ 1

2 dimS: in the massive sector less then one-half of the
supersymmetries may be broken. Let us denote with S1 the subspace of the odd sector which has
a nontrivial representation on D . The little groups are then generated by

l =
{

so(d− 2)⊕ g⊕ S+(= S1) , m = 0 ,
so(d− 1)⊕ g⊕ S1 , m > 0 . (2.4.21)

We may choose a basis Qα of S+ such that on D we have

[Qα, (Qc)β ] = δαβ . (2.4.22)

Here we have absorbed both spinor indices and internal symmetry algebra indices in the Greek
indices α, β, . . .. Let us denote the Lorentz transformation matrices of this basis with σµν :
[Mµν , Qα] = − 1

2Qβ(σµν)β
α, and define the map T : S1 −→ S∗1 given by the matrix [Qα, Qβ ] = Tαβ ,

and hence Qα = TαβC
βγ(Qc)γ . The Jacobi identity [MQQ] gives

− 1
2 (Tβγ(σµν)γ

α + Tαγ(σµν)γ
β) = 0 . (2.4.23)

Consequently in the universal enveloping algebra U(l) we have
[
1
2Qβ(σµν)βγ(Qc)γ , Qα

]
= −[

[Mµν , Qδ]CδγQc
γ , Qα

]

= − [Mµν , Qα] + 1
2Tδβ(σµν)β

αC
δγ(Qc)γ = −2 [Mµν , Qδ] . (2.4.24)

If we denote M̄µν = Mµν + 1
4Qβ(Γµν)βγ(Qc)γ ∈ U(l), then

[M̄µν , Qα] = 0 . (2.4.25)

Furthermore, if we expand the [M̄, M̄ ] bracket in U(l), we find

[M̄µν , M̄σρ] = ηνσM̄µρ + ηµρM̄νσ − ηνρM̄µσ − ηµσM̄νρ . (2.4.26)

So performing the transformation M 7→ M − 1
2 [M,Qα]CαβQβ sends U(so(d − 2)) to an algebra

Ū(so(d − 2)), which is isomorphic to its original and commutes with the odd subspace. Hence
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U(l) ' U(so(d−2))⊗U(S) on D . As a consequence, irreducible representations of the little group
(induced by irreducible representations of the enveloping algebra) consist of tensor products of
representations of the orthogonal group and representations of the spinor module, equipped with
the bracket {Qα, Q

c
β} = δαβ . This algebra is just a Euclidean Clifford algebra; we investigated its

representation theory in the previous sections.

2.4.6 Massless Representations

The dimension of the full representation of the little group is 2p/2, where p is the dimension of
the operator algebra S|D ⊂ End(D). Because the dimension of the spinor module is a power
of 2, the Clifford algebra on D spanned by them will give rise to chiral representations. The
chiral subspaces correspond to fermion and boson states, and therefore these are on-shell equal in
number. If the little group stabilises a momentum vector of length zero, the integer p is exactly
half of the dimension of the spinor module. Massless representations of the supersymmetry algebra
which are induced by the trivial representation of the Lorentz algebra are said to form the shortest
supermultiplet. Note that the dimension of the representation grows as an iterated exponent of the
Minkowki base space V0, as dimS grows exponentially as a function of dimV0. It is instructive to
examine representations via their character of the Cartan generators −iM2j−1,2j . Classification
of representations induced by the trivial representation of Ū(so(d− 2)) is important since

χρSO⊗ρQ
(exp(ζµνMµν)) = χρ̃SO

(exp(ζµνM̄µν)χ1⊗ρQ
(exp(ζµνMµν)) , (2.4.27)

where ρSO : so(d − 2) −→ End(D) is the representation of the homogeneous Lorentz alge-
bra and ρ̃SO is its composition with the isomorphism Ū(so(d − 2)) ' U(so(d − 2)) and ρQ :
C`0(0, 1

2 dim(S)) −→ End(D) is a spinor representation of the Clifford algebra defined by the
supercharges. The representation of the super-little group induced by the trivial representation
of the Lorentz group is denoted 1 ⊗ ρQ. In his paper [1], Nahm derives the characters of 1 ⊗ ρQ

recursively, starting from a minimal subalgebra ' u(1) and then extending to the full Cartan
subalgebra. Define χn(ζ1, . . . , ζn) = χ1⊗ρn(ζiHi) as the character of the representation of the
extension of an n-dimensional commutative subalgebra tn of so(d − 2) by a 2n-dimensional real
spinor representation Sn. For n = 1, we take the Dirac basis (2.2.27) and find

Γ12 =
i

2

(
1 0
0 −1

)
, C+ = Γ1 =

(
0 1
1 0

)
. (2.4.28)

The 2 real supercharges Q0, Q1 are represented by the Pauli matrices (2.2.27), so we find

H1 = iM12 = − i
4
Qα(Γ12)α

γC
γβQβ =

1
8
(Q0Q1 −Q1Q0) =

i

4

( −1 0
0 1

)
. (2.4.29)

Hence χ1(ζ) = Tr(exp ζH1) = 2 cos( 1
4ζ). The recursion relation arises when we change the Cartan

basis {H1,H2, . . . , Hn} 7→ { 1
2 (H1 +H2), 1

2 (H1 −H2),H3, . . . , Hn}:

χn(ζ1, ζ2, . . . , ζn) = χn−1(ζ1 + ζ2, ζ3, . . . , ζn)χn−1(ζ1 − ζ2, ζ3, . . . , ζn) . (2.4.30)

Taking all the zeta’s 0 except for the first one gives us the following expression:

χ1⊗ρQ
(exp iζM12) = (2 cos( 1

4ζ))
dim S/4 . (2.4.31)

We expand this formula in terms of cosines with half-integer or integer frequency and hence end
up with the expression 2 cos( 1

16ζ dimS) + lower freq. terms. We would now like to identify these
terms with irreducible representations of the Lorentz groups. After a closer inspection of the Weyl
group, one finds upon use of Weyl’s character formula that the characters of a diagonal element
g = diag(g1, g−1

1 , g2, g
−1
2 , . . . , gn, g

−1
n , 1) of so(2n + 1) under the representation ρλ with highest

weight λ = λ1e1 + . . . + λnen and a diagonal h = diag(h1, h
−1
1 , h2, h

−1
2 , . . . , hn, h

−1
n ) of so(2n)
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under the representations ρλ± with highest weights λ± = λ1e1 + . . . + λn−1en−1 ± |λn|en equal
(see e.g. [22])

χρλ(g) =
|Sλi+n+ 1

2−i
j (g)|
|Sn+ 1

2−i
j (g)|

, χρλ± (h) =
1
2

(
|Cλi+n−i

j (h)| ± |Sλi+n−i
j (h)|

|Cn−i
j (h)|

)
, (2.4.32)

where we have defined |Ski
j (g)| = detij(gki

j − g−ki
j ) and |Cki

j (g)| = detij(gki
j + g−ki

j ). Note
that if λn = 0, the last column of the matrix S i

j (h) becomes zeros, which makes the second
term in the numerator of the second character in (2.4.32) vanish (there exist no chiral rep-
resentations with integer spin). Now we let g be parameterised by exp(i

∑n
i=1 ζiM2i−1,2i) =

diag(eiζ1 , e−iζ1 , . . . , e−iζn−1 , e−iζn−1 , 1); after some algebra one finds following characters for the
fundamental antisymmetric tensor representations (k) (λ = e1 + . . . + ek) and the spinor repre-
sentation 2n:

χ(k)(g) =
k∑

i=0

γi
kfi(ζ1, . . . , ζn) , χ2n(g) = 2n

n∏

i=1

cos( 1
2ζi) , (2.4.33)

where the γi
k are constants which have to be calculated explicitly using (2.4.32) and

fi(ζ1, . . . , ζn) =
∑

1≤m1<...<mi≤n

cos(ζm1) . . . cos(ζmi) . (2.4.34)

In the even-dimensional case the characters of the antisymmetric tensor representations have the
same form. However, the chiral representations distinguish themselves in the character ring by

χ2n
±(exp(i

n∑

i=1

ζiM2i−1,2i)) =
∑

ηi∈{−1,1}
exp

(
i
2 (η1ζ1+η2ζ2+. . .+ηnζn)

)
,

∏n
i=1 ηi = ±1 . (2.4.35)

These character formulas allow us to decompose all choices of representations ρSO ⊗ ρQ into irre-
ducible representations of the Lorentz group. Uniqueness of such a decomposition is implied by
character theory. This suggests that whenever the metrised space V0 allows a Poincaré supersym-
metry algebra, it gives rise to an infinite number of massless supermultiplets, in which represen-
tations of arbitrary length and spin can occur. However, in a physical theory in Minkowski space,
there is an additional restriction on such a massless supermultiplet: there exists no consistent
interacting field theory built out of representations of the Lorentz group with spin bigger than 2
[23, 24]. This puts restrictions on possible extensions of the spinor module and the dimension of
our Minkowski space. To determine the highest dimension in which supersymmetry is possible, we
consider the shortest massless multiplet: as already mentioned, the representation 1⊗ ρQ induces
a multiplet with highest spin 1

16 dimS, which gives the upper bound dimS ≤ 32: hence from
table (2.3.5) we read off that the maximal dimension is d = 11, and the supercharges constitute
a single Majorana spinor representation of SO(1, 10). Massless representations containing spin-2
particles are called supergravity multiplets, since they include a symmetric 2-tensor which may be
identified with the metric, and hence generate gravity theories. In his article, Nahm treats these
various representations in more detail, adding nontrivial representations of the Lorentz group,
higher supersymmetry extensions and internal symmetries. Supersymmetry multiplets are exten-
sively treated in [25]. For a detailed exposition of various supergravity multiplets, including the
massive ones and central charges, we refer to [26].

2.5 Spinor Bundles and Supergeometry

2.5.1 Principal and Associated Bundles

Let us now implement the theory of the previous sections into a geometric framework. We call a
manifold M pseudo-Riemannian if there exists a metric g ∈ ΓT ∗M ⊗ ΓT ∗M which is symmetric
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and nondegenerate and Lorentzian if it has, viewed as a bilinear form g : Tp(M) ⊗ Tp(M) → R,
signature (−+ . . .+). A basis {ea} is called g-orthonormal if it satisfies

g(ea, eb) = gµνe
µ

a e ν
b = ηab , (2.5.1)

where η = diag(±1, . . . ,±1) is the diagonalised and normalised metric and we have in each coordi-
nate chart frame ea = e µ

a ∂/∂xµ. Note that gµν depends on the point p of the manifold and so does
the orthonormal frame, while η is at each point the same. From this moment, Latin indices shall
refer to components w.r.t. an orthonormal frame basis and Greek ones to components w.r.t. the
coordinate bases ∂µ, dxµ. A g-orthonormal basis of tangent vector fields defines an orthonormal
set of dual co-vectors ea. The metric and its contravariant dual can be written in terms of the
new (co-) frames as follows:

g = gµνdxµ ⊗ dxν = ηabe
a ⊗ eb ⇒ gµν = ηabe

a
µ e b

ν ,

g∗ = gµν ∂

∂xµ
⊗ ∂

∂xν
= ηabea ⊗ eb ⇒ gµν = ηabe µ

a e ν
b . (2.5.2)

So 1-forms can be locally written as ω = ωµdxµ = ωae
a and vectors Y = Y µ∂/∂xµ = Y aea. The

relation (2.5.1) defining a g-orthonormal frame is at each point of the manifold unique up to an
orthonormal transformation ea 7→ ebΛ b

a , with Λ ∈ O(r, s) if the signature of η (and hence g). If we
consider the fiber bundle of all g-orthonormal frames PO(TM), its fiber at each point is therefore
isomorphic to O(r, s). Similarly, for an orientable M we may define the bundle which assigns to
each point the space of positively oriented, orthonormal frames, requiring det(e) = +1, which we
shall call the special orthogonal bundle PSO(TM). The transition functions in overlapping coor-
dinate charts are Lorentz transformations, or, its structure group is the Lorentz group. Physical
laws or quantities in which all Latin indices are contracted are invariant under local Lorentz trans-
formations, and quantities in which Greek indices are contracted are invariant under coordinate
transformations (diffeomorphisms). The orthonormal frame bundle is an example of what is called
a principal fibre bundle:

Definition. A principal G-bundle is a fibre bundle π : P −→ M with a right group action
α : P × G −→ P for some topological group G, which is continuous, free, fibre-preserving and
transitive on each fibre.

By definition a right group action α satisfies α(x, e) = x if e is the unit element in G and
α(α(x, g), h) = α(x, gh). Acting freely imposes the converse to the former statement: if α(x, g) = x
for some x ∈ P , then g = e. Being fibre-preserving obviously means that π(α(x, g)) = π(x) for
all group elements. A group action is transitive if there is only one G-orbit. Hence for every pair
x, y ∈ P with π(x) = π(y) there exists a g ∈ G which connects them: x = α(y, g). A topological
space which has a continuous free transitive group action is always homeomorphic to that group,
so the fibres of P are in one-to-one correspondence with G and the manifold M is homeomorphic
to the quotient space P/G. We say that the P -fibres are G-torsors: as spaces they are homeomor-
phic to G, but they lack group structure because there is no preferred choice of identity element.
If we require P to be a smooth manifold and the G-action to be smooth, free and proper, such
that the action sends compact sets to compact sets, then P/G is diffeomorphic to M and π is
smooth, as well as the local trivialisations. For a principal G-bundle the structure group is G. In
this sense a principal G-bundle can be viewed as a G-bundle for which all fibres are G itself, and
local transition functions correspond to left multiplication by group elements.

The easiest way to construct a principal bundle is to take globally the product of M with some Lie
group G: such bundles will be called trivial principal bundles. A less trivial example is the linear
frame bundle PGL(TM), which assigns to each point p of M the space of linearly-independent
bases of TpM . Since invertible linear transformations send bases to bases, the fibers are isomor-
phic to GL(d,R). The local trivialisation assigns to each basis X = {X1, . . . , Xd} of TpM the
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point (p,G) of U × GL(d,R), where G is the matrix transforming X to the coordinate basis.
A similar story holds for the orthonormal frame bundle, replacing ’linear basis’ by ’orthonormal
basis’ and GL(d,R) by O(r, s). Analogously, an arbitrary vector bundle π : E −→ M of rank
n gives rise to a principal GL(n,R)-bundle. If E is equipped with a bilinear symmetric form
g : Γ(E ∨E) −→ C∞(M), we analogously define the principal bundles PO(E) and PSO(E), if it is
orientable. The latter are examples of reductions of G-structures. Given a principal G-bundle with
closed subgroup H ⊂ G, we can construct a principal H-bundle provided the transition functions
take their values in H under the restriction of the fibres to H.

The inverse process to the latter constructions is called an associated bundle construction. Given
a principal G-bundle (P,M, π) and another smooth manifold Q which allows a continuous left
action by G under some representation ρ : G −→ Homeo(Q), we define an action

(P ×Q)×G α×ρ−→ P ×Q : ((p, q), g) 7→ (pg, ρ(g−1)q) . (2.5.3)

We denote P ×ρ Q the space of orbits under this action equipped with the quotient topology.
There is a canonical projection π̃ : P ×ρ Q −→ M : π̃([p, q]) = π(p) which makes (P ×ρ Q,M, π̃)
into a fiber bundle over M . The local trivialisations are constructed as follows: suppose U ⊂ M
is an open trivialisation neighbourhood for P , the homeomorphism φ : π−1(U) −→ U ×G a local
trivialisation and define the identity section s : U −→ π−1(U) : s(p) = φ−1(p, eG). Then we define
the homeomorphism

ψ : U ×Q −→ π̃−1(U) : ψ(p, q) = [s(p), q] = [φ−1(p, eG), q] . (2.5.4)

Then π̃(ψ(p, q)) = π̃([s(p), q]) = π̃ ◦ ρ(s(p), q) = π ◦ σ(s(p), q) = p, so that ψ(p, q) ∈ π̃−1(p), which
makes ψ−1 a local trivialisation over U . The fibers of the bundle are diffeomorphic to Q since
ψ|p×Q : {p} × Q −→ π̃−1(p) is a diffeomorphism, and the transition functions are the ones of P ,
because they act from the left and therefore commute with the G-action, so the resulting fiber
bundle (P ×ρ Q,M, π̃) is a G-bundle with the trivialisation cover of P . We call it an associated
bundle to (P,M, π). We have seen that under certain conditions one can reduce the principal
G-bundle to a principal H-bundle. In [27] it shown that the number of inequivalent reductions is
equal to the number of global sections of the associated G/H-bundle.

Let us take the example of the linear frame bundle PGL(TM). We denote the standard repre-
sentation by ρ : GL(d,R) −→ Aut(Rd). A d-tuple of real numbers ai together with the basis X
defines a unique element v of TM by v = aiX

i at each point of M . If ({X}, a) and ({Y }, b)
are in the same equivalence class in PGL(TM) ×ρ Rd, there is (at each point of the manifold)
a linear transformation A such that X = A−1Y and a = Ab. So these couples define the same
vector at each point, represented in a different basis: aiX

i = A j
i bj(A

−1)i
kY

k = bkY
k. Hence,

different equivalent classes represent different vector fields on M : PGL(TM) ×ρ Rd = TM . This
result can be straightforwardly generalised to arbitrary rank-n vector bundles and tensor powers
of representations:

k⊗
E = PGL(E)×Nk ρ

k⊗
Rn = PSO(TM)×Nk σ

k⊗
Rn ,

where σ : SO(π−1E) −→ End(Rn) is the standard representation. The isomorphism above also
holds for (anti-) symmetrised tensor powers and the dual bundle. An important example of the
associated bundle construction is the adjoint bundle, P ×Ad g. This is a vector bundle with fibers
isomorphic to the Lie algebra g, whose elements on intersecting trivialisation neighbourhoods are
related by v′ = g−1vg.

2.5.2 Clifford and Spinor Bundles

Now we have developed a proper machinery to put the Clifford algebras onto a manifold; recall
from section (2.2) we had a 2 to 1 homomorphism Ad0 : Spinr,s −→ SO(r, s). The connection
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with the special orthonormal frame bundle is an extremely useful tool to put the spin algebras on
a bundle:

Definition. A spin structure on an orientable pseudo-Riemannian manifold M (signature (r, s))
is a principal Spinr,s-bundle PSpin(TM) with a 2-sheeted covering

σ : PSpin(TM) −→ PSO(TM) (2.5.5)

such that σ(v ·g) = σ(v)◦Ad0(g) for v ∈ PSpin(TM) and g ∈ Spinr,s. If M admits a spin structure,
we call it a spin manifold.

Requiring PSpin(TM) to be principal, gives a restriction on the manifold M : only spin manifolds
allow a lifting of the action of SO(r, s) on PSO(TM) to an action of Spinr,s on PSpin(TM). The
essence of the lifting problem is to obtain transition functions for the spin bundle by ’inverting’ σ
and thereby choosing in a continuous fashion for each transition matrix one of the two elements
of Spinr,s which map to this matrix under the adjoint representation. It is beyond our scope to
examine the topological conditions that arise in this procedure, but the reader may find in [13] that
a pseudo-Riemannian orientable manifold admits a spin structure iff the second Stiefel-Whitney
class w2(PSO(TM)) of its orthonormal oriented frame bundle vanishes. If M is a spin manifold,
the Clifford bundle is the associated adjoint to the spin bundle,

C`(TM) = PSpin(TM)×Ad C`r,s . (2.5.6)

And analogously we define the complexified Clifford bundle C`(TM). However, Clifford bundles
can also be consistently defined on manifolds which do not allow a spin bundle (cf. [13]). Note that
(s, v) and (s′, v′) are in the same equivalence class in C`(TM) iff Adsv = Ads′v

′, so the Clifford
product rule is conserved; given a local orthonormal oriented frame field ea and a coordinate basis
∂µ, we have fiberwise

ea · eb + eb · ea = 2ηab , ∂µ · ∂ν + ∂ν · ∂µ = 2gµν . (2.5.7)

The Clifford bundle is thus not just a fiber bundle, it is a sheaf of algebras, like the exterior
algebra. The isomorphism (2.2.5) induces a bundle isomorphism λ : ∧TM '−→ C`(TM), which
preserves the even and odd subalgebra bundles. We shall from now on omit this isomorphism,
regarding both algebras as algebras over the same vector space, the direct sum of tensor powers
of TM . All the properties of Clifford algebras derived in previous section can be generalised to
Clifford bundles. If d is odd and the signature is such that the algebra is reducible, then the central
idempotents (1 ± ω)/2 with ω the volume form decompose the Clifford bundle into subbundles
of simple algebras. Furthermore, we can define a spinor bundle S(TM), which is a bundle of
irreducible representations of C`0(TM) (or a chiral/real subalgebra thereof). Again this bundle
arises from an associated bundle construction

S(TM) = PSpin(TM)×L C`r,sP , (2.5.8)

where P is a primitive idempotent of C`r,s and L is the left multiplication representation map.
Then all properties of spinors stated earlier can be directly carried over to sections of this bundle.
In particular, the bilinear pairings of spinors are globally defined since they are spin-invariant.
Charge conjugation of spinors can be locally defined by

ψc = (Qαψ
α)c = QαB

α
β(ψβ)∗ . (2.5.9)

Then some simple algebra yields that for any a ∈ ΓC`(TM), (aψ)c = a∗ψc. Since s∗ = s for
s ∈ Spin+

r,s, charge conjugation is consistently defined on overlaps. Combining previous results
yields that also the local Dirac conjugation can be extended to the whole cover of M .
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2.5.3 Connections and Covariant Derivatives

Suppose (P, π,M) is a principal G-bundle over M , with w ∈ P . We can differentiate the projection
map at this point to obtain a linear projection in a vector space, (π∗)w : TwP −→ Tπ(w)M . We
define the vertical subspace of TwP as TV

w P ≡ ker((π∗)w), which induces the direct decomposition
TwP = TV

w P ⊕ Tπ(w)M .

Definition. A connection on P is a selection of horizontal subspaces TH
w P ⊂ TwP for each w ∈ P

such that

1. TwP = TV
w P ⊕ TH

w P ,

2. TH
w·g = (Rg)∗TH

w P ,

3. TH
w P depends smoothly on w.

Here Rg : P −→ P is simply the right action of the structure group and ’depending smoothly’
means being the spanned bundle of a d-tuple of smooth sections of TP (by the two decompositions
we have dim(TH

w P ) = dim(Tπ(w)M) = dim(M) = d). Hence restricting π∗ to the horizontal
subspaces yields isomorphisms TH

w P ' Tπ(w)M . Very often G will be a Lie group, isomorphic to
the fibers π−1(p), acting on itself by right translation in overlaps. In these situations a connection
can be formulated in terms of Lie algebra-valued forms. It is shown in [28] that under these
conditions there exists a unique ω ∈ Γ(T ∗P )⊗g such that at each w ∈ P we have TH

w P = ker(ωw :
TwP −→ g). Actually, to establish a full equivalence we need to impose following conditions
on ω: (i) under the derivative of right translation, the values of ω transform under the adjoint
representation: ωwg((Rg)∗v) = Adg−1(ωw(v)) for all w ∈ P, v ∈ TwP and g ∈ G and (ii) under
a pull-back by the embedding Rp : G −→ P : g 7→ p · g for any p ∈ P yields the Maurer-Cartan
form: R∗pω = ωG. The latter is the canonical Lie algebra-valued on the Lie group,

ωG : ΓTG −→ g : (ωG)g(v) = (Lg−1)∗v . (2.5.10)

Given a basis {Ea} of g, it induces local basis of left-invariant vector fields {Xa} on the Lie group.
If {ωa} is its dual basis, the Maurer-Cartan form is given by ωG = ωa⊗Ea. We lift the differential
and Lie algebra commutator to the complex Ω∗(P, g) as follows,

d : Ωk(P, g) −→ Ωk+1(P, g) : d(α⊗A) = dα⊗A ,
[ , ]∧ : Ωk(P, g)× Ωl(P, g) −→ Ωk+l(P, g) : [α⊗A, β ⊗B]∧ = α ∧ β ⊗ [A,B]g , (2.5.11)

these constructions are essential in the study of covariant derivatives on the principal bundle and
its associated bundles.

Suppose we have a principal G-bundle (P,M, π) with a connection 1-form ω and an associated
vector bundle E = P ×ρ V where ρ : G −→ End(V ) is a representation of the structure group.
Then we define a covariant derivative as a map

∇ω : Ω0(M,E) −→ Ω1(M,E) : σ = [w, v] 7→ ∇ωσ(X)p = [w(p), ρ∗(ωw(p)(w∗(X)))vp + v∗(X)p] ,

for all p ∈ M and X ∈ TpM . By our previous notation, Ω0(M,E) = ΓE and Ω1(M,E) =
Γ(E ⊗ T ∗M). Let us explain the definition above somewhat: ∇ω assigns to the section σ of E an
E-valued one-form, i.e. an object which eats the tangent vector field X ∈ ΓTM and spits out a
section of E. Clearly nothing happens with the first factor in P ×ρ V . The last term in the second
factor defines a section of E because V is a vector space: v∗ : ΓTM −→ ΓTV = ΓV . Similarly
w∗ assigns to the vector field X a vector field in ΓTP , which is associated to a Lie algebra value
by the connection 1-form. The derivative of the representation of G correlates such values with
linear transformations on V : ρ∗ : g −→ End(V ), which in its turn acts on the vector v at each
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point p giving us another section of V . We shall from now on omit the p- and ω-dependence in our
notation and write the vector field X as a subscript: ∇ωσ(X) = ∇Xσ, which yields for each vector
field X a map ∇X : Γ(E) −→ Γ(E). We can extend these maps to arbitrary tensor products of
the vector bundle and its dual by defining

for f ∈ C∞(M,R) : ∇Xf = X(f) ,
for α ∈ ΓE∗ , ∇Xα ∈ ΓE∗ : ∇Xα(Y ) = −α(∇XY ) +X(α(Y )) for all Y ∈ ΓE ,

∇X : Γ
⊗r

s E −→ Γ
⊗r

s E : ∇X(V ⊗W ) = ∇XV ⊗W + V ⊗∇XW , (2.5.12)

where
⊗r

s E is a shorthand notation for ⊗rE⊗⊗sE∗. The minus sign in the first term of ∇Xα is
there such that the Leibniz rule ∇X(α(Y )) = ∇Xα(Y )+∇XY (α) is fulfilled. The space of sections
of a principal fiber bundle is a C∞(M)-module by setting (fσ)(p) = [w(p), f(p)v(p)]. With the
definition above, one easily derives the Leibniz rule for covariant differentiation:

∇X(fσ) = f∇Xσ + df(X)⊗ σ . (2.5.13)

Furthermore, ∇X is C∞(M,R)-linear in X:

∇fX+gY σ = f∇Xσ + g∇Y σ , (2.5.14)

because w∗ and v∗ are fiberwise linear maps and ωp(X) is C∞(M,R)-linear in X. The product
rules above are often proposed as defining properties of a covariant derivative. A connection also
induces a covariant de Rham differential d∇ on Γ(

∧
T ∗M ⊗ E) by

d∇([w, β ⊗ σ]) = [w, dβ ⊗ σ + β ∧ ρ∗w∗ω(σ)] . (2.5.15)

Again we shall usually omit the factor w. Note that this differential is grading-preserving, but it
has a different cohomology sequence from the ordinary de Rham complex. As an example, consider
the associated bundle construction TM = PGL(TM) ×ρ Rd with ρ the standard representation
of GL(d,R). Suppose we have a local coordinate patch (U, xµ) and denote its coordinate basis
by w = {∂σ} ∈ ΓPGL(TU). By the linearity rules above, the covariant derivative is completely
specified by the values

∇∂µ∂ν = [{∂σ}, ω̃(∂µ))eν ] = [{∂σ}, (ω̃µ)ν ] ∼ (λµ) σ
ν ∂σ , (2.5.16)

where λ = ρ∗w∗ω ∈ Ω1(TM,End(Rd)). We call Γσ
νµ ≡ (λµ) σ

ν the Christoffel symbols of the con-
nection, they constitute a gl(d)-valued one-form. The curvature of a connection ∇ with connection
1-form ω ∈ Ω1(PG(E), g) on an associated G-bundle is the Lie algebra-valued 2-form

θ ∈ Ω2(PG(E), g) : θ = d∇ω = dω + 1
2 [ω, ω]∧ . (2.5.17)

Again taking the pull back to the tangent bundle and the Lie algebra representation gives us a
two-form R = ρ∗(w∗θ) : TM ⊗ TM −→ End(Rd) which can be shown to satisfy

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] . (2.5.18)

The torsion 1-form associated with a connection on the tangent bundle is a Lie algebra-valued
1-form given in a coordinate frame by

T σ
µν = Γσ

νµ − Γσ
µν . (2.5.19)

It acts on 2 tangent vector fields and a one-form by Tσ
µνX

µXνησ = T (X,Y, η) = (∇XY −∇Y X −
[X,Y ])(η). The main theorem of Riemannian geometry states that there is one unique connection
with vanishing torsion on a Riemannian manifold: the Levi-Civita connection.

Taking the orthogonal fiber bundle instead of the general linear fiber bundle in the above allows
us to differentiate Clifford algebra elements and spinors. Choose continuous inverse of Ad0 to
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map the special orthonormal frame bundle to the spin bundle and then act on it with the adjoint
representation to obtain a map c` : SO(r, s) −→ End(C`r,s). Differentiating c` and L|Spin give a
Lie algebra representations

c`∗ : so(r, s) −→ Der(C`r,s) : c`∗(ea ∧ eb) = ad 1
4 [ea,eb]

,

L∗|Spin : so(r, s) −→ End(S) : L∗(ea ∧ eb) = L 1
4 [ea,eb]

. (2.5.20)

Denoting the Lie algebra-valued one form by ω = ω ab
µ ea ∧ eb ⊗ dxµ and applying the above

representations yields the familiar expressions of a covariant derivative acting on sections of the
Clifford and spinor bundle,

∇Xv = Xµ
(
∂µv − 1

4ω
b

µa [Γa
b, v]

)
, ∇Xθ = Xµ

(
∂µθ − 1

4ω
b

µa Γa
bθ

)
. (2.5.21)

The differentials (second terms in the upper line) are taken componentwise, so given a local spinor
basis {Qα} (cf. (??)) in a coordinate neighbourhood (U, xµ), the differential of θ = θα(x)Qα

becomes X(θ) = XµQα∂µθ
α, where the derivative of the K-valued functions θα is taken as the

derivative of a couple (K = H) or 4-tuple (K = C) of real functions. The minus signs in (??)
are convention; recall that in the fundamental definition this sign was a matter of choice too, as
long as we take the opposite sign for the duals in order to fulfill the Leibniz rule. Hence we define
∇X θ̄ = Xµ

(
∂µθ̄ + 1

4ω
b

µa (X)θ̄Γa
b

)
. The representations (2.5.20) are derivations w.r.t. Clifford

algebra multiplication. The reader easily verifies

∇X(A ·B) = (∇XA) ·B +A · (∇XB) ,
∇X(Aθ) = (∇XA)θ +A(∇Xθ) . (2.5.22)

The curvature 2-form R acts on the Clifford bundle by c`∗(e∗R) and on the spinor bundle by
L∗(e∗R), or equivalently

R(X,Y )(v) =
(
dω b

a (X,Y )− (ω c
a ∧ ω b

c )(X,Y )
)
[Γa

b, v] ,

R(X,Y )(θ) =
(
dω b

a (X,Y )− (ω c
a ∧ ω b

c )(X,Y )
)
Γa

bθ . (2.5.23)

Note that the covariant differential commutes with the parity operator α and hence preserves the
even and odd subbundles: ∇C`0,1(TM) = C`0,1(TM). Furthermore it annihilates the Clifford
volume element ω (not to be confused with the spin connection 1-form):

∇ω = 0 , (2.5.24)

and therefore it preserves the chiral subbundles: ∇S±(TM) = S±(TM). Given a spin invariant
inner product on S(TM) one easily shows that (∇Xθ, ψ) + (θ∇Xφ) = X(θ, ψ) and it commutes
with the charge conjugation-involution:

(∇Xθ)c = ∇Xθ
c , (2.5.25)

and thus it leaves Majorana spinors real. Finally, we introduce the Dirac operator associated to
the connection,

/D : Γ(S(TM)) −→ Γ(S(TM)) : /Dθ = ηabea · ∇eb
θ . (2.5.26)

2.5.4 Supergeometry

We now return to the construction of supermanifolds of the first section. The spinor bundle
S(TM) induces a locally free sheaf of C∞M -modules, denoted as S, which assigns to an open subset
U ⊆ M the space S(U) = Γ(U, S(TM)). So the spinor bundle gives rise to a supermanifold
Md|n = (M,A =

∧S) where n = dimS. The motivation for taking the spinor bundle to comprise
the odd coordinates comes from the extension theory of the Poincaré algebra: if we want the
isometry group of the super-tangent bundle to be a superextension of the Poincaré algebra, the
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odd coordinates must constitute a spinor representation of the rotational group. The tangent
space at p can be shown to be isomorphic to TpM0 ⊕ S∗p ; we have already proven in the first
section that (TpM

d|n)0 ' TpM0, and the isomorphism (TpM
d|n)1 ' S∗p is provided by the interior

multiplication map ιX . Note that this construction doesn’t need a metric structure on the spinor
space. This isomorphism is not only true for tangent spaces at a certain point; there is an
isomorphism of sheaves of C∞M0

-modules

(TMd|n)1 ' S∗ . (2.5.27)

The idea to define a notion super-pseudo-Riemannian geometry is to extent the metric g diagonally
by the Majorana pairing to the odd tangent subbundle (requiring the inner product of an even and
an odd vector to be zero). For higher extensions this requires the notion of a bilinear product on
the R-symmetry group (cf. sections (2.4) and (2.3)). However, the formulation of supergeometry
in terms of a supermetric (see [29, 30]) is not convenient. Recall that all geometric quantities may
also be formulated in terms of a preferred frame e, a section of the orthonormal frame bundle.
This approach, which is developed in [31] and adopted in practically all supergravity theories, is
called the Cartan formalism, as it rests upon the theory of Lie algebra-valued forms. In particular,
the superextension of the Poincaré algebra becomes apparent in such a formulation.

The sheaf of frames is the super analog of the linear frame bundle and its structure group GLd|n
is the analog of the structure group GLn(R). We denote it by

PGL(TMd|n)(U) = {(EM ) is a basis of TMd|n(U)} (2.5.28)

for all open U ∈M0. We may consider subsheaves with structure groups subgroups of GLd|n, and
hence extend all the principal bundles to principal sheaves on supermanifolds. The orthonormal
frame bundle PSpin(TMd|n) is the subbundle of PGL(TMd|n) with structure group

Spin(r, s|n) =
{(

A 0
0 (Ad0)−1(A)

)∣∣∣∣A ∈ SO(r, s)
}
, (2.5.29)

consisting of EA = (Er, Ea), r = 1, . . . d, a = 1, . . . , n such that g(Er, Es) = ηrs and (Ea, Eb)M =
Cab, where Cab is the (real-valued) charge conjugation matrix of C`r,s. The fibers of the orthonor-
mal frame sheaf are isomorphic to this group; again the definition of smooth sections requires M0

to be a spin manifold. In fact, SO(r, s|n) is a Lie group which is generated by the algebra

spin(r, s|n) =
{(

A 0
0 (ad0)−1(A)

)∣∣∣∣A ∈ so(r, s)
}
. (2.5.30)

This Lie algebra is exactly the even subalgebra of the extended Poincaré algebra p(r, s|n), divided
by the base space:

p(r, s|n)
V0

= p0 + p1 ,

p0 = spin(r, s|n) , p1 =
{(

0 0
A 0

)∣∣∣∣ (A)ar = g(Er, ε ∧ Γ(1) ∧ Ea), ε ∈ S(M0)
}
. (2.5.31)

Given a local coordinate neighbourhood (ZM , U) the frame is expanded as EA = E M
A ∂M and

there is a corresponding dual frame EA = dZNE A
N ∈ ΓT ∗Md|n(U) defined by

E A
M E N

A = δ N
M , E M

A E B
M = δ B

A . (2.5.32)

This implies that the corresponding dual frames are of the same parity:

Er = E µ
r ∂µ + E α

r ∂α , Ea = E µ
a ∂µ + E α

a ∂α ,

{
P(E µ

r ) = P(E α
a ) = 0,

P(E α
r ) = P(E µ

a ) = 1

Er = dxµE r
µ + dθαE r

α , Ea = dxµE a
µ + dθαE a

α ,

{
P(E r

µ ) = P(E a
α ) = 0,

P(E r
α ) = P(E a

µ ) = 1 .
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Using the above, one easily verifies that the symmetry of the wedge product is preserved by the
tangent space rotation/normalization:

dZM ∧ dZN = (−1)1−mndZN ∧ dZM , EA ∧ EB = (−1)1−abEB ∧ EA . (2.5.33)

Analogously to the definitions above, a connection is selection of horizontal planes on the tangent
bundle of a principal fibre bundle over a supermanifold which under right translation of the base
point is acted on by (Rg)∗ and depends smoothly on this base point. Again it can be shown
that such a selection can always be written as the kernel of a super Lie algebra-valued one-form
on the cotangent space to the fibre bundle satisfying certain conditions. Given a representation
ρ∗ of the super algebra, this superconnection one-form Ω then gives rise to covariant derivatives
on the associated fibre bundle induced by this representation. This operator, the supercovariant
derivative obeys the graded Leibniz property,

∇X(fv) = X(df)⊗ v + (−1)P(X)P(f)f∇Xv , (2.5.34)

and linearity in the subscript: ∇fX = f∇X . We can extend the connection to a morphism
d∇ :

∧p
T ∗Md|n(U)⊗ E −→ ∧p+1

T ∗Md|n(U)⊗ E by requiring

d∇(α⊗ v) = dα⊗ v + (−1)pα⊗∇v . (2.5.35)

The curvature 2-form θ ∈ ∧2
T ∗Md|n(U)⊗ gV given by

R = dΩ− 1
2
[Ω,Ω] = dΩ− Ω ∧ Ω . (2.5.36)

As usual it acts on tangent vectors X,Y ∈ TMd|n(U) by R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ]. As
an important application, let us take E = TMd|n, PG(E) = PSpin(TMd|n). The spin connection
1-form is expanded in terms of basis vectors of the Lie algebra (2.5.30),

Ω = dZM (ΩM ) B
A ⊗M A

B = dZM
(
(ΩM ) s

r −
1
4
(ΩM ) b

a (Γ r
s ) a

b

)
⊗Ms

r , (2.5.37)

where M r
s is a basis of so(r, s), (Γr)

b
a are the generators of the Clifford matrix-algebra and (ΩM ) s

r

are superfunctions. Hence the super connection 1-form is antisymmetric in its bosonic Lorentz
indices r, s and either symmetric or antisymmetric (depending on the dimension and the signature)
in its fermionic indices a, b. The covariant derivative of a vector field X = XAEA ∈ TMd|n(U) or
a 1-form field W = EAWA ∈ T ∗Md|n(U) is

∇MX = (∂MXA + (−1)mbXB(ΩM ) A
B )EA ,

∇MW = EA(∂MWA − (ΩM ) B
A WB) .

(2.5.38)

Here we have used the notation ∇M = ∇∂M
. The curvature and torsion 2-forms are defined as for

ordinary manifolds,

R B
A = dΩ B

A + Ω C
A ∧ Ω B

C , (2.5.39)

TA = dEA + EC ∧ Ω A
C . (2.5.40)

The definition of these quantities implies the super Bianchi identities,

dTA + TB ∧ Ω A
B − EB ∧R A

B = 0 , (2.5.41)
dR B

A +R C
A ∧R B

C − Ω C
A ∧R B

C = 0 . (2.5.42)

These play a crucial rôle if one wants to identify the supermanifold formulation of a supergravity
theory with its ordinary form.
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2.6 Introduction to Field Theory

2.6.1 The Double Complex

We shall end this chapter with a short summary of the Lagrangian theory of classical fields,
adopting the notations and following the constructions of [25]. A field theory is constructed on
a pseudo-Riemannian spacetime manifold M which in the standard formalism is equipped with
a metric of signature (− + + . . .+). A field is a smooth section of some fibre bundle E −→ M .
If E is locally the product of M with some other manifold, the theory is often referred to as a
nonlinear sigma model (the scalar fields represent coordinates on the fibres); if it is the adjoint
bundle to a principal G-bundle we are doing gauge theory. If the theory contains more fields, E
is some fiber product ×Ei. Clearly, we may straightforwardly extend this concept of a field to
’superfields’, replacing M by some supermanifold whose bosonic sector is pseudo-Riemannian.

The classical dynamics of the fields of a theory is determined by a set of equations. These equations
may be imposed by hand (constraints) or originate from minimising the integral of a density on
the set (sheaf) of sections of E, the action. Suppose our theory is constructed from a (product
of) some fibre bundle E −→M and denote the infinite-dimensional space of fields with F = ΓE6.
The idea is to set up a differential geometry on this space which allows a consistent description of
the minimisation of the action. For physical applications ΓF is however too big; we shall assume
that the action only depends on the fields through their derivatives, not for example on the value
of a field at some point in spacetime. Fortunately, this property allows a mathematically quite
rigourous framework for classical field theory. Quantities depending on derivatives of fields are
phrased in terms of sections of jet bundles. For some bundle π : E −→ M we define the k-jet
bundle π(k) : Jk(E) −→ E as the bundle whose fiber at v ∈ E is the vector space of equivalence
classes of sections φ of E under the equivalence relation φ1 ∼ φ2 if all the derivatives of φ1 and φ2

to order k coincide at x = π(v) ∈M . A local coordinate system (xµ, φa) on E|U = U ×F induces
local coordinates on the k-jet bundle, which we denote (xµ, φa

M ) where M is a (symmetrised)
multi-index of absolute value smaller or equal to k: M = µ1 . . . µ`, 0 ≤ ` ≡ |M | ≤ k, µi = 1, . . . , d.
Using the composition of projections, Jk(E) −→M is a fibre bundle as well, and a smooth section
φ ∈ ΓE is canonically lifted to this bundle with the equivalence classes the respective derivatives
of the section; we call this jet prolongation, and in the local coordinates introduced before we
denote jkφ : U −→ Jk(E)/M : x 7→ (φ(x), ∂Mφ(x)). Using jet prolongation all the quantities
that shall arise on the jet bundle are pulled back to quantities defined on the infinite-dimensional
space of fields F . In practice this is substituting the φa by field components φa(x) and the φa

α by
the field derivatives ∂Mφa(x). Note that Jk(E) is a subbundle of Jk+1(E). Each jet bundle is a
nice finite-dimensional vector bundle of which we can look at the space of p-forms. We define the
space of local forms

Ωp,|−q|
loc (F ×M) =

⋃

k

Ωp(Jk(E)/M,R)⊗ π(k)∗(Ωd−q(M,R) ∧ oM ) , (2.6.1)

where oM is the oriented line bundle on M and d = dim(M). The appearance of this factor and
the negative |−q|-notation will turn out convenient for the description of field theory. Given the
local fibre bundle coordinates above, we denote the basis of

( ∧p
Jk(E)/M

)∧ (∧d−q
T ∗M ⊗ oM

)
by

|dxµ1 ∧ . . . ∧ dxµd−q | ∧ δφa1
M1
∧ δφa2

M2
∧ . . . ∧ δφap

Mp
, Mi = (µ1µ2 . . . µ`) , 0 ≤ ` ≤ k . (2.6.2)

Here the brackets reflect that Mi are actually symmetrised spacetime indices, as differentials
commute. If one defines a Lagrangian formalism on a graded manifold, this will obviously need
to get modified. So a general local p, |−q|-form will look like a linear combination of the above

6This space can be replaced by the space of local sections, as the jet bundle formalism is completely compatible
with spacetime coordinate transformations
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basis vectors, where the coefficients depend on φa, φa
µ, φ

a
µ1µ2

, . . . φa
µ1µ2...µk

and possibly spacetime
coordinates. There are two differentials that give a double complex structure to this sequence of
spaces:

Ωp,|−q|
loc (F ×M)

δ //

d

²²

Ωp+1,|−q|
loc (F ×M)

Ωp,|−q+1|
loc (F ×M)

. (2.6.3)

By definition these differentials satisfy

d2 = 0 , δ2 = 0 , dδ + δd = 0 . (2.6.4)

However, the differentials above do not act simply on the factors of the tensor product; there is a
’mixing’ which comes from the chain rule dφa

M =
∑

µ φ
a
(Mµ)dx

µ ((Mµ) represents the (k+1)-index
with first k indices the components of M and last index µ). The differentials act on the basis
co-vectors as follows

d(dxµ) = δ(dxµ) = δ(δφa
M ) = 0 , d(δφa

M ) = dxµ ∧ δφa
(Mµ) , (2.6.5)

where on the right hand side of the last equation summation over µ is understood (we shall from
this point adopt summation convention over small Greek and Latin indices, as well as capital Latin
indices). The differential calculus on the double complex is now completely determined by the
rules above, the usual graded Leibnitz rule for the differential of wedge products and the actions
of d and δ on a function of jet bundle variables,

dF =
∂F

∂xµ
dxµ +

∂F

∂φa
M

dxµ ∧ δφa
(Mµ) , δF =

∂F

∂φa
M

δφa
M , 0 ≤ |M | ≤ k . (2.6.6)

A tangent vector to the k-th jet bundle at the point (x, φ(x)) in E splits up in a horizontal
component in TxM and a vertical component in Tφ(x)F

k(E), where F k(E) is the fibre to the jet
bundle associated to E. A general local vector field looks like

ξ = ξµ(x, φ)
∂

∂xµ
+ ξa

M (x, φ)
δ

δφa
M

, 0 ≤ |M | ≤ k . (2.6.7)

where the components again depend on the field configuration in a local fashion. Such a vector
field is said to be projectable if the ξµ do not depend on φ or its derivatives, and if each ξa

M depends
only on the field derivatives up to order |M |. Given a (local) field configuration φ ∈ F , a tangent
vector ξφ ∈ TφF is a section of the bundle φ∗T (E/M), assigning to each point x in spacetime a
vector in Tφ(x)(E/M): ξφ = ξa

φ(x)δ/δφa, where summation over a is understood. A local vector
field in TF is therefore decomposed as ξ̂ = ξ̂a(φ, x)δ/δφa and a vector field in Γ(F×M) is written
as ξ = ξa(φ, x)δ/δφa + ξµ(φ, x)∂/∂xµ. Again, we call these vector fields local if their components
depend on some k-jet of the field configuration φ. Such a vector field can be prolonged to a vector
field on the manifold Jk(E) by replacing all derivatives by the appropriate jet coordinates and
calculating the higher jet components in (2.6.7) recursively by the formula [32]

ξa
(µM) =

(
∂µ + φb

(Nµ)

∂

∂φb
N

)
ξa
M − φa

(νM)∂µξ
ν , (2.6.8)

where ` is some finite number denoting the maximal jet through which ξa
M depends on φ. In the

formula above applying a partial derivative to the x-coordinates does not involve the chain rule:
it means taking the derivative to x of the part which depends explicitly on this variable. One sees
that the first term results from a chain rule of a derivative w.r.t. x. In classical field theory an
infinitesimal symmetry of the system is represented by a vector field on the configuration space.
Finding its k-jet prolongation is just calculating the variations of the derivatives of the fields. The
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prolongation of a vector field allows us to define the interior product of a local vector field on
the infinite-dimensional space F ×M with a local (p, |−q|)-form, for the jet bundle Jk(E) is an
ordinary finite-dimensional manifold which allows an unambiguously defined differential geometry.
For ξ defined as in (2.6.7), we postulate

ιξ : Ωp,|−q|
loc (F ×M) −→ Ωp−1,|−q|

loc (F ×M)⊕ Ωp,|−q+1|
loc (F ×M) :

ιξ(α ∧ β) = (ιξα) ∧ β + (−1)pr+(d−q)(d−s)α ∧ β ,
ιξ(fα) = fιξα , ιξ(α+ β) = ιξα+ ιξβ .

for α ∈ Ωp,|−q|
loc (F ×M) and β ∈ Ωr,|−s|

loc (F ×M) and f a function on F ×M . To complete the
definition, the interior product of this vector with the basis jet forms is

ιξf(φ, x) = 0 , ιξdxµ = ξµ(φ, x) , ιξδφ
a
M = ξa

M (φ, x) . (2.6.9)

When discussing symmetries, we shall frequently use the interior product of a vector field on F×M
with a local form. What we then actually mean is the interior product of the k-th prolongation
of this vector field with such a form, as described above.

2.6.2 Lagrangian Formalism

The Lagrangian (density) of a field theory is a local spacetime density:

L ∈ Ω0,|0|
loc (F ×M) . (2.6.10)

Assuming L depends on the k-jet of fields, its integral defines a map φ 7→ ∫
M
L(jkφ) ∈ R called

the action. The action is typically divergent, but this is no problem since we are only interested
in its (functional) derivatives. Let us now explain how the classical equations of motion arise
from a given Lagrangian density. A local (1, |−q|)-form N is called linear over functions if for all
ξ̂ ∈ TφF , f ∈ C∞(M,R) and x ∈ M one has ιjk(fξ̂)β(φ, x) = f(x)ιjk ξ̂β(φ, x). Such a form looks
like

β = αa ∧ δφa , (2.6.11)

where αa ∈ Ω0,|−q|
loc (F ×M) is a spacetime (d − q)-form density depending on the k-jet of fields.

We denote the space of such forms by Ω1,|−q|
lin (F ×M). The main result is the following:

There exists a unique form ηL ∈ Ω1,|0|
lin (F ×M) such that ηL − δL ∈ Im(d : Ω1,|−1|

lin (F ×M) −→
Ω1,|0|

loc (F ×M)). A field configuration φ ∈ F is called a classical solution if (jkφ)∗ηL = 0.

The physical reason behind these requirements is simply to ensure equivalence to the original
method to arrive at the Euler-Lagrange equations, which involves partial integrations of

∫
M
δL.

The existence and uniqueness of ηL is guaranteed by the decomposition [33]

Ω1,|0|
loc (F ×M) = Ω1,|0|

lin (F ×M)⊕ dΩ1,|−1|
loc (F ×M) . (2.6.12)

Denoting ηL − δL = dγ, the formula above only determines γ up to closed contributions. The
exact contributions are fixed by the requirement

γ ∈ Ω1,|−1|
lin (F ×M) . (2.6.13)

One easily shows that there exist no exact forms which are linear over functions. Now γ is unique
up to cohomology cycles which are linear over functions. By the following theorem, these do not
exist (see [25]):

Theorem 2.4 For p > 0 the complex (Ωp,|∗|
loc (F ×M,d) is exact except in the top degree |∗| = 0.
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For k-th order Lagrangian L = `|ddx| the decomposition looks like

δL =
∂`

∂φa
M

δφa
M ∧ |ddx| = (−1)|M |∂M

( ∂`

∂φa
M

)
δφa ∧ |ddx| − dγ , 0 ≤ |M | ≤ k , (2.6.14)

where the Poincaré one-form is given by

γ = (−1)|M |∂M

( ∂`

∂φa
(Mµ)

)
δφa ∧ ι∂µ

|ddx| , 0 ≤ |M | ≤ k − 1 , (2.6.15)

with (Mµ) the symmetrised index (µ1 . . . µiµ), i = 1, . . . , k − 1. The Euler-Lagrange equations
are directly obtained by setting the summation on the right hand side of (2.6.14) equal to zero.
Writing out the multi-indices, the equation (jkφ)∗ηL = 0 takes its familiar form

∂`

∂φa
+

k∑

j=1

(−1)j∂µ1 . . . ∂µj

( ∂`

∂(∂µ1 . . . ∂µj
φa)

)
= 0 . (2.6.16)

The submanifold of field configurations whose jet prolongation satisfies the Euler-Lagrange equa-
tions is from this point denotedM, and its elements are said to be on shell. The local symplectic
2-form in this situation is given by

ω = δγ ∈ Ω2,|−1|(F ×M) . (2.6.17)

Off-shell, this form is closed w.r.t. to the δ differential, on the shell ω is closed w.r.t. both δ and
d. For the case where L depends on the first jet of sections the bundle E (i.e. the fields φa and
their first-order derivatives ∂µφ

a), one finds

ω =
1
2

( ∂

∂φa

∂`

∂φb
µ

− ∂

∂φb

∂`

∂φa
µ

)
δφa ∧ δφb ∧ ι∂µ |ddx| . (2.6.18)

Given a hypersurface Σ ⊆M , γ and ω respectively integrate to the global canonical 1-form Γ and
symplectic 2-form Ω,

ΓΣ =
∫

Σ

γ ∈ Ω1,|−d|
loc (F ×M) , Ω =

∫

Σ

ω = δΓΣ ∈ Ω2
loc(M,R) . (2.6.19)

As it turns out, δΓΣ evaluated atM on vectors tangent to M (Jacobi fields) is independent of the
choice of H. These are the (Lorentz) covariant analogs of the global Poincaré-form and Poisson
bracket. If we choose the hypersurface Σ to be locally perpendicular to the local coordinate ∂0,
then all the terms in the integrals above which are proportional to ι∂µ |ddx| with µ 6= 0 give zero
contribution; if one then substitutes πa = δL/δφa

0 , the integrals above reduce to spacelike integrals
over

π∗Σγ = πaδφ
a ∧ |dd−1x| , π∗Σω =

( ∂πb

∂φa
− ∂πa

∂φb

)
δφa ∧ δφb ∧ |dd−1x| , (2.6.20)

where πΣ is the projection of a (d − 1)-form density onto Σ and |dd−1x| is the volume element
on H. These forms will play an important rôle later, when we introduce phase space coordinates.
Obviously the global Hamiltonian 2-form Ω ∈ Ω2

loc(M) is closed and if it is nondegenerate it defines
a symplectic structure on the space of classical solutions. However, many of the Lagrangians we
consider possess gauge symmetries, which are a source of degeneracy of Ω, as we shall explain
below.

2.6.3 Symmetries and Noether Currents

An automorphism of the space of fields g : F −→ F is said to be local if all values g(φ) and
g−1(φ) depend on a k-jet of φ at p ∈ M . A generalised symmetry of a Lagrangian L is such a
local automorphism g, together with form α ∈ Ω0,|−1|

loc (F ×M) such that

L(g(φ))− L(φ) = dα(φ) , (2.6.21)
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for all fields. Adding a term dα to L leaves the the on-shell manifold M and the local and
global symplectic 2-forms invariant. These automorphisms may be generated by infinitesimal
counterparts, given by a vector field on F ×M . A vector field ξ ∈ ΓT (F ×M) is said to be
decomposable if it can be written as

ξ = ξ̂ +X , ξ̂ = ξ̂a(φ)
δ

δφa
∈ ΓlocTF , X = Xµ(x)

∂

∂xµ
∈ ΓTM . (2.6.22)

One easily verifies that the jet prolongation of such a vector field gives us a projectible vector
field on the jet bundle. A generalised infinitesimal symmetry is a local decomposable vector field
ξ ∈ ΓT (F ×M) together with a form αξ ∈ Ω0,|−1|

loc (F ×M) such that

LξL = dαξ . (2.6.23)

Here Lξ is the Lie derivative which is Lξ̂ + LX if the vector field is decomposed as ξ = ξ̂ +X,

LξL = ιξ(δ + d)L+ (δ + d)ιξL = ιξ̂δL+ dιXL , (2.6.24)

since dL = 0, ιξ̂ acts trivially on Ω|d|(M)-valued scalars on F and ιXδ = −διX . If L depends on
higher-order derivatives, δL will have nonzero components in δφa

µ. To take the interior product
of ξ with such a form one should perform the first jet prolongation, as explained in the first
subsection. If the form αξ is zero (or closed, for that matter), we call the symmetry manifest.
From the equations above, one easily sees that if ξ = ξ̂+X is a symmetry, then ξ̂ is a generalised
infinitesimal symmetry by itself: the Lie derivative w.r.t. this field is the exact form αξ̂ = αξ−ιXL.
Vice versa, if we are given a nonmanifest infinitesimal symmetry ξ̂ acting only on the space of
fields, we may seek an extension to T (F ×M) to turn it manifest; adding a vector field X on M
which has the property that ιXL + αξ̂ is closed establishes this. Infinitesimal symmetries acting
only on the space of field configurations in general do not integrate to generalised symmetries.
The problem is that the resulting automorphism may not be a local one. For example, the vector
field ∂0φδ/δφ, corresponding to infinitesimal time translations, integrates to the automorphism
g(φ(t, x)) = φ(t + t0, x), which definitely not local. In fact, it are only the automorphisms in a
neighbourhood of (g, α) = (IdF , 0) that are generated (when discussing invariances is physics, one
uses rather the language of automorphisms depending on some infinitesimal parameter ε). The
Noether charge corresponding to the infinitesimal symmetry ξ is the unique element Qξ ∈ Ω0

loc(M)
with the property

δQξ = −ιξ̂Ω . (2.6.25)

This equation makes sense because from its definition it is clear that an infinitesimal symmetry
ξ̂ ∈ ΓTF is a vector field tangent toM (it generates an automorphism on the space of extremals).
In particular, after selecting a spacelike hypersurface Σ it is given by

Qξ = ΓΣ(ξ̂)−
∫

Σ

αξ =
∫

Σ

(ιξ̂γ − αξ) ≡
∫

Σ

jξ . (2.6.26)

Here jξ ∈ Ω0,|−1|
loc (M × M) is the Noether current associated with the infinitesimal symmetry

(ξ, αξ). From the equation above it is not immediately clear that the right hand side is on-shell
independent of the choice of Σ. From Lξ̂ηL = 0 one easily sees that d(Lξ̂γ− δαξ̂) = 0 on the shell.
Theorem 2.4 implies that the argument of the exterior derivative is exact. Hence there exists a
βξ ∈ Ω1,|−2|

loc (F ×M) such that

Lξγ = δαξ + dβξ onM×M . (2.6.27)

Consequently the Noether current jξ ≡ ιξγ − αξ satisfies

djξ = 0 , δjξ = −ιξω + dβξ onM×M . (2.6.28)
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The second equation above is the local counterpart of (2.6.25). The first equation implies that the
definition of Qξ does not depend on the choice of the hypersurface: it is a conserved charge when
evaluated at extremal fields. An important example of this phenomenon is the conservation of
energy and momentum. Theories containing these constants of motion should be invariant under
infinitesimal translations, linear combinations (with constant coefficients) of the vector fields

ξµ =
∂

∂xµ
+ φa

µ

δ

δφa
. (2.6.29)

If L = `|ddx| is a first-order Lagrangian, one easily calculates the Noether currents Jµ = ι(ξ̂µ)γ +
ι(∂µ)L,

Jµ =
(
− ∂`

∂φa
ν

φa
µ + `δν

µ

)
∧ ι∂ν

|ddx| . (2.6.30)

Again, if we choose Σ everywhere locally perpendicular to ∂0, the corresponding Noether charges
will all be zero except

∫
Σ
J0. This quantity is called (minus) the Hamiltonian,

H =
∫

Σ

|dd−1x|(πa∂0φ
a − `) . (2.6.31)

A description of the field theory with an explicit selection of the hypersurface, a straightforward
generalisation of the choice of Σ above, will be the central idea of the Hamiltonian formulation of
the system.

2.6.4 Hamiltonian Formalism

So far the theory has been Lorentz covariant : we haven’t selected a preferred direction in M
when discussing for instance integration over hypersurfaces. The standard Hamiltonian formalism
breaks this covariance, it relies on a choice of hypersurfaces transverse to a coordinate direction
in M assigned as time, parameterising the evolution of the system. Where in the Lagrangian
formalism fields were sections of a bundle over spacetime and the dynamics was determined by the
Euler-Lagrange equations, in the Hamiltonian formalism one works with arbitrary field configura-
tions on a prescribed hypersurface (these configurations may be subject to constraints however)
and the dynamics is formulated in terms of the evolution of these configurations w.r.t. the evolu-
tion parameter.

A slicing of the manifold Md is a (d− 1)-dimensional manifold Σ (the spacesheet) together with
a diffeomorphism sM : R × Σ −→ M . For τ ∈ R we shall denote the corresponding embedded
hypersurface with Στ = sM ({τ} × Σ). If M is Lorentzian there exists a class of preferred slicings
of M for which all the Στ are spacelike; these surfaces are called Cauchy surfaces, because they
intersect every timelike curve once (this follows from the requirement that sM is a diffeomorphism).
The generator of the slicing is the vector field Xs ∈ ΓTM satisfying

Xs(sM (τ, x)) =
∂

∂τ
sM (τ, x) , (2.6.32)

for all τ ∈ R and x ∈ Σ. Given a bundle E −→ M , a compatible slicing of E is a bundle
πΣ : EΣ −→ Σ together with a bundle diffeomorphism sE : R×EΣ −→ E such that the following
diagram commutes:

EΣ × R
πΣ×Id

²²

sE // E

π

²²
Σ× R sM // M

(2.6.33)

Physically this means that the slicing of the arguments of the fields should correspond to the
slicing of spacetime. Again we denote Eτ = sE({τ}×EΣ) and we associate an infinitesimal slicing
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ζs ∈ TE to the bundle slicing analogously to (2.6.32). Then ζs generates a slicing compatible with
sM iff it projects to Xs. We note that there is always at least one slicing of E compatible to sM .

We proceed with the construction of phase space for first-order Lagrangians. We define the
sliced jet bundle (J1E)τ to be the restriction of the jet bundle to Στ , while J1(Eτ ) is the jet
bundle of the restricted bundle, whose fibres have no directions corresponding to derivatives in
the Xs-direction. An infinitesimal slicing ζ of E naturally induces a slicing of the jet bundles
by jet prolongation of ζ. For a field φ ∈ ΓE set ϕ ≡ φ|Στ ∈ ΓEτ and ϕ̇ ≡ Lζφ|Στ ∈ TV Eτ .
Then the map ψ̃ζ : F −→ Γ(Eτ × TV Eτ ) : φ 7→ (ϕ, ϕ̇) may be jet prolonged to a map ψζ :
ΓJ1(E)τ −→ Γ(J1(Eτ )× TV Eτ ) : j1φ(x) 7→ (j1ϕ(x), ϕ̇(x)), x ∈ Στ which is he result of a bundle
morphism, mapping the coordinates (xi, φa, φa

µ) on J1(E)τ to (xi, φa, φa
i , φ̇

a) on J1(Eτ )× TV Eτ ,
where i = 1, . . . , d − 1 and φ̇a is the coordinate of the derivatives along ζ. It is easy to realise
that if Xs = (πE)∗ζ is transverse to Στ , the bundle morphism ψζ is an isomorphism, and we shall
call its inverse the jet reconstructions map. Going back to the level of sections, notice that ϕ̇ is a
vertical vector field on Στ covering ϕ (i.e. ϕ̇(x) ∈ Tϕ(x)E) and that j1ϕ uniquely defines a section
in Γ(Στ , Eτ ). Hence if Xs is transverse to Στ , ψζ induces an isomorphism

ψζ : ΓholJ
1(E)τ

'−→ TFτ , (2.6.34)

where ΓholJ
1(E)τ is the space of holonomic sections, i.e. sections of the first jet bundle which can

be written as the jet prolongation of a field, restricted to the hypersurface Στ . The instantaneous
configuration space Fτ is defined as Γ(Στ , Eτ ).

A slicing is called Lagrangian if L is equivariant w.r.t. the one-parameter group of automorphisms
induced by sM ; for ΨX the flow associated toX and j1Φζ the flow associated to the jet prolongation
of ζ, this means that L◦j1Φζ,τ = (Φ−1

X,τ )∗ ◦L. In practice, for a given L there will be many slicings
of E which satisfy this property. If the field content consists of tensors on the (co-) tangent bundle
and L consists of contractions of these fields, a slicing of M naturally induces a slicing on E which
is Lagrangian as long as the metric is a field variable (and therefore also sliced). Suppose now we
have a spacetime slicing compatible with an infinitesimal configuration bundle slicing ζ which is
Lagrangian w.r.t. L. Using jet reconstruction we can pull back the Lagrangian to section of the
bundle restricted to Στ ; define the instantaneous Lagrangian Lτ,ζ : TFτ −→ Dens(Στ ) : Lτ,ζ◦ψζ =
L. Then for a (j1ϕ, ϕ̇) which is reconstructed by j1φ ◦ iτ (here ıτ : Στ ↪→ M is the canonical
inclusion) we find using the Lagrangian property of the slicing that Lτ,ζ(j1ϕ, ϕ̇) = i∗τ ιXL(j1φ).
The instantaneous action Sζ =

∫
Στ
Lτ,ζ defines a map TFτ −→ R, which induces a Legendre

transformation. For a mapping L from some (real) vector space V to the real numbers the
associated Legendre transform is a map FL : V −→ V ∗ such that for all v, v′ ∈ V

〈FL(v), v′〉 = L(v) +
∂

∂ε
L(v + ε(v − v′))

∣∣∣
ε=0

, (2.6.35)

where 〈 . , . 〉 is the duality pairing. This can be applied to the tangent space to the configuration
space on Στ , yielding a map to phase space, Fτ,ζ : TFτ −→ T ∗Fτ . Duality pairing on these
bundles is canonically given by integration over Στ . Hence an element of T ∗ϕFτ is a section of
L(TV Eτ ,Dens(Στ )), assigning to x ∈ Στ a linear map Vϕ(x)Eτ −→ Densx(Στ ). The Legendre
transform maps the fibre coordinate ϕ̇ to

π =
∂`τ,ζ

∂ϕ̇a
δϕa ⊗ |dd−1x| ≡ πa ∧ δϕa ⊗ |dd−1x| , (2.6.36)

where the πa are the canonical momenta: these form the new coordinates on the instantaneous
phase space, replacing the derivatives in the direction of the slicing. Under the Legendre transform
the (instantaneous) Hamiltonian density J0 is mapped to

Hτ,ζ = πaϕ̇
a(j1ϕ, π)⊗ |dd−1x| − Lτ,ζ(j1ϕ, ϕ̇(j1ϕ, π)) ∈ Ω0,|0|

loc (Pτ × Στ ) . (2.6.37)
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The local symplectic 2-form ω is mapped to the phase space two-form

ωτ = δϕa ∧ δπa ⊗ |dd−1x| ∈ Ω2,|0|(Fτ × Στ ). (2.6.38)

Note that the Hamiltonian is defined in terms of the inverse of the Legendre transform, in the
expression (2.6.37) denoted by ϕ̇(j1φ, π), which does not need to exist on all of phase space.
Furthermore the two-form above will in many cases not be symplectic as gauge symmetries of
the Lagrangian are a source of degeneracy. The integrals over Στ of these quantities will be
called the total Hamiltonian Eζ,τ ∈ Ω0,|−d+1|

loc (Fτ × Στ ) and global presymplectic two-form Ωτ ∈
Ω2,|−d+1|

loc (Fτ × Στ ).

2.6.5 Constraints

In general the Legendre transform is not surjective. We shall call its image the primary con-
straint set, Pτ = Fζ(TFτ ) ⊆ T ∗Fτ . It is proven in [34] that this set does not depend on the
choice of compatible Lagrangian slicing ζ. To every phase space density ρ ∈ Ω0,|0|

loc (Fτ × Στ ) the
local presymplectic 2-form associates a class of vertical Hamiltonian vector fields ξρ satisfying
ιξρωτ = δρ, where all the equivalence classes are isomorphic to kerωτ . Similarly, to every scalar
function Q ∈ Ω0,|1−d|

loc (Fτ × Στ ) on phase space the global presymplectic 2-form associates a class
of Hamiltonian vector fields through ιξQ

δΩτ = δQ.

Hamiltonian dynamics lets the parameter τ above vary. We view the parameter τ as a map
τ : R −→ Emb(Σ,M) : τ(λ)(x) = sM (x, λ) and hence τ(λ)(Σ) = Σλ. The space in which the
dynamics takes place is the one-parameter space of constraint sets Pτ , which is the union of all the
Pτ(λ) and may be viewed as a fibre bundle over R, with a coordinate chart (λ, ϕa, πa). A section
of this bundle defines a phase space trajectory c(λ) = (ϕ(λ), π(λ)). Viewed as a one-dimensional
submanifold of Pτ , the tangent curve ∂c/∂λ, which is a vector field on Pτ along c, has a unique
decomposition ċ = ∂/∂λ+ ξ, where ξ is vertical on Pτ and hence ξλ ≡ ξ|Pτ(λ) is tangent to Pτ(λ),

ξλ =
dϕa

dλ

δ

δϕa
+
dπa

dλ

δ

δπa
. (2.6.39)

The trajectory is a classical solution if it satisfies Hamilton’s equations,

ιξλ
ωλ = δHλ,ζ , (2.6.40)

where we have denoted ωλ = ωτ(λ) and Hλ,ζ = Hτ(λ),ζ . Substituting the vector field ξλ and
writing Hλ,ζ = hλ,ζ ⊗ |dd−1x| yields the familiar Hamilton equations,

dϕa

dλ
=
∂hλ,ζ

∂ϕa
,

dπa

dλ
= −∂hλ,ζ

∂ϕa
. (2.6.41)

These are the Hamiltonian counterparts of the Euler-Lagrange equations: for φ ∈ M, the curve
cφ(λ) = Fζ(ψζ(j1φ ◦ ιτ(λ)) satisfies the Hamilton equations, and since Fζ |Pτ and ψζ are isomor-
phic, a c satisfying (2.6.40) corresponds to an extremal field. This however does not imply that
through every point in Pτ there is a classical trajectory, nor does it imply that there is a unique
solution at every point. These properties are only fulfilled if ω defines a symplectic structure on
Pτ 7. Furthermore, a unique well-defined solution ξ of (2.6.40) may not generate a flow, which
makes a physical interpretation impossible. A necessary condition for a well-defined Hamiltonian
flow is the existence of a submanifold C of Pτ such that ξ is tangent to C, although his condition
may not be sufficient if phase space is infinite dimensional.

7Every tangent vector in Pτ can be decomposed into a piece parallel to ζP and a piece tangent to some Pτ(λ):
hence a global presymplectic form ω on Pτ is uniquely defined by ω(ξ1, ξ2) = ωτ(λ)(ξ1, ξ2) for ξ1,2 ∈ T(ϕ,π)Pτ(λ)

and ζP ∈ ker ω
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It turns out that there is a unique maximal manifold obeying these requirements, which we shall
call the final constraint subspace C. It is the Hamiltonian evolution of an instantaneous constraint
manifold Cτ ⊆ Pτ , on which finite-time propagation is well-defined on every point. There is a
well-known algorithm to find Cτ : for an arbitrary submanifold Qτ ⊆ Pτ , define the symplectic
complement at q ∈ Qτ by TqQ⊥τ = {ξ ∈ TqPτ |∀ζ ∈ TqQτ : Ωτ (ξ, ζ) = 0}. In particular we have
(ΓPτ )⊥ = kerωτ . The final constraint manifold is then

Cτ =
⋂

`

P`
τ,ζ , P`+1

τ,ζ = {p ∈ P`
τ,ζ |∀ξ ∈ (TpP`)⊥τ,ζ : ιξδHτ,ζ = 0} . (2.6.42)

Hence Cτ is the largest submanifold of Pτ such that ιξδHτ,ζ |Cτ
= 0 for all ξ ∈ ΓTP⊥τ . It can

be shown that it does not depend on the choice of ζ. A constraint is a local density-valued 0-
form F ∈ Ω0,|0|

loc (Fτ × Στ ) which vanishes on the final constraint set: F |Cτ = 0. If F satisfies
ιξδF = 0 for all ξ ∈ ΓTC⊥, it is called first class; otherwise we refer to F as second class.
The final constraint manifold can always be described as the locus in Pτ defined by a finite
number of such constraints. This follows from the following facts: if F is a constraint then a
Hamiltonian vector field ξF ∈ ΓTPτ : ιξF

ω = δF exists along Cτ iff for all ζ ∈ ΓTP⊥τ the equation
ιζδF = 0 is fulfilled on Cτ . If so, we also have ξF ∈ ΓTC⊥τ . By construction a first class constraint
F therefore generates a Hamiltonian vector field tangent and symplectically polar to the final
constraint manifold: ξF ∈ Γ(TCτ ∩TC⊥τ ). Vice versa, at any point on the final constraint manifold
TC⊥τ is spanned by the Hamiltonian vector fields of constraints and TCτ ∩TC⊥τ is spanned by those
of the first-class constraints. The algorithm (2.6.42) can also be carried out using constraints,
one then gets a series of inclusions Cτ ⊂ P`

τ,ζ ⊂ . . . ⊂ Pτ ⊆ T ∗Fτ . The constraints defining
Pτ (reflecting degeneracy of the Legendre morphism) are called primary, the ones defining P`

τ,ζ

shall be called `-ary. So constraints reflect the overdetermined nature of the field equations: we
have to restrict phase space to ensure all points on C may serve as initial value of the classical
trajectory, but the primary constraints also reflect the underdetermined nature of the equations:
if ξλ satisfies the Hamilton equations (2.6.40), then ξλ + ζλ with ζλ ∈ Γ(TCλ ∩ TC⊥λ ) satisfies
the Hamilton equation with Hλ,ζ substituted by Hλ,ζ + F , F being the (first class) constraint
corresponding to ζλ. Physically these equations are indistinguishable, since only the pullback to Cλ
determines the dynamics. Given a set of constraints Fα generating a linearly independent complete
basis of Γ(TCλ ∩ TC⊥λ ), we define the total Hamiltonian density on the extended phase space by
Htot,τ,ζ = Hτ,ζ +λαFα where we have added the Lagrange multipliers λα to T ∗F . Their equations
of motion ensure the pullback of the total presymplectic form ω to C, and the Hamiltonian vector
field solutions of the other fields are unique up to elements in Γ(TC∩TC⊥) = ker i∗Cωτ , the kernel of
the pullback of the presymplectic form to the final constraint manifold. If this kernel is nontrivial,
it signals gauge freedom in the theory, and under the bracket of vector fields we call this the gauge
algebra.

2.6.6 Gauge Symmetries

In the Lagrangian theories we shall encounter, the infinitesimal symmetries come in families,
described by a set of parameters. A global or rigid infinitesimal symmetry is a map Ξ : V −→
Γloc(TF)+ΓTM from some vector space (possibly with an algebra structure) to the space of local
decomposable vector fields on F ×M , such that each ξ(v) is a generalised infinitesimal symmetry
of L. The fundamental extension of this concept is allowing the R-module V to be a C∞(M,R)-
module, a space of sections of some fiber bundle over M . A generalised local (gauge) infinitesimal
symmetry is determined by a vector bundle V −→ M and linear maps ΓV −→ ΓT (F ×M) :
σ 7→ ξ(σ) and ΓV −→ Ω0,|−1|

loc (F × M) : σ 7→ α(σ), depending locally on σ such that for all
sections σ, (ξ(σ), α(σ)) is a generalised infinitesimal symmetry: Lξ(σ)L = dα(σ). These gauge
symmetries cause the global symplectic 2-form to be degenerate on the space of extremals: for
arbitrary σ ∈ ΓV , φ ∈ M and ξ̂ ∈ ΓTM one may show that Ω(ξ(σ), ξ̂)(φ) = 0. The key point
is that ξ(σ) for some fixed σ defines a mapping M −→ ΓlocTM and consequently the Noether
current jξ(σ) is actually a mapping M −→ Ω0,|−1|

loc (M×M), which changes the cohomology:
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Theorem 2.5 Let Vi −→ E, i = 1, . . . p be vector bundles over the fibre bundle E and set V =
×EVi and Vφ = Γ(φ∗V ). Let Ω0,|∗|

Rlin(Vφ ×M) denote the subcomplex of Ω0,|∗|
loc (Vφ ×M) consisting

of forms α(φ; ζp, . . . , ζp) which are R-linear in ζi. Then (Ω0,|∗|
Rlin(Vφ ×M), d) is exact except in the

top degree | ∗ | = 0.

Note that taking all the Vi to be the vertical tangent bundle, Vi = TV E yields theorem (2.4). In the
present case the gauge bundle V defines a bundle on E through the projection V −→ TE −→ E
induced by local infinitesimal symmetry. Since we continue to have djξ(σ) = 0 on the shell, the
theorem above states that the Noether current is exact on M×M . Hence, assuming sufficient
decay at spatial infinity, the associated Noether charge to a local gauge symmetry vanishes.

We introduce brackets on the linear space of Noether currents, making it into a Lie algebra. A
Noether pair is a pair (jξ, ξ) where ξ is a generalised infinitesimal symmetry on F ×M and jξ is
its associated Noether current. We define the bracket

{(j1, ξ1), (j2, ξ2)} = (j[ξ1,ξ2], [ξ1, ξ2]) , (2.6.43)

where some differential calculus on Ωloc(F×M) yields following expression for the Noether current
of the commutator of 2 infinitesimal symmetries:

j[ξ1,ξ2] = Lξ1j2 − Lξ2j1 + (Lξ2ιξ1 − ιξ1Lξ2)(L+ γ) . (2.6.44)

For nonmanifest (global) symmetries the algebra defined above is typically infinite-dimensional,
and becomes finite dimensional only after imposing the equations of motion. In the presence
of gauge symmetries the algebra contains continuous families, and is therefore certainly infinite-
dimensional. These can be modded out under the equivalence relation (j1, ξ1) ∼ (j2, ξ2) if j1 − j2
is d-exact on the shell. If we call M the space of extremals divided by the gauge symmetries,
then Ω is the pull-back of a 2-form Ω to this space, and in the following we assume that this form
defines a symplectic structure onM. An infinitesimal symmetry ξ projected onto an infinitesimal
symmetry ξ on M is then by nondegeneracy the symplectic gradient of a global charge Q. The
Poisson bracket on the space of Noether charges is defined by

{Q1, Q2} = Ω(gradΩQ1, gradΩQ1) . (2.6.45)

So if we denote ξQ = gradΩQ, then the Poisson bracket is chosen such that [ξQ1
, ξQ2

] = ξ{Q1,Q2}.
The strategy we shall follow to mod out the gauge freedom is gauge fixing : one then simply chooses
a submanifold of F which yields all of F when translated by the gauge group; the new theory
may then have residual gauge freedom, provided by the stabiliser subgroup of this submanifold.
In the instantaneous Hamiltonian formalism the presymplectic structure ωτ defines the bracket
on Ω0,|0|(Fτ × Στ )

{σ, ρ}p = ωτ (ξσ, ξρ) =
(
ι(

δ

δϕa
)δσ

)
∗

(
ι(

δ

δπa
)δρ

)
−

(
ι(

δ

δϕa
)δρ

)
∗

(
ι(

δ

δπa
)δσ

)
, (2.6.46)

where ∗ is the Hodge duality map on the spacesheet Στ . The extension of this bracket to functions
on Pτ is straightforward: one just uses the total 2-form ω. Similarly, the global 2-form defines a
bracket on Ω0,|1−d|

loc (Fτ×Στ ), which is for 2 charges Qi =
∫
Στ
ρi equal to {Q1, Q2}P =

∫
Στ
{ρ1, ρ2}p.

The Hamilton equations are then easily deduced from the time evolution equation,

dρ

dλ
=
∂ρ

∂λ
+ {ρ,Hλ,ζ}p , (2.6.47)

for any ρ ∈ Ω0,|0|
loc (Fτ × Στ ). We then require the evolution to take place in Cτ . As we have

seen, the constraints defining Cλ generate Hamiltonian vector fields on Cλ killing the Hamiltonian.
So the constraint algorithm is quite easy using the Poisson bracket: take primary constraints,
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compute their time evolution and if necessary include the results in the new constraint set and so
on. The primary constraints are of course found inverting the Legendre transformation. Essential
is the rôle of first class constraints: their Hamiltonian vector fields are the generators of gauge
transformations in the Hamiltonian formalism:

ιξF δρ(x
i, ϕa, ϕ̇a) = {F, ρ}p , (2.6.48)

for any density-valued scalar ρ on phase space. Under the Poisson bracket, their algebra is isomor-
phic to the on-shell algebra of gauge vector fields above. If a function on phase space commutes
with all the first class constraints, we call it a physical observable, if a G satisfies {F,G}P = 1
for a first-class constraint F , it is called canonically conjugate to the constraint. Such a quantity
is then pure gauge, since one can multiply F by any function f on M and hence transform G
to f ⊗ |dd−1x| without changing the physics. A special case is diffeomorphism invariance of the
Lagrangian theory. Then the Hamiltonian itself is a first-class constraint and time evolution is
pure gauge. If the final constraint manifold is described by some complete finite independent set
of constraints (Fα, Sβ) where the Fα are first class and the Sα are second class, the pullback of
the presymplectic form to Cτ , ωCτ

induces a bracket on the space of density-valued functions on
Cτ , called the Dirac bracket. It is given by the formula

{F,G}d = {F,G}p − ∗{F, Sα}p(C−1)αβ{Sβ , G}p , Cαβ = ∗{Sα, Sβ}p , (2.6.49)

and is crucial to the quantisation of the system. Note that the antisymmetry and Jacobi identity
are preserved by this modification and the second class constraints satisfy {F, Sα}d = 0 by con-
struction. The pullback of ω essentially projects all the second class constraint onto the tangent
bundle TC, making them first class w.r.t. the final constraint manifold. Analogously one defines
the global Dirac brackets { . , . }D as the pullback of the global 2-form, and again for Noether
charges this is just the integral over Στ of the local brackets. A true symplectic structure is gen-
erated if we divide the set of Hamiltonian flows with initial values on Cτ(0) by the set of gauge
orbits: the flows generated by Hamiltonian vector fields of the first class constraints. One can
work with this quotient as a bundle over Cτ , which is usually quite complicated, or work with a
particular section of this bundle, which is the gauge fixing procedure mentioned earlier.
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3 THE CLASSICAL SUPERMEMBRANE

3 The Classical Supermembrane

3.1 Eleven-Dimensional Supergravity

3.1.1 Field Content

A lagrangian theory is said to exhibit n (Poincaré) supersymmetries if F is the space of sections of
a bundle of representations of some superextension of the Poincaré algebra on the base manifold M
and the Lagrangian density exhibits invariance under the infinitesimal symmetry induced by the
action of this graded algebra. A special class of supersymmetric theories exhibits supersymmetry
as a gauge symmetry: invariance under the linear map Ξ : Γ(M, p(d|n)) −→ ΓT (F×M); these are
called supergravity theories. Because the bracket of two supersymmetry generators is a transla-
tion, such theories necessarily should also possess translational gauge invariance, as well as gauge
invariance under rotations and Lorentz boosts. At the same time a supergravity theory is required
to be invariant under diffeomorphisms on the base manifold, which is allowed to have a dynamical
geometry. Diffeomorphism invariance is not a gauge symmetry, since Diff(M) is not the automor-
phism group of some principle bundle, but the local translations will generate diffeomorphisms
if a certain constraint is fulfilled. Coordinate reparameterisation invariance requires an invariant
volume element on M , and hence a metric, which reduces on the shell to a traceless tensor product
of 2 vector representations of the helicity group. In section 2.4 we discussed the conditions under
which an irreducible representation of the super-Poincaré algebra constitutes such a tensor. In
particular, the maximal dimension of Minkowski space allowing a supergravity multiplet is 11, with
an n = 1 superextension. The goal of this and upcoming sections is to explore this maximal theory.

Let us apply the theory of previous section to construct an 11-dimensional supersymmetric field
theory. Eleven-dimensional Minkowski space corresponds to (r − s) = 7 in table (2.3.5), we can
construct a bundle of 32-component Majorana spinors in this setting. Furthermore the charge
conjugation matrix C is antisymmetric and the complex conjugation matrix is symmetric (see
table (2.3.3)). Table (2.3.4) indicates that bilinear morphisms to the exterior algebra bundle,
S(TM) ⊗ S(TM) −→ ∧k

T ∗M , are only symmetric if k = 1, 2 or 5. The super bracket of the
supercharges (in the N = 1 case) therefore take the form

{Qα, Qβ} = (Γµ)αβPµ + (Γµν)αβZµν + (Γµνρστ )αβZµνρστ . (3.1.1)

We shall focus our attention to the massless shortest multiplets, which are in the previous chapter
shown to transform trivially under the central charges, which will be omitted from this point.
We have seen that (without imposing any restriction) the shortest massless representations are of
dimension 2dim S/4, so in 11 dimensions the shortest supermultiplet constitutes 128 bosonic and
128 fermionic states, which decompose into irreducible representations of the helicity group SO(9).
With some trigonometry one may calculate

χ1⊗F (exp(i
n∑

i=1

ζiM2i−1,2i)) =
[
4(f1)2 + 2f1 − 4f2 − 4

]
+

[
8f3 + 4f2 + 6f1 + 4

]

+
[
32f1 cos( 1

2ζ1) cos( 1
2ζ2) cos( 1

2ζ3) cos( 1
2ζ4)

]
, (3.1.2)

here the fi are the trigonometric functions introduced in section 2.4. From the last paragraph of
this section we know that the first term between brackets is the character under the harmonised
(1, 1) representation, which is a traceless symmetric 2-tensor, called the graviton. The second term
is seen to be the character under the third fundamental representation (one should calculate the the
coefficients γi

3 for n = 4 in formula (2.4.33)), and the last bracket looks like the tensor product of
a vector and a spinor, i.e. a Rarita-Schwinger representation, which is said to be the gravitino, the
super partner of the graviton. However in the (2n + 1)-dimensional case such a character would
look like 2n(1 + 2 cos ζ1 + . . . + 2 cos ζn) cos( 1

2ζ1) . . . cos( 1
2ζn). As previously mentioned, there
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exists a nontrivial harmonic decomposition of the Rarita-Schwinger representation by imposing
the condition

γiψ
i = 0 , (3.1.3)

where γi are the C`0,2n+1-generators (we shall use the Dirac basis (2.2.28)). Hence we can write the
0-vector component Γ1v

1θ in terms of the other components. This obviously fixes 2n components.
It turns out that the characters receive a term −2n cos( 1

2ζ1) . . . cos( 1
2ζn). Hence the character

decomposition above corresponds to a decomposition 128 + 128 → H(1, 1) ⊕ (3) ⊕ H((1) ⊗ 2n).
Putting all the ζi to zero gives us the dimensions of the irreducible subspaces,

128⊕ 128 = 44⊕ 84⊕ 128 . (3.1.4)

The goal is to construct a field theory that exhibits diffeomorphism invariance, such that the prop-
agating degrees of freedom on the shell furnish the representations above. The Lagrangian, built
of representations of the full Lorentz group Spin(1, 10) should exhibit gauge invariance such that
the linearised equations of motion yield only (3.1.4) physical degrees of freedom. This requirement
allows us to extract information about the gauge freedom and the nature of the field equations:

1. There is a symmetric 2-tensor g ∈ Γ(T ∗M ∨ T ∗M) with on-shell vanishing trace. The latter
condition is established by requiring the theory to be diffeomorphism invariant. Diffeo-
morphisms are generated by vector fields ξ ∈ ΓTM , acting on a tensor field T by the Lie
derivative:

ιΦ(ξ)δT = LξT . (3.1.5)

Using this gauge freedom allows us to diagonalise one row and column and fix the determinant
of the field, omitting 11 degrees of freedom. We then are left with 55 components; we thus
require the nature of the resulting field equation to be underdetermined, allowing us to
choose another eleven components to establish irreducibility. Such additional gauge freedom
is provided by an Einstein equation, possibly with source term.

2. A fully antisymmetric 3-tensor A = 1
6Aµνρ(x)dxµ ∧ dxν ∧ dxρ ∈ Γ(∧3TM). For a general

p-form A, the symmetry of the action under a transformation Φ : Γ∧p T ∗M −→ ΓT (F ×M)
acting on the cotangent space as

ιΦ(α)δA = dα , ιΦ(α)dxµ = 0 , (3.1.6)

establishes the matching of the number of independent components. With the symmetry
above, we may choose locally a partial trivialisation of the bundle satisfying pµAµν1...νp−1 = 0,
which fixes (d− 1)(d− 2) . . . (d− p− 1) components. What remains are

(
d

p

)
−

(
d− 1
p− 1

)
=

(
d− 1
p

)
(3.1.7)

components. Then the Lagrangian is prohibited to contain a mass term of A, i.e. a term of
order A2 or higher, which gives an additional gauge symmetry of the equations of motion.
This additional symmetry allows us to fix again

(
d−2
p−1

)
components, giving us 84 propagating

degrees of freedom.

3. A Rarita-Schwinger field ψ = (ψµ)αdxµ ⊗ Qα ∈ Γ(T ∗M ⊗ S(TM)) satisfying γiψ̃
i = 0,

where i = 1, . . . , 9 and γi are the Dirac matrices of Spin(9). The tilded spinors are defined
by the natural embedding of the spinor representation of Spin(9) into the one of Spin(1, 10).
Because of the supersymmetry transformations (under the action of the Qα these transform
into real bosonic quantities) the spinor components must satisfy the same reality properties
as the supercharges. To establish an irreducible representation on-shell, we require the field
equation to be Rarita-Schwinger-like, Γµνρ∇µψµ = 0 which is invariant under the gauge
transformation Ψ : ΓS(TM) −→ ΓT (F ×M) acting on θ = θαQα ∈ ΓS(TM) by

ιΨ(θ)δψ = dθ ≡ ∂µθ
αdxµ ⊗Qα , (3.1.8)
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where we have extended the exterior differential to the spinor bundle, d : ΓS(TM) −→
ΓT ∗M ⊗ S(TM).

The latter gauge invariance above is extremely important because shall induce local supersymme-
try.

3.1.2 Supersymmetry Gauging

The standard way to construct a Lagrangian exhibiting local infinitesimal symmetries is gauge
theory, a field theory completely built of sections of associated fibre bundles to some principal
bundle. In the present situation we have an eleven-dimensional Lorentzian spin manifold with a
principal orthogonal frame bundle PSO(TM) on its tangent bundle. This gives rise to an adjoint
bundle Ad(PSO) generating Lorentz transformations and a spinor bundle S(TM). The direct sum
of these bundles and the tangent bundle is the vector bundle on which the sheaf of super-Poincaré
algebras p(TM, 11|32) is constructed. In local coordinates, the symmetry generators consist of 110
Lorentz generators Mrs ∈ ΓAd(PSO), 11 translation generators Pr ∈ ΓTM and 32 supersymmetry
generators Qα ∈ ΓS(TM) obeying the super-algebra

[Mrs,Mtu] = ηstMru + ηruMst − ηsuMrt − ηrtMsu , [Pr, Ps] = 0 ,

[Mrs, Pt] = ηrtPs − ηstPr , [Mrs, Qα] = 1
2 (Γrs)

β
α Qβ ,

[Qα, Qβ ] = (Γr)αβPr , [Qα, Pr] = 0 . (3.1.9)

The gauge field is a super-Poincaré algebra-valued one-form. Such a section of the total adjoint
bundle Ω ∈ Ad(p(TM, 11|32) is decomposed as

Ω = (e r
µ Pr + 1

2ω
rs

µ Mrs + κψ α
µ Qα)dxµ . (3.1.10)

The appearance of the constant κ shall be explained later. A section e = e r
µ Pr⊗dxµ of PSO(TM)⊗

T ∗M is an orthonormal frame field: these degrees of freedom are equivalent to the components of
the metric. A section of Ad(PSO)⊗ T ∗M is called a spin connection: in the determination of the
on-shell multiplet no such degrees of freedom were encountered, so these components should be
eliminated from the final equations of motions. Finally the gravitino field ψ ∈ Γ(S(TM)⊗T ∗M) is
naturally identified as the gauge field corresponding to the fermionic generators. Let ∇(Ω) denote
the covariant derivative defined by this gauge field. Following the approach of [35, 36], we define
the partial field strengths of this connection in various directions of the Lie algebra:

[∇µ(Ω),∇ν(Ω)] = R(Ω)
µν(e, ω, ψ) = R(P ) r

µν (e, ω, ψ)Pr +R(M) r
µν s(ω)M s

r +R(Q) α
µν (ω, ψ)Qα .

Meanwhile, ω = ω rs
µ Mrs defines a connection on PSO(TM), and we denote the covariant deriva-

tive induced by this section on the associated bundles to the orthonormal frame bundle by ∇(ω).
Using the Poincaré algebra commutators (3.1.9) one finds

R(P )r(e, ω, ψ) = (d∇(ω)e)r + κ2ψ̄α(Γr)αβ ∧ ψβ = der − ωr
s ∧ es + κ2

2 ψ̄µΓrψνdxµ ∧ dxν ,

R(M)r
s(ω) = (d∇(ω)ω)r

s = dωr
s − ωr

t ∧ ωt
s ,

R(Q)α(ω, ψ) = (d∇(ω)ψ)α =
(
(∂[µ − 1

4ω
rs

[µ Γrs)ψν]

)
αdxµ ∧ dxν . (3.1.11)

Note that the covariant derivative defined above acts trivially on the cotangent space factor of the
Rarita-Schwinger field ψ. Furthermore, if the gravitini are put zero, R(P ) is the torsion tensor
associated to the spin connection. The first step towards a construction of a field theory which
exhibits super-Poincaré symmetry is determination of the transformation rules. The fields (except
for the antisymmetric 3-tensor A, which shall be included later) constitute a p(M, 11|32)-valued
connection one-form, and hence induce a covariant on the adjoint bundle, which is postulated to
be the transformation rule:

Ξ : ΓAd(PP (11|32)(TM)) −→ ΓT (F ×M) : ιΞ(Λ)δΩ = dΛ + [Λ,Ω] = d∇(Ω)Λ . (3.1.12)
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For Λ = ξrPr + 1
2λ

s
r M

s
r + εαQα one finds the transformation rules

ιΞ(Λ)δe
r = (d∇(ω)ξ)r + λr

s ∧ es + κψ̄α ∧ (Γr)αβε
β ,

ιΞ(Λ)δω
r
s = (d∇(ω)λ)r

s − λr
t ∧ ωt

s ,

ιΞ(Λ)δψ
α = κ−1

(
d∇(ω)ε+ κ

4λ
r
s(Γ

s
r )ψ

)
α . (3.1.13)

Notice that the spin connection Ω is invariant under local translations and supersymmetries.
Building a theory with the gauge fields above naturally raises questions on the rôle of the spin
connection, which is not part of the on-shell irreducible multiplet, and the general coordinate
invariance. It turns out these problems are all related and have a common solution. To give the
solution requires a starting point Lagrangian, which is reasonably chosen to be the Einstein-Hilbert
Lagrangian. The motivation for this choice is that upon setting the gravitini and abelian gauge
field zero, the theory should produce Einstein’s general relativity. Moreover, we know that this
model yields an equation of motion for the spin connection which is algebraically solvable, and
these degrees of freedom can therefore be eliminated. The Einstein-Hilbert Lagrangian is in the
Cartan formulation equal to

LEH = R(M)rs(ω) ∧ ∗(er ∧ es) . (3.1.14)

The field equation of ω is solved by

ω r
µ s = ηrtι(∂µ)ι(et)ι(es)

(
ηuvde

u ∧ ev
)
, (3.1.15)

which is the Cartan formulation of the Levi-Civita connection on TM . The field equation can
be written in terms of the curvatures as R(P )r(e, ω, ψ = 0) = 0. Moreover, substituting the
solution of the spin connection into the local translation of the vielbein gives the transformation
rule ιΞ(ξ)δe

r = (ξµ∂µe
r
ν − er

µ∂νξ
µ)dxν = Lξe

r, which is exactly the action of an infinitesimal
diffeomorphism. Actually, one can proceed on this trajectory and impose the super-Poincaré
algebra (without local translations, but with coordinate transformations) to close on the shell,
obtaining constraints on the curvatures which are the equations of motion of the fields. For
example, the supersymmetry commutator can be calculated using the rules (3.1.13); imposing the
commutator is a coordinate transformation on the vielbein field yields the constraint

R(P )r(ω, e, ψ) = 0 . (3.1.16)

Again, the spin connection can be algebraically solved of this equation:

ω r
µ s(e, ψ) = ηrtι(∂µ)ι(et)ι(es)

(
ω0(e)−K(e, ψ)

)
, (3.1.17)

ω0(e) = ηrsde
r ∧ es , K(e, ψ) = κ2

2 ψ̄
α ∧ Γ(1)

αβ ∧ ψβ . (3.1.18)

Note that this expression yields a connection with torsion, induced by the gravitino field in the
contorsion term ψ ∧ Γ ∧ ψ. Imposing the supersymmetry commutator on the gravitino yields the
constraint

ΓµνρR(Q)
νρ (ω, ψ) = 0 . (3.1.19)

There exists an off-shell formulation yielding the same results as above: it is given by the La-
grangian

L = − 1
2κ2R

(M)rs(ω) ∧ ∗(er ∧ es)− 1
2 ψ̄α ∧R(Q)β(ψ, ω) ∧ ∗(Γ(3))α

β , (3.1.20)

which is obviously diffeomorphism and Lorentz invariant. To establish super gauge symmetry,
guided by the transformation rules (3.1.13), one faces the problem of the transformation law of
ω. There are roughly speaking three approaches to deal with this field: the first order formalism
(cf. [37, 38]) treats the spin connection as an independent field (whose field equation will be
algebraically solvable however) with its own supersymmetry transformation. The second order
formalism treats it in the Lagrangian above as a shorthand notation for the left-hand side of

57



3.1 Eleven-Dimensional Supergravity 3 THE CLASSICAL SUPERMEMBRANE

(3.1.17), that is, ω is always considered to be on-shell. The disadvantage of this procedure is a
large number of terms whose supersymmetry cancelation has to be checked. These formalisms
generically will lead to different expressions for ιΞ(ε)δω, but on-shell (in particular, after imposing
the gravitino field equation), the results will agree. The 1.5-th order formalism (cf. [36]) essentially
combines the virtues of both approaches: ω is considered to be a independent field, but the
constraint (3.1.16) is imposed on the supersymmetry algebra, and therefore the variation of ω
is irrelevant and may be set zero. This is the simplest description of supergravity, and we shall
adopt it in what follows. Using the supersymmetry variations of e and ψ in (3.1.13) and the zero
variation of ω, one may deduce that the Lagrangian above is supersymmetric up to terms cubic
in the gravitino field. The expression (3.1.20) is called the simple supergravity Lagrangian and is
the starting point of almost every supergravity theory which allows an off-shell formulation.

3.1.3 Construction of the Lagrangian

Historically, the gauging argument of the super-Poincaré algebra was not the way eleven-dimensional
supergravity was constructed. Instead, the more conventional Noether procedure was used [2], a
formalism to construct Lagrangians with a prescribed gauge symmetry [39]. Let a gauge the-
ory Lagrangian L(0) of some gauge field A ∈ Γ(ad(PG(TM)) ⊗ T ∗M) be invariant under a
global infinitesimal transformation Φ0 : g −→ TF with Noether currents ja

µdxµ ⊗ Ea and lo-
cal abelian gauge invariance Ξ0 : Γad(PG(TM)) −→ ΓT (F × M) : ιΞ(Λ)δA = dΛ. Assume
g is equipped with a symmetric bilinear pairing 〈 . , . 〉 and consider the modified Lagrangian
L(1) = L(0)− κ

2 〈g∗(A, j)〉 = L(0)− κ
2A

a
µj

µ
a . It will be invariant up to order κ0 under a gauge trans-

formation Ξ1 : Γad(PG(TM)) −→ ΓTF given by ιΞ(Λ)δA = κ−1dΛ + [Λ, A] = d∇(A)Λ. We have
converted the global invariance and the abelian gauge invariance to a nonabelian gauge invariance
(up to first order in the gauge coupling): the transformation vector field is induced by a section
of the adjoint bundle of g. This procedure may be iterated until the gauge invariance is estab-
lished to all orders of the gauge coupling. Notice that we already implicitly have written down
the first steps of this procedure for the supersymmetries: this explains the constant κ appearing
in the fermionic transformation terms, and this also explains why we have a simple supergravity
Lagrangian in terms of the curvatures. A curvature Fω = dω + 1

2 [ω, ω] naturally exhibits a sym-
metry ω 7→ ω +∇(ω)λ. The Lagrangian (3.1.20) itself is a result in a Noether procedure (see e.g.
[40, 39]), starting with a Lagrangian of the form

L = − 1
2κ2R

(M)rs(ω) ∧ ∗(er ∧ es)− 1
2 ψ̄µΓµνρ∂νψρ , (3.1.21)

which exhibits global supersymmetry and a local abelian gauge invariance ιΞ0(θ)δψµ = ∂µθ for any
section θ of the spinor bundle. Accordingly the supersymmetry transformations become a gauge
symmetry Ξ1 : ΓS(TM) −→ ΓTF , determined by

ιΞ1(ε)δe
r

µ = κψµΓrε , ιΞ1(ε)δψµ = κ−1∇µε , (3.1.22)

and the spin connection does not transform. These results exactly agree with our gauging of
the super-Poincaré algebra. However, the local supersymmetry variation above is not an exact
symmetry of the simple supergravity Lagrangian, as one ends up with torsion terms quartic in the
gravitino field (which are in the gauge coupling of order κ−1). There is no reason to believe that
pursuing the Noether procedure eventually yields a local Lagrangian with gauged supersymmetry
to all orders, as we haven’t included a part of the eleven-dimensional supermultiplet. Including the
field A should fulfill the following properties: we require a kinetic term which exhibits local abelian
gauge invariance A 7→ A+dC such that on-shell only 84 degrees of freedom are propagating and we
require it to fix the supersymmetry up to all orders. The first 2 requirements are met if we include
a kinetic term proportional to FA ∧ ∗FA, where FA = dA in the simple supergravity Lagrangian.
On dimensional grounds, we choose the supersymmetry transformation ιΞ(Λ)δA ∼ αε̄ ∧ Γ(2) ∧ ψ
for some constant α. However, on-shell closure of the super-Poincaré algebra, and in particular
the {Q,Q} bracket, demands that the transformation rule for ψ is modified by a term ∼ Fε,

ιΞ(ε)δψ
α =

(
κ−1(∂µ − 1

4ω
rs

µ Γrs)− 1
144Fνρστ (Γνρστ

µ − 8Γνρσδ τ
µ )

)
ε ∧ dxµ . (3.1.23)
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To derive the transformation rule above, note that the two terms added are the only possible
nontrivial couplings between F and ε; their prefactors may be related by closure of the Poincaré
algebra up the quartic gravitino terms. With the transformation rules above, we may calculate the
Noether current and establish supersymmetry up to order κ0. Under a supersymmetry variation
with ιΞδψ given above, we find

LΞ(ε)L
0 = (d∇(ω)ε̄)α ∧ ((Jε)α +O(ψ3)) + dα , (3.1.24)

where the supercurrent is calculated to be

(Jε)α = ∗(Γ(6))α
β ∧ ψβ ∧ F + 1

2 (Γ(2))α
β ∧ ψβ ∧ ∗F . (3.1.25)

As prescribed by the Noether formalism we obtain a supersymmetric Lagrangian up to order κ0

(and ignoring higher order terms in ψ) by setting L1 = L0−κψ̄ ∧ Jε. With some algebra one may
verify that the supersymmetry variation of this last term, which is now of the order κ, may be
written as

LΞ(ε)(κψ̄ ∧ Jε) = −LΞ(ε)(κ
6F ∧ F ∧A) +O(ψ3) . (3.1.26)

The Chern-Simons-like term F ∧ F ∧ A is invariant under the tensorial gauge transformation
A→ A+ dα up to total derivative, as well as local Lorentz transformations and diffeomorphisms.
Including it in the action establishes local supersymmetry up to all orders in κ. To fix the
cubic terms in the Lagrangian and the ψ2ε-terms in the transformation laws, we again investigate
the transformation of the gravitino field. For the [Q,Q]ψ bracket to result into a coordinate
reparameterisation, the derivatives of the supersymmetry parameter coming from the F -terms
should be canceled. This is established by replacing it with the supercovariant quantity

F̂ = F + 6κψ̄α ∧ (Γ(2))α
β ∧ ψβ . (3.1.27)

A quantity is called supercovariant if its supersymmetry variation depends on the zeroth jet of
the supersymmetry parameter. We shall denote the variation (3.1.23) with F replaced by F̂ by
the supercovariant derivative ∇̂(ω). Finally, the quartic terms in the Lagrangian are found by
exploiting the 1.5-th order formalism. If ω is a solution of its field equation, i.e. an extremum of
the action, adding a expression of the order ψ2 will modify the action by terms of the order ψ4

or higher. Another source of quartic terms will be the Noether coupling. These are modified such
that the supersymmetry is established. The easiest way is to use a trick: demanding that the field
equation of ψ is the supercovariant Rarita-Schwinger equation Γµνρ∇̂ν(ω̂)ψρ = 0, where ω̂(e, ψ)
is the supercovariant solution of the connection, given by (3.1.17). This is effectively done by
replacing ω by 1

2 (ω+ ω̂) in the kinetic gravitino term and F by 1
2 (F + F̂ ) in the Noether coupling

term:

L = − 1
2κ2R

rs(Ω) ∧ ∗(er ∧ es)− 1
2 ψ̄α ∧R(Q)β

(
1
2 (ω + ω̂)

) ∧ ∗(Γ(3))α
β − 1

2F ∧ ∗F

−κψ̄α ∧
(
∗ (Γ(6))α

β ∧ ψβ ∧ (
1
2 (F + F̂ )

)
+ 1

2 (Γ(2))α
β ∧ ψβ ∧ ∗( 1

2 (F + F̂ )
))

+
κ

6
F ∧ F ∧A . (3.1.28)

Expanding the differentials, wedge products and bilinear spinor maps (suppressing spinor indices
however), one finds the Lagrangian in its familiar form [2, 39, 41]

L =
e

4κ2
R(Ω, e)− e

2
ψ̄µΓµνρ∇ν

(ω + ω̂

2
)
ψρ −

e

48
FµνρσF

µνρσ

− eκ

192
(ψ̄µΓµνρστλψν + 12ψ̄ρΓστψλ)(Fρστλ + F̂ ρστλ)

+
2κ

(12)4
εµ1µ2...µ11Fµ1µ2µ3µ4

Fµ5µ6µ7µ8
Aµ9µ10µ11

. (3.1.29)
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with
Fµνρσ = 4∂[µAνρσ] , F̂µνρσ = Fµνρσ + 3κψ̄µΓνρψσ . (3.1.30)

The connection is solved by its equation of motion

ω =
1
6
(ω̂ rs

µ +
κ2

4
ψ̄νΓ rs

νρµ ψρ)dxµ ∧ ea ∧ eb , (3.1.31)

Note that the gauge coupling constant κ, which is related to Newton’s constant in eleven dimen-
sions, can be absorbed in the fields; a redefinition ψ 7→ κ−1ψ, A 7→ κ−1A turns κ into an overall
(and hence irrelevant) factor which makes the Lagrangian dimensionless. In much of the literature
this factor is therefore omitted.

3.1.4 Field equations and Symmetries

The equations of motion associated to the action above are

G(ω̂) = 1
2e

r ∧ ∗(F̂ ∧ ι(er)(∗F̂ )− ι(er)(F̂ ∧ ∗F̂ )) , (3.1.32)

db∇ ∗ F̂ − F̂ ∧ F̂ = 0 , (3.1.33)

(db∇ψ)α ∧ (Γ(3)) β
α = 0 , (3.1.34)

where G is the Einstein tensor and db∇ is the covariant exterior derivative associated to ∇̂(ω̂).
In the absence of the gravitino equation (3.1.33) reduces to d∇H = 0, where H is the dual field
strength: H = ∗F − F ∧ A and d∇ is the de Rham differential associated with the Levi-Civita
connection. The symmetries of the action are

1. General diffeomorphism invariance: a linear map Ψ : ΓTM −→ ΓT (F ×M) such that for
a vector field ξ = ξµ(x)∂µ on M , the corresponding infinitesimal generalized transformation
acts as

ιΨ(ξ)δφ = Lξφ , ιΨ(ξ)dxµ = Lξdxµ = ∂νξ
µdxν , (3.1.35)

where we have canonically lifted the Lie derivative to the gauge bundle ad(p(TM, 11|32))
⊗T ∗M by letting it act only on the second factor. As usual, this symmetry is manifest, as
all scalar terms transform covariantly, canceling contributions from the volume element.

2. Local supersymmetry and Lorentz invariance: the theory is constructed as a gauge theory of
the super-extension of the Poincaré algebra. The symmetry is a linear map Ξ : Γad(p(TM,
11|32)) −→ ΓT (F ×M) such that for Λ = 1

2λ
s

r (x)Mr
s + εα(x)Qα we have the modified

gauge transformations laws

ιΞ(Λ)δe
r = λr

s ∧ es + κψ̄α ∧ (Γr)α
βε

β ,

ιΞ(Λ)δω
r
s = (d∇(ω)λ)r

s − λs
t ∧ ωt

s ,

ιΞ(Λ)δψ
α =

1
4
λr

s(Γ
s

r )α
βψ

β + κ−1(db∇ε)
α ,

ιΞ(Λ)δA = 3ε̄α(Γ(2))α
β ∧ ψβ . (3.1.36)

Although these symmetries are local, they act trivially on the dxµ. We shall see that the
Lorentz invariance is manifest, but the supersymmetry is not (this also follows from the fact
that we used the 1.5-th order formalism).

3. Tensor gauge invariance: Already from the construction of the supermultiplet it was em-
phasised that the antisymmetric tensor field A contains 84 degrees of freedom on shell if the
Lagrangian is forced to be invariant under (3.1.6). The reader may easily verify that this is
indeed the case. The symmetry is nonmanifest due to the Chern-Simons-like term F ∧F ∧A,
giving a surface contribution d(F ∧ F ∧ α). The other fields as well as the basis forms dxµ

transform trivially under this symmetry.
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4. An odd number of coordinate reflections combined with A 7→ −A, which is not an infinites-
imal symmetry, but generates disconnected components of the automorphism group ofM.

As already pointed out, the supersymmetry anti-commutators may give terms proportional to the
field equations and generators of gauge symmetries. On the vielbein field er and the antisymmetric
tensor gauge field A, one finds that the supersymmetry anticommutator {ιΞ(ε1), ιΞ(ε2)} is just a
sum of a diffeomorphism, a Lorentz transformation, a supersymmetry and a tensor gauge trans-
formation. It is the gravitino field which must be a classical solution in order for the symmetry
algebra to close:

[ιΞ(ε1), ιΞ(ε2)]δψ
α =ιξ12dψ

α + dιξ12ψ
α + 1

4 (λ12)r
s(Γ

s
r )α

βψ
β + κ−1(db∇ε12)

α

+ c12(db∇ψ)β ∧ (Γ(3)) α
β , (3.1.37)

for suitably chosen ξ12 ∈ ΓTM , λ12 ∈ Γ(TM ⊗ so(TM)), ε12 ∈ ΓS(TM) and c12 ∈ C∞(M,R).
The property that only the extremal configurations form a representation of the symmetry algebra
(and in particular, supersymmetry on the gravitino field spoiling off-shell closure of the algebra)
is typical for supergravity theories. Often this phenomenon is an indication of a complicated
quantisation procedure, and much time has been spent on seeking a set of auxiliary fields and
transformation laws such that the gauge symmetries become manifest. In the eleven-dimensional
case however, the algebra structure does not give rise to severe quantisation problems (see [42]).

Viewing eleven-dimensional supergravity as a gauge theory of the super-Poincaré algebra raises
the natural question what the rôle of the antisymmetric tensor field A is. Already in the original
paper [2], Cremmer, Julia and Scherk suggested that this representation could be related to the
gauge fields corresponding to the central charges in (3.1.1), so that the theory is a true gauge
theory of the M-algebra, the super-Poincaré algebra with central charges in eleven dimensions
(often denoted osp(1|32)). Various attempts were made to make the dependence explicit: Bars
[43] interpreted A as a projection of the Lorentz connection onto the invariant subspace of a gauge
transformation, after introducing a new gauge principle. In the action obtained, A was pure gauge
and only after adding the Chern-Simons-like term F ∧F ∧A, the original strong gauge symmetry
was broken to the correct invariance (3.1.6). The kinetic term F ∧∗F however had to be added by
hand. Another approach is relating A to a gauge field B abcde

µ associated to the 5-charge Zabcde

by dA = ∗dB, directly carrying the gauge principle (3.1.6) to the B-formulation of the action.
However, due to the Chern-Simons-like term such formulation cannot exist. D’Auria and Fré came
in 1984 up with perhaps the most satisfactory construction [44]: a Goldstone mechanism where
the A-field becomes a composite field made out of gauge fields of certain central extensions of the
M-algebra. They found 2 possible extensions of the super-Poincaré algebra. Recently [45] it was
discovered that there exists an entire one-parameter group of M-algebra extensions with gauge
theories all yielding the CJS Lagrangian with composite A.

3.2 Superspace Formulation

3.2.1 Superfield Content

We already mentioned that there exists a formulation of eleven-dimensional supergravity as a
constrained geometry on a supermanifold. Since this is a priori not evident, there is no fixed scheme
to derive this formulation, so we shall proceed by making use of our common sense rather than
axiomatic procedures. We shall associate the components of the various supergeometric quantities
with the fields in the eleven-dimensional supergravity multiplet (e, ψ,A). This procedure, called
gauge completion comes down to matching the super-Bianchi identities with field equations and
superdiffeomorphisms and super tensor gauge transformations with the symmetries of the CJS
Lagrangian, and this order by order in the odd coordinates. First of all, since the superextension
of the Poincaré algebra in eleven dimensional supergravity is by a single spinor module S(TM), the
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superspace formulation should be based upon a supermanifoldM11|32 where the 32 odd coordinates
are all captured in a single Majorana spinor, so we set

ZM = (xµ, θα) , µ = 0, . . . , 10 α = 1, . . . , 32 . (3.2.1)

One argument in favour of a superspace formulation is the flat solution of simple supergravity.
Putting the curvatures (3.1.11) equal to zero yields the Maurer-Cartan equations

der = ωr
s ∧ es − κ2

2 ψ̄
α(Γr) β

α ∧ ψβ ,

dωr
s = ωr

t ∧ ωt
s ,

dψα = ωr
s(Γ

s
r )α

βψ
β . (3.2.2)

The solutions of these equations (on a body manifolds M0 with trivial topology) are given by

ωr
s = 0 , ψα = dθα , er = δ r

µ dxµ − κ2

2 dθ̄
α(Γr)α

βθ
β , (3.2.3)

for arbitrary θ ∈ S(M). The idea is that the general solutions can be expressed in terms of this
parameter, and the first terms of the polynomial expansions shall always be equal to the solutions
above (this expectation is based upon the analogy with general relativity, where solutions of the
Einstein equation are locally flat). So we see naturally a fermionic coordinate arise, parameterising
M and vice versa a superspace formulation with 32 odd coordinates which are components of a
single spinor is expected to generateM after making suitable field identifications. This also shows
that the superspace formulation is an on-shell formulation, since only the equations of motion (or
the Maurer-Cartan equations for flat solutions) are generated.

What should our superfield content be? At the end of the previous section, we mentioned that
there is no standard geometrical meaning of the antisymmetric tensor gauge field (neglecting
central charges). Let us use a completely antisymmetric rank 3 super tensor field to represent
these degrees of freedom. Obviously such an object has by far more components than an ordinary
three-form; the remaining components will also depend in a local fashion on the the graviton
and gravitino fields and the spin connection (off-shell). Furthermore, the superspace geometry
shall be described in the well-defined Maurer-Cartan formalism instead of (pseudo-) Riemannian
supergeometry. The field content is therefore

1. A frame of super vector fields 8 (super vielbein): EA = dZME A
M ,

2. A spin connection super one-form: Ω B
A = dZMΩ B

MA ,

3. An antisymmetric rank three super tensor field: B = 1
6E

C ∧ EB ∧ EABABC .

As already mentioned, ordinary diffeomorphisms and local supersymmetries are in supergeometry
two special cases of a single transformation, a superdiffeomorphism. Let us denote the manifold
of superfields configurations above by G,

G = ΓPSO(T ∗M11|32)× Γ(T ∗M11|32 ⊗ spin(1, 10|32))× Γ ∧3 T ∗M11|32 . (3.2.4)

The first factor contains the field configurations of the supervielbein, the second factor those of the
spin connection and the last one are the sections of the super three-form bundle. An infinitesimal
superdiffeomorphism is a map Ξ : ΓTM11|32 −→ ΓT (G×M11|32) such that for a super vector field
X = XM∂M and some (algebra-valued) super p-form A,

ιΞ(X)dZM = ιXdZM = XM , ιΞ(X)δA = ιXdA+ dιXA . (3.2.5)

8Components w.r.t. the coordinate basis dZM shall be denoted with M, N, . . . = (µ, α), (ν, β), . . . and compo-
nents w.r.t. the super vielbein basis EA shall be denoted by the letters A, B, . . . = (r, a), (s, b), . . .
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Hence superdiffeomorphisms act on a basis of ΓTG according to

ιΞ(X)δE
A = dZM (XN∂NE

A
M + (∂MXN )E A

N ) ,

ιΞ(X)Ω B
MA = dZM (XN∂NΩ B

MA + (∂MXN )Ω B
NA ) ,

ιΞ(X)δB = 1
6dZM ∧ dZN ∧ dZO(XP∂PBMNO + 3(∂[MXP )B|P |NO]) , (3.2.6)

where the | . | around an index denotes exclusion from antisymmetrisation. Requiring invariance
of the final field equations under the infinitesimal transformations above automatically produces
diffeomorphism invariance and local supersymmetry of eleven-dimensional supergravity. An in-
finitesimal local Lorentz transformation is a map Ψ : C∞(M11|32, spin(1, 10|32)) −→ ΓTM11|32 so
that for Λ(Z) = 1

2Λ B
A (Z)MA

B = 1
2 (λ s

r (Z) + λ β
α (Z)(Γ s

r )α
β)er ∧ es, we have

ιΨ(Λ)δE
B = EAΛ B

A ,

ιΨ(Λ)δΩ B
A = −dΛ B

A − Λ C
A Ω B

C + Ω C
A Λ B

C , (3.2.7)

and B is invariant under a Lorentz transformation. Finally we demand super tensor gauge invari-
ance from our final equations of motion. This is a linear map Φ : ∧2T ∗M11|32 −→ T (G ×M),
which acts trivially on the coordinates, the orthonormal superframe and the spin connection, but
acts on B by

ιΨ(C)δB = dC . (3.2.8)

3.2.2 Gauge Completion

Since ea and ψα are super partners, we expect them to be the components of the single supergravity
gauge field EA, while Ω and C are straightforward superextensions of the corresponding ordinary
quantities. This determines the first steps of the gauge completion,

E r
µ (x, θ = 0) = e r

µ (x) , E a
µ (x, θ = 0) = ψ a

µ (x) ,

Ω s
µr (x, θ = 0) = ω̂ s

µr (x) , Bµνρ(x, θ = 0) = Aµνρ(x) . (3.2.9)

Using these zeroth-order identifications and comparing the transformations above with the sym-
metries (3.1.35), (3.1.36) and (3.1.6), we can make following zeroth-order identifications of the
gauge parameters,

Xµ(x, θ = 0) = ξµ(x) , Xα(x, θ = 0) = εα(x) ,
Λ s

r (x, θ = 0) = λ s
r (x) , Cµν(x, θ = 0) = αµν(x) . (3.2.10)

Recall that in the above we have not considered the mixed components or the fermionic ones of
the Lorentz connection and the Lorentz parameter. These are to all orders in θ determined by the
requirement that the odd components are spinor representations of the Lorentz group,

(ΩM ) a
r (x, θ) = (ΩM ) s

b (x, θ) = 0 , (ΩM ) b
a (x, θ) = 1

4 (ΩM ) s
r (x, θ)(Γ s

r ) b
a ,

Λ a
r (x, θ) = Λ s

b (x, θ) = 0 , Λ b
a (x, θ) = 1

4Λ s
r (x, θ)(Γ s

r ) b
a . (3.2.11)

Computing higher order terms is quite a job. One of the difficulties is the dependence of the
symmetry parameters on the component fields. This gives rise to extra terms in the symmetry
algebra,

[LΞ(X1) + LΨ(Λ1) + LΦ(C1),LΞ(X2) + LΨ(Λ2) + LΦ(C2)] = LΞ(X3) + LΨ(Λ3) + LΦ(C3) , (3.2.12)

where

X3 = ιX2dX1 + LΞ2X1 − (1↔ 2) ,
Λ3 = ιX2dΛ1 + LΞ2Λ1 + Λ2Λ1 − (1↔ 2) ,
C3 = ιX2dC1 + LΞ2C1 − (1↔ 2) . (3.2.13)
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Each second term in the above represents a transformation of the super algebra parameter itself,
i.e. Ξi are the vector fields on F

Ξi = Ψ(ξi) + Ξ( 1
2 (λi) a

r Mr
a + ε α

i Qα) + Φ(αi) , (3.2.14)

with ξi, λi and εi defined in terms of the super transformation parameters by (3.2.10) and Ψ, Ξ and
Φ are resp. the diffeomorphism map, the super-Poincaré transformation map and the tensor gauge
transformation map of ordinary supergravity (cf. (3.1.35), (3.1.36) and (3.1.6)). The calculation
of the components of the superspace quantities is now a matter of matching the transformation
rules9 order-by-order in θ with those of ordinary supergravity (see previous section). This is a
rather delicate and exhaustive procedure, and we shall merely write down the results, which were
up to first order calculated in [46], the second order terms (which are relevant for the coupling
to branes, as we shall see later) can be found in [47]. The super-diffeomorphism parameters in
X = XM∂M are given by

Xµ = ξµ + θ̄Γµε− (θ̄Γνε)θ̄Γµψν +O(θ3) ,

Xα = εα − 1
4

(
λrs − (θ̄Γµε)ω̂ rs

µ

)
(Γrsθ)α −

(
(θ̄Γµε)− (θ̄Γνε)(θ̄Γµψν)

)
ψ α

µ +O(F̂ θ2) +O(θ3) .

As it turns out, the superspace formulation of supergravity only depends on the first-order terms,
while the coupling to branes depends on second-order terms (and even third-order terms in the
three-tensor), but as it turns out we shall not need the explicit form of the superdiffeomorphism
parameter component proportional to F̂ θ2. The other generators of the symmetry algebra are
the Lorentz transformations and the tensor gauge transformations. The former are determined by
(3.2.11) and

Λrs = λrs − (θ̄Γµε)ω̂ rs
µ + 1

144 θ̄(Γ
rsµνρσF̂µνρσ + 24Γµν F̂

rsµν)ε+O(θ2) , (3.2.15)

and the abelian tensor gauge transformation is identified with

Cµν =
(
ε̄+ (θ̄Γρε)ψ̄ρ

)
(AµνρΓ

ρ + Γµν)θ + 4
3 θ̄Γ

ρψ[µθ̄Γν]ρε+ 4
3 θ̄Γ

ρεθ̄Γρ[µψν] +O(θ3) ,

Cµα = 1
6 θ̄Γ

νε(θ̄Γν)α + 1
6 θ̄Γµνε(θ̄Γ

ν)α +O(θ3) ,

Cαβ = O(θ3) , (3.2.16)

The θ-expansion of the fields can now be determined by looking their transformation laws. Again
we note that we are not interested in the F̂ θ2-terms in the supervielbein,

E r
µ = e r

µ + 2θ̄Γrψµ + θ̄Γr∇̂µ(ω̂)θ +O(θ3) ,

E a
µ = ψ a

µ + (∇̂µ(ω̂)θ)a +O(θ2) ,

E r
α = −(θ̄Γr)α +O(θ3) ,

E a
α = δ a

α +O(θ3) . (3.2.17)

The Lorentz superconnection 1-form is more conveniently expressed in differential form language:

Ω rs
α = 1

6 ∗
[( ∗ (Γ(6)θ)α ∧ F̂ + 2(Γ(2)θ)α ∧ ∗F̂

) ∧ er ∧ es
]

+O(θ2) ,

Ω rs
µ = ω̂ rs

µ + 2ι(∂µ) ∗ [ ∗ (θ̄Γ(1) ∧ db∇ψ) ∧ er ∧ es
]
+O(θ2) , (3.2.18)

where again the other components can be immediately obtained using (3.2.11). Finally, we give
the expansion of the B-field up to third order in θ,

Bµνρ = Aµνρ − 6θ̄Γ[µνψρ] − 3θ̄Γ[µν∇̂ρ](ω̂)θ − 12θ̄Γσ[µψν θ̄Γ
σψρ] +O(θ3) ,

Bµνα = (θ̄Γµν)α − 8
3 θ̄Γ

ρψ[µ(θ̄Γν]ρ)α − 4
3 θ̄Γρ[µψν](θ̄Γ

ρ)α +O(θ3) ,

Bµαβ = (θ̄Γµν)(α(θ̄Γν)β) +O(θ3) ,

Bαβγ = (θ̄Γµν)(α(θ̄Γµ)β(θ̄Γν)γ) , (3.2.19)

9Not entirely: one uses the assumption that the fermionic and mixed components of the tensor gauge transfor-
mation parameter is of the order θ2: CαM = O(θ2). Furthermore one will encounter ambiguities which can be
solved by making suitable higher-order coordinate redefinitions and gauge choices.

64
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where the brackets ( . , . ) around indices denote symmetrisation with unit weight. In the last line
we explicitly wrote down the third-order term which survives when imposing a flat superspace
geometry. This finalises the gauge completion.

3.2.3 Torsion Constraints

Let us now try to reproduce the field equations of supergravity from the supergeometry with these
identifications. The torsion components of the spin connection are up to zeroth order

T t
rs (x, θ = 0) = T c

ab (x, θ = 0) = T s
ar (x, θ = 0) = 0 , T r

ab (x, θ = 0) = 1
2 (Γr)ab ,

T b
ar (x, θ = 0) = F̂ stuv(T stuv

r)
b

a , T a
rs (x, θ = 0) = ψ a

rs , (3.2.20)

where T stuv
r = 1

288 (Γstuv
r + Γstuδ v

r ) and ψ a
rs = ∇[r(ω̂)ψ a

s] is the supercovariant gravitino field
strength. The curvature obeys in its second 2 entries the same G-structure as the spin connection
1-form (3.2.11), R cd

AB = 1
4R

rs
AB (Γrs)

cd, R cr
AB = R sd

AB = 0, and is therefore completely
determined by the following components,

R tu
rs (x, θ = 0) = 2(∇[r(ω̂)ω̂ tu

s] + ω̂ tv
[r ω̂ u

s] t) ,

R rs
ab (x, θ = 0) = − 1

72
(Γrstuvw + 24ηr[tη|s|uΓvw])abF̂ tuvw ,

Rarst(x, θ = 0) = 3(ψ̄[srΓt])a . (3.2.21)

Let us now take a glance at the super Bianchi identities governing these geometries. First note
that for a Lorentzian connection (the structure group being (2.5.30)), the second identity (2.5.42)
follows from the first one (2.5.41). Written out in components, the relevant equation is thus

Z D
ABC ≡

∑

[ABC]

(
R D

ABC −∇AT
D

BC − T F
AB T D

FC

)
= 0 , (3.2.22)

where the sum runs over graded antisymmetrized combinations with unit weight. At first sight,
Z D

ABC = 0 yields a large number of equations (each component and each order in θ gives an equa-
tion). However, the body (θ = 0 part) of the equation contains all the information because of super-
covariance; namely, if a supercovariant tensor is zero up to order θ, then it is zero to all orders, since
applying an infinitesimal superdiffeomorphism gives an equation εα∂Z D

ABC /∂θα(x, θ = 0) = 0,
and hence inductively one proves that all derivatives vanish up to order θ, or equivalently the ten-
sor vanishes up to all orders. Note that in order to obtain the component version of (3.2.22) up to
order θ0, we need to now the torsion components up to order θ. This can be done by explicit com-
putation using (3.2.18) and (3.2.17), or with the trick of the superdiffeomorphisms: since T A

MN

is a (super-Lie algebra valued) tensor, its components transform under a superdiffeomorphism
generated by XM∂M as T A

MN 7→ XO∂OT
A

MN +(∂MXO)T A
ON − (−1)mn(∂NX

O)T A
OM . Taking

for X a rigid supersymmetry that is independent of θ one easily derives that only T a
µν and T a

αµ

constitute higher-order terms; the first-order term being exactly (minus) their supersymmetry
variation with supersymmetry parameter θ,

T b
ar (θ, x) = T b

ar (θ = 0, x)− 1
48 (θ̄Γ[st∇u(ω̂)ψv])(T

stuv
r)

b
a +O(θ2) ,

T a
rs (θ, x) = T a

rs (θ = 0, x) +
(
(−1

8 RrstuΓtu + 1
2 [Sr, Ss] +∇[rSs])θ

)
a +O(θ2) , (3.2.23)

where Sr = F̂ stuvT
stuv

r. Inserting these results in the Bianchi identities exactly reproduces the
equations of motion and the Bianchi identities of supergravity. In particular, Z u

rst = 0 and
Z a

rst = 0 lead respectively to the Bianchi identities

R u
[rst] (ω̂) = 0 , ∇[rψ

a
st] + F̂ vwxyT

vwxy
[t ψ a

rs] = 0 , (3.2.24)
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which we did not mention in the treatment of supergravity previous chapter. These identities
just arise from the definition of the field strengths R u

rst and ψ a
rs . Furthermore the equations

Z s
abr = 0, Z r

abc = 0 and Z d
abc = 0 may be shown to vanish algebraically. The gravitino field

equation (??) is produced by both Z t
ars = 0 and Z c

abr = 0 (the latter in an unconventional form
however, cf. [46]), and the other field equations follow from Z b

rsa = 0, which leads to

R b
rsa = ∇rT

b
sa −∇sT

b
ra +∇aT

b
rs + T c

ra T
b

cs − T c
sa T

b
cr . (3.2.25)

Contracting this equation with (Γtu)a
b yields the supercovariant Einstein equation (3.1.32), con-

tracting it with (Γu)a
b gives us the equation of motion of the antisymmetric tensor field (3.1.33).

Notice that we have not used the superfields BABC at all. It may however be observed that all
torsion and curvature components can be written in terms of the exterior derivative (curl) H of
this super three-form. It was observed in [48] that all the field equations and Bianchi identities
also arise from the supercovariant equation

(Γrst)aHrstu(x, θ) = 0 , H = d∇(bω)B . (3.2.26)

Using the gauge choice (3.2.19) one may verify that the ψ field equation is given by setting the
zeroth order component in θ of the left-hand side equal to zero, while the e a

µ and Aµνρ equations
and their Bianchi identities arise from the part of the equation above proportional to θ and the
θ2 part yields the Bianchi identity for the gravitino curvature. Including the H field provides a
way to obtain the field equations without using the gauge completion; the input of this theory is
the equation (3.2.22) and the super Bianchi identity of the H field, d∇(bω)H = 0, which reads in
component language

∑

(ABCDE)

(
∇AHBCDE + (1− (−1)ce+cb+ed)T F

AB HFCDE

)
= 0 . (3.2.27)

This yields a coupled system of differential equations with too many degrees of freedom; one needs
to impose a minimal set of constraints to obtain the supergeometries described above. These are
the torsion constraints governing eleven-dimensional supergravity in supermanifold formulation,

T t
rs = T c

ab = 0 , Habcr = Habcd = 0 ,

T r
ab = 1

2 (Γr)ab , Habrs = − 1
6 (Γrs)ab . (3.2.28)

The constraints above are required to hold up to all orders in θ. The first set of equations has
already been shown to be obeyed by the supergeometry constructed above by gauge completion; the
constraints on theH-field may be verified using the same methods (i.e. direct calculation up to first
order in θ and extension of the result to all orders using a supersymmetry variation). Vice versa,
considering the two coupled super Bianchi identities in combination with these requirements yields
the supergravity equations of motion and their Bianchi identities, where the fields are identified
as the θ = 0 components of the respective superfields: e a

µ = E a
µ |θ=0, ψ α

µ = E α
µ |θ=0 and

F̂µνρσ = Hµνρσ|θ=0. The constraints above and their equivalence to on-shell eleven-dimensional
supergravity were derived in [48] (simultaneously with [46]).

3.2.4 Flat Superspace

Finally let us consider the flat superspace solution of the geometrical systems described above.
Setting the supercurvature equal to zero is equivalent to setting the gravitino and antisymmetric
tensor field strengths equal to zero. Hence locally these fields are (in trivial topologies) derivatives
of respectively a spinor field and a 2-form (in correspondence with (3.2.3). This means that they
become pure gauge: by performing a supersymmetry and a tensor gauge transformation they may
be put equal to zero. Furthermore the Lorentz connection vanishes because then R u

rst (ω) = 0 and
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the bosonic vielbein becomes equal to the coordinate basis, e r
µ = δ r

µ . However, the constraints
above should still be satisfied. The torsion constraints allow the solution

E r
µ (x, θ) = δ r

µ , E a
µ (x, θ) = 0 ,

E r
α (x, θ) = −(θ̄Γr)α , E a

α (x, θ) = δ a
α , (3.2.29)

which may be derived from the supercovariance trick on the first-order flat expressions of the
supervielbeins. The constraints on H together with the Bianchi identities may be integrated to
B, obtaining the unique solution

Bµνρ(x, θ) = 0 ,

Bµνα(x, θ) = (θ̄Γµν)α ,

Bµαβ(x, θ) = (θ̄Γµν)(α(θ̄Γν)β) ,

Bαβγ(x, θ) = (θ̄Γµν)(α(θ̄Γµ)β(θ̄Γν)γ) , (3.2.30)

in correspondence with the gauge completion (3.2.19). Because the torsion constraints are obeyed
by all supergeometries, flat superspace has zero curvature but a nonzero torsion component T r

ab =
(Γr)ab. This property is due to the structure group of the connection, which is not the Lorentz
group as for ordinary theories, but the super-Poincaré group divided by translations, which has
its representations on the tangent sheaf (2.5.31). In fact, it is the odd sector of the superalgebra,
corresponding to the lower left block nonzero in its representation in GLd|n, which produces an
obstruction for a torsion-free geometry, as is explained in [49].

3.3 The Supermembrane

3.3.1 Green-Schwartz p-Brane Action

A super p-brane is a (p + 1)-dimensional Lorentzian manifold V p+1 equipped with a mapping
Z : V p+1 −→ Md|n into a supermanifold and a Lagrangian L ∈ Ω0|0|

loc (F × V p+1) which is super-
symmetric. The configuration space F consists of the components of Z and the components of
the background superfields, which appear in the GS Lagrangian pulled back to the worldvolume.
Conceptually, it is important to keep in mind that V p+1 is nondynamical, depends on the choice
of the physicist and should be regarded as a generalised coordinate space. The image of the world-
volume on the other hand is dynamical, and does not have to be homeomorphic to V p+1: we only
require smoothness from Z. In fact, this image does not even have to be a manifold: later we
shall consider membranes with stringlike spikes for instance. In fibre bundle language, the base
manifold is the worldvolume, and the embedding coordinate fields are sections of a fibre bundle
which looks locally like the product of the worldvolume and the target superspace Md|n. We as-
sume the brane worldvolume is Lorentzian and equipped with a metric g ∈ Γ(T ∗V p+1 ∨T ∗V p+1).
Let ∗ denote the Hodge star operator on the worldvolume induced by the volume element

√−g.
The Green-Schwartz action of a p-brane coupled to a supergravity super-(p+ 1)-form B is

SGS [Z,E,B, g] =
∫

V p+1

[
∗
(p− 1

2

)
− 1

2
ηrs(Z∗(Er) ∧ ∗Z∗(Es)) + Z∗(B)

]
. (3.3.1)

Let us write this out in components w.r.t. a local coordinate basis {σi} on V p+1; the pull-backs
are easily seen to be

Z∗(EA) = E A
i (Z)dσi ,

Z∗(B) =
1

(p+ 1)!
E A1

i1 . . . E Ap+1
ip+1

BA1...Ap+1
(Z(σ))dσi1 ∧ . . . ∧ dσip+1 , (3.3.2)
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where E A
i = ∂iZ

ME A
M . So in components we have

SGS [Z,E,B, g] =
∫

V p+1
dp+1σ

(
1
2

√−g(p− 1)− 1
2

√−ggijE r
i E

s
j ηrs ,

+
εi1...ip+1

(p+ 1)!
E A1

i1 . . . E Ap+1
ip+1

BA1...Ap+1

)
. (3.3.3)

Note at this point that the Lagrangian contains no derivatives in g: this is an auxiliary field. The
equation of motion of this variable can be algebraically solved; its solution defines g to be the
pull-back of the metric on the body of Md|n induced by the vielbeins Er:

gij − ηrsE
r

i E
s

j = 0 . (3.3.4)

Suppose now we want the action (3.3.3) to possess worldvolume supersymmetry. For this symmetry
the worldvolume boson and fermion degrees of freedom should match on-shell. One easily verifies
that the Lagrangian has a worldvolume diffeomorphism invariance, Ξ : ΓTV p+1 −→ Γ(TF ×
TV p+1) which acts on a pull-backed form by ιΞ(ξ)δZ

∗(β) = LξZ
∗β. Then we may choose a gauge

in which p+ 1 of the embedding coordinates are fixed. Hence there are d− p− 1 on-shell bosonic
degrees of freedom. At first sight, there are n/2 fermionic degrees of freedom, since the (Z∗E)α

equation of motion contains a Dirac-like projection operator with half of the eigenvalues vanishing.
If this would be the end of the story, superbranes would not exist because there are too many
anticommuting propagating degrees of freedom. However, a closer inspection of the action (3.3.3)
reveals a local fermionic symmetry K : Γ(V p+1, S(TM0)) −→ TF called kappa symmetry, acting
by

ιK(κ)δZ
∗Er = 0 , ιK(κ)δZ

∗Eα = (1− Γ)α
βκ

β , (3.3.5)

where
Γ = ∗(∧p+1Z∗Γ(1)) =

q

(p+ 1)!
√−g ε

i1...ip+1E r1
i1 . . . E rp+1

ip+1
Γr1...rp+1

, (3.3.6)

with Z∗Γ(1) = (Z∗Er)Γr = E r
i Γrdσi and q = (−1)(p+1)(p−3)/4. If the gauge symmetry above

holds, half of the remaining fermionic degrees of freedom are unphysical. This is because Γ squares
to the identity and is traceless, and consequently half of its eigenvalues are zero. It was shown in
[50] that kappa symmetry can always be achieved by choosing the appropriate transformation law
of g, upon implementing certain constraints on the background supergeometry. These are given
by

T r
αβ = (Γr)αβ , Hαrp+1...r1

=
q

p!
ζβ(Γr1...rp+1)

β
α ,

T(rs)α = ηrsζα , Hαβrp...r1
=

q(−1)p

(p+ 1)!
(Γr1...rp

)αβ ,

HαβγA1...Ap−1
= 0 . (3.3.7)

where ζ is an arbitrary target space Majorana spinor. Choosing it to be zero yields for p = 2
and d = 11 (the supermembrane) exactly the superspace constraints (3.2.28) governing on-shell
supergravity. It turns out that supergeometries with nonzero ζ are gauge equivalent, so on-shell
eleven-dimensional supergravity is consistent with the supermembrane. If ζ = 0, the Bianchi
identity dH = 0 with the constraints above imposed on H yields a Fierz identity

dθ̄α ∧ (Γsdθ)α ∧ dθ̄β ∧ (Γsr1...rp−2dθ)β = 0 , (3.3.8)

which only holds for for specific values of p and d. Now we get a realistic requirement for the exis-
tence of unbroken supersymmetry; given an N -extended embedding supermanifold, the equation
d−p−1 = 1

4N dimS must be satisfied, as well as condition (3.3.8). One obtains that N has to be
one or two, d ≤ 11 and p ≤ 6. Imposing these restrictions yields the so-called brane scan (table
(2), see e.g. [51]), a diagram containing all the superbranes in various dimensions. The values
(d, p) naturally form four sequences: the real, complex quaternionic and octonionic groups10.

10Satisfaction of equation (3.3.8) provides a triality when written down in the light-cone gauge, and it is shown
in [52] that the objects in a triality must be (not necessarily associative) division algebras.
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Figure 2: The superbrane scan. The four sequences are indicated by dotted lines

3.3.2 The Supermembrane Action

The p = 2 version of (3.3.3), the supermembrane action, looks like

S[Z(σ), g(σ)] =
∫
d3σ

(− 1
2

√−ggijE r
i E

s
j ηrs + 1

2

√−g − 1
6ε

ijkE A
i E B

j E C
k BCBA

)
, (3.3.9)

where gij represents the world volume metric. This Lagrangian exhibits superdiffeomorphism
and super tensor gauge invariance (cf. (3.2.6) and (3.2.8)) on the background field configuration
space TF0 and rigid super-Poincaré invariance on the worldvolume as well as kappa symmetry,
provided H = dB fulfills the constraints above. Let us consider the Green-Schwartz supermem-
brane Lagrangian in flat superspace. Splitting the supercoordinates into even and odd sectors,
ZM (σ) = (Xµ(σ), θα(σ)) and substituting the flat superspace gauge completions (3.2.29) and
(3.2.30) yields the scalar Lagrangian

L = −√−g − εijk
(

1
2∂iX

µ(∂jX
ν + θ̄Γν∂jθ) + 1

6 (θ̄Γµ∂iθ)(θ̄Γ
ν∂jθ)

)
(θ̄Γµν∂kθ) , (3.3.10)

where the metric is taken on-shell: gij = ηµν∂iX
µ∂jX

ν . The space of field configurations F is
reduced to Γ(V,M0)× Γ(V, S(TM0)) where M0 is the bosonic target-space manifold and V is the
worldvolume. We shall make following assumptions about this base space: it is locally of the form
R× Σ, where Σ, the spacesheet, is a compact smooth 2-manifold without boundary with fixed de
Rham cohomology. This action exhibits the following worldvolume symmetries:

1. Diffeomorphism invariance: a linear map Ξ : ΓTV −→ ΓTF acting with ξ = ξi ∂
∂σi on T ∗F

by
ιΞ(ξ)δX

µ = ξi∂iX
µ , ιΞ(ξ)δθ

α = ξi∂iθ
α , ιΞ(ξ)dσi = ξi . (3.3.11)

This invariance is essential for a globally defined action on the worldvolume. Since it is
manifest, it is also exhibited by membranes modeled on worldvolumes with boundaries (which
we will not consider). As already mentioned, we can fully consume this symmetry to locally
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fix a gauge X(σ0, σ1, σ2) = (σ0, σ1, σ2, f1(σ1, σ2, σ3), . . . , f8(σ1, σ2, σ3)), leaving 8 degrees
of freedom in the bosonic sector.

2. Kappa gauge symmetry: a linear map K : Γ(V, S(TM0)) −→ ΓTF defined by

ιK(κ)δX
µ = κ̄(1− Γ)Γµθ , ιK(κ)δθ

α = (1− Γ)α
βκ

β , (3.3.12)

where Γ is the p = 2 version of (3.3.6). As we already have mentioned, this gauge freedom
is essential for matching the boson and fermion degrees of freedom, making supersymmetry
possible. We also note that if the membrane has a boundary, restrictions on κ are required.
The reader also may verify that the Lie derivative of L contains apart from this surface term
a term proportional to

θ̄[1Γ
µθ2θ̄3Γ|µν|θ4] = 0 , (3.3.13)

for spinors θ1, . . . , θ4 related to θ. This property of C`1,10 is again the 2-brane version of the
requirement (3.3.8) for the existence of superbranes.

3. Global super-Poincaré invariance, Ψ : p(1, 10|32) −→ ΓTF , acting on Λ = aµPµ+ 1
2λ

µνMµν+
εαQα by

ιΨ(Λ)δX
µ = aµ + λµ

νX
ν + θ̄Γµε , ιΨ(Λ)δθ

α = 1
4λ

µ
ν(Γ ν

µ )α
βθ

β + εα . (3.3.14)

Since this is a global symmetry, it gives rise to a Noether current jΛ = (aµK i
µ + 1

2λ
µνL i

µν +
εαJ i

α )ι(∂i)|d3σ| where

J i
α = − 2

√−g(θ̄Γi)α

+ εijk
(
(θ̄Γjk)α − 4

3

[
E µ

k − 2
5 θ̄Γ

µ∂kθ
][(

θ̄Γµν∂jθ
)
(θ̄Γν)α −

(
θ̄Γν∂jθ

)
(θ̄Γµν)α

])
,

K i
µ =

√−ggijηµνE
ν

j − εijk
(
E ν

j − 1
2 θ̄Γ

ν∂jθ
)
θ̄Γµν∂kθ ,

L i
µν = 2X[µK

i
ν] − 1

2

√−ggij θ̄ΓjΓµνθ + 1
4ε

ijkθ̄ΓjkΓµνθ

+
1
4
εijk

(
E ρ

j −
1
3
θ̄Γρ∂jθ

)(
(θ̄ΓσΓµνθ)(θ̄Γρσ∂kθ) + (θ̄ΓρσΓµνθ)(θ̄Γ

σ∂kθ)
)
,

where we have used the notation Γi = E µ
i Γµ and Γi = gijΓj . integrating these quantities

over an arbitrary spacelike surface in the worldvolume yields the corresponding conserved
charges.

The field equations corresponding to (3.3.10) are easily calculated to be

∂i

(√−ggijE µ
j

)− εijkE ν
i ∂j θ̄Γ

µ
ν∂kθ = 0 , (3.3.15)

gij(1 + Γ)ΓµE
µ

i ∂jθ = 0 . (3.3.16)

Observe the matching of fermion and boson degrees of freedom: the θ-equation of motion is of
the form Pθ = 0, with P a projector with half of the eigenvalues vanishing, making half of the θ-
components pure gauge. Together with kappa symmetry (also observe that (1−Γ)P = 0, allowing
half of the surviving coordinates to be gauged away) a quarter of the 32 spinor components are
propagating degrees of freedom, which matches the eight bosons. It was noted in [3] that the
equations above may be written as ∂iK

µi = 0 and F = Pθ = 0 and can be algebraically related
by E µ

j ∂iK
i

µ = 2∂j θ̄F , making the on-shell matching of the number of components even more
clear. Bergshoeff et al. also showed that under the global super-Poincaré transformations these
quantities transformed into themselves, while a kappa transformation makes them transform into
each other, and the flat superspace Lagrangian simply becomes

L = Kµ ∧ ∗dXµ − θ̄(1 + Γ)Γ(1) ∧ ∗dθ , (3.3.17)

where Kµ = K µ
i dσi is the momentum 1-form.
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3.4 Gauge Fixing

3.4.1 Lightcone Gauge

Recall the the embedding of a membrane in flat superspace yields a sigma model field theory on
three-manifold V , the fundamental fields (Xµ, θα) being sections of a fibre bundle P 11|32 −→ V ,
where the fibres are isomorphic to flat 11|32-dimensional Minkowski superspace. The action ex-
hibits various gauge symmetries, which define an equivalence relation ∼ on the space of field
configurations F . Gauge fixing is essentially the restriction of the configuration space to the space
of representatives of F/ ∼. The goal of this procedure is to establish a symplectic structure on the
manifold of classical solutions, as was explained in section 2.6. In practice however, we shall per-
form only a partial gauge fixing, which results in a reduction of F with residual gauge symmetry.
If we denote by G the group of gauge transformations on JkE and H is some subgroup, we define
the equivalence relation φ1 ∼ φ2 iff jkφ1 = g(jkφ2) for some g ∈ G/H. Then H is the residual
gauge symmetry group: we have chosen representatives which still may be related by some gauge
transformation in H.

Roughly speaking, gauge fixing the theory shall take place in 2 stages, following the approach of
[53], and at the same time we shall introduce the Hamiltonian formalism. Let us begin by intro-
ducing so-called lightcone coordinates on the fibres of P 11|32. This is a simple linear redefinition
of coordinates in such a way that the world line of a light ray in the µ = 10-direction becomes an
axis along the new basis, in other words, a rotation of the (X0, X10) by 45 degrees,

X± =
X10 ±X0

√
2

. (3.4.1)

Accordingly, we can write all objects with components in the tangent space to the target space
in this basis. The other transverse tangent space directions will be denoted with small Latin
letters a, b, . . . = 1, 2, . . . 9. For the lightcone gamma matrices, we have the identities {Γ+,Γ−} =
21, (Γ+)2 = (Γ−)2 = 0 and {Γ±,Γa} = 0. The idea of the lightcone gauge is to restrict the
local trivialisations of P 11|32 to those which are the identity on overlaps in the X+ coordinate.
As a consequence, X+ should only depend on σ0, and we take this dependence linear, with
proportionality factor 1. For the fermionic sector, we note that the nilpotent matrix Γ+ has half
of its eigenvalues zero, and we reduce the field space to those configurations whose spinor part is
annihilated by this matrix

X+(τ, σ1, σ2) = τ +X+(0) , Γ+θ = 0 , (3.4.2)

where we have denoted τ = σ0. The residual symmetry is found by performing a total variation
on the conditions above and putting these equal to zero on the gauge-fixed subspace, which fixes a
number of gauge parameters. The variation of the variable X+ by a kappa gauge transformation
κ : V −→ S(TM11), a coordinate transformation ξ ∈ ΓTV and a super-Poincaré algebra element
Λ = aµPµ + εαQα + 1

2λ
µνMµν ∈ p(1, 10|32) yields

(ιK(κ) + ιΞ(ξ) + ιΨ(Λ))δX+ = 1
2λ

+−τ + 1
2λ

+a + ξ0(σ) + a+ . (3.4.3)

Setting this equal to zero fixes the time reparameterisation parameter ξ0. Looking at the fermionic
gauge fixing, which sets half of the components of θ equal to zero, one might naively conclude
that only half of the supersymmetries preserve this configuration space. This would be true if the
kappa symmetry was fully consumed by the constraint above. However, it turns out that there
are still supersymmetry transformations which do not obey Γ+ε = 0, but can be compensated by
a kappa gauge transformation as to preserve the gauge condition. This can in principle be verified
at the present stage, but to avoid lengthy calculations we shall do this after the next bosonic gauge
fixing. It is convenient to split off the time components of the metric in our notation:

g =
(
g00 u
uT ḡ

)
. (3.4.4)
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The embedding equation yields following expressions for these variables

g00 = 2∂0X
− + ∂0X

a∂0Xa + 2θ̄Γ−∂0θ ,

ur = g0r = ∂rX
− + ∂0X

a∂rXa + θ̄Γ−∂rθ ,

ḡrs = grs = ∂rX
a∂sXa . (3.4.5)

When calculating these components, one should keep in mind that θ̄Γµ∂iθ vanishes except for
µ = −. From this moment, we label the residual spatial worldvolume components with r, s = 1, 2
and the transverse lightcone components with a, b = 1, . . . , 9. If we define ḡ as the determinant of
ḡrs and ḡrs as its inverse matrix we have the following properties:

g = −∆ḡ , g00 = −∆−1 , g0r = ∆−1ḡrsus (3.4.6)

with ∆ = −g00 + ur ḡ
rsus. Since the original pull-backed metric was assumed to be negative

definite and τ is identified with a Minkowskian time parameter, we shall require from now on
that ḡrs is positive definite and ∆,−g00 > 0. Using these identifications the Lagrangian in the
light-cone gauge becomes

L =
(
−

√
ḡ∆ + εrs∂rX

aθ̄Γ−Γa∂sθ
)
dτ ∧ |d2σ| . (3.4.7)

3.4.2 Hamiltonian Formulation

Our gauge fixing procedure automatically clears the way for an introduction of the Hamiltonian
formalism, since we have made a coordinate choice which induces a preferred slicing direction: we
choose Στ the τ level set w.r.t. the local coordinates (τ, σ1, σ2) on the worldvolume. Here we
assume that V is such that it allows a slicing

φ : R× Σ '−→ V (3.4.8)

such that each Στ = φ(τ,Σ) ⊂ V is a smooth, compact, orientable 2-manifold without bound-
ary. We have started working with a first jet bundle with coordinates (σi, Xµ, θα, ∂iX

µ, ∂iθ
α).

Subsequently we have performed a gauge fixing, reducing this system to a system containing only
10 bosonic coordinates and derivatives of these, and only 16 fermionic coordinates and partial
derivatives. Hence there are 10 bosonic canonical momenta and and 16 fermionic modes,

Pa =

√
ḡ

∆
(∂0Xa − ur ḡ

rs∂sXa) , P+ =

√
ḡ

∆
, Sα = −

√
ḡ

∆
(Γ−θ)α . (3.4.9)

One easily shows that the spinor S satisfies Γ+S = S, and since half of the eigenvalues of Γ+ are
zero, there are only 16 nontrivial components of S. The Legendre transform is not surjective; the
equations (3.4.9) are not invertible to expressions of the τ -derivatives of the fields into phase space
variables because there are linear relations between the momenta. These primary constraints are

ψr =
(
Pa∂rX

a + P+∂rX
− + S̄∂rθ

)⊗ |d2σ| = 0 , (3.4.10)

χα =
(
Sα + P+(Γ−θ)α

)⊗ |d2σ| = 0 . (3.4.11)

and we denote the locus in T ∗Fτ defined by these equations by Pτ . So instantaneous phase space
T ∗Fτ is coordinated by (X−, Xa, θα, ∂rX

−, ∂rθ
α, Pa, P

+, Sα) where the fermionic coordinates
satisfy the respective projection conditions. The Hamiltonian is the spacesheet density-valued
function (Pa∂0X

a + P+∂0X
− + Sα∂0θ

α)⊗ |d2σ| − Lτ on Pτ . A simple calculation leads to

Hτ =
(
PaP

a + ḡ

2P+
− εrs∂rX

aθ̄Γ−Γa∂sθ

)
⊗ |d2σ| , (3.4.12)

72



3 THE CLASSICAL SUPERMEMBRANE 3.4 Gauge Fixing

which is a constraint too: Hτ |Pτ = 0, as original theory exhibited reparameterisation invariance.
It is minus the momentum corresponding to the gauge-fixed coordinate X+, as it generates time
translations. The global (time evolution) Hamiltonian incorporating these constraints is

Hτ,tot =
∫

Στ

(
Hτ + crψr + d̄χ

)
, (3.4.13)

where we have introduced the Lagrange multipliers cr and dα. We quickly verify there are no
secondary constraints:

{ψr, Hτ}p = d(ι∂r
Hτ ) , {χα,Hτ}p = dβα , βα = −2(Γ−Γaθ)α ∧ dXa ,

where d is the exterior differential on the spacesheet: dXa = ∂rX
adσr. The Poisson brackets of

constraints are given by

{ψr, ψs}p = d(ι∂sψr − ι∂rψs) , {ψr, χ
α}p = −dι∂rχ

α , {χα, χβ}p = 2P+(Γ−)αβ ⊗ |d2σ| .

So the ψr are first class constraints and the χα are second class. The latter are usual in theories
containing a Dirac-like kinetic term for fermionic fields (linear in the time derivative of the spinor).
They ensure the matching of the number of bosonic and fermionic phase-space variables on the
mass-shell: since the momenta are linearly related to the spinor components, only 16 degrees of
freedom are propagating, in accordance with the 8 bosonic coordinates and their momenta. The
former constraints are first class, so these must be generators of the residual gauge invariance.
This is of course the residual diffeomorphism invariance, generated by time-dependent spacesheet
reparameterisations,

σr → σr + ξr(τ, σ) . (3.4.14)

We have not yet examined the fermionic residual gauge symmetry. This shall be done in the
upcoming paragraph, after some further bosonic gauge fixing.

3.4.3 More Gauge Fixing

Under this the residual reparameterisations, ur ≡ ḡrsus transforms as

LΞ(ξ)u
r = −∂0ξ

r + ∂sξ
rus − ξs∂su

r . (3.4.15)

In particular, ur+Lξδu
r = 0 defines a coupled system of partial differential equations on a compact

2-manifold (where the unknown functions are the ξr). It can be decoupled and solved by putting
the matrix ∂ru

s in its Jordan-normal form. Hence we may use the residual reparameterisation
invariance to set locally

ur = 0 , (3.4.16)

provided this is a consistent set of equations, which we shall check below, when examining the
residual gauge symmetry. Hence we have ur = 0, g = −g00ḡ and the transverse canonical momenta
reduce to P a = P+∂0X

a. The Hamilton equation for the transverse bosonic degrees of freedom
reduces to

∂0X
a =

P a

P+
+ cr∂rX

a , (3.4.17)

which yields cr ḡrsc
s = 0 and therefore, this gauge choice sets the lagrange multiplier cr to zero.

Consequently, on-shell we have
∂0P

+ = 0 . (3.4.18)

Since P+ transforms as a density (cf. (3.4.9)), we make the final gauge choice

P+ = P+
0

√
w(σ) . (3.4.19)
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Here P+
0 is a constant, w is a time-independent density on the membrane space sheet which is

normalised to unity at all times τ ,
∫

Στ

d2σ
√
w(σ) = 1 . (3.4.20)

Here we have denoted d2σ = |dσ1 ∧ dσ2|. The density w can be viewed as the normalised
determinant of the membrane space sheet metric wrs(σ). Such a Riemannian structure can always
be constructed on Στ under the assumptions it is closed, smooth and orientable (w is nowhere
zero, as wrs is nowhere degenerate). Hence wrs should not be confused with the induced metric
gij , nor with its ’space sheet square’ ḡrs, which are dynamical quantities, reflecting the way Σ is
mapped into target space. Their relevant relation is w = −g/((P+

0 )2g00) upon use of the field
equations. The equations (3.4.16) and (3.4.19) complete the gauge choice. The next step is to
examine the residual gauge symmetry in the Lagrangian formalism. We already verified that
the condition X+ = τ fixes the time component of diffeomorphism-generating vector fields. The
spinorial gauge-fixed object Γ+θ transforms under a general transformation as

(LK(κ) + LΞ(ξ) + LΨ(Λ))Γ+θ = Γ+(1− Γ)κ(σ) + Γ+ε+ 1
2λ

a+Γaθ . (3.4.21)

We proceed by substituting the SO(1, 10) spinors by two-component vectors consisting of SO(9)
spinors: θ = (θ1, θ2). Let γa, a = 1, . . . 8 denote the 16× 16 matrices generating C`0,8. Following
the construction (2.2.28), we obtain the generators of C`0,10 as follows:

Γa = γa ⊗
(

1 0
0 −1

)
, Γ9 = 116 ⊗

(
1 0
0 −1

)
, Γ10 = 116 ⊗

(
0 −i
i 0

)
. (3.4.22)

Since γ1 . . . γ8 = 116, we shall denote Γ9 as diag(γ9,−γ9) to make the embedding of SO(9) in
C`0,10 explicit. To obtain the Dirac matrices of eleven-dimensional Minkowski space, we define Γ0

as i times the volume element of C`0,10, generated by the matrices above:

Γ0 = iΓ11 = i(iΓ1 . . .Γ10) = −Γ9Γ10 = 116 ⊗
(

0 i
i 0

)
. (3.4.23)

In eleven dimensional Minkowski space, the charge conjugation matrix is antisymmetric; we there-
fore take C = Γ10:

θ 7→
(
θ1
θ2

)
, θ 7→ ( −iθT

2 iθT
1

)
. (3.4.24)

The lightcone gamma matrices are given by

Γ+ =
√

2116 ⊗
(

0 0
i 0

)
, Γ− =

√
2116 ⊗

(
0 −i
0 0

)
, (3.4.25)

so that a spinor θ fulfilling the gauge choice has θ1 = 0. For such spinors we have θΓ−∂rθ =√
2θT

2 θ2. We can expand the fermionic variation in this SO(9) spinor module, obtaining for
instance

Γ+Γ
(
κ1

κ2

)
=

(
0
χ

)
, (3.4.26)

where a straightforward calculation shows that

χ =
εrs

2
√−g

[√
2∂0X

a∂rX
b∂sX

cγabcκ1 + 2∂rX
b∂sX

cγbcκ2 − 2
√

2(∂rX
− + θΓ−∂rθ)∂sX

cγcκ1

]

=
1√−g

( 1√
2
W (∂0X

aγa)κ1 +Wκ2

)
,

where εrs = −ε0rs and W = εrs∂rX
a∂sX

bγab. Here we used the gauge fixing condition ur = 0 to
rewrite the last term of the first line, which cancels against a part of the first term upon substituting
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γabc = γbcγa + δabγc − δacγb. Substituting this expression in the total variation (3.4.21) of the
fermionic coordinates yields a relation between the kappa gauge symmetry parameter and the
nontrivial residual supersymmetry parameter:

κ2 =
1√

2P+
0

√
w

[
W (ε1 − 1√

2
λa+γaθ2) + (W + P+

0

√
w∂oX

aγa)κ1

]
, (3.4.27)

where we have used the identity

W 2 = 2g1 = 2P+
0

√
w
√−g1 . (3.4.28)

At first sight one might think half of the kappa symmetry (parameterised by the spinor field κ1)
preserves the gauge choice. Substituting the right hand side of (3.4.27) into a kappa transformation
law will show that all the κ1-dependence drops out. Hence this parameter is physically irrelevant,
and may be set to zero. What remains is a global kappa symmetry consisting of a Lorentz
transformation and a supersymmetry. Hence there are 32 residual supersymmetries, half of which
are actually compensating a kappa symmetry. To find these supersymmetries we put the Lorentz
variation equal to zero and substitute the result in the kappa transformation law; this gives us

(1− Γ)
(

0
Wε1/P

+
0

√
2w

)
=

1√
2

(
ε1

((2P+
0

√
w)−1W + ∂0X

aγa)ε1

)
. (3.4.29)

Together with the 16 residual supersymmetries satisfying Γ+ε = 0 (i.e. supersymmetries with
ε1 = 0), the fermionic transformation above constitute the supersymmetry variation

ιΞ0(ε)δθ =
[
1
2Γ+(∂0X

aΓa + Γ−) + 1
4 (P+

0

√
w)−1∂rX

a∂sX
bΓ+Γab

]
ε . (3.4.30)

The kappa symmetries given by (3.4.27) annihilate the transverse bosonic degrees of freedom on the
gauge-fixed configuration subspace. To see this, write ιK(κ)δX

a = 1
2κΓΓaΓ+Γ−θ and observe that

no terms containing a Γ+ in Γ contribute. The only nontrivial term is proportional to Γ−abΓ
+Γ−,

but using Γ+κ = 0 for κ given by (3.4.27), one immediately concludes also these terms vanish.
Hence there are 16 supersymmetries acting on the transverse bosonic variables as

ιΞ(ε)δX
a = εΓaθ . (3.4.31)

The subalgebra of infinitesimal symmetries stabilising condition (3.4.16) on the gauge-fixed mass
shell are determined by the following differential equations [3]:

∂0ξ
r = λ+aεrsθΓ−Γa∂sθ − (P+

0

√
w)−2ggrsλ+a∂sXa +

√
2εΓ−∂sθ . (3.4.32)

To obtain these, one should also make use of the fermionic equations of motion in the lightcone
gauge. The equation above only fixes ξ up to time-independent contributions ξr 7→ ξr + ηr(σ).
These contributions are further restricted by the invariance of the last gauge-fixing requirement:

P+
0 ∂r(

√
wξr) = −λa+∂0Xa + λ+− , (3.4.33)

which fixes the vector field ξ up to spatial contributions satisfying ∂r(ηr
√
w) = 0. These constitute

the residual gauge invariance, and generate the so-called group of area-preserving diffeomorphisms.
This residual invariance shall be extensively investigated in the upcoming section.

3.4.4 The Spectrum

We start our brief discussion of the gauge-fixed membrane mass spectrum with a study of the rôle
of the centre-of-mass phase space variables. These are defined by

Xa
0 (τ) =

∫

Στ

|d2σ|
√
w(σ)Xa(τ, σ) , θα

0 (τ) =
∫

Στ

|d2σ|
√
w(σ)θα(τ, σ) ,

P a
0 (τ) =

∫

Στ

|d2σ|P a(τ, σ) , Sα
0 (τ) =

∫

Στ

|d2σ|Sα(σ, τ) . (3.4.34)
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The Hamilton equation of P− (or the observation that P− is the generator of X+, i.e. time) shows
that this quantity is equal to minus the Hamiltonian density. Hence its corresponding CM mode
is

P−0 (τ) = −
∫

Στ

Hτ . (3.4.35)

The mass-squared of the membrane is defined by M 2 + Pµ
0 P0µ = 0 and yields

M 2(τ) =
∫

Στ

d2σ
(P aPa + ḡ√

w(σ)
− 2P+

0 ε
rs∂rX

aθ̄Γ−Γa∂sθ
)
− (P0)a(P0)a . (3.4.36)

Note that the mass does not depend on the CM coordinates and momenta defined in (3.4.34),
if the membrane does not wind around a certain direction and has no boundary. Writing the
integrand above as M2 ∈ Dens(Στ ), we find with the chain rule that for a phase space variable
WM with normalised zero mode (W0)M as above,

ι
( δ

δWM
0

)
δM 2 =

∫

Στ

ι
( δ

δWM

)
δM2 − 2(P0)a

∫

Στ

ι
( δ

δWM

)
δPa . (3.4.37)

Hence differentiating the mass squared to the zero modes gives

ι
( δ

δXa
0

)
δM 2 = 2

∫

Στ

dγa , γa = − ε
rs

√
w
∂rXa∂sXb ∧ dXb + P+

0 θ̄Γ
−Γa ∧ dθ ,

ι
( δ

δ(θ0)α

)
δM 2 = 4P+

0

∫

Στ

dβα , βα = Xa(Γ−Γa)α
β ∧ dθβ . (3.4.38)

The independence of the X0 mode is reasonable from the physical point of view. The decoupling of
the fermionic zero mode turns out to be very important, as it can be used to show the existence of
a massless d = 11 supergravity multiplet in the membrane spectrum. Furthermore we observe that
the transverse CM-momenta are decoupled as well; the eigenstates of the Hamiltonian therefore
factorise into a relativistic particle wave function of the CM modes and a wave function describing
the higher modes. In a first attempt to analyse the stability of this nontrivial part of the spectrum
we set the spinors equal to zero and observe that the remaining transverse bosonic Hamiltonian
density is of the standard form T + V , where the potential density is given by

V (X) = ḡ = (εrs∂rX
a∂sX

b)2 . (3.4.39)

This quantity (which we have assumed to be positive definite) becomes zero in regions where the
coordinates Xa only depend on a linear combination of σ1 and σ2, say Xa(τ, σ1, σ2) = Xa(τ, z)
where z = arσ

r. We then have

ḡrs =
(

a2
1 a1a2

a2a1 a2
2

)
(∂zX

a(τ, z))2 , (3.4.40)

so that ḡ = 0. Geometrically, these are regions where the bosonic image of the spacesheet of
the membrane degenerates into a one-dimensional, stringlike manifold. The important difference
with string theory in this regime is that the energy of the stretched membrane is not proportional
to, but independent of the length of the object. Hence, as the brane moves through a poten-
tial valley, certain components can escape to infinity at a finite cost of energy and which mass
can become arbitrarily small. All bosonic p-branes with a Nambu-based action suffer from the
potential instability mentioned above, since all positive (p − 1)-metric determinants of the form
(3.4.39) contain valleys corresponding to p − 1 brane configurations, except for the p = 1 case,
string theory, where the quadratic potential fully confines all the modes. Another way of looking
at the instability is from the second-quantisation point of view: since 2 membranes connected by
an infinitely thin tube is physically equivalent to a disconnected configuration, there is no conser-
vation of ’membrane number’, nor a physical meaning of membrane topology. Here it should be
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noted that these properties reflect the nature of the embedded bosonic submanifold of superspace,
not the worldvolume which is of course nondynamical and required to be smooth and connected.

At the classical level the bosonic membrane spectrum thus allows no interpretation in terms of
elementary particle states. At the quantum level however, this behaviour changes drastically. It
turns out that the ground state energy induces an effective potential which prevents stringlike
states to escape through the potential valleys. Another interpretation of this phenomenon comes
from the uncertainty principle, suppressing stringlike configurations because of the deviation in the
momentum wave function. The bosonic membrane Hamiltonian exhibits qualitative similarities
with the two-dimensional quantum mechanical Hamiltonian

H = p2
x + p2

y + x2y2 (3.4.41)

as the potential has zero-energy valleys along the x and y axes. However, this Hamiltonian can be
written as the sum of a free particle Hamiltonian and two harmonic-oscillator Hamiltonians with
variable frequencies,

H = 1
2 (p2

x + p2
y) + ( 1

2p
2
x + 1

2y
2x2) + ( 1

2p
2
y + 1

2x
2y2) . (3.4.42)

The last two Hamiltonians are viewed as operators associated to a particle moving on a line. Their
eigenvalues are therefore always bigger then the ground state energy of a harmonic oscillator (here
we have used the convention ~ = 1),

H ≥ 1
2 (p2

x + p2
y) + 1

2 (|x|+ |y|) . (3.4.43)

The inequality above should be read as an inequality of all eigenvalues. The Hamiltonian is now
bounded from below by an effective Hamiltonian incorporating the harmonic oscillator zero-point
fluctuations, which looks like an inverted pyramid and has definitely a discrete spectrum. Later
on, we shall see that the finite-N approximation of the bosonic membrane has a nonlinear poten-
tial which is essentially a linear combination of these potentials, and therefore it has a discrete
spectrum.

Figure 3: On the left hand side, the potential in the Hamiltonian of the toy model describing the bosonic membrane,
containing 2 flat valleys. On the right hand side the effective, uncoupled confining potential obtained by including
ground state energies of the harmonic oscillators; the flat directions have disappeared.

Turning supersymmetry on changes the spectrum drastically. This is essentially due to the fact
that a supersymmetric harmonic oscillator has zero ground state energy. Hence the spectrum
of a supermembrane in flat superspace is continuous. A rigourous proof of this statement was
constructed in [5]. Due to this fact it is not clear whether (normalisable) massless states even
exist. After the discovery of the instability of the supermembrane the theory was declared dead
for a while. This changed with the second string revolution and the discovery of D-branes. In this
new perspective the continuous spectrum and second-quantised nature reflect the interpretation
of a supermembrane as a supersymmetric quantummechanical system of Dirichlet particles in
ten-dimensional Minkowski space. This interpretation requires however a new formulation of the
membrane action as a gauge theory, which shall be the topic of the upcoming section.
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3.5 APD Gauge Theory

3.5.1 The Residual Constraint

In the previous section we introduced the lightcone gauge, keeping only 16 fermionic degrees of
freedom and 10 bosonic degrees of freedom. The momentum corresponding to the fixed X+ coor-
dinate became a constraint, namely the Hamiltonian. Subsequently we diagonalised the timelike
components of the pulled-back metric to obtain a gauge-fixed transversal momentum P+ = P+

0

√
w.

As we shall see, the X− coordinate corresponding to this momentum degree of freedom, which
no longer appears in the Hamiltonian or Lagrangian, gives rise to a constraint as well. This
constraint generates the residual gauge freedom, consisting of area-preserving diffeomorphisms,
(time-independent) spacesheet diffeomorphisms preserving the density

√
w. The next step will be

to interpret the resulting theory as a gauge theory of the infinite-dimensional algebra on the time
axis. The space-dependency of the remaining variables will be replaced by Lie-algebra valuedness
and we will introduce a connection whose gauge fields generate the supermembrane constraints.

An until this point unexplained feature of the Hamiltonian (3.4.12) is its independence of the X−

coordinate. This degree of freedom is determined by the gauge condition (3.4.16). Putting the
constraints ψr equal to zero is equivalent to the requirement

dX− = −∂0XadX
a − θ̄Γ−dθ ≡ γ . (3.5.1)

So γ is an exact one-form. This gives rise to a set of constraints using Hodge theory on the
spacesheet exterior algebra. We assume that the density

√
w(σ) belongs to a time-independent

Riemannian structure wrs(σ), but we will have to make sure that no physical observables depend
on this tensor other then through its determinant, as it is introduced by hand. Every compact
pseudo-Riemannian manifold Mn has a nondegenerate bilinear symmetric inner product on its
space of sections of homogeneous k-form bundles. For α, β ∈ Ωk(M) it is given by

〈α, β〉 =
∫

M

α ∧ ∗β , (3.5.2)

where ∗ : Ωk(M) −→ Ωk−n(M) is the Hodge isomorphism, induced by the Riemannian duality
between vectors and one-forms. It gives rise to the adjoint operator of the de Rham differential,
δ = ∗d∗ : Ωk(M) −→ Ωk−1(M) which satisfies 〈α, dβ〉 = 〈δα, β〉 for α ∈ Ωk(M) and β ∈ Ωk−1(M).
The Laplace-Beltrami operator is the grading-preserving differential operator

∆ = dδ + δd : Ωk(M) −→ Ωk(M) . (3.5.3)

A differential form α is called harmonic if it satisfies ∆α = 0 (which is equivalent to dα = δα = 0),
and we shall denote the space of such k-forms with Hk

∆(M). One can show that this is a finite-
dimensional vector space which is isomorphic to the de Rham cohomology vector space Hk(M).
At the basis of our proceedings lies the following theorem:

∆(Ωk(M)) = (Hk
∆(M))⊥ . (3.5.4)

The image of ∆ being perpendicular to the space of harmonic forms immediately follows from self-
adjointness of ∆. The inclusion backwards, the statement that every α satisfying 〈α,H∆(M)〉 = 0
is the Laplacian of some form is not trivial to show, and requires ellepticity properties of the
Laplacian. Composing both sides of (3.5.4) with the space of harmonic forms gives the Hodge
decompostion

dΩk−1(M)⊕ δΩk+1(M)⊕Hk
∆(M) = Ωk(M) . (3.5.5)

By orthogonality of this decomposition and d2 = 0 and the fact that harmonic forms are closed,
we have

ker(d : Ωk(M) −→ Ωk+1(M)) = d(Ωk−1(M))⊕Hk
∆(M) . (3.5.6)

78



3 THE CLASSICAL SUPERMEMBRANE 3.5 APD Gauge Theory

The constraint (3.5.1) states that γ is exact. By the orthogonal decomposition above this is
equivalent to the requirements dγ = 0 and 〈γ,H1

∆(Στ )〉 = 0. Given a complete basis ϕλ of
harmonic forms, (3.5.1) corresponds to

ψ ≡ d(∂0Xa) ∧ dXa + dθ̄Γ− ∧ dθ = 0 , (3.5.7)

ψλ ≡
∫

Στ

ϕλ ∧ ∗(∂0XadX
a + θ̄Γ−dθ) = 0 . (3.5.8)

We mention that this construction gets modified in compact target spaces, as there exist exact
R/Z-valued forms which do not integrate to zero along a noncontractible closed loop on Στ . These
theories shall be treated in the next chapter. Note also that the number of independent harmonic
forms is directly related to the topology of the spacesheet. A standard result from algebraic
topology of closed 2-dimensional manifolds is

dim(H0(Στ ))− dim(H1(Στ )) + dim(H2(Στ )) = χ(Στ ) = 2− 2g(Στ ) . (3.5.9)

Here χ(Στ ) is the Euler characteristic and g(Στ ) is the genus of the manifold. The zeroth coho-
mology vector space is the space of constant functions on Στ , and therefore one-dimensional for
connected spacesheets. Furthermore, if Στ is oriented, by Hodge duality H2(Στ ) is isomorphic to
H0(Στ )∗, which is again one dimensional. We can then solve (3.5.9), which gives

dim(H1(Στ )) = 2g(Στ ) . (3.5.10)

Using H1
∆(Στ ) ∼= H1(Στ ), we find there are 2g(Στ ) linearly independent harmonic one-forms.

3.5.2 Area-Preserving Diffeomorphisms

The symmetry group generated by the residual (first class) constraints is a subgroup of the world-
volume reparameterisation group, consisting of time-independent invertible and differentiable map-
pings which leave the density

√
w invariant:

σr → σr + ξr(σ) , with ∂r(
√
w(σ)ξr(σ)) = ∇rξ

r(σ) = 0 , (3.5.11)

where ∇r is the Levi-Civita covariant derivative with respect to the metric wrs(σ). This trans-
formation leaves the constraint (3.5.1) invariant for spacesheets without boundary, since ιξδγ =
∂r(ξrγ), and furthermore it leaves the gauge choice (3.4.18) by definition invariant. The equa-
tion above defines the algebra of area-preserving diffeomorphisms. Furthermore, the Riemannian
metric defines a smooth, closed, nondegenerate 2-form

ν =
√
w(σ)dσ1 ∧ dσ2 , (3.5.12)

defining the spacesheet to be a symplectic manifold. The criterium (3.5.11) for the vector field
ξ = ξr∂r is equivalent to

Lξν = 0 . (3.5.13)

Vector fields satisfying this condition shall be referred to as locally Hamiltonian vector fields,
and in mathematics the group generated by these vectors is the group of symplectomorphisms
SDiffλ(Στ ), diffeomorphisms ϕ : Στ −→ Στ restricted to satisfy

ϕ∗ν = ν . (3.5.14)

There have been various proposals to construct a topology and a differential calculus on this
group and establish some kind of Lie theory. The major problems with such constructions are
the absence of a complete Banach norm on the spaces underlying diffeomorphism groups, which
makes the definition of smoothness of translation along the group (composition of maps) cum-
bersome. Omori [54] circumvented this problem by considering the diffeomorphism group as a
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limit of groups modeled on Banach spaces. It is well-known that the space of smooth functions on
Στ is not Banach, but its completion to Ck(Στ ) for 0 ≤ k < ∞ possesses a complete norm (the
uniform Ck topology) and also the completion to the Sobolev space W k(Στ ) is Banach. Hence the
diffeomorphism group is a limit of ’nice’ infinite-dimensional Lie groups, a so-called ILH (inverse
limit of Hilbert) Lie group. For a review of this approach and for applications in plasma physics,
the theory of incompressible fluids and general relativity, we refer to [55, 56]. A more modern
approach is to modify the vector space on which the group manifold should be modeled on. In
[57], an extensive examination of the properties these spaces should satisfy is performed, resulting
in the definition of a convenient vector space. We shall not go into detail about this, since we
shall only work in the Lie algebra of Hamiltonian vector fields. It is however important to realise
that only diffeomorphisms in some neighbourhood of the identity are generated by such vector
fields. For example, the membrane modeled on a sphere has a disconnected component in its gauge
group, obtained by composing an ’ordinary’ local diffeomorphism with the antipodal map. Even
stronger, an artefact of infinite-dimensionality is the property of the exponent (flow mapping in
this case) being not surjective in any neighbourhood of the identity. Since we work with the Lie
algebra generating these diffeomorphisms, we shall ignore entire classes of diffeomorphisms, and
the inclusion of these would correspond to an infinite but discrete set of residual symmetries of
the membrane. The identification and inclusion of these transformations is an open question.

The area-preserving diffeomorphisms form a so-called regular subgroup of the total diffeomor-
phisms, because it does have the property that the exponent maps smooth curves in the algebra
to smooth curves in the group. Among the regular Lie subgroups of Diff(Σ) are the group of
orientation-preserving diffeomorphisms Diff+(Σ) (provided Σ is orientable), the group of analytic
diffeomorphisms Diffω(Σ) (provided Σ is analytic), the group of volume-preserving diffeomor-
phisms Diffw(Σ) (provided a nonsingular volume form w on Σ is given) and the group of symplec-
tomorphisms SDiffν(Σ), preserving a symplectic form ν on Σ (provided Σ is symplectic). The 2
last ones coincide in our 2-dimensional case, and since Στ is postulated to be compact, we may
omit the c-subscript. The Lie algebra of the symplectic diffeomorphism group may be shown to be
the space Xν(Στ ) of vector fields satisfying (3.5.13), equipped with the negative of the usual Lie
bracket of vector fields11. The trivial solutions to (3.5.13) are the so-called globally Hamiltonian
vector fields,

ξ(σ) =
εrs

√
w(σ)

∂sf(σ)
∂

∂σr
≡ gradνf , (3.5.15)

for some f ∈ C∞(Σ,R). However, for nontrivial spacesheet topologies, there are more solutions;
the linear space of these solutions is isomorphic to the harmonic space H1

∆(Στ ) of the membrane
spacesheet. Because ν is symplectic the mapping

g : ΓTΣτ −→ Ω1(Στ ) : ξ 7→ ιξν (3.5.16)

is an isomorphism. It associates to the vector field ξr∂r the one form β = g(ξ) satisfying
√
w(σ)ξr(σ) = εrsβs(σ) . (3.5.17)

If ξr is area-preserving, then β is closed and vice versa:

dβ = ∂r(
√
w(σ)ξr(σ))dσ1 ∧ dσ2 = 0 . (3.5.18)

The trivial solutions (3.5.15) correspond to β being exact: β = df . Invoking the decomposition
theorem (3.5.6) with k = 1 and M = Στ , the general solution of a closed form β looks like
β = df + aλϕλ where a1, . . . , a2g(Σ) are constants. Hence the general solution of a Hamiltonian
vector field ξ is

ξ = gradνf + aλφλ , λ = 1, . . . , 2g(Στ ) , (3.5.19)

where the φλ are harmonic vector fields on the manifold Στ : their divergence vanishes but they
cannot be written as a gradient of a scalar function. They are related to the cycles ϕλ by the

11because the adjoint action exponentiates to the adjoint transformation by the inverse diffeomorphism
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B

A

B

A

Figure 4: Two independent harmonic vector fields on a flat torus (parallelogram with opposite sides identified);
these fields are divergence-free, but can not be written as the gradient of a continuous scalar function on the torus.

inverse of g,

φλ(σ) =
εrs

√
w(σ)

ϕλs(σ)∂r . (3.5.20)

We can pull back the inner product structure on Ω1 to the space of vector fields with the Hodge
and Riemannian dual. One then obtains the inner product of vector fields ξ, ζ,

〈ξ, ζ〉 =
∫

Στ

ιξν ∧ ∗ιζν =
∫

Στ

∗w(ξ, ζ) =
∫

Στ

|d2σ|
√
w(σ)wrs(σ)ξr(σ)ζs(σ) . (3.5.21)

With respect to this inner product the space of Hamiltonian vector fields has an orthogonal
decomposition

Xν(Στ ) = XG
ν (Στ )⊕ X∆

ν (Στ ) , XG
ν (Στ ) = gradν(C∞(Στ )) , X∆

ν (Στ ) = g−1(H1
∆(Στ )) .

The space of Hamiltonian vector fields is given a Lie algebra structure by the minus the Lie bracket
of vector fields. This gives rise to the exact sequence of Lie algebras

0 −→ H0(Σ) −→ C∞(Στ ,R)
gradν−→ Xν(Στ )

γ−→ H1(Στ ) −→ 0 , (3.5.22)

where γ(ξ) = [ιξν]. For these maps to be Lie algebra homomorphisms, the vector spaces H0(Στ )
and H1(Στ ) should be equipped with the zero bracket, Xν(Στ ) is equipped with minus the Lie
bracket of vector fields and C∞(Στ ,R) is given a Lie algebra structure by the spacesheet Poisson
bracket,

{f, g} = ν(gradνf, gradνg) =
εrs

√
w(σ)

∂rf(σ)∂sg(σ) , (3.5.23)

which can easily be seen to satisfy the Jacobi identity. We shall denote the resulting Poisson
algebra on the spacesheet by P (Στ ). Up to (integration) constants, gradν maps injectively to
XG

ν (Στ ); since constant functions are central under the Poisson bracket, P (Στ ) is isomorphic to a
central extension of XG

ν (Στ ). Moreover, the exact sequence implies that XG
ν (Στ ) is an ideal of the

symplectic diffeomorphism algebra,

[Xν(Στ ),Xν(Στ )] ⊆ XG
ν (Στ ) . (3.5.24)

One may calculate the commutators explicitly:

[gradνf, gradνg] = gradν({f, g}) ,
[φλ, gradνf ] = −gradν(φλ(f)) = −gradν(φ r

λ ∂rf) ,

[φλ, φλ′ ] = −gradν(
√
w(σ)εrsφ

r
λ φ s

λ′ ) . (3.5.25)

81



3.5 APD Gauge Theory 3 THE CLASSICAL SUPERMEMBRANE

3.5.3 Gauging Area-Preserving Diffeomorphisms

The next step is to gauge the symmetry, i.e. to construct a theory with an extra gauge field
corresponding the APD invariance such that it coincides with the original theory upon fixing a
gauge for the gauge field and implementing its equation of motion. Recall that the ingredients
of a gauge theory are a Lie group G which is the structure group of a principal fibre bundle PG

and a gauge field that defines a connection on the associated bundles to PG. Is it possible to
construct a gauge theory associated to the APD group? The following theorem by Michor [57]
answers affirmative:

Theorem 3.1 For N and M smooth finite-dimensional closed connected manifolds with dim(N)
≤ dim(M), the set Emb(N,M) of all smooth embeddings N −→ M is an open submanifold of
C∞(N,M), the infinite-dimensional manifold of smooth mappings from N to M . Emb(N,M)
is the total space of a smooth principal fibre bundle with structure group Diff(N) on the space
B(N,M) = Emb(N,M)/Diff(N) of all smooth submanifolds of M of type N .

One straightforwardly generalises this theorem for M a supermanifold. Moreover, restricting the
diffeomorphism group to Diffν(M), we restrict the space of embeddings to Embν(N,M), the
space of embedding preserving the symplectic form ν under pullback. Because we assume the
existence of a slicing diffeomorphism, there is a projection π : Bν(Στ ,M

11|32) −→ R. We can view
Embν(Στ ,M

11|32) as a principal Diffν(Στ )-bundle over R if on coordinate overlaps the fibres are
related by the composition of an area-preserving diffeomorphism. This imposes a restriction on
the structure of the worldvolume: we had already assumed that the two-manifolds Στ are compact
and without boundary and we will now assume that they are all diffeomorphic. In particular, this
implies that dim(Hp(Στ )) is independent of τ , and hence the Lie algebras of Hamiltonian vector
fields are isomorphic (acted upon by some Adϕ), and the gauge symmetry may be described by
curves in a fixed algebra. Recall that this is a reasonable requirement for a Hamiltonian treatment
of diffeomorphism-invariant theories on topologically nontrivial base manifolds, since we do not
want to deal with time-dependent gauge groups.

We assume thus that all the spacesheets are diffeomorphic to some fixed Σ, and we are therefore
dealing with a principal Diffν(Σ)-bundle Embν(Σ,M32|11) −→ R. The components of Z, namely
Xµ and θα correspond to Hamiltonian vector fields when acted on with the symplectic gradient
and as such transform under the adjoint representation of the algebra Xν(Σ),

Z 7→ gradν(Z) ∈ Γ(⊕11+32Embν(Σ,M11|32)×Ad Xν(Σ),R) . (3.5.26)

This representation has some important physical consequences: as the constant functions are
mapped to the zero element in the representation space, all the transformation laws will be de-
termined up to constants (integration constants arising from inverting the gradient). These may
be set zero, as they are absorbed in the invariance of the physical laws under global translation
in the target space. On the other hand, there are Lie algebra elements which cannot be reached
by taking the gradient of a scalar function: the harmonic vector fields shall only play a role in
the connection on the adjoint bundle. However, in the next chapter we will consider membranes
moving in compact target spaces, where we will see that the gradient of circle-valued functions
may contain nonzero contributions of harmonic vector fields.

From the representation of the embedding coordinates above, we immediately obtain their trans-
formation law,

ιξδ(gradνZ
M (τ, σ)) = [ξ(τ), gradνZ

M (τ, σ)] , (3.5.27)

where the brackets are the Lie brackets in Xν(Σ), which is minus the Lie bracket of vector fields.
By the algebra relations (3.5.25) the right hand side is a gradient and moreover gradν commutes
with ιξ since these are operations in orthogonal directions of the double complex. We may therefore
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derive a transformation rule for the scalar fields up to a time-varying constant, which is set to zero
and shall manifest as zero-mode translation invariance. We obtain for ξ(τ, σ) = gradνf(τ, σ) +
χλ(τ)φλ(σ)

ιξδX
a(τ, σ) = {f(τ, σ), Xa(τ, σ)} − χλ(τ)φr

λ(σ)∂rX
a(τ, σ) ,

ιξδθ
α(τ, σ) = {f(τ, σ), θα(τ, σ)} − χλ(τ)φr

λ(σ)∂rθ
α(τ, σ) . (3.5.28)

Of course these APD diffeomorphism generating vector fields act on the spacesheet volume form
too:

ιξ|dσ1 ∧ dσ2| = εrsξ
rdσs =

1√
w(σ)

df(τ, σ) + εrsχ
λ(τ)φr

λ(σ)dσs . (3.5.29)

Let us now introduce a connection one-form Ω ∈ Γ(T ∗R⊗ Xν(Σ)):

Ω = (gradνω +Aλφλ)⊗ dτ . (3.5.30)

This Lie algebra-valued form on the real line acts on the embedding coordinates through the
adjoint representation: Ω(Z) = [Ω, gradνZ], or equivalently

Ω(Xa) = ({Xa, ω}+Aλφλ(Xa))dτ ,

and similarly it acts on the fermionic coordinates. We obtain a covariant time derivative on the
sections of the fibre bundle by setting

∇0Z
M = ∂0Z

M + Ω(ZM ) , (3.5.31)

and it gives rise to a covariant de Rham differential d∇ : C∞(R,R) ⊗ Xλ(Σ) −→ ΓT ∗R ⊗ Xλ(Σ)
by the rule d∇(f ⊗X) = df ⊗X − fdτ ⊗ [Ω, X]. As usual, this provides the transformation rule
of the gauge field under a time-dependent area-preserving diffeomorphism ξ,

ιξΩ = d∇ξ = (∂0ξ − [Ω, ξ])⊗ dτ . (3.5.32)

which reads in components

ιξδω = ∂0f − {ω, f} − χλφλ(ω) +Aλφλ(f) +Aλχλ′Φλλ′ , ιξδA
λ = ∂0χ

λ , (3.5.33)

where Φλλ′ =
√
wεrsφ

r
λφ

s
λ′ . The Lagrangian we claim to be gauge-invariant is the one proposed

in [53],

L = dτ ∧ |d2σ|P+
0

√
w

[
1
2∇0X

a∇0Xa + θ̄Γ−∇0θ − 1
4 (P+

0 )−2{Xa, Xb}{Xa, Xb}

+ (P+
0 )−1θ̄Γ−Γa{Xa, θ}

]
, (3.5.34)

where dτ is assumed to be positively oriented and and we have rescaled the spacesheet volume
element by the constant factor P+

0 , but the covariant derivative is not affected by this rescaling;
this causes no problems for APD invariance, since all terms will transform covariantly and therefore
yield all separately total derivatives. So to check APD invariance we only have to verify that the
∇0Z

M transform covariantly. By construction this is the case:

Lξ∇0X
a = {f,∇0X

a} − χλφλ(∇0X
a) . (3.5.35)

Similarly the covariant derivative of the fermionic coordinates transform. To calculate these trans-
formation rules explicitly, one should use the following property,

φλ({f, g}) = {φλ(f), g}+ {f, φλ(g)} , (3.5.36)

which may be derived directly or from the Jacobi identities of Xλ(Σ). This property will turn
out to be important in next chapter: it defines the harmonic vector fields as outer derivations
on the Poisson algebra. Writing L = `P+

0

√
wdτ ∧ |d2σ|, we see that ` is a scalar polynomial

in the fields, their covariant time derivatives and spacesheet Poisson brackets between them and
therefore transforms as Lξ` = {f, `} − χλφλ(`). Hence the area-preserving diffeomorphisms are a
manifest symmetry of our gauge theory,

LξL = d(`P+
0

√
wιξ|d2σ|) + (Lξ`)P+

0

√
w|d2σ| = 0 . (3.5.37)
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3.5.4 Supersymmetry Transformations

The theory above also exhibits global supersymmetry; it was already established in [53] that for
χλ = 0 the Lagrangian is invariant under the supersymmetry transformation Ξ : SM (R11) −→
ΓTF , the domain being the Majorana-fermionic sector of a fiber, the resulting vector field being

ιΞ0(ε)δX
a = −2ε̄Γaθ ,

ιΞ0(ε)δθ =
(

1
2Γ+(D0X

aΓa + Γ−) + 1
4 (P+

0 )−1{Xa, Xb}Γ+Γab

)
ε ,

ιΞ0(ε)ω = −2(P+
0 )−1ε̄θ . (3.5.38)

where D0 = ∇0|χ=0 = ∂0 − {ω, }. Notice that this transformation preserves the gauge choices,
and for supersymmetry parameters satisfying the gauge condition Γ+ε = 0, the variation in θ is
just a translation by ε. Note also that ω comes with an ’extra’ factor (P+

0 )−1, this to compensate
the fact that we haven’t rescaled the volume element in the covariant derivative; for the diffeomor-
phism invariance this did not cause problems since all the terms themselves transformed into total
derivatives, however for supersymmetry different terms have to cancel each other. The obvious
way to include harmonic vector fields is to replace D0 with ∇0 in the transformation rule above.
This corresponds to adding a vector field Ξ1(ε) ∈ ΓTF , defined by

ιΞ1(ε)δX
a = ιΞ1(ε)δω = 0 , ιΞ1(ε)δθ =

1
2
Aλφλ(Xa)Γ+Γaε (3.5.39)

and accordingly we split the Lagrangian L = L0 + L1 with L0 = L|A=0 and

L1 = dτ ∧ |d2σ|P+
0

√
w

[
Aλφλ(Xa)D0Xa +

1
2
AλAλ′φλ(Xa)φλ′(Xa) +Aλθ̄Γ−φλ(θ)

]
.

The gauge theory of XG
ν (Σ), given by L0, can be shown (nonmanifestly) supersymmetric under

Ξ0. The remaining terms, to which the gauge field Aλ contributes, are coming from LΞ1(ε)L0 +
L(Ξ0+Ξ1)(ε)L1, which may be written as

∂0ζ1dτ ∧ |d2σ|P+
0

√
w + dτ ∧ dη1 + dτ ∧ |d2σ|P+

0

√
w

(
φλ(Xa)∇0X

a + θ̄Γ−φλ(θ)
)
ι(Ξ0+Ξ1)(ε)δA

λ ,

where the boundary terms are given by

ζ1 = Aλφλ(Xa)θ̄Γaε ,

η1 = P+
0 A

λφλ(Xb)
(
(θ̄Γbε) ∧ dω + (θ̄ΓbΓaε) ∧ dXa

)

+
√
wεrsφλr θ̄

(
P+

0 (Aλ′φλ′(Xa) +∇0X
a)Γa − 1

2
{Xa, Xb}Γab

)
ε ∧ dσs .

Hence adding harmonic vector field components to the theory gives (up to total derivatives) an
additional term in the supersymmetry variation which is proportional to the variation in the
A-field. We may therefore choose

ιΞ(ε)δA
λ = 0 , (3.5.40)

if this transformation obeys the super-Poincaré algebra. This is the case up to an area-preserving
diffeomorphism, in analogy with the supersymmetry algebra of eleven-dimensional supergravity.
Note that the trivial transformation law (3.5.40) is just a different notation of the supersymmetry
transformation of the gauge field given in [47, 58]: in these papers the gauge field is written in
terms of its (spacesheet) Hodge dual, ωrdσr and transforms as ιΞ(ε)δωr = −2(P+

0 )−1ε̄∂rθ. Taking
the Hodge dual and subsequently the dual vector by contracting with wrs on both sides yields
that Ω0 transforms as gradν(−2(P+

0 )−1ε̄θ), which captures exactly the transformation laws of ω
and Aλ in our context.
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3.5.5 Field equations and Noether Charges

The commutator of two supersymmetry transformations can be calculated and yields terms which
cannot be identified as rigid translations. This signals nonmanifest supersymmetry (as usual in GS
superstring theory and supergravity): the field equations (namely those of the APD gauge fields)
should be imposed to make the symmetry algebra close. The equations of motion of respectively
the Xa-, θ-, ω- and Aλ-fields are:

P+
0 ∇2

0X
a − (P+

0 )−1{{Xa, Xb}, Xb}+ {θ̄,Γ−Γaθ} = 0 ,

∇0θ + (P+
0 )−1Γa{Xa, θ} = 0 ,

{∇0X
a, Xa}+ {θ̄Γ−, θ} = 0 ,∫

Σ

|d2σ|φr
λ(∇0X

a∂rXa + θ̄Γ−∂rθ) = 0 . (3.5.41)

The right hand side of the last equation is a spacesheet integral because Aλ only depends on
τ . Observe that the gauge field equations are exactly the constraints (3.5.7) and (3.5.8) upon
choosing the gauge ω = Aλ = 0. The X− coordinate, which does not appear in the Lagrangian
is, up to exact contributions, defined along closed loops by integrating these field equations over
a surface with such a loop as its boundary. In the presence of winding around the X−-direction,
this procedure works up to winding numbers, as we shall explain later. We have the nontrivial
supersymmetry brackets

[
ιΞ(ε1)δ, ιΞ(ε2)δ

]
Xa = −2ε̄2Γ+ε1∇0X

a − 2ε̄2Γaε1 + {2ε̄2ΓbΓ+ε1X
b, Xa} ,[

ιΞ(ε1)δ, ιΞ(ε2)δ
]
θα = εrs(ε̄rΓaχ)Γ+aεs + 2(P+

0 )−1{Xa

(
(ε̄2Γ+ε1)Γa + (ε̄2Γ+aε2

)
, θ} ,[

ιΞ(ε1)δ, ιΞ(ε2)δ
]
ω = −2(P+

0 )−1ε̄2(∇0XaΓ+a + Γ+Γ−)ε1 ,

In the supersymmetry commutator acting on θ we have denoted the spinor field equation (left
hand side of the 3rd equation in (3.5.41)) with χ. Observe that modulo area-preserving gauge
transformations (possibly with field-dependent coefficients) and field equations, these commutators
all yield translations. The momenta corresponding to the theory (3.5.34) are easily seen to be
P a = P+

0

√
w∇0X

a, the transverse bosonic modes and Sα = −P+
0

√
w(Γ−θ)α the fermionic modes,

while the momenta corresponding to the gauge fields are zero. We see once again that these
quantities coincide with the gauge-fixed theory (3.4.9). The full correspondence becomes apparent
in the Hamiltonian theory: the Hamiltonian density of our gauge theory is

H =
1
P+

0

|d2σ|√w
[P aPa

2w
+

1
4
{Xa, Xb}{Xa, Xb} − P+

0 θ̄Γ
−Γa{Xa, θ}

]
. (3.5.42)

This expression coincides with (3.4.12) upon using that {Xa, Xb}{Xa, Xb} = 2w−1ḡ. Let us
now investigate the algebra of the various Noether charges on the final constraint manifold. The
APD invariance is a gauge symmetry, and hence the integral of the constraint (3.5.7) multiplied
with

√
w, is zero. The rigid symmetries are translational invariance, with Noether charges the

momentum zero modes and the total Hamiltonian, Lorentz invariance, with lightcone charges

Mab =
∫

Στ

|d2σ|
(
XaP b − P aXb + 1

2P
+
0 θ̄Γ

−Γabθ
)
,

M+− =
∫

Στ

|d2σ|(−√wP+
0 X

− − ∗Hτ τ) ,

M+a =
∫

Στ

|d2σ|(−√wP+
0 X

a + P aτ) ,

M−a =
∫

Στ

|d2σ|
(
P aX− + ∗HτX

a + 1
2Pbθ̄Γ−Γabθ +

√
w{Xb, Xc}θ̄Γ−Γabcθ

)
. (3.5.43)
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Finally there is supersymmetry, whose Noether current reads

J0 = |d2σ|
(
2(PaΓa +

√
wP+

0 Γ−) +
√
w{Xa, Xb}Γab

)
θ . (3.5.44)

To recover the 9-dimensional Euclidean super-Poincaré algebra corresponding the gauge-fixed the-
ory, we extract the SO(9)-blocks in Q =

∫
Στ
J0 as Q = Q+ +Q− with Q± = 1

2Γ±Γ∓Q. Then

Q+ =
∫

Στ

|d2σ|(2P aΓa +
√
wP+

0 {Xa, Xb}Γab)θ , Q− = 2P+
0 Γ−θ0 . (3.5.45)

Note that Q− acts only on the CM variables, where Q+ gives us the supersymmetry transforma-
tions on the higher fluctuations. Recall formula (2.6.49), which is the local version of this pulled
back Poisson algebra; in our case the second class constraints, χα yield for 2 Noether charges
Qi =

∫
Στ
Ji, i = 1, 2,

{Q1, Q2}D =
∫

Στ

({J1, J2}p − (4P+
0

√
w)−1{J1, χ

α}p(Γ+)αβ ∗ {χβ , J2}p
)
, (3.5.46)

and the Dirac brackets of Noether currents are given by the integrand in the equation above. We
find for instance following nonzero Dirac brackets of the phase space variables

{Xa, P b}d = δab , {θα, θβ}d =
1

4
√
w

(P+
0 )−1(Γ+)αβ , (3.5.47)

Of course, the momenta commute with the Hamiltonian under the Dirac bracket. However, we
want to keep track of the surface terms: later, if we compactify the bosonic target space, these
surface terms will give winding contributions. The translational sector of the super-Poincaré
algebra (spanned by the bosonic momenta) reads

{P a
0 ,Hτ}D = (P+

0 )−1

∫

Στ

dγa , γa = {Xb, X
a} ∧ dXb + θ̄Γ−Γa ∧ dθ , (3.5.48)

while the brackets of the other momenta are manifestly zero. The algebra of the supercurrents
reads

{Q−α , Q−β }D = − 2(Γ−)αβP
+
0 ,

{Q+
α , Q

−
β }D = − (ΓaΓ+Γ−)αβP

a
0 − (ΓabΓ+Γ−)αβ

∫

Στ

dβab ,

{Q+
α , Q

+
β }D = 2(Γ+)αβHτ + 2(ΓaΓ+)αβ

∫

Στ

√
wdXa ∧ ψ

+ (ΓaΓ+)αβ

∫

Στ

dβa + (ΓabcdΓ+)αβ

∫

Στ

dβabcd , (3.5.49)

where

βa =
2√
w
XaPb ∧ dXb + θ̄Γ−(2Xa − 3

4
XbΓab) ∧ dθ ,

βab = −1
4
(Xa ∧ dXb −Xb ∧ dXa) ,

βabcd =
1
12
θ̄Γ−(X[aΓbcd]) ∧ dθ . (3.5.50)

Hence we see that if the surface terms drop out, the supercharge algebra on the constraint manifold
indeed coincides with the anticommuting sector of the super-Poincaré algebra in eleven dimensions.
However, if the target space is compact, these surface terms may give contributions. At this point it
is not at all clear whether the Lorentz generators, the momentum zero modes and the supercharges
constitute the full eleven-dimensional super-Poincaré algebra. In the following section, we shall
perform an abstract mode decomposition and give the full algebra of these Noether charges.
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4 Matrix Regularisation

4.1 More APD Gauge Theory

4.1.1 A Basis for C∞(Στ ,R)

The final step for the gauge-fixed supermembrane to be seen as a gauge theory on the time axis is by
expanding the area-preserving diffeomorphisms in a complete basis and define a bilinear product
on the space of Hamiltonian vector fields. This procedure also nicely connects the membranes
with the theory of matrices, as we shall see in upcoming section. Recall that the majority of the
area-preserving diffeomorphisms arises from scalar functions on Στ , under the symplectic gradient.
We therefore start by considering the usual symmetric, bilinear product of real-valued functions
on Στ ,

〈f, g〉 =
∫

Στ

f ∧ ∗g =
∫

Στ

|d2σ|
√
w(σ)f(σ)g(σ) . (4.1.1)

It is well-known that the space of smooth functions on Στ is not complete w.r.t. the norm
||f || =

√
〈f, f〉. Consequently we shall consider its completion to the Sobolev space W 0,2(Στ )

of functions bounded w.r.t. this norm, which is a Hilbert space. The pairing above induces a
morphism η0 : W 0,2(Στ ) −→ (W 0,2(Στ ))∗, which is by degeneracy of the pairing not injective and
by infinite-dimensionality not surjective. For instance, the Dirac delta distribution associated to
a point σ ∈ Στ , defined by δσ ∈ (W 0,2(Στ ))∗ : δσ[f ] = f(σ) for all f ∈ W 0,2(Στ ) has no coun-
terpart in the Sobolev space. However, restricted to C∞(Στ ), η0 is injective, and we shall denote
its image with D∞(Στ ): it is the space of linear functionals given by integration of the product
with some smooth density. Suppose now we are given a basis YI(σ) of W 0,2(Στ ), consisting of
smooth functions. Then by the triangle inequality the metric components ηIJ = 〈YI , YJ〉 are all
finite numbers, and a function f = f IYI is part of the Hilbert space if ηIJf

IfJ is finite. We shall
denote the corresponding dual basis by Y I , and require it be normalised by Y I [YJ ] = δI

J . We
emphasise that although we write YI(σ) with σ = σ1, σ2 ∈ U , an open compact subset of R2, the
functions depend on these coordinates through the coordinate functions of Στ , so the basis should
be compatible with the topology of the spacesheet. Furthermore, the basis is constructed for un-
compactified membranes: if the brane winds around a certain dimension, the component in this
direction should be expanded in a function basis ofW 0,2(Στ ,R/Z). We shall comment on this later.

The index I is in practice a double integer-valued object, but this is of minor importance, as long
as we can sum over it. What is of importance is the subtraction of the zero modes: the linear
morphism f 7→ f−〈f, 1〉 is a surjective map toW 0,2

1 (Στ ,R), the space of bounded functions modulo
constants under addition. Hence we may construct from any basis YI a basis YA, Y0 where

√
wYA

integrates to zero and Y0 = 1 spans the kernel of the morphism. The dual basis vectors Y A satisfy
a completeness relation in W 0,2

1 (Στ ,R), which is easily derived from the relation Y I [YJ ] = δI
J in

the total space. For a fixed σ ∈ Στ ,

YA(σ)Y A =
1√
w(σ)

δσ − 〈1, . 〉 . (4.1.2)

There is a canonical basis of smooth bounded functions on Στ given by the eigenvectors of the
Laplace-Beltrami operator (4.1.3), which acts on zero-forms by

∆f = δdf = ∗d ∗ df =
1√
w
∂r(
√
wwrs∂sf) . (4.1.3)

We set ∆YA = −λAYA (no summation), λA > 0. Using the elliptic properties of ∆, one can
show that the the (smooth) eigenvectors of the Laplacian indeed form a complete basis of our
Sobolev space and that its eigenvalues are negative definite. Choosing the basis to consist of these
eigenvectors causes no loss of generality, since all the formulas will be basis-independent; some
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quantities depend on explicitly on the eigenvalues, and the easiest way to deduce these is by a
convenient choice of YA. One of the simplifications is that the metric η becomes diagonal, because
∆ is self-adjoint with respect to (4.1.1).

4.1.2 Green’s Function Associated to X−

One object depending explicitly on the eigenvalues λA is Green’s functional associated to the
differential equation defining X−. This function is constructed from Green’s function associated
to (4.1.3). Recall that for a linear invertible operator A on some bounded measure space C of
functions, the operator equation Af = g is solved by f(y) = δy[f ] = δy[A−1g] = (A−1)∗δy[g], and
the operator Gy = (A−1)∗δy is called Green’s functional. In our case the function vector space
is W 0,2

1 (Στ ) and the pairing is given by (4.1.1). Green’s function associated to the Laplacian
operator is

Gσ = −
∑

A

1
λA

YA(σ)Y A . (4.1.4)

Letting σ vary, it defines an element in W 0,2
1 (Στ )⊗ (W 0,2

1 (Στ ))∗, on which the Laplacian acts as

∆σGσ =
1√
w(σ)

δσ − 〈1, . 〉 . (4.1.5)

The differential equation ∆f = g is then solved by f(σ) = Gσ[g]. From this function we deduce
Green’s functional associated to the system of PDE’s defining X−, dX− = γ (cf. 3.5.1). For
this we need to construct a basis on Ω1(Στ ) with the YA. This can be done straightforwardly,
expanding the one-form components in this basis, or it can be done with the Hodge decomposition
theorem (3.5.5):

Ω1(Στ ) = d(Ω0(Στ ))⊕ ∗d(Ω0(Στ ))⊕H1
∆(Στ ) . (4.1.6)

For the second factor we used that 2-dimensional manifolds exhibit the isomorphism ∗Ω2(Σ) =
Ω0(Σ). Hence we obtain the basis

α
(1)
A =

1√
λA

dYA , α
(2)
A = ∗α(1)

A =
1√
λA

√
wεrsw

st∂tYA ∧ dσr , (4.1.7)

In the formula above there is of course no summation over the A-index. These are again eigen-
vectors of the Laplace operator in Ω1(Στ ): ∆α(i)

A = −λAα
(i)
A . Observe the double degeneracy of

the nonzero eigenvalues. The factor (λA)−1/2 normalises the inner products between these forms:
∫

Στ

α
(i)
A ∧ ∗α(j)

B = δijηAB . (4.1.8)

The pairing of one forms induces a duality morphism η1 : Ω1(Στ ) −→ (Ω1(στ ))∗. Since Ω1(Στ ) =
C∞(Στ ), there exists a de Rham differential d∗ : D∞(Στ ) −→ (Ω1(στ ))∗, given by d∗ = (η0)−1 ◦
d ◦ η1. In the usual way η1 pulls the Hodge star isomorphism back to the dual space Ω1(Στ )∗. By
construction, the element Y 0 = 〈 . , 1〉 is in the kernel of d∗; hence the basis Y A induces basis vectors
on the space of smooth functional-valued one forms, we which we denote by α(1)A = d∗YA/

√
λA

and α(2)A = ∗d∗YA/
√
λA. The remaining basis vectors are the duals of the harmonic one-forms

ϕλ. We shall assume these to be properly normalised:
∫

Στ

ϕλ ∧ ∗α(i)
A = 0 ,

∫

Στ

ϕλ ∧ ∗ϕλ′ = δλλ′ . (4.1.9)

There is a completeness relation between the components of the basis one-forms and their duals:
for every σ ∈ Στ we have

∑

i,A

α
(i)
Ar(σ)α(i)A

s =
wrs(σ)√
w(σ)

δσ −
∑

λ=1,...,2g

ϕλr(σ)ϕλ
s . (4.1.10)
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This should be read as an equation of linear functionals: the objects ϕλ
s are the components of the

harmonic one-forms in Ω1(Στ )∗, which are again the linear functionals defined by f 7→ ∫
Στ
ϕλ

s ∧∗f .
Green’s function associated to dX− = γ is a map σ 7→ Ḡσ ⊗ X ∈ W 0,2

1 (Στ )∗ ⊗ ΓTΣτ from the
spacesheet to the space of functional-valued vector fields such that

df = β ⇒ f(σ) = Ḡσ[ιXβ] + const. . (4.1.11)

Hence, for every fixed σ this functional should satisfy

δσ[div(X)]Ḡσ = − 1√
w(σ)

δσ + 〈1, . 〉 . (4.1.12)

The explicit expression of Green’s function follows from the completeness relation (4.1.10). Con-
tracting this formula with wrs(σ) and using an orthonormal homology basis yields on the right
hand side -2 times the right hand side of (4.1.12) and the left hand side may be written as a
covariant derivative of a vector field. A quick calculation yields

Ḡσ ⊗X =
∑

A

1
λA

wrs(σ)∂rYA(σ)Y A ⊗ ∂s , (4.1.13)

so the X− coordinate has an integral representation

X−(σ) = (P+
0 )−1

∑

A,B

ηAB
[ ∫

Στ

∗w∗( 1
λB

dYB , γ)
]
YA(σ) + constant , (4.1.14)

where γ is defined in (3.5.1) and w∗ is the inner product on Ω1(Στ ) induced by w. The constant
is the centre-of-mass coordinate q−, the variable canonically conjugate to P+

0 .

4.1.3 A Basis of Hamiltonian Vector Fields

We can now straightforwardly formulate the gauge theory of area-preserving diffeomorphisms from
previous chapter in terms of the basis YA. The symplectic gradient maps the basis of functions to
a basis of globally Hamiltonian vector fields,

ζA =
εrs

√
w

(∂sYA)∂r . (4.1.15)

Together with the additional harmonic vector fields φλ this gives a real vector space structure to
Xν(Στ ). Moreover, there is a nondegenerate bilinear pairing Xν(Στ )⊗Xν(Στ ) −→ R constructed
by combining the Riemannian metric on Στ and the pairing of bounded smooth functions on
Στ ; this is just the product (3.5.21). Lifting the duality morphism η to Xν(Στ ) yields a basis of
the space X∗ν(Στ ) of functional-valued Hamiltonian vector fields, contracting with wrs and taking
the Hodge dual yields the space Ω1

C(Στ ) = dΩ0(Στ ) ⊕H1
∆(Στ ) of closed one-forms. The duality

morphism is the combination of both morphisms to the space Ω1
C(Στ )∗ of functional-valued closed

one-forms. Its induced basis vectors are then
√
λAα

(1)A, which we have introduced earlier. The
advantage of the normalisation (4.1.15) is the relative simple expressions of the structure constants;
the disadvantage is the fact that the orthonormality relations between the ζA are not normalised:

∫

Στ

∗w(ζA, ζB) = λAηAB . (4.1.16)

A simple modification of the Riemannian inner product yields a normalised basis (ζA, φλ) of the
APD algebra. This is the procedure of Gram-Schmidt: the linear map g : Xν(Στ ) −→ Xν(Στ ) :
g(ξ) =

∑
A w(ξ, ζA)ζA +

∑
λ w(ξ, φ(λ))φλ obviously has zero kernel by completeness of the basis.

Hence it is an automorphism of the APD algebra; its inverse normalises the basis through the
modified product w̃(ξ, ζ) = w(g−1(ξ), ζ). This inner product is still symmetric because g and its
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inverse are self-adjoint w.r.t. the Riemannian pairing.

The Poisson algebra on the spacesheet is isomorphic to a central extension of the ideal of globally
Hamiltonian vector fields. In particular, the structure constants defined by [ζA, ζB ] = f C

AB ζC are
deduced from this extension,

{YA, YB} = f C
AB YC , f C

AB = ηCD

∫

Στ

|d2σ|
√
w(σ)YD(σ){YA(σ), YB(σ)} . (4.1.17)

Together these structure constants define a tensor Fp in (D∞∧D∞⊗C∞)(Στ ) defined by Fp[f, g] =
{f, g} for all smooth functions f and g on the space sheet. Moreover, the tensor (Id⊗Id⊗η)◦Fp is an
element of

∧3D∞(Στ ), as one sees by partial integration that its components fABC = ηCDf
D

AB

are totally antisymmetric. For nontrivial spacesheet topologies the APD algebra has the additional
harmonic generators yielding the structure constants

f C
λB = −ηCD

∫

Στ

|d2σ|
√
w(σ) , YD(σ)φ r

λ ∂rYB(σ) ,

f C
λλ′ = −ηCD

∫

Στ

|d2σ|w(σ)εrsφ
r

λ φ s
λ′ YD(σ) , (4.1.18)

which of course satisfy the Jacobi identities too and are by definition antisymmetric in the lower in-
dices. Furthermore, partial integration yields fλBC = −fλCB . Together these structure constants
constitute the tensor F ∈ ∧2 Ω∗C(Στ ) ⊗ XG

ν (Στ ). Note that the upper index takes no λ-values
because XG

ν (Στ ) is an ideal of the full algebra. We also see that the zero modes play a trivial rôle
in this algebra: the structure constants f B

0A , f B
00 and f B

λ0 are all zero. This corresponds to the
observation in the previous section that the the Poisson algebra including constant functions is
just a central extension of XG

ν (Στ ).

4.1.4 APD Gauge Theory Revisited

Now let us expand the action and its Hamiltonian in this function basis. We write Xa = Xa
0 +

XaAYA and θα = θα
0 + θαAYA (adopting summation convention), assuming that the embedding is

square integrable under pullback to the world volume. The spacesheet integral of the Lagrangian
(3.5.34) is expanded according to

L = L0 + 1
2P

+
0 ∇0X

A
a ∇0X

a
A + P+

0 θ̄AΓ−∇0θ
A − 1

4 (P+
0 )−1f E

AB fCDEX
A

a X B
b XaCXbD

− f C
AB X A

a θ̄BΓ−ΓaθC , (4.1.19)

where we have split off the CM Lagrangian

L0 = P+
0 ( 1

2∂0Xa0X
a
0 + θ̄0Γ−∂0θ0) . (4.1.20)

Note that we require sufficient differentiability of the field configurations to make the Lagrangian
well-defined; this corresponds to the requirement that sums like fC

ABX
aAXbB converge. The APD

gauge field can be written as Ω = (ωAζA + Aλφλ) ⊗ dτ and the covariant derivative induced by
this connection acts on the bosonic components of a section by

∇0X
aA = ∂0X

aA − Ω A
C XaC ,

= ∂0X
aA − f A

BC ωBXaC − f A
λC AλXaC , (4.1.21)

and in the same way it acts on the components θαA. A Hamiltonian vector field ξ = ξAζA +χλφλ

induces a transformation on the embedding fields by

ιξδX
aA =

(
f A

BC ξB + f A
λC χλ

)
XaC ,
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and similarly for the fermions. Therefore The transverse components and nonzero spinor com-
ponents all transform under the adjoint representation of Diffν(Στ ). The gauge fields transform
as

ιξδω
A = ∇0ω

A + f A
λC χλωC + f A

λλ′ χ
λAλ′ ,

ιξδA
λ = ∂0χ

λ . (4.1.22)

The action of the Hamiltonian vector field on local spacesheet coordinates is irrelevant as we have
integrated out all space-dependence (it has been replaced with an unbounded index). The sym-
metry obviously remains manifest, but the cancelation of total derivative terms by the volume
element transformation is replaced by certain identities between the so-called f -, c- and d-tensors,
reflecting the vanishing of the integral of a total derivative, which we shall discuss below. The zero
modes are obviously invariant under area-preserving transformations. The nontrivial supersym-
metry transformations of the components become ιεδXaA = −2ε̄ΓaθA, ιεδωA = −2(P+

0 )−1ε̄θA,
and

ιεδθ
A =

1
2
(∇0X

aAΓa + Γ−)ε+
1
4
(P+

0 )−1f A
BC XaBXbCΓ−Γabε . (4.1.23)

Again, the zero modes transform among themselves as ιεδXa0 = −2ε̄Γaθ0 and ιεδθ0 = 1
2∂0X

a0Γaε.
The equations of motion become

P+
0

(
δ A
C (∂0)

2 − 2Ω A
C ∂0 +W A

C − (P+
0 )−2f A

BD f B
CE XbEX D

b

)
XaC + f A

BC θ̄BΓ−aθC = 0 ,

Γ−
(
∂0 − Ω A

C

)
θC + (P+

0 )−1Γaf
A

BC XaAθB = 0 ,

f A
BC

((
∂0X

aB − Ω B
D XaD

)
X C

a + θ̄BΓ−θC
)

= 0 ,

f C
λB ηAC

((
∂0X

aA − Ω A
D XaD

)
X B

a + θ̄AΓ−θB
)

= 0 , (4.1.24)

where W A
C = −∂0Ω

A
C + Ω B

C Ω A
B , which reads in terms of the component gauge fields

W A
C = (f A

BD f D
λC + f D

BC f A
λD )ωDAλ + f A

BE f E
DC ωBωD

+ f A
λB f A

λ′D AλAλ′ − f A
BC ∂0ω

B − f A
λC ∂0A

λ . (4.1.25)

The CM modes are completely decoupled and they form a system of differential equations among
themselves:

∂2
0X

a0 = 0 , Γ−∂0θ0 = 0 . (4.1.26)

Note that the expansion in the function basis has converted a theory of fields, sections of a bundle
over a manifold N , to a theory of an infinite number of interacting ’particles’, sections of a bundle
over the time axis. Passing to the Hamiltonian formalism, we define the canonical momentum
densities P A

a = P+
0 (∂0X

A
a − Ω A

C X C
a ) and SαA = −P+

0 (Γ−θA)α. The Hamiltonian becomes

Hτ =
1

2P+
0

[
P 0

a P a0 + P A
a P a

A + 1
2f

C
AB fDECX

A
a X B

b XaDXbE − 2P+
0 fABC θ̄

CΓ−ΓaX
aAθB

]
.

(4.1.27)
The factors P+

0 inside the brackets may be canceled by a rescaling of the fermionic fields by
(P+

0 )−1/2. Note that the prefactor (P+
0 )−1 vanishes in the physically relevant quantity M 2 =

2P+
0 Hτ − P a

0 P0a. Although we shall not perform this procedure, we recommend this trick to the
reader who wishes to calculate results himself: the reason is that in our formulation the zero mode
of the X− coordinate q−, which is canonically conjugate to P+

0 , has nonzero Dirac brackets with
the fermionic modes because the second-class constraints χα involve the P+

0 coordinate, when not
rescaled. Evaluating Dirac commutators, this causes terms which cancel the terms that arise by
the P+

0 -factors in front of the fermionic terms. Once again the equations of motion of the gauge
fields (multiplied by a factor P+

0 ) become the usual first-class constraints on phase space,

ψA = f A
BC (XaBP C

a + P+
0 θ̄

BΓ−θC) ,

ψλ = fλBC(XaBP C
a + P+

0 θ̄
BΓ−θC) . (4.1.28)
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These are the generators of the area-preserving transformation gauge symmetry in the Hamiltonian
formalism,

{ψA, ψB}D = f C
AB ψC , {ψAψλ}D = f C

Aλ ψC , {ψλ, ψλ′}D = f C
λλ′ ψC . (4.1.29)

4.1.5 Super-Poincaré Algebra Structure

Finally, we would like to mention the super-Poincaré algebra structure of the other Noether
charges. For this it is convenient to introduce two more tensors. The first one captures the
pointwise product of smooth functions in W 0,2

1 (Στ ); it is the element d ∈⊗3D∞(Στ ) such that
δση

−1(d[f, g]) = f(σ)g(σ). Its components read

dABC =
∫

Στ

|d2σ|
√
w(σ)YA(σ)YB(σ)YC(σ) , (4.1.30)

and is obviously totally symmetric. The zeroth components are fixed by dAB0 = ηAB and dA00 = 0.
The second tensor is associated to the normalised bilinear product w̃ introduced earlier. We define
c ∈ Xν(Στ )∗ ⊗ Xν(Στ )∗ ⊗D∞(Στ ) by c(ξ1, ξ2)[f ] = 〈w̃(ξ1, ξ2), f〉. Hence its components are

cABC = c(ζA, ζB)[YC ] =
∫

Στ

|d2σ|
√
w(σ)
λA

wrs(σ)∂rYA(σ)∂sYB(σ)YC(σ) ,

cλBC = c(φλ, ζB)[YC ] =
∫

Στ

|d2σ|εstwrs(σ)φr
λ(σ)∂tYB(σ)YC(σ) ,

cλλ′C = c(φλ, φλ)[YC ] =
∫

σ

|d2σ|
√
w(σ)wrs(σ)φr

λ(σ)φs
λ′(σ)YC(σ) . (4.1.31)

This quantity also determines the function expansion of Green’s function (4.1.13):

cABC = 〈gAB , YC〉 , gAB(σ) = Ḡσ[YA]δσ[X(YB)] . (4.1.32)

Hence this quantity arises in the decomposition of the transverse component X−:

X−A = − 1
P+

0

(
XaAPa0 + P+

0 θ̄
AΓ−θ0 + cABC(XaBP C

a + P+
0 θ̄

BΓ−θC)
)
. (4.1.33)

Note that our definition slightly differs from the original paper [6]: the relation is (cABC)dWMN =
−2cACB and similarly the harmonic components are related. There various identities involving
the quantities η, f , c and d:

f C
[AB f E

D]C = f C
[λB f E

D]C = f C
[λλ′ f E

D]C = f C
[λλ′ f E

λ′′]C = 0 ,

f E
A(B dCD)E = f C

[AB cDE]C = dABCf
A

[DEf
B

F ]G = 0 ,

cABC + cACB = dABC ,

dEA[Bd
E

C]D = −ηA[BηC]D ,

f E
AB cECD = cEABf

E
AB + f E

CA dBDE + cλABf
λ

CD . (4.1.34)

One recognises the Jacobi identity of the APD algebra in the first line. Because c depends ex-
plicitly on the metric w, its APD transformation rule is nontrivial (opposed to the APD-covariant
quantities η, f and d); hence the X− coordinate transforms noncovariantly. However, a calculation
learns that the additional terms vanish on the final constraint manifold:

ιξδX
−A = (f A

BC ξB + f A
λC χλ)X−C − ξB

P+
0

(
(cABC + c A

CB )ψC + c A
λB ψλ

)

− χλ

P+
0

(
(cAλC + c A

Cλ )ψC + c A
λ′λ ψλ′

)
. (4.1.35)
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The generators of the lightcone super-Poincaré algebra are the zero modes P+
0 and P0a, the

Hamiltonian (4.1.27), the lightcone supercharges and the Lorentz generators. We split off the zero
modes and write for the generators G = G(0) + G̃+ rest, where G(0) only involves zero modes and
G̃ only nonzero modes (except the constant P+

0 ). Then

Q+ = (Q+)(0) + Q̃+ , (Q+)(0) = 2Pa0Γ
aθ0 , Q̃+ = (2P A

a Γa + f A
BC XaBXbCΓab)θA ,

Q− = (Q−)(0) = P+
0 Γ−θ0 . (4.1.36)

The first three Lorentz generators (3.5.43) take the relatively simple form because there are no
mixed terms in their expressions; we have Mab = (Mab)(0) + M̃ab, M+− = (M+−)(0) + M̃+− and
M+a = (M+a)(0), with

(Mab)(0) = Xa
0P

b
0 −Xb

0P
a
0 + 1

2P
+
0 θ̄0Γ

−Γabθ0 ,

M̃ab = XaAP b
A −XbAP a

A + 1
2P

+
0 θ̄

AΓ−ΓabθA ,

(M+−)(0) = −P+
0 q

− ,

M̃+− = −Hτ τ ,

(M+a)(0) = −P+
0 X

a
0 + P a

0 τ , (4.1.37)

where q− is the zero mode ofX−, a quantity canonically conjugate to P+
0 . The remaining generator

has a more complicated decomposition:

M−a = (M−a)(0) +Xa
0 Hτ +

1
P+

0

Pb0M̃
ab + θ̄0Γ

−ΓaQ̃+ + M̃−a , (4.1.38)

where (M−a)(0) = q−P a
0 + 1

2Pb0θ̄0Γ
−Γabθ0 and

M̃−a =
dABC

P+
0

[
XaA

(
P B

b P bC + 1
4f

B
DE f C

FG X D
b X E

c XbFXcG − P+
0 f

B
DE θ̄CΓ−ΓbX

bDθE
)

+ 1
2P

+
0 P

A
b θ̄BΓ−ΓabθC + P+

0 f
A

DE X D
b X E

c θ̄BΓ−ΓabcθC
]

− cABC

P+
0

P aA(XbBP C
b + P+

0 θ̄
BΓ−θC) . (4.1.39)

An explicit verification of supersymmetry and Lorentz invariance of the theory is the cancelation
of all Dirac brackets of the generators with the invariant mass-squared (3.4.36), which in the mode
decomposition reads

M 2 = P A
a P a

A + 1
2f

C
AB fDECX

A
a X B

b XaDXbE − 2P+
0 fABC θ̄

CΓ−ΓaX
aAθB , (4.1.40)

and is independent of the zero modes. Hence all its Dirac brackets with zero-mode coordinates in
phase space vanish, as is required by translational invariance, and for a super-Poincaré generator G
we have {(G)(0),M 2}D = 0. Furthermore the expression (4.1.40) is quickly seen to be manifestly
invariant under transverse rotation of the field variables, which gives {M̃ab,M 2}D = 0. Hence
the only nontrivial commutators are provided by Q̃+ and M̃−a. A tedious calculation, performed
in [6] yields

{Q̃+,M 2}D = 2ψAθ
A ,

{M̃−a,M 2}D = − 2
P+

0

(
f B

DE XbCXaDX E
b + P+

0 θ̄
BΓ−θC

)
(cABCψ

A + cλBCψ
λ) . (4.1.41)

Hence on the final constraint space the invariant mass squared commutes with all the generators
of the super-Poincaré algebra. The closure of the super-Poincaré algebra is quickly verified, except
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for two commutators involving M−a. The commutators that manifestly satisfy the algebra (2.4.3)
are

{Mab,M cd}D = δacM bd + δbdMac − δadM bc − δbcMad {M+−,M+a}D = −M+a ,

{M+a,M−b}D = Mab + δabM+− {M+a,M+b}D = 0 ,

{Mab,M±c}D = δacM±b − δbcM±a {Mab,M+−}D = 0 . (4.1.42)

The remaining commutators were calculated in [59], and miraculously enough they satisfy the
Lorentz algebra on the final constraint manifold:

{M+−,M−a}D = M−a + (P+
0 )−1θ̄0Γ

−ΓaθAψA ,

−(P+
0 )−2(f B

DE XbCXaDX E
b + P+

0 θ̄
BΓ−θC)(cABCψ

A + cλBCψ
λ) ,

{M−a,M−b}D =
−2

(P+
0 )2

[
P+

0

(
Φ

(
X [a ⊗ (θ̄Γb]Γ−)α ⊗ θα

)− 1
2Φ

(
(θ̄Γ−Γabc)α ⊗ θα ⊗Xc

))
,

+
1
λA

( 1
λC

f AB
C ψC + f AB

λ ψλ − 1
2λB

f AB
C ψC

)
P [a

AP
b]

B ,

+Φ
(
X [a ⊗ {Xb], Xc} ⊗Xc

)
+ 1

2P
+
0 θ̄0Γ

−Γ[aXb]DθCdCDEψ
E ,

−P+
0 θ̄0Γ−Γ[aΓb]cθCX D

c (cEDCψ
E + cλDCψ

λ)
]
, (4.1.43)

where Φ : C∞(Στ )⊗ C∞(Στ )⊗ C∞(Στ ) −→ R is the trilinear map

Φ(V ABCYA ⊗ YB ⊗ YC) = V A
A Cψ

C + V ABCd D
AB (cECDψ

E + cλCDψ
λ) . (4.1.44)

So we observe that {M−a,M−b}D vanishes on the physical subspace, which is required by the
lightcone Lorentz algebra. The fermionic sector was already shown in the previous chapter to close
on the final constraint manifold:

{Q−α, Q
−

β}D = −2(Γ−)αβP
+
0 , {Q+

α, Q
−

β}D = −(ΓaΓ+Γ−)P a
0 ,

{Q+
α, Q

+
β}D = 2(Γ+)αβHτ − 2(ΓaΓ+)αβX

a
Aψ

A . (4.1.45)

With the results above and some additional calculations it is easy to verify the remaining com-
mutators. The (off-shell) nonzero results are

{M+−, P+
0 }D = −P+

0 , {M+−,Hτ}D = Hτ ,

{M+a, P c
0}D = −δacP+

0 , {M+a,Hτ}D = P a
0 ,

{M−a, P c
0}D = δacHτ , {M−a, P+

0 }D = P a ,

{Mab, P c
0}D = δacP b

0 − δbcP a
0 , {Mab, Q±}D = 1

2ΓabQ± ,

{M+−, Q+}D = 1
2Q

+ + 2(P+
0 )−1θAψAτ , {M+−, Q−}D = 1

2Q
− ,

{M+a, Q+}D = 1
2Γ+aQ− , {M−a, Q−}D = 1

2Γ−aQ+ , (4.1.46)

and

{M−a, Q+}D = (P+
0 )−1

[
(XaAθBdABC −Xa

0 θC)ψC −XB
b ΓabθC(cABCψ

A + cλBCψ
(λ))

]
.

It is important to realise that the classical on-shell closure of the symmetry algebra does not imply
this property at the quantum mechanical level. In superstring theory, the Hilbert space is defined
by means of Virasoro constraints and the Lorentz algebra acting on it is well-defined by virtue of
normal ordering prescriptions. This procedure seems to be inapplicable for the supermembrane
model. However, there is a way to ’relate’ this theory to a well-defined quantum theory with a
finite number of degrees of freedom, as we shall see below.
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4.2 Matrix Regularisation

In this section we shall interpret the one-dimensional gauge theory of area-preserving diffeomor-
phisms as a limiting case of a well-known class of models called the matrix models. We shall
therefore begin with a quick review of the matrix model, without going into details on its relation
to superstring theory and M-theory.

4.2.1 Super-Yang-Mills Theory

The standard way to understand the matrix model is by dimensional reduction of a minimally
supersymmetric Yang-Mills theory (SYM). The data used to construct such a theory are

1. A principal compact-G-bundle PG(M) on a manifold Md with Minkowski metric η.

2. A bi-invariant scalar product 〈., .〉 on the Lie algebra g.

3. A spinor bundle S(M), possibly with a graded product structure.

The field content of the theory is determined by a gauge field A ∈ Ω1(M, g) and an adjoint
representation-valued spinor θ ∈ Ω0(S ⊗ adP ). Note that the bilinear pairing on g is trivially
extended to the adjoint bundle. As usual, the gauge field A gives rise to the curvature FA ∈
Ω2(M, adP ) given by FA = dA + 1

2qA ∧ A, where the de Rham differential and wedge product
are extended to the principal bundle as in (2.5.11) and a covariant derivative on Ω0(S ⊗ adP ) by
∇Xθ = X(θ)−q[η(X,A), θ], where q is the gauge coupling constant. The SYM Lagrangian is then
given by

L = −q
−1

2
(〈FA ∧ ∗FA〉 − 〈θ̄ ∧ ∗Γµ∇µθ〉

)
. (4.2.1)

Here we have defined for A1 = α1 ⊗ g1 and A2 = α2 ⊗ g2 ∈ Ωk(M ⊗ g) the bilinear pairing
〈A1 ∧ ∗A2〉 = (α1 ∧ ∗α2)〈g1, g2〉, and similarly the second term is defined by θ1 = s1 ⊗ g1,
θ2 = s2 ⊗ h ∈ Ω0(S ⊗ adP ): 〈θ1 ∧ ∗θ2〉 = |ddx|s̄1s2〈g1, g2〉. Hence, for the second term to
be nontrivial (not a total derivative), s̄1 ∧ Γ(1) ∧ s2 should be antisymmetric under 1 ↔ 2; if the
charge conjugation matrix and the Dirac matrices are symmetric, we choose the spinor components
to constitute the first-order homogeneous sector of the supermanifold M0|n with n = dim(S). The
action is manifestly gauge invariant: the map Φ : Ω0(M,G) −→ ΓTF given by

ιξδA = g−1Ag + gdg , ιξδθ = g−1θg , (4.2.2)

for ξ = Φ(g) satisfies LξL = 0. In certain dimensions, the Lagrangian is globally supersymmetric:
we postulate the supersymmetry transformation Ξ : S −→ ΓTF defined by

ιξδAµ = ε̄Γµθ , ιξδθ = 1
2FµνΓµνε , (4.2.3)

for ξ = Ξ(ε). These transformation rules may be derived by power counting and on-shell closure
of the supersymmetry algebra. Some calculations yields the variation

LξL = 1
2 (Γµ)αβ(ε̄Γµ)γ〈θα ∧ ∗[θβ , θγ ]〉+ dα , (4.2.4)

where α = 1
4q
−1ε̄Γµνρ〈Fνρ, θ〉ι∂µ |ddx|. Hence if G is abelian the theory is supersymmetric. In the

more interesting case where G is not abelian, there are restrictions on spacetime and spinor type
which make the SYM Lagrangian supersymmetric. In particular, the first term in the variation
above vanishes provided the Fierz identity

(Γµ)αβ(Γµ)γδ + (Γµ)αδ(Γµ)βγ + (Γµ)αγ(Γµ)δβ = 0 (4.2.5)

is satisfied. In [60] it is shown that this is only the case for d = 3, 4, 6 and 10 with min-
imal supersymmetry. This is exactly the sequence for which bosonic and fermionic degrees
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of freedom can match on the shell: by gauge invariance, the field A has d − 2 physical de-
grees of freedom, and the Dirac-like equation of motion of the fermion field projects out half
of its components. Hence there is a matching if d = 2 + n/2, yielding the sequence (d, n) =
(3, 2(M)), (4, 4(M)), (6, 8(SMW)), (10, 16(MW)), where we have noted the spinor type as in table
(2.3.5). One verifies that the associated super current takes the form

Jα = q−1ηµρ(Γν)αβ〈Fµν , θ
β〉 ∂
∂xρ
⊗ |ddx| . (4.2.6)

Furthermore one easily verifies the usual Poincaré invariance. For completeness we include the
equations of motion:

dA ∗ FA − q

2
[θ̄ ∧ ∗Γ(1)θ] = 0 , /DAθ = 0 , (4.2.7)

where [θ̄ ∧ ∗Γ(1)θ] = (Γµ)αβ [θα, θβ ]ι∂µ
|ddx| and /DA = Γµ∇µ. Note that if we use a superspace

formalism the commutator [θα, θβ ] is symmetric.

4.2.2 U(N) Matrix Mechanics

We are now interested in a dimensional reduction of these supersymmetric gauge theories, since
we would like to make the connection with gauge theory of area-preserving diffeomorphisms on
the time axis constructed in the previous chapter. This process goes as follows: let x0, . . . , xd−1

be a coordinate chart on d-dimensional Minkowski space Md and L ∈ Ω0,|0|
loc (F ×Md) and γ ∈

Ω1,|−1|
loc (F ×Md) define a Poincaré-invariant theory. Such a theory ’contains’ lower dimensional

theories which may be found by considering only fields which are constant in certain directions.
Let x0, . . . xd−2 denote the induced coordinates on (d− 1)-dimensional Minkowski space Md−1 =
Md/ expR∂d−1 obtained by dividing by translations in the xd−1 direction. Denote ξ̂d−1 denote
the vector field on F induced by ∂d−1, the generator of translations in this direction. Then we
define

Fd−1 = {φ ∈ F : L(ξ̂d−1)φ = 0} , (4.2.8)

which is just the space of fields constant in the xd−1-direction. Then the dimensionally reduced
theory is given by

Ld−1 = ι(∂d−1)L ∈ Ω0,|0|
loc (Fd−1 ×Md−1) , (4.2.9)

and the reduced γd−1 may be derived from this Lagrangian. Obviously, a scalar field onMd reduces
to a scalar field on Md−1. For higher spin fields, the reduction is more complicated. A k-form field
reduces to a k-form field plus a k − 1-form field corresponding to the terms in the original field
containing dxd−1. To reduce a spinor field, one should take a closer look at the decomposition of
spinor representations of SO(1, d− 1). This is not necessary however, since we are only interested
in particular simple reduction of the theory, namely the iterative procedure to M1, the affine time
line. The resulting decomposition of a spinor yields a direct sum of representations of S(M1),
complex numbers, which constitute an SO(1, d − 1) spinor of the original type, in other words,
the reduction is decomposition in components which depend only on x0. Let us now focus on the
10-dimensional theory with G = U(N) and its Lie algebra u(N) equipped with the bi-invariant
positive definite scalar product 〈U, V 〉 = −Tr(UV ) (the motivation of this choice will be discussed
below). The spinor bundle S is by supersymmetry a Majorana-Weyl representation of the Lorentz
group SO(1, 9) equipped with an anticommuting algebra structure, since the gamma matrices
and charge conjugation matrix are symmetric (for a superspace construction of super Yang-Mills
theory, see [25]). We then reduce this theory to the time axis, by subsequently reducing the
8 spatial coordinates. The gauge field A reduces to the sum of a one-form field and 9 scalars,
which are just its components: A 7→ A0(x0)dx0 +X1(x0) + . . .+X9(x0). The N ×N Hermitian
matrices Xi together transform under the vector representation of SO(8). The field θ reduces to
u(N)-valued scalars θα(x0) which constitute a real spinor representation of SO(1, 9). The Weyl
condition on the Majorana spinor θ we choose is

(1− Γ)θ = 0 , (4.2.10)
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where Γ is the volume element in C`0,10, which we in the eleven-dimensional theory of the previous
chapter have denoted by −iΓ0. A straightforward calculation of the chirality condition above
yields θ1 = θ2 for θ = (θ1, θ2). Under an invertible linear transformation on the spinor module
(multiplication by (1 − iΓ10)), the chirality condition above becomes the restriction θ1 = 0,
the gauge-fixing condition on spinors in the eleven-dimensional supermembrane theory. In ten
dimensions, the charge conjugation matrix is antisymmetric and can be chosen equal to Γ0, so
that θ̄Γ0∇0θ becomes −θT

2 ∇0θ2 and θ̄Γ0aθ turns into −θT
2 Γaθ2. After a rescaling of the spinor

components by a factor i, the dimensional reduction of (4.2.1) reads

L =
1
2q

Tr
[
∇0X

a∇0Xa − q2

2
[Xa, Xb][Xa, Xb] + θT∇0θ + qθT Γa[Xa, θ]

]
dx0 , (4.2.11)

where the transpose T is with respect to the spinor module, while the trace applies to the gauge
algebra. The A0-field is contained in the covariant derivative: ∇0Xa = ∂0Xa − q[A0, Xa].
Under the reduction the residual infinitesimal gauge symmetry is as expected given by Φ :
Ω0(M1, u(N))ΓT −→ F1:

ιξδX
a = [Xa, g] , ιξδθ

α = [θα, g] , ιξδA0 = ∂0g + [A0, g] , (4.2.12)

for ξ = Φ(g) ∈ ΓTF1. Furthermore there are the supersymmetry transformations

ιξδX
a = ε̄Γaθ , ιξδA0 = εT θ , ιξδθ = ∇0XaΓ0Γaε+

q

2
[Xa, Xb]Γabε , (4.2.13)

for ξ = Ξ(ε) ∈ ΓTF . However, since the gauge group U(N) contains an abelian factor U(1), there
are additional supersymmetry transformations

ιξδX
a = ιξδA0 = 0 , ιξδθ = ε . (4.2.14)

These are just constant translations of the spinor, proportional a central element of the gauge
algebra generating the U(1) factor (namely, i times the unit matrix). This does also apply to
the bosonic fields, resulting in translations Xa 7→ Xa + ca, where ca are proportional to the unit
matrix. We shall denote the generators of the two types of supersymmetries suggestively Q+ and
Q−. These are both 16-component u(N)-valued Majorana-Weyl spinors. They are given by

Q+ = −q−1Tr
[
(∇0XaΓa + 1

2 [Xa, Xb]Γab)θ
]
, Q− = −q−1Tr θ . (4.2.15)

Passing to the Hamiltonian formalism, instantaneous phase space is spanned by 9+16+1 unitary
matrices Xa, θα and A0 and the momenta Pa = q−1∇0Xa (as usual, fermionic momentum is a
linear transformation of θ). The gauge symmetry of the Lagrangian gives rise to a set of first-class
(Gauss) constraints

ψ = [Xa, Pa] +
q−1

2
[θT , θ] = 0 , (4.2.16)

which give rise to the su(N)-algebra in the standard representation,

[ψij , ψk`]D = i(δi`ψjk − δjkψi`) . (4.2.17)

The Hamiltonian of the system is given by

H = qTr
[1
2
PaP

a +
1
4
[Xa, Xb][Xa, Xb]− q−1

2
θT Γa[Xa, θ]

]
. (4.2.18)

4.2.3 Matrix Models in String Theory

The dimensional reduction performed above leads to a gauge theory of time-dependent matrices,
and is an example of a matrix model. These theories have been known for quite some time, and their
spectrum was analysed in [61]. In the nineties these models were found to play a key rôle in the
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description of the low-energy effective behaviour of Dirichlet branes in superstring theory. When
considering a Nambu-Goto-based theory containing open strings, one always faces the problem
of imposing boundary conditions at the endpoints of the string. To prevent momentum flow in
and out of the string through these points, one may impose von Neumann boundary conditions,
requiring the derivative of the embedding coordinates along the spatial worldsheet directions to
vanish:

∂Xµ

∂σ
(τ, σ0) =

∂Xµ

∂σ
(τ, σ1) = 0 . (4.2.19)

Suppose now one takes p embedding space directions to be compact. Because the mass of a
string is proportional to its length, the closed strings winding around the compactified dimensions
become very light as the radii tend to zero, but on the other hand configurations with a nonzero
number of momentum quanta become infinitely heavy. For example, if p = 1 the mass-squared
is given in terms of the Kaluza-Klein momentum quantum number n along the circle of radius R
and the winding number w by

M 2 =
( n
R

+
wR

α

)2

+
4
α

(N − 1) , (4.2.20)

where α is the string coupling constant and N is the number of left-moving modes in the un-
compactified directions. Observe that interchanging winding number and momentum quantum
number is physically equivalent12 to interchanging the compactification radius and its inverse
(multiplied by the string coupling constant). This phenomenon is called T-duality. So for closed
strings, letting the compactification radius go to zero does not produce a dimensionally reduced
theory, as would be the case for particle theories, but it ’grows’ extra dimensions and the full,
uncompactified theory emerges. Open strings however behave like particles and seem to get di-
mensionally reduced when the radii become very small, which seems to produce a paradox in
theories containing both open and closed strings. This seeming contradiction is resolved by taking
into account the transformation of the von Neumann boundary conditions under the T -duality.
A simple calculation shows that under a linear change of embedding coordinates X 7→ X ′, the
duality transformation changes p of the boundary conditions (4.2.19) into conditions of the form
∂τX

′i(τ, σ0) = ∂τX
′i(τ, σ1) = 0, which restricts only the endpoints of the open string to a hy-

perplane, perpendicular to the compactified dimensions. These sort of boundary conditions are
called Dirichlet boundary conditions and the (D − p)-dimensional hyperplane that is defined by
them is called a D-brane. Integrating the compactified embedding coordinates in the T -dualised
theory along the spacesheet yields an integer times the length of the compactification circles, so
both endpoints actually lay on the same hypersurface, and the winding number is a nondynamical
integer, namely the Kaluza-Klein momentum number:

[X ′i(τ, σ0)] = [X ′i(τ, σ1)] = θiR
′
i , θi ∈ [0, 2π] , X ′i(τ, σ0)−X ′i(τ, σ1) = 2πniRi , (4.2.21)

where the brackets denote the equivalence class under the compactification identification X ∼
Y ⇔ Xi − Y i ∈ 2πRiZ. The angles θi determine the position of the Dirichlet brane within the
toroidally compactified subspace of the target space. Now we can consider systems with multiple
D-branes; for simplicity assume only one target space direction is compactified on a circle. The
open strings stretched between the N branes are then characterised not by a single winding number
(the T -dual of KK momentum), but by 2 integers labeling the branes. Hence a general state in
the Hilbert space of a theory with N (d− 2)-branes is decomposed as

|k〉 =
N∑

i,j=1

|k, (i, j)〉λij . (4.2.22)

The mass of a string stretched between 2 different branes has a minimum since it is proportional
to the length of the string, which cannot become smaller then the distance between the branes:

M 2|k, ij〉 =
( (2πn+ (θi − θj)R′

2πα

)2

|k, ij〉+ 1
α

(N − 1)|k, ij〉 . (4.2.23)

12Not only at the level of the mass-spectrum, but for all interaction diagrams
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Figure 5: A three brane configuration with three strings stretched between them: string a is in the eigenstate |31〉,
b is in the state |23〉 and string c is in |33〉. The latter string configuration can become arbitrarily light. The dashed
planes are not D-branes: they are the identified hyperspaces perpendicular to the compactified direction X25.

Now consider an interaction between string 1 and 2, yielding strings 3 and 4, by joining and then
splitting. Assuming the stretching labels (Chan-Paton factors) are nondynamical, the interaction
vertex receives a factor (see [7] for a more detailed exposition),

λ1
ijλ

2
jkλ

3
k`λ

4
`m = Tr(λ1λ2λ3λ4) . (4.2.24)

This quantity is invariant under
λa 7→ UλaU−1 , (4.2.25)

where U ∈ U(N) (to preserve the norm of the state). This is a global worldsheet symmetry of the
theory. By an ingenious mechanism it can be promoted to a spacetime gauge symmetry, where
the associated gauge field lives on the worldvolume of the Dp-brane by dimensional reduction of
super-Yang-Mills theory to the brane worldvolume [8]. Hence the matrix model, introduced in
the previous paragraph can be interpreted as low-energy effective action of type IIA string the-
ory which is in every spacelike direction compactified and hence the endpoints of the strings are
confined to the worldvolume of zero-dimensional D-branes, called Dirichlet particles. However,
a physical interpretation of the degrees of freedom in terms of positions of particles only makes
sense at the classical vacuum: for the bosonic model this vacuum is characterised by the vanishing
potential 1

2 [Xa, Xb][Xa, Xb] = 0, which means that all the matrices Xa are simultaneously diago-
nalisable. The eigenvalues θa

1 , . . . , θ
a
N represent the positions of the N D0-branes on the Xa-axis.

The degeneracy of these ground states comes from the action of U(N), permuting the eigenvalues
and reflecting the fact that the Dirichlet particles are identical bosons. This breaks into the N -fold
product U(1)× . . .× U(1) if the eigenvalues coincide, which is exactly the symmetry group of N
string states beginning and ending at the same brane.

In [10, 62] an even more fundamental rôle is assigned to the matrix model in the context of M-
theory. M-theory is the conjectured eleven-dimensional supersymmetric Poincaré-invariant quan-
tum theory unifying all string theories and eleven-dimensional supermembrane theory and super-
gravity. That is, in the low-energy limit it should generate the 11D supergravity multiplet and
its interactions, and under compactification along a spacelike circle it should generate the ten-
dimensional superstring. M-theory is believed to yield the matrix model (4.2.11) upon a discrete
lightcone quantisation (DLCQ). This procedure rests upon the observation that compactifying a
theory along a lightlike circle can be approximated by wrapping the theory around a family of
spacelike circles [63]. Since M-theory is postulated to produce the Type IIA Green-Schwarz super-
string spectrum under spacelike compactification, the lightlike compactification induces a series
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of string theory Lagrangians with vanishing coupling and string length scales. Careful analysis of
the limit of these theories leads to the conclusion that the sector of the spectrum with longitudinal
momentum P+ = R/N is exactly described by nonrelativistic U(N) matrix theory.

4.2.4 Spherical Membranes from Matrices

The correspondence between the U(N) matrix model Lagrangian (4.2.11) and the APD gauge
theory Lagrangian (3.5.34) uses the identifications

q ←→ (P+
0 )−1 ,

Tr←→
∫

Στ

|d2σ|
√
w(σ) ,

[ . , . ]←→ { . , . } . (4.2.26)

Note that the first correspondence implies that the M-theory longitudinal momentum is identified
with N times the longitudinal membrane momentum. The spinors agree by the gauge fixing
condition on the supermembrane side and the Weyl condition on the matrix theory side. Note
that the fermionic kinetic term in the supermembrane θΓ−∇0θ becomes −√2θT

2 ∇0θ2 and the
interaction term turns into −√2θT

2 Γa{Xa, θ2}. The correspondence therefore is established by
the field redefinition

θ −→ iθ
4
√

2
. (4.2.27)

Applying these substitutions one quickly finds equivalence of the Lagrangians (4.2.11) and (3.5.34),
the Hamiltonians (4.2.11) and (3.5.42), the supercharges (3.5.45) and (4.2.18) in both theories and
the constraints. However, the constraints that arise from the harmonic vector fields have no coun-
terpart: we shall return to this issue later.

The natural question that arises is how the algebra of Hamiltonian vector fields relates to the
unitary algebras. The super Yang-Mills theory has a finite-dimensional gauge algebra u(N), while
on the other side the gauge algebra of area-preserving diffeomorphisms is infinite-dimensional. This
problem is already encountered when relating the Lagrangians: the supermembrane embedding
coordinates are functions on the spacesheet, which under harmonic decomposition correspond to
matrices of infinite size, opposed to the fields constituting the matrix model, which are of a finite
size. We will explicitly investigate the correspondence of these algebras in two simple cases: the
spherical and toroidal spacesheet [6, 53, 64]. On a spherical Σ every curve is contractible and
the Poisson algebra of functions is a central extension of Xν(Σ) by R. Let σ1 = φ ∈ [0, 2π) and
σ2 = θ ∈ [0, π) be local coordinates on the spacesheet representing the angle with the vertical axis
and the angle with the X-axis in the horizontal plane13. The area metric for such a sphere with
normalised area reads

wrs(φ, θ) =
1
4π

(sin2 θδr1δs1 + δr2δs2) . (4.2.28)

A complete set of globally defined functions on Σ are the spherical harmonics: denote Xi(φ, θ)
the 3 cartesian embedding coordinates, X(φ, θ) = sin θ sinφi + sin θ cosφj + cos θk and define
Xαβ(φ, θ) =

∑3
i=1X

i(φ, θ)(σ2σi)αβ where σ1, σ2, σ3 are the (unitary and traceless) Pauli matrices.
The Xi are symmetric and satisfy the reality condition Xαβ ≡ (Xαβ)∗ = εαγεβδX

γδ. Let α(2n)
denote a set a 2nmatrix indices {α1, . . . , αn}. Such a set determines a spherical harmonic function,

Y α(2n)(φ, θ) = X(α1α2(φ, θ)Xα3α4(φ, θ) . . . Xα2n−1α2n)(φ, θ) , (4.2.29)

where the brackets denote symmetrisation with unit weight. Note that this basis is not normal
with respect to the L2 inner product (4.1.1). The eigenvalues of the Laplace-Beltrami operator

13The coordinate patch cannot contain the north pole, but this has no significance for the definition of a function
basis
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may be shown to be −n(n + 1), and we define D mn
k to be the tensor associated to pointwise

multiplication of functions,

Y α(2m)Y β(2n) =
∑

k∈K0(m,n)

D mn
k εαβ(m+n−k)Y α(m−n+k)β(n−m+k) , (4.2.30)

where K0(m,n) = {m+n,m+n−2, . . . , 2+ |m−n|, |m−n|}, εαβ(2m) = εα1β1 . . . εα2mβ2m +(α1 ↔
. . . ↔ α2m) and Y α(2n)β(2m) ≡ X(α1α2 . . . Xα2n−1α2nXβ1β2 . . . Xβ2m−1β2m). Keeping in mind that
each Xαβ contributes factor e±iθ and e±iφ if it is diagonal, we see that the product is a sum
of terms with highest wave number 2(m + n) and lowest one 2|m − n|. The Clebsch-Gordon
coefficients are uniquely determined by the initial value D mn

m+n = 1 and the recursive relation

Dmn
k−2 =

(m+ n+ k + 1)(k2 − (m− n)2)
(m+ n− k + 2)(4k2 − 1)

Dmn
k . (4.2.31)

Writing out the matrix Xαβ(φ, θ), one easily verifies

∂Xαβ

∂φ

∂Xγδ

∂θ
− ∂Xαβ

∂θ

∂Xγδ

∂φ
= −(sin θ)Xαγεβδ . (4.2.32)

Hence, using the chain rule we find

{A,B} = −8πXαβεγδ ∂A

∂Xαγ

∂B

∂Xβδ
. (4.2.33)

Applying this to the harmonic basis functions one finds after some algebra

{Y α(2n), Y β(2m)} =
∑

k∈K1(m,n)

f mn
k εα(m+n−k)β(m+n−k)Y α(m−n+k)β(n−m+k) , (4.2.34)

where K1(m,n) = {m + n − 1,m + n − 3, . . . , |m − n| + 1}. The structure constants, which are
vanishing for even k, are related to the Clebsch-Gordon coefficients by

f mn
k = −8π

mn(2k + 1)
m+ n+ k

D m−1n−1
k−1 . (4.2.35)

Let us now relate to this algebra to the algebras su(N). It is a fact that irreducible representations
of SO(3) can take all dimensions; the k-fold symmetrised 3-dimensional vector representation,
[1, . . . , 1] (j times) has dimension 3k. Taking the irreducible harmonic subspace reduces this
number by k − 1, leaving 2j + 1 degrees of freedom. The spin of the representation is then j.
Taking the tensor product with a fundamental 2-dimensional spinor representation yields a spin
j + 1

2 representation of dimension 2(2j + 1). However, imposing the harmonic condition (2.4.2)
fixes 2k components, leaving 2j + 2 independent parameters. These results can also immediately
be obtained from the character of an irreducible (half-)integer spin j representation,

χj(exp(iφM12)) =
sin((j + 1

2 )φ)
sin( 1

2φ)
. (4.2.36)

In fact, decomposing each irreducible spin-j representation into 2j + 1 eigenspaces of J3 = M12

is equivalent to decomposing the character ring with spin j into a basis of spherical harmonics
Yjm(φ, θ), m = −j, . . . , j. So let us consider an irreducible N -dimensional representation of SO(3)
and let J i ∈ End(V N ), i = 1, 2, 3 be its generators, satisfying

[J i, Jj ] = iεijkJk , (J i)† = J i , J2 =
N2 − 1

4
1 . (4.2.37)

The latter equation comes from the fact that the spin-j representation is an eigenspace of the
Casimir invariant J2 = (J1)2 +(J2)2 +(J3)2 ∈ U(so(3)) with eigenvalue j(j+1). We may lift this
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to a representation of the double covering SU(2) of the rotation group by setting Jαβ = J i(σ2σi)αβ .
Define the N ×N matrices

Tα(2n) =
(

4
N2 − 1

)(n−1)/2

J (α1α2Jα3α4 . . . Jα2n−1α2n) . (4.2.38)

These matrices satisfy the important property that Tα(2n) = 0 whenever n ≥ N . This can be
seen as follows: decompose the spin j irreducible SO(3) representation into eigenspaces of J3:
J2|j,m〉 = j(j+1)|j,m〉 and J3|j,m〉 = m|j,m〉 with m ∈ [−j, j]∩Z. Then we define the creation
and annihilation operators J± = (J1 ± iJ2)/

√
2 ∈ End(V N

C ). These may be shown to act on such
an eigenstate as

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉 . (4.2.39)

Hence the operators (J+)2j+1 and (J−)2j+1 in the universal enveloping algebra must be rep-
resented by zero on V N . A quick calculation yields that in the su(2) basis, J11 = −iJ+ and
J22 = iJ−. Using the commutator [J+, J−] = J3, one quickly verifies that sequences with more
than N − 1 entries yield zero and that all the Tα(2n) with n < N are linearly independent.
Furthermore we have the property Tα(2n))† = εα(2n)β(2n)T

β(2n) and the generators are traceless,
Tr(Tα(2n)) = 0 for 0 > n > N . Since there are

∑N−1
n=1 (2n + 1) = N2 − 1 linearly independent

N ×N matrices Tα(2n), we have by the properties above found a complete basis of su(N). Then
we denote the 3-tensor associated to matrix multiplication by

Tα(2n)T β(2m) =
∑

k∈K

{
m n
k

}
εαβ(m+n−k)T

α(m−n+k)β(n−m+k) , (4.2.40)

where k = m+ n,m+ n− 1, . . . , |m− n|. Hence we should include the unit T 0 =
√

(N2 − 1)/41
in the universal enveloping algebra to let the multiplication close. One easily derives that the
coefficients {m n

k } are symmetric in the indices m and n and satisfy the initial conditions

{
m n
m+ n

}
=

√
N2 − 1

4
,

{
m n
m+ n− 1

}
= −imn , (4.2.41)

which together with the recursive relation

m+ n− k + 2
m+ n+ k + 1

{
m n
k − 2

}
−

(
N2 − k2

N2 − 1

)
k2 − (m− n)2

4k2 − 1

{
m n
k

}

=
i√

N2 − 1
k(k − 1)−m(m+ 1)− n(n+ 1)

m+ n+ k + 1

{
m n
k − 1

}
(4.2.42)

uniquely determines all the coefficients. Observe that in the limit N → ∞ the initial values and
recursion relation for

√
4/N2 − 1{m n

k } become those of D mn
k . We find that the in the large-N

regime the coefficients of su(N) contain both the structure constants as well as the Clebsch-Gordon
coefficients in the leading order:

{
m n
k

}
=





√
N2−1

4

(
D mn

k +O(N−2)
)
, for m+ n− k even

i
8π

(
f mn

k +O(N−2)
)
, for m+ n− k odd

. (4.2.43)

To see that the latter are also the structure coefficients of the special unitary algebra we invoke real-
ity arguments; using antisymmetry of the permutation symbol and symmetry of Tα(m−n+k)β(n−m+k)

under a switch α(2m) ↔ β(2n) we see that the commutator under matrix multiplication gives
twice the right hand side of (4.2.40). However, the structure constants of su(N) should be strictly
imaginary, as [U, V ]† = −[U, V ]. From the identifications above it is clear that only terms for which
m+ n− k ∈ 2N+ 1 fulfill this condition. So the leading order in the asymptotic N -expansion of
the su(N) structure constants are proportional to those of the Poisson algebra on the unit sphere,
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or equivalently the algebra of Hamiltonian vector fields as harmonic vector fields are absent. How-
ever, we should not draw too strong conclusions from this observation, for it is clear that we have
not constructed Lie algebra homomorphisms from Xν(S2) to su(N). For such a construction we
would need some kind Lie-bracket equivariant projections within the Poisson algebra with images
isomorphic to the unitary algebras. The obstacle is the nature of the APD bracket, which always
decomposes into higher frequency modes, making such a factorisation impossible. This is directly
related to the nonlinearity of the equations of motion, in which low-frequency modes always excite
higher states because of the appearance of these brackets. In conclusion, we have constructed a
series of vector space isomorphisms, φN : X|N (S2) −→ su(N), where X|N (S2) is the vector space
spanned by the vector fields ηα(2n) = gradν(Y α(2n)) on the unit sphere, and eventually in the
limit N −→ ∞, the domain becomes a Lie algebra and the isomorphism becomes a Lie algebra
isomorphism.

4.2.5 Toroidal Membranes from Matrices

The ’weak’ approximation of a Lie algebra by its structure constants above has been given the
name quasilimit in [65]. The ingredients for such an approximation are: an unbounded subset I of
N, a sequence of (real or complex) Lie algebras (gα, [ . , . ]α)α∈I equipped with a positive-definite
norm || . ||α (taking values in R), a limiting Lie algebra (X, , [ . , . ]) and a collection of surjective
maps fα : X −→ gα such that for all g, h ∈ X,

lim
α→∞

||fα(g)− fα(h)||α = 0⇒ g = h , (4.2.44)

lim
α→∞

||[fα(g), fα(h)]α − fα([g, h])||α = 0 . (4.2.45)

In the original article the definition was weaker in the sense that the sequence gα does only have
to be equipped with a bilinear metric dα, not necessarily originating from a positive definite norm.
It was also shown that for slight uniform deformations of this metric, say d′α such that there exist
positive real numbers r and s such that for all α ∈ I and g, h ∈ gα we have rdα(g, h) ≤ d′α(g, h) ≤
sdα(g, h), the conditions above remain valid if they are satisfied by dα. From the mathematical
point of view this approximation scheme is rather general: it provides a much weaker relation
between the algebra structures of the sequence and the limiting Lie algebra than for instance the
usual inductive limit; even stronger, it does not guarantee uniqueness of the limiting algebra. In
particular, there has been found an infinite number of pairwise non-isomorphic quasi-limits of the
special unitary algebra [66]. In the case of a toroidal spacesheet, there is however a well-defined
mathematical framework that describes our approximation scheme [67]. Let T 2 be (globally)
coordinated by θ ∈ [0, 2π) and φ ∈ [0, 2π), representing the angles around the two circles. We may
embed the torus in R3 by the coordinate functions x(θ, φ) = ((1+cos θ) cosφ, (1+cos θ) cosφ, sin θ),
but this is by no means necessary. A complete basis of functions on T 2 is given by the Fourier
modes Ym(θ, φ) = eim1θ+im2φ, where m = (m1,m2), the index set being the lattice Z × Z. The
Riemannian metric in this coordinate system looks like w = (4π2)−1(dθ ⊗ dθ + dφ⊗ dφ) and the
symplectic form is ν = (4π)−1dθ∧dφ. Hence this set of basis functions is normalised w.r.t. the L2

inner product (4.1.1) and eigenfunctions of the Laplace-Beltrami operator with eigenvalues m·m =
m2

1 +m2
2. Hence the symplectic gradient acts as gradνf = 4π((∂f/∂φ)∂/∂θ− (∂f/∂θ)∂/∂φ), and

the Fourier basis gives rise to a basis of globally Hamiltonian vector fields [68]

Lm = 4πieim1θ+im2φ
(
m2

∂

∂θ
−m1

∂

∂φ

)
. (4.2.46)

Since the 2-torus is a genus one manifold, there are two linearly independent harmonic vector
fields, P1 = (2π)−1∂/∂θ, P2 = (2π)−1∂/∂φ. The APD algebra on the torus then looks like

[Lm, Ln] = (m× n)Lm+n ,

[Pλ, Lm] = mλLm ,

[P1, P2] = 0 , (4.2.47)
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where m × n = m1n2 − m2n1. Again we observe that the gradient vector fields form an ideal
XH

ν (T 2), and that their Lie algebra structure allows no restriction to low-laying modes. Note
that the vanishing commutation relation of the harmonic vector fields is an artefact of the chosen
manifold: for more complicated topologies the Pλ components will depend on the coordinates,
and their mutual brackets may give non vanishing globally Hamiltonian vector fields. One easily
computes the various quantities η, f , d and c associated to the L2 inner product, the Lie bracket,
pointwise function multiplication and the Riemannian inner product introduced in the previous
section,

ηmn = δm+n , dmnk = δm+n+k ,

fmnk = −4π2(m× n)δm+n+k , fλmn = 2πiδmλδm+n ,

cmnk = −m · n
m ·mδm+n+k , cλmn = −4πiελλ′mλ′δm+n , (4.2.48)

where we have denoted m · n = m1n1 + m2n2 the standard Euclidean inner product on the
index lattice. Tensor components with 2 or more λ-indices are zero. Observe that the appearance
of numbers such as mλ, using the coincidence that there are as many harmonic diffeomorphism
generators as there are index components, makes such a formulation for higher genus surfaces
impossible. The subalgebra of globally Hamiltonian vector fields can easily be seen to form a
quasi-limit of su(N) algebras by exploiting ’t Hooft’s so-called twist matrices [69]

Ω1 =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0



, Ω2 =




1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωN−1



, (4.2.49)

where ω = exp(−4πi/N) (although any otherN -th root of unity would suffice). These matrices can
easily be verified to be unitary and obeying Ω1Ω2 = ωΩ2Ω1. Let us now define the N×N -matrices

Tm = Nωm1m2/2Ωm1
1 Ωm2

2 . (4.2.50)

The double index m can be restricted to the finite lattice [0, N ] × [0, N ] ∩ Z2 since Tm = Tn if
and only if m = n mod N (by this we mean mi = ni mod N). One quickly verifies that except
for T0 = N1, all the Tm are traceless and T †m = T−m = Tm, where m = (N − m1, N − m2).
Hence the matrices Rm = Tm − Tm and Sm = i(Tm + Tm) are antihermitean; since this linear
transformation of the space spanned by the matrices Tm is isomorphic and the Tm are all linearly
independent, they form a subspace of matrix representation of the Lie algebra su(N). Since the
dimension of this spanning is (excluding the unit matrix T0) N2− 1, they actually span the whole
Lie algebra. Using the multiplication properties of the twist matrices, one finds the multiplication
rule TmTn = Nω−(m×n)/2Tm+n and hence

η̃mn ≡ N−3Tr(TmTn) = δn+m ,

f̃mnk ≡ −iN−3Tr([Tm, Tn]Tk) = 2N sin
(2π(m× n)

N

)
δm+n+k ,

d̃mnk ≡ N−4Tr({Tm, Tn}Tk) = 2 cos
(2π(m× n)

N

)
δm+n+k , (4.2.51)

where δm = δm1 mod N,0δm2 mod N,0. Again the leading order in N−1 of these quantities is pro-
portional to the corresponding untilded quantities in (4.2.48); in particular, we have f̃mnk =
π−1fmnk + O(N−2) and f̃mnk = 2dmnk + O(N−2). Several important remarks are to be made
regarding this approximation. Using as a norm on su(N) the trace of the product and a col-
lection of linear surjective vector space homomorphisms φN : XG

ν (T 2) −→ su(N) defined by
φN (Ym) = Tm mod N , one sees that this indeed defines a quasi-limit of the Poisson algebra on
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the torus. Since the unit matrix must be included at each finite N stage to close the algebra (it
will approximate the zero modes in the Poisson algebra), it is actually the extension su(N)⊕ u(1)
which consistently approximates the Poisson algebra. Under the gradient the constant modes are
projected out, so the traceless unitary matrix algebra defines a quasi-limit of the ideal of glob-
ally Hamiltonian vector fields. The construction of su(N) by the twist matrices is particularly
convenient to show the weakness of the quasi-limit definition earlier and the ambiguity in the
definition of unitary matrices of infinite size. Taking for ω another primitive root of unity, say
ω = exp(4πiN/M) where N is odd and M < N are relatively prime, one obtains generators Tm

of su(N) satisfying the algebra relation [Tm, Tn] = 2(N/M) sin(2πN(m× n)/M)Tm+n. Now we
take a limit N,M −→ ∞ such that M/N −→ λ < 1. We obtain the algebra gλ, spanned by an
infinite number of Tm, m ∈ N× N, satisfying the algebra relation

[Tm, Tn] =
2
λ

sin(2πλ(m× n))Tm+n . (4.2.52)

Although each gλ can be shown to be a quasi-limit of (su(N) ⊕ u(1))N∈2N+1, it was shown in
[66] that if λ 6= λ′ are irrational (and smaller than 1/4), gλ and gλ′ are non-isomorphic. If M/N
approaches a rational number, gλ will contain an ideal which is isomorphic to the Poisson algebra
on the torus.

Furthermore we notice that the harmonic vector fields, represented by the Lie algebra elements
P1 and P2 seem to play no rôle in the approximation: it is the Poisson algebra which admits a
quasi-limit by unitary matrices, not the full APD algebra. This phenomenon can be rigorously
explained from a Lie algebra cohomology viewpoint, as we shall see below. Finally we mention
that adopting these approximations in the physical theory will modify the Lie algebra of Noether
currents by terms of the order N−2. This follows from the fact that the Lie-algebra valued tensor
identities (4.1.34) receive contributions for finite N . In particular, the bracket {M−a,M 2}D = 0
on shell, which guarantees nonmanifest Lorentz invariance, relies upon these identities, and will
therefore be violated in the finite-N approximation.

4.3 Regularisation as a Deformation

In this section we shall approach the regularisation procedure from an algebra-theoretic point of
view. Although the quasi-limit characterisation is rigorously defined, its interpretation is cum-
bersome and it is not clear whether it captures all the information of the approximation in its
definition. There exist algebraic theories covering modifications of Lie brackets which, as we shall
see below, is the process that underlies the limits of the paragraphs above. Roughly speaking
there are two mathematical approaches to the modification of Poisson algebras [70], both of which
applicable to matrix regularisation: geometric quantisation and deformation quantisation. The
former lifts the Poisson brackets to a complex line bundle on the spacesheet, while the latter has
a more algebraic approach, deforming the algebra in an associative fashion.

4.3.1 Lie Algebra Cohomology

A consistent modification of a Lie bracket is called a deformation. Such a one-parameter defor-
mation of a Lie algebra g (possibly infinite-dimensional, but equipped with a topology) with Lie
bracket [ . , . ] is determined by a smooth mapping φ : g×g×R −→ g such that φ(g1, g2, 0) = [g1, g2]
and for all t ∈ R the map g1, g2 7→ [g1, g2]t = φ(g1, g2, t) defines a Lie algebra structure on
g. Two deformations h1, h2 are said to be equivalent if there exists a map f : g × R −→ g,
smooth in the first argument and linear in the second, which is intertwining in the sense that
h1(g1, g2, t) = h2(f(g1, t), f(g2, t), t). Given a Lie algebra deformation h, we can take the deriva-
tive at the origin to the deformation parameter, giving a map

η : g× g −→ g : η(g1, g2) =
∂

∂t
h(g1, g2, t)|t=0 , (4.3.1)
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which is referred to as the associated infinitesimal deformation. By the antisymmetry and Jacobi
identity of the deformed Lie bracket it is antisymmetric and satisfies

[η(g1, g2), g3] + [η(g2, g3), g1] + [η(g3, g1), g2]+
η([g1, g2], g3) + η([g2, g3], g1) + η([g3, g1], g2) = 0 . (4.3.2)

This is the defining property of a 2-cocycle which play a central rôle in the Chevalley-Eilenberg
cohomology theory of Lie algebras [71]. Given a Lie algebra g and a right module V , a k-linear
mapping c :

∧k
g −→ V is called an V -valued k-cochain. We denote by Ck(g;V ) the vector space

of these mappings and define ∂ : Ck(g;V ) −→ Ck+1(g;V ) by

(∂c)(g0, . . . , g1) =
k∑

i=0

(−1)igi · c(g0, . . . , ĝi, . . . , gk)

+
k∑

i<j

(−1)i+jc([gi, gj ], g0, . . . , ĝi, . . . , ĝj , . . . , gk) , (4.3.3)

where the dot denotes the action of the Lie group on V . This map defines a coboundary, i.e. it is
linear and satisfies ∂ ◦ ∂ = 0. It gives rise to an associated cohomology complex with coefficients
in V ,

Hk(g;V ) =
ker(∂ : Ck(g;V ) −→ Ck+1(g;V ))
Im(∂ : Ck−1(g;V ) −→ Ck(g;V ))

. (4.3.4)

A closed k-cochain w.r.t. ∂ is called a k-cocycle with coefficients in V . We can take V = g and
let the algebra action be the adjoint representation, yielding the so-called Chevalley-Eilenberg
cohomology sequence H∗(g; g). The zeroth cohomology space is quickly seen to be H0(g; g) =
g/[g, g], the complement of the maximal ideal of the Lie algebra. For the algebra of Hamiltonian
vector fields (3.5.25) on the spacesheet this space is spanned by the harmonic vector fields. The
first cohomology space consists of the derivations of the algebra, satisfying c([g1, g2]) = [c(g1), g2]+
[g1, c(g2)]. The zero vector represents the class of inner derivations, given by g 7→ [g0, g] for some
fixed g0, the other classes consist of outer derivations which are not related to each other by an
inner derivation. Observing that the harmonic vector fields act as a derivation on the globally
Hamiltonian vector fields, we see that they provide outer derivations on the Poisson algebra (letting
them act trivially on the central extension of constant functions). The low-dimensional cohomology
spaces of the Poisson algebra and APD algebra therefore satisfy

H1(P (Σ);P (Σ)) ∼= H1
∆(M) ∼= H1

dR(Σ,R) ∼= H0(Xν(Σ);Xν(Σ)) . (4.3.5)

The first CE-cohomology vector space defines the set of classes of one-dimensional right extensions
of g, i.e. the exact sequences

0 −→ K −→ g⊕K −→ g −→ 0 , (4.3.6)

where K is the field underlying the Lie algebra. The two maps in the middle are given by g 7→ (g, 0)
and (g, λ) 7→ λ, and a cocycle c ∈ C1(g; g) gives a Lie algebra structure to g⊕K by

[(g1, λ1), (g2, λ2)] = ([g1, g2] + λ2c(g1)− λ1c(g2), 0) . (4.3.7)

Then the Jacobi identity of the bracket above asserts that c is indeed a cocycle and vice versa.
Equivalence of right extensions is defined by intertwining Lie algebra isomorphisms between the
extended Lie algebras, and these equivalence classes correspond to linear dependence in H1(g; g)
of the cocycles. If c is cohomologous to zero, the extension is trivial. As an example consider the
sine algebras (4.2.52), which have 2 independent cocycle cr ∈ C1(g; g) (r = 1, 2) defined by

cr(Tm) = mrTm , (4.3.8)
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which can be shown not cohomologous to zero. It gives rise to a class of central extensions, given
by the Lie bracket

[Tm, Tn] =
2
λ

sin(2πλ(m× n))Tm+n + a ·mδm+n1 , (4.3.9)

where a is an arbitrary complex 2-vector. Note the relation to the harmonic vector fields, which
define central extensions on Pν(Σ) in a similar way. The key point is that the cocycles above
vanish under a finite mode truncation. To see this, take λ = N−1 ∈ N−1 and restrict the indices
m to the lattice

Λ = {−N,−N + 1, . . . , N − 1, N} × {−N,−N + 1, . . . , N − 1, N} − {(0, 0)} , (4.3.10)

to obtain su(N) in the basis generated by the twist matrices (see previous section). The mappings
(4.3.8) then lose their property of being a derivation: take m and n such that m + n lays outside
the lattice Λ: m + n 6= (m + n) mod (N). Then

[cr(Tm), Tn] + [Tm, cr(Tn)] = 2N(mr + nr) sin
(2π(m× n)

N

)
T(m+n) mod N , (4.3.11)

while on the other hand

cr([Tm, TN ]) = 2N(mr + nr) mod N sin
(2π(m× n)

N

)
T(m+n) mod N , (4.3.12)

which by our assumption is not equal to (4.3.11). In fact, it turns out su(N) has no first-order
cocycles which are not cohomologous to zero:

Lemma (Whitehead) 4.1 Let g be a finite-dimensional semi-simple Lie algebra, V a finite-
dimensional vector space and ρ : g −→ End(V ) a nontrivial irreducible representation. Then

Hp(g, V ) = 0 . (4.3.13)

This shows that for the familiar Lie algebras only the cohomology space produced by the trivial
representation are interesting (when the first summation in 4.3.3 vanishes). Obviously, the special
unitary algebras are semi-simple. In particular, the su(N) are simple Lie algebras and hence the
adjoint representation acts irreducibly, so the lemma above is applicable and we deduce there are
no nontrivial su(N)-valued one-cycles. It is therefore an artefact of infinite-dimensionality that the
2 cocycles cr are nontrivial for the sine algebras. It is therefore very tricky to deduce properties
of the cohomology of su(∞) from the finite-dimensional unitary algebras, as is done in [72]. For
example, in the reference the well-known fact that under the trivial representation

Hp(su(N),R) =
{
R if p is odd and 1 < p ≤ 2N − 1
0 otherwise (4.3.14)

is used to show that the real-valued cohomology of su(∞) is R if p is odd and bigger then one and
zero otherwise. This is however not true if one considers the sine algebras above as the infinite
limit of the unitary algebras. There appear two nontrivial 2-cycles in the infinite-dimensional
situation which are closely related to the cocycles above and are given by

cr : su(N) ∧ su(N) −→ N : cr(Tm, Tn) = mrTr(TmTn) , (4.3.15)

which is seen to be antisymmetric by using Tr(TmTn) ∝ δm+n.

4.3.2 Deformation of the Algebra of Hamiltonian Vector Fields on the Torus

Let us now apply this formalism to the theory of deformations of a Lie algebra. We have seen
that the differential of the deformation in t = 0 must be a 2-cocycle. Higher derivatives of the
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deformation provide more restrictions; suppose the deformation map h is analytic around t = 0.
A Taylor expansion gives

h(g1, g2, t) = [g1, g2] +
∞∑

n=1

tnηn(g1, g2) . (4.3.16)

Imposing the Jacobi identity to all orders in t yields an infinite numbers of equations

∆n(g1, g2, g3) ≡
n∑

m=0

εijkηm(gi, ηn−m(gj , gk)) = 0 , (4.3.17)

where m1,m2 ≥ 0 and i, j, k ∈ {1, 2, 3}. These equations can be written as

∆n = Ξn + ∂ηn = 0 , (4.3.18)

where

Ξn(g1, g2, g3) ≡
n∑

m=1

εijkηm(gi, ηn−m(gj , gk)) , n ≥ 1 . (4.3.19)

This suggests a recursive construction of a deformation: given the cochains η1, . . . , ηn−1 such that
∆1, . . . ,∆n−1 = 0, one can compute Ξn using (4.3.19), and a tedious computation will show that
it is a cocycle. Imposing (4.3.18) is only consistent iff Ξn is cohomologous to zero, and one finds ηn

up to exact 2-cocycles by solving it. Apart from convergence questions, which we don’t consider
here, a deformation is always possible if the third cohomology class vanishes. Our main application
of this result is the deformation of the Poisson algebra on the torus. This algebra can be shown
to have a trivial third cohomology vector space (with coefficients in the algebra), but it has a
nontrivial 2-cocycle given by [73]

c(Tm, Tn) = (m× n)3Tm+n . (4.3.20)

This coincides with the second term (of order N−2) in the approximation of the Poisson algebra
on the torus by su(N)nu(1) (cf. 4.2.51). One can recursively continue the deformation and obtain

[Tm, Tn]t =
2
t

sin(2πt(m× n))Tm+n . (4.3.21)

Rescaling the generators by a factor 4π and letting t tend to zero exactly reproduces the Poisson
algebra on the torus in Fourier basis. Now suppose t is a rational number smaller then 1: t = M/N
with M and N relatively prime. Then the sine structure constants will have zeros: Tm with
m ∈ N(Z⊕Z) are all central elements of the algebra. Hence these can be consistently by modded
out; defining the equivalence relation

T(m,n) ∼ T(m+N,n) ∼ T(m,n+N) (4.3.22)

makes the resulting quotient algebra P (T 2)/ ∼ finite-dimensional. In particular, only the N2

generators Tm with 0 ≤ m1,m2 ≤ N generate the different equivalence classes. The resulting Lie
algebra is isomorphic to su(N) ⊕ u(1). This puts the quasilimit approximation in a whole new
perspective: the sequence of vector space homomorphisms tending to a Lie algebra isomorphism
has been replaced by an algebra deformation with parameter t and a series of Lie algebra ho-
momorphisms for rational values of the deformation parameter. This procedure can be directly
pushed forward to the subalgebra of globally Hamiltonian vector fields, yielding a deformation of
the algebra and a sequence of Lie algebra homomorphisms to su(N) (the constant modes, which
correspond to the semidirect u(1)-factor, are in the kernel of the gradient). This situation is illus-
trated in fig. 6. Note that in this figure only homomorphisms corresponding to the rational values
t = 1/N are drawn. In reality, there are homomorphisms for all rational values < 1 and the image
of the morphism does not depend on the size of this parameter, but on the prime nominator. Let
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N = 1

N = 2

N = 3
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su(2)

su(3)

su(4)

su(∞)

t

Figure 6: Deformation of the algebra of exact Hamiltonian vector fields on the 2-torus. Only homomorphisms for
values 1/N of the deformation parameters are drawn. The total space Π(V ) represents he space of all Lie algebra
structures on the infinite-dimensional space V .

us investigate how the two harmonic vector fields on the torus are included in this framework. Let
PM/N (T 2) denote the deformed Poisson algebra (4.3.21) at t = M/N with M < N ∈ N relatively
prime and denote CN (T 2) the infinite-dimensional subspace spanned by Fourier modes with wave
numbers on the sublattice N(Z⊕ Z). The matrix truncation is then given by the sequence of Lie
algebra homomorphisms

PM/N (T 2) π−→ PM/N (T 2)
CN (T 2)

'−→ su(N)⊕ u(1) , (4.3.23)

where π is the canonical projection given by taking the equivalence class (which is by construction
preserved under the deformed bracket for rational values of t). The second map is an isomorphism
and induces an isomorphism between the cohomology spaces. The first map however is projection,
and can not be used to push forward the cocycles, as these elements are in the dual of Lie
algebra. The problem of finding two cocycles in C1(su(N); su(N)) which are pulled back by the
mapping above to the harmonic vector fields Pr has no solution, simply because, as argumented in
the previous paragraph, the finite-dimensional unitary algebras have no nontrivial su(N)-valued
cocycles. In other words, applying the deformation above to the total algebra of Hamiltonian
vector fields on T 2 (where the brackets involving harmonic vector fields are not deformed) yields
a sequence of algebras isomorphic to the sine algebras extended by their first cohomology space.
This extension is an obstruction for a consistent projection onto the unitary algebra [74], as the
modes TNm are no longer central when one includes the cocycles: [cr, TNm] = NmTNm 6= 0.
Observe that since the cr act on each mode differently, any truncation to a finite-dimensional
algebra by identifying blocks of generators is inconsistent. This phenomenon was already noticed
in [6], where it was phrased in terms of aperiodicity of the structure constants corresponding to
the harmonic vector fields. The conclusion that the harmonic vector fields cannot be regularised of
course implicitly assumes the brackets involving these Lie algebra elements are not deformed. This
is because the second cohomology space (with coefficients in the algebra) of the Poisson algebra
on T 2, extended by the harmonic vector fields is one-dimensional, generated by a trivial extension
of the cocycle (4.3.20) by c(Pr, Tm) = c(P1, P2) = 0.

4.3.3 Regularisation and the Moyal Star

The deformation of the Poisson algebra on the torus can be induced by a deformation of the
universal associative enveloping algebra U(Pν(Σ)). If we denote with ∗t the deformed product
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with parameter t, we write

f ∗t g =
∞∑

n=0

tnCn(f, g) , (4.3.24)

where Cn are bilinear forms on the enveloping algebra. These are severely restricted when one
requires the preservation of associativity: writing out (f ∗t g) ∗t h − f ∗t (g ∗t h) yields a power
expansion in t with coefficients

Dk(f, g, h) =
k∑

m=0

k−m∑
n=0

(
Cm(Cn(f, g), h)− Cm(f, Cn(g, h))

)
. (4.3.25)

So these must all vanish for an associative deformation. Writing Ek(f, g, h) as the expression
above without the boundary terms (m,n) = (0, k) or (k, 0), one finds Dk = Ek−∂HCk, where ∂H

is the Hochschild coboundary on the graded vector space of cochains. For an associative algebra
A such a cochain is simply defined as a k-linear mapping from Ak to A, and the coboundary acts
as

(∂HC)(a0, . . . , ak) = a0 · C(a1, . . . , ak) +
k−1∑

i=0

(−1)i+1C(a0, . . . , ai · ai+1, . . . , ak)

+ (−1)k+1C(a0, . . . , ak−1) · ak . (4.3.26)

Composing ∂H with itself is zero by associativity. As usual, this coboundary turns the graded
vector space of cochains into an exact sequence and as before, we call the cochains in the kernels
of ∂H cocycles and the associated cohomology complex the Hochschild cohomology, Hk

H(A). Com-
pletely analogously to the deformation theory of the Lie bracket, one can use Dk = 0, 0 ≤ k ≤
n⇒ ∂HEn+1 = 0, and hence nontriviality of H3

H(U(P (Σ))) forms an obstruction to an associative
deformation. For the space of functions on a manifold, we may look at the subcomplex of cochains
given by differential operators which act trivially on constants (which is a reasonable assumption,
since in general one wants to keep the product of real numbers). If we denote this complex by
Hk

H,D(C∞), it was shown by J. Vey that these spaces are Hk
H,D(C∞) ' Γ(

∧k
T ∗M). This shows

that in our 2-dimensional case the obstruction space H3
H,D(C∞) vanishes. These statements have

recently been generalised: every finite dimensional Poisson manifold admits a deformation of its
Poisson algebra, and a canonical construction is given in [75]. The simplest example of an asso-
ciative product constructed from C2

H,D(C∞) is the Moyal star product with constant coefficients:

f ∗t g =
∞∑

n=0

tn

n!

∑

R(n),S(n)

αr1s1 . . . αrnsn(∂r1 . . . ∂rnf)(∂s1 . . . ∂sng) , (4.3.27)

where I(n) = (i1, . . . , in) and J(n) = (j1, . . . , jn) are n-tuples of indices, in our case each ik, jl
running over {1, 2}. Note that this product is fully specified by the constant 2-tensor α, which by
associativity is required to be antisymmetric: α ∈ ∧2R. In our case of a toroidal 2-manifold, it
turns out we can choose αrs = 2πεrs, and we conveniently shorten the notation of the deformed
product to

f ∗t g = f exp(2πtεrs←−∂ r
−→
∂ s)g . (4.3.28)

A quick calculation of the deformed product of 2 Fourier modes shows that the star product and
the Lie algebra deformation (4.3.21) are related by

[f, g]t =
1
it

(f ∗t g − g ∗t f) . (4.3.29)

The factor 1/it is obvious, since by construction to zeroth order in t the star product is commu-
tative. Observe the analogy with the quantisation of a free particle on a line: the phase space
of this system has 2 coordinates p, q which under the classical Poisson bracket are conjugate to
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each other, {p, q}P = 1. Quantisation from the algebraic point of view is a deformation of the
algebra of scalar observables, whose universal associative enveloping algebra is the polynomial ring
C[p, q] (there is no gauge symmetry). The deformation of this algebra is given by the star product
f ∗i~ g = f exp( 1

2 i~ε
rs←−∂ r

−→
∂ s)g, where ∂1 = ∂/∂q and ∂2 = ∂/∂p and the deformation parameter

is taken imaginary (the functions therefore complex-valued). By simple substitution one finds the
well-known quantum relation between position and momentum, [q, p]i~ ≡ q ∗i~ p − p ∗i~ q = i~.
Up to first order in Planck’s constant one finds Dirac’s quantisation principle, [q, p]i~ = i~{p, q}P ,
which was shown inconsistent to higher orders by Weyl. Comparing to the matrix regularisation
of P (T 2), where we have the star commutator [σ1, σ2]∗ = 2πt, we associate (σ1, σ2) with the
phase space variables (q, p) and t with i~/2π. However, one should keep in mind that the classical
variables p and q are not bounded and the full equivalence would be reached when considering a
toroidal phase space.

4.3.4 General Spacesheet Geometries

One can imagine that the deformation quantisation may as well be applied to the algebra gener-
ating area-preserving diffeomorphisms on the sphere. The Fourier modes eim1θ+im2φ are smooth
functions on the unit sphere, which are all linearly independent (not orthogonal or normalised,
nor eigenfunctions of the Laplace-Beltrami operator however). By linearity of the gradient, these
properties are also fulfilled by the Hamiltonian vector fields they induce. Then one may construct
a deformation of the Poisson algebra such that the modes on the N -multiple lattice become central
and divide the algebra by the infinite-dimensional span of these modes. This procedure can be
transformed to a basis of spherical harmonics, in which case we mod out by an infinite-dimensional
linear subspace of the Poisson algebra.

It is however not clear how to implement this approximation scheme into membranes modeled
on base manifolds of arbitrary topology. For such spacesheets the Fourier modes emrσr

are in
general not smooth; for higher genus Riemann surfaces a global coordinate system is generally
absent (as for the sphere). The approximation of the Poisson algebra shall therefore require a dif-
ferent approach. It is Berezin’s quantisation of a Poisson algebras on Riemann surfaces [76] which
gives the correct solution to this deformation problem. We shall discuss this from n algebraic
topological point of view, exploiting the machinery of automorphic forms, as well as from the geo-
metric perspective, using the theory of Hermitian line bundles [65]), equipped with Kähler metrics.

The Berezin quantisation scheme was first applied to the Poisson algebra on the (open) complex
unit disc [77], and based on this method, a discrete sequence of Poisson algebra deformations on
any closed higher genus surface may be constructed which is a quasilimit of the ordinary Poisson
algebra [78, 65, 79]. Finally, this discrete sequence may be embedded in a continuous deformation
of the Poisson algebra on a particular covering of the manifold [80]. The equivalence of Berezin’s
deformation with the approach to the regularisation of the torus algebra of previous paragraphs
was exhibited in [65], and we shall give a short outline of these results in the upcoming paragraph.
We end the section with a short discussion of a method introduced by Bars [81], which claims to
be a straightforward generalisation of the torus algebra deformation.

For the treatment of the general case we note that our constructions are applicable to all smooth
compact surfaces homeomorphic to respectively the 2-sphere or the 2-torus. For smooth 2-
manifolds, being homeomorphic is equivalent to being diffeomorphic and the Poisson algebra of a
surface N diffeomorphic to M may be pulled back to the Poisson algebra of M , yielding an algebra
isomorphism. It is therefore natural to work in topology classes, since topological properties are
invariant under homeomorphisms. In conclusion, we have treated the matrix regularisation for all
smooth compact 2-manifolds of genus 0 and 1. We shall use the tools of the uniformisation the-
ory of Riemann surfaces to simplify the regularisation procedure as a problem of group-invariant
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forms on the complex unit disc. This powerful machinery uses the fact that every smooth closed
orientable 2-manifold is a complex manifold. Formally, any even-dimensional orientable manifold
admits an almost complex structure, which is a globally defined map J : TM −→ TM such that
J2 = −IdTM on the fibres. For 2-manifolds, J is locally given by a rotation of tangent space by 90
degrees. For this to be able to be consistently patched together, the manifold must be orientable.
The morphism J locally induces a decomposition of the tangent spaces into real and imaginary
eigenspaces, and it induces a bigrading on the complexified exterior algebras:

Ωr(M)C '
⊕

0≤p+q=r

Ω(p,q)(M) , (4.3.30)

where Ω(p,q)(M) consists of the wedge product of p forms in the real eigenspace and q forms
in the imaginary eigenspace of J (acting on the cotangent bundle). Such a structure is called
complex if the real-imaginary decomposition is integrable, i.e. there exist local coordinate patches
(x1, . . . , xn, y1, . . . , yn), such that

J
∂

∂xµ
=

∂

∂yµ
, J

∂

∂yµ
= − ∂

∂xµ
. (4.3.31)

However, in general the coordinate transition mappings will not preserve this property. If they do,
we can view M2n as a manifold based on C, equipped with coordinates zµ = xµ + iyµ inducing
local bases on the complexified tangent bundle TMC such that

J
∂

∂zµ
= i

∂

∂zµ
, J

∂

∂zµ = −i ∂

∂zµ , (4.3.32)

and such that the coordinate transition functions are holomorphic mappings between open domains
in Cn. If n = 1 and these domains are homeomorphic to the open unit disc in the complex plane,
the manifold is called a Riemann surface. Recall that the supermembrane spacesheet is both
symplectic and Riemannian. Let us denote with w∗ the duality map TM∗ −→ TM induced by
the metric w. An almost-complex structure is defined by

J(X) = w∗(ιXν) , (4.3.33)

which fulfills the compatibility conditions

w(X,Y ) = ν(X, J(Y )) . (4.3.34)

It can be shown that J is integrable to a complex structure if Σ is closed, orientable and smooth.
Such complex manifolds containing compatible symplectic and Riemannian structures are called
Káhler. Obviously, all Riemann surfaces are Kähler manifolds. The tangent bundle to a Riemann
surface is an example of what we call a complex line bundle L, a 2-dimensional vector bundle with
additional structure J making its fibres isomorphic to C. We call such a bundle Hermitian if its
fibres are equipped with a Hermitian scalar product, given by a section g of L∗ ∨ L∗ such that

g(J(X), J(Y )) = g(X,Y ) . (4.3.35)

In the local complex coordinates (4.3.32), this tensor is of the form f(z, z)dz ⊗ dz, where f is
real-valued. Of particular importance will be the space of holomorphic sections of a complex line
bundle: globally defined forms in Ω(p,0)(M,L) with components holomorphic functions. On a
compact Kähler manifold these spaces of sections are finite-dimensional, and isomorphic to the
spaces of harmonic differential forms:

Ω(p,0)
hol (Σ, L) ' Hp

∆(Σ,R) . (4.3.36)

In particular, the (real) dimension of holomorphic one-forms on a Riemann surface is 2g.
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A conformal mapping between 2 topological inner product spaces is a bijective map which preserves
local angles between intersecting curves. The typical example is the complex upper half plane
H = {z ∈ C : Im(z) > 0} ∪ {∞} equipped with the metric g = (z − z)−2dz ⊗ dz, whose group of
conformal mappings to itself consists of the fractional transformations

z 7→ az + b

cz + d
, A :=

(
a b
c d

)
∈ R(2) , det(A) = 1 . (4.3.37)

Naively one might think this conformal group is SL(2,R). However, multiplying the matrix A by
a real constant such that the determinant is left unchanged yields the same transformation, so we
may identify each matrix with its negative: the conformal group is the projective special linear
group PSL(2,R) = SL(2,R)/{±1}. Another example of particular importance to us is the unit
disc, D = {z ∈ C : |z| < 1}, equipped with the Bergman metric

g = 4
dz ⊗ dz

(1− |z|2)2 . (4.3.38)

whose group of conformal mappings to itself consists of

z 7→ az + c

cz + a
, |a|2 − |c|2 = 1 . (4.3.39)

Multiplying the complex numbers a and c by a real parameter yields the same transformation; we
may therefore assume |c| < 1 without loss of generality. Then let us denote θc = − log(|c|) and
b = (

√
tanh θc)a. Then the matrix

A =
(

b c

−c b

)
(4.3.40)

satisfies A†A = 1 = aa† and det(A) = 1, i.e. is an element of SU(2). Under our assumptions
there is a one-to-one correspondence between the Caley-Klein parameters b, c and the complex
numbers a, c. However composing this isomorphism with the mapping (b, c) 7→ (−b,−c) yields the
same conformal transformation on the unit disk. Analogously to the upper half plane, we define
this group as the projective special unitary group PSU(2) = SU(2)/{±1}. By the isomorphisms
SU(2) ' SO(3) ' SL(2,R) we see that the conformal group of the unit disk is isomorphic to that
of the upper half plane; in fact the half-plane and the unit disc are conformally equivalent: there
is a holomorphic bijective map between them (for example, z 7→ (z − i)/(z + i)). Generalising
to Riemann surfaces, a mapping f : M −→ N is holomorphic if for every coordinate charts
φU : M −→ U ⊆ C and ψV : N −→ V ⊆ C the complex function ψV ◦ f ◦ φ−1

U : U −→ V is
holomorphic, and it is conformal if it is bijective. Every Riemann surface defines an orientable
2-manifold, and a conformal mapping corresponds to real analytic mapping with Jacobi matrix
everywhere a scalar times a rotation matrix. In other words, the pull-back of the Riemann metric
by a conformal mapping is a multiplication by a scalar function. If M and N admit such a
mapping, they are said to be conformally equivalent. The most important result in the theory of
Riemann surfaces is the following,

Uniformisation Theorem 4.2 If a Riemann surface is homeomorphic to a sphere then it is
conformally equivalent to the Riemann sphere. If not, it is either conformally equivalent to C/Γ
or D/Γ, where Γ is a discrete subgroup of isometries acting freely on resp. C or D.

By the statements above, the unit disc may be replaced by the upper-half complex plane. The
isometries are w.r.t. the Riemannian metric dz ⊗ dz on C and the metrics mentioned above
for the upper half plane and the unit disc, and the subgroup Γ is called the Fuchsian group.
For example, in the toroidal case it is generated by 2 translations along linearly independent
directions in C. The Riemann metrics the covering spaces are equipped with can be shown
to yields constant Gauss curvature: the uniformisation theorem may therefore be restated as:
every smooth closed orientable 2-manifolds admits a (up to a constant unique) metric with Gauss
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curvature −1, 0 or 1. Riemann surfaces conformally equivalent to the Riemann sphere may have
constant positive curvature and are said to be elliptic, in the other cases they are called parabolic
(complex plane) and hyperbolic (unit disc). As real compact orientable 2-manifolds, the elliptic
surfaces are homeomorphic to the sphere, the parabolic ones homeomorphic to the 2-torus. So the
interesting Riemann surfaces are the hyperbolic ones, since they represent higher genus surfaces.

4.3.5 Hyperbolic Riemann Surfaces

A continuous function on an arbitrary genus g surface Σ has a unique lift to a real-valued Γ-
invariant, or automorphic function on D, and this will be the way to deal with the problem of
globally undefined basis functions on these surfaces. So the strategy shall be to repeat the method
above in a completely Γ-invariant way. For compact, smooth finite genus g surfaces the group Γ is
finitely generated by A1, B1, . . . , Ag, Bg satisfying the relations A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g =
I. A holomorphic scalar function on Σ corresponds to a holomorphic function f : D −→ C such
that f(A(z)) = f(z) for all A ∈ Γ. A holomorphic section of the cotangent bundle has different
transformation behaviour however. Let L −→ Σ = D/Γ be a line bundle over the Riemann surface
with fibre projection map π and denote with ρ : D −→ Σ the canonical projection of the covering
space onto the surface. This gives rise to a pullback bundle ρ∗L on D, which should be thought
of as copies of L on each inverse image of the fundamental polygon under Γ. Since D is an open
neighbourhood of the complex plane, a complex line bundle on it is topologically trivial, i.e. there
is a global isomorphism Φ : ρ∗L −→ D × C. For z ∈ D, let Φz denote Φ restricted to the fibre
above z. Then for A ∈ Γ,

σA(z) = ΦA(z) ◦ Φz (4.3.41)

is an isomorphism, and hence given by multiplication by a nonzero complex number, also denoted
with σA(z). These complex numbers satisfy

σB(A(z))σA(z) = σAB(z) = σA(B(z))σB(z) , A,B ∈ Γ , z ∈ D , (4.3.42)

and are called a system of multipliers. They define the line bundle, in a way that transition
functions define a real vector bundle. For L of complex dimension one, σA(z) can be written as
jA(z)2v(A) where jA(z) is the square-root of the Jacobian of A(z):

jA(z) = (cz + a)−1 , (4.3.43)

If A is given by the projective unitary transformation (4.3.39). However, other tensors will trans-
form with higher powers of this Jacobian, and this leads to the general concept of a multiplier of
weight r > 0, which we define as a map v : Γ −→ C such that |v| = 1 and

σA(z) = (jA(z))rv(A) (4.3.44)

obeys the condition (4.3.42). It is not clear how to interpret these functions on D in terms of
transition functions of line bundles. When r is an even integer 2m, it can be seen to define the
trivialisation of the m-th tensor power L⊗m of the line bundle L. When r is odd or rational, the
multipliers can be associated to bundles over coverings of Σ. There is only a discrete sequence of
values of r for which a v exists such that (4.3.44) can fulfill (4.3.42):

Corollary 4.3 For Σ = D/Γ a compact hyperbolic Riemann surface of genus g ≥ 2, a multiplier
λ of weight r can only exist if r = n/(g − 1) for some n = 1, 2 . . ..

This is a result of the famous Riemann-Roch theorem. If λ1, λ2 are multipliers of the same weight,
their ratio χ = λ1/λ2 : Γ −→ S1 satisfies χ(AB) = χ(a)χ(B); such a mapping is called a character
of the group. Writing the multipliers as exponential functions, one quickly proofs that the space
Λr of multipliers of weight r, if it is nonempty, is isomorphic to the space of characters of Γ. This
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is a 2g-dimensional torus T 2g (the Jacobian associated to Γ). An automorphic form of weight
r > 0 and multiplier v is a holomorphic function φ : D −→ C such that

φ(A(z)) = v(A)jA(z)−rφ(z) , (4.3.45)

for all A ∈ Γ and z ∈ D. If the Riemannian manifold is H/PSL(2,Z), the functions above are
called modular forms and play an important rôle in number theory and string theory. We denote
the complex vector space of such forms by H r(Γ, v). Again, the Riemann-Roch theorem implies
that this space is finite-dimensional. In particular, their dimension does not depend on the choice
of v,

dim(H r(Γ, v)) = (g − 1)(2r − 1) . (4.3.46)

So for r = n/(g − 1) we can choose a v of weight r and this gives rise to a space of automorphic
forms of dimension

N = 2n− g + 1 (4.3.47)

Let U be a fundamental domain of the Riemann surface, the smallest domain in D which, under the
action of Γ generates the entire surface. The Petersson inner product on the space of automorphic
forms of weight r associated to λ is given by

(φ, ψ) =
∫

U

φ(z)ψ(z)ωr(z) . (4.3.48)

with
ωr(z) = i

r − 1
π

(1− |z|2)r−2dz ∧ dz̄ , (4.3.49)

which is an automorphic form of ’negative’ weight:

ω(A(z)) = jA(z)2rω(z) . (4.3.50)

Hence the integral (4.3.48) is independent of the choice of the fundamental domain U . It turns
the finite dimensional vector space H r(Γ, v) into a Hilbert space. Given a bounded holomorphic
function f : D −→ C, there is a canonical method to construct a weight r automorphic form using
the Poincaré theta series,

θr
v(φ)(z) =

∑

A∈Γ

jA(z)r

v(A)
φ(A(z)) . (4.3.51)

It has been shown by Poincaré that this sum converges almost uniformly. Denote Kr : D×D −→
C : Kr(z, w) = (1− wz)−r for r > 0 and denote the theta-series

Kr
v(z, w) = θr

v(Kr( . , w))(z) =
∑

A∈Γ

jA(z)r

v(A)
Kr(A(z), w) . (4.3.52)

This is the Bergman kernel associated to the Hilbert space H r(Γ, v). In general, Bergman kernels
are used to project integrable complex functions on a domain in C to holomorphic functions. The
key properties of the kernel Kr

v(z, w) are that it is holomorphic in the z-variable, anti-holomorphic
in the w and

Kr
v(z, w) = Kr

v(w, z) . (4.3.53)

In our case, it should preserve the automorphic properties of argument, which is established by
taking the theta series of a kernel. If we denote L r(Γ, v) = {f : D −→ C | (f, f) <∞, f(A(z)) =
v(A)jA(z)−rf(z) for all A ∈ Γ, z ∈ D} then we define the projector

P r
v : L r(Γ, v) −→H r(Γ, v) : P r

v φ(z) =
∫

U

Kr
v(z, w)φ(w)ωr(w) . (4.3.54)

Now we would like to associate to each smooth function on the compact hyperbolic manifold
Σ ' D/Γ a linear unitary operator on a Hilbert space. As already mentioned, such a function
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corresponds to a bounded, Γ-invariant real-valued function on the unit disc. To each element of
the Banach space CΓ = {f : D −→ R | f(A(z)) = f(z) for all A ∈ Γ, z ∈ D} we associate the
linear Toeplitz operator T r

v f determined by

[T r
v f(φ)](z) = P r

v (fφ)(z) =
∫

U

Kr
v(z, w)f(w)φ(w)ωr(w) . (4.3.55)

One then sees that T r
v f acts reducibly on L r(Γ, v) since the image is holomorphic: T r

v f ∈
End(H r(Γ, v)). In fact, it can be shown that the space T r(Γ, v) generated by all the Toeplitz
operators spans the whole endomorphism group on the Hilbert space of automorphic forms. Fur-
thermore, the representation is unitary, (φ, (T r

v f)ψ) = ((T r
v f)φ, ψ) so that for f real-valued

(T r
v f)† = T r

v f . Multiplying by i yields the defining property of u(N)-matrices. By subtract-
ing the trace we can map functions onto SU(N)-generators:

T r
v : C∞(Σ,R) −→ su((g − 1)(2r − 1)) . (4.3.56)

Important is the approximation of the Poisson algebra, reflected by the estimates

‖f‖∞ ≤ ‖T r
v f‖ ≤ ‖f‖∞ +O(r−1) ,

‖[T r
v f, T

r
v g]− ir−1T r

v {f, g}‖ ≤ Cr−3/2‖f‖4‖g‖4 . (4.3.57)

Here ‖ . ‖∞ denotes the supremum norm, C is a constant (generically depending on the functions),
and ‖f‖n =

∑
k+`≤n‖∂k

z ∂
`
zf(z)‖∞, which is bounded on the space of smooth functions on the sur-

face. The second equation implies that the algebra T r(Γ, v) equipped with the bracket induced by
composition of endomorphisms represents a deformation of the Poisson algebra with deformation
parameter t = r−1:

{f, g}t(z, z) = t(1− zz)2(∂zf(z, z)∂zg(z, z)− ∂zg(z, z)∂zf(z, z)) +O(t2) . (4.3.58)

4.3.6 Geometric Approach

The by S. Chern generalised Gauss-Bonnet theorem states that for a even-dimensional orientable
vector bundle on a closed even-dimensional manifold, equipped with a metric and a connection ∇
compatible with this connection, then

1
2π

∮

S

F∇ ∈ Z (4.3.59)

for arbitrary smooth, closed 2-dimensional submanifolds S of M . This statement follows from
the more general fact that for a complex Hermitian vector bundle E of complex rank n on an
even-dimensional closed smooth manifold the Chern classes ci(E) defined by

det(
itF∇
2π

+ 1n) =
n∑

k=1

ck(E)tk (4.3.60)

are integer-cohomology valued: ck ∈ H2k(M,Z). The integral (4.3.59) may thus be recognised as
the integral of the first Chern class on the vector bundle (viewed as a complex Hermitian bundle).
Conversely, A. Weil showed that an even-dimensional closed orientable manifold M containing a
2-form θ such that (2π)−1θ ∈ H2(M,Z), may be endowed with a Hermitian line bundle L, and a
connection ∇, compatible with the fibre metric with curvature F∇ on L such that

F∇ = −iθ . (4.3.61)

This only holds for line bundles: such manifolds are completely classified by the first (and si-
multaneously top) Chern class. For the supermembrane, there is only one closed 2-dimensional
submanifold of Σ, namely Σ itself, and the condition ν ∈ H2(Σ,Z) is trivially met by a suitable
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normalisation of
√
w. By the uniformisation theorem Σ is conformally equivalent to D/Γ, equipped

with the Poincaré metric (4.3.38). This gives rise to a Levi-Civita connection ∇ on its tangent
bundle, a Hermitian line bundle, whose curvature is given by the symplectic form

ω =
2

(1− zz)2 dz ∧ dz = −iν . (4.3.62)

where ν is the volume form corresponding to g. As the Gauss curvature of the Poincaré metric
constant +1, the first Chern number of the line bundle is determined by the Gauss-Bonnet theorem,

i

2π

∫

D/Γ

ω =
1
2π

∫

Σ

Kν = (2g − 2) , (4.3.63)

where g is the genus of Σ. The Hilbert space is taken to be Γhol(Σ, L), the space of sections s of
the line bundle satisfying the polarisation condition

∇∂s = 0 . (4.3.64)

This space can be shown finite-dimensional, and in particular dim(Γhol(Σ, L)) = 2g. Now we
consider the m-fold tensor product Lm = L⊗ . . .⊗L. We equip its fibres with the tensor product
g(m) = g ⊗ . . .⊗ g and define the connection

∇(m)
X (s1 ⊗ . . .⊗ sn) =

m∑

k=1

s1 ⊗ . . .⊗∇Xsk ⊗ . . .⊗ sm . (4.3.65)

A quick calculation shows that the curvature of this connection reduces to

F∇(m)(X,Y ) = mF∇ = mω(X,Y ) . (4.3.66)

Integrating both sides and using the integral Chern class condition, [iF∇(m)/2π] ∈ H2(Σ,Z) yields

2m(g − 1) ∈ Z (4.3.67)

This is essentially the condition on r (cf. corollary 4.3), the weight of the automorphic forms
which formed the Hilbert spaces on which the Toeplitz operators act. It is because automorphic
forms define global holomorphic sections of the tensor product line bundles; under an A ∈ Γ, such
a global holomorphic section f(z)(dz)m satisfies

f(z)(dz)m = v(A)A∗(f(z)(dz)m) = v(A)(jA(z))2mf(A(z))(dz)m , (4.3.68)

for some multiplier v of Γ. Hence f is an automorphic function of weight 2m. We denote with
Γhol(Σ, Lm) the subspace of holomorphic sections of Lm which satisfy the polarisation condition
∇(m)

∂
s = 0. With the Riemann-Roch theorem one can deduce

dim(Γhol(Σ, Lm)) = (4m− 1)(g − 1) ≡ N , (4.3.69)

which agrees with (4.3.46). This space turns into a finite-dimensional Hilbert space if we equip it
with the bilinear pairing

〈s1|s2〉 =
∫

Σ

g(m)(s1, s2)ω . (4.3.70)

Note however that the geometric construction allows only regularisation on Hilbert spaces of au-
tomorphic forms with integer weight, while the algebraic theory of previous section takes forms
into account of fractional weights n/(g − 1).

The rest of the story is similar to the procedure before: one associates to each smooth function
on D/Γ a Toeplitz operator on Γhol(Σ, Lm). This is done by starting with the representation

P : C∞(Σ,C) −→ End(Γ(Σ, L)) : f 7→ Pf = −∇gradωf + if , (4.3.71)
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where the second term in Pf denotes multiplication with if . This is just a homomorphism between
infinite-dimensional Lie algebras:

[Pf , Pg] = P{f,g} , (4.3.72)

The regularisation proceeds by projecting these operators on the (finite-dimensional) space of
holomorphic sections of L fulfilling the polarisation condition (4.3.64). Obviously, there exists a
canonical projection ρ : Γ(Σ, L) −→ Γhol(Σ, L), and we define

Qf = ρ ◦ Pf . (4.3.73)

These operators no longer fulfill (4.3.72). Given a basis s1, . . . , sN of Γhol(Σ, L) orthonormal w.r.t.
the inner product (4.3.70), these operators were shown in [65] to be able to be expressed as

Qf =
N∑

i,j=1

|si〉〈si|Pf |sj〉〈sj | = i

N∑

i,j=1

|si〉〈si|f − 1
2∆f |sj〉〈sj | , (4.3.74)

where ∆ is the Laplacian w.r.t. the Kähler structure on Σ, obeying the property

〈s1|∆f |s2〉 = −2i〈s1|∇gradωf |s2〉 . (4.3.75)

From (4.3.74) we read off that if f is real-valued, Qf is an antihermitian operator on a finite-
dimensional vector space. Now consider the same procedure on the m-th tensor power of the
complex line bundle. The covariant derivative ∇(m) was shown above to have curvature imω.
Hence, the bracket of the Toeplitz operators Pf = −∇(m)

gradf + if will not be the Toeplitz operator
of the spacesheet Poisson bracket, but 1/m times this operator, and therefore we rescale the
Toeplitz operators as

P
(m)
f = −∇(m)

gradωf + imf , (4.3.76)

such that [P (m)
f , P

(m)
g ] = P

(m)
{f,g}. The operators on the space of holomorphic sections satisfying

the polarisation condition ∇(m)

∂
s = 0 are constructed as before:

Q
(m)
f = ρ(m) ◦ P (m)

f , (4.3.77)

where ρ(m) denotes the orthogonal projection of the space of smooth sections of Lm onto Γhol(Σ, Lm).
Now we define the operator norm on gl(N,C) (which the Q(m)

f belong to for N given by (4.3.69):

‖A‖m =
1
m

sup
s 6=0

√
〈s|A|s〉
〈s|s〉 . (4.3.78)

We now have established a quasilimit:

Theorem 4.4 With the definitions above, we have

lim
m→∞

‖P (m)
f ‖ = ‖f‖sup , lim

m→∞
‖[P (m)

f , P (m)
g ]− P (m)

{f,g}‖ = 0 . (4.3.79)

The proof of this theorem (generalised to arbitrary quantisable even-dimensional Kähler manifolds)
may be found in [79]. In the supermembrane theory, we replaced the spacesheet integral by the
trace of the products of the matrices. This is justified by the theorem above, as it leads to the
estimate

1
N

Tr(P (m)
f1

. . . P
(m)
fp

) =
1

vol(Σ)

∫

Σ

f1 . . . fp ω +O(m−1) . (4.3.80)

which is also derived in [79]. At this point it is not clear whether the regularisation procedure
above is the one proposed for the Poisson algebra on the torus of previous paragraphs. The
parabolic surface T 2 is written as the complex plane modulo the lattice Λ = Zλ1 +Zλ2, where λ1
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and λ2 are nonzero complex numbers which are not on the same ray. For simplicity we assume
λ2 = iτλ1 for τ ∈ R0 (in the literature [65] this is called ’principal polarisation’). A system of
multipliers is generated by

σλ1(z) = z , σλ2(z) = eπτ−2πiz (4.3.81)

and the multiplication rule (4.3.42). Note that a single-valued function should fulfill f(z+λ) = f(z)
for all λ ∈ Λ, a section of L should fulfill s(z + λ) = σλ(z)s(z), and a fibre metric g should
transform as g(z + λ) = |σλ(z)|−2g(z) to have a globally well-defined pairing of sections. The
space Γhol(T 2, L) is one-dimensional, spanned by the theta series

Θ(z) =
∑

k∈Z
exp(πik2τ + 2πikz)dz . (4.3.82)

As a fibre metric we choose
g = exp(

π

2τ
(z − z)2)dz ⊗ dz . (4.3.83)

which gives rise to the curvature and Laplacian

ω = −π
τ

dz ∧ dz , ∆ =
2
πτ

∂

∂z

∂

∂z
. (4.3.84)

Looking at tensor powers of the line bundle, we construct a compete linearly-independent basis of
Γhol(T 2, Lm) by the theta functions

Θa(z) =
(2mτ)1/4

√
2π

∑

k∈Z
exp

(
πiτm

(
k +

a

m

)2 + 2πim
(
k +

r

m

)
z
)
, (4.3.85)

where a = 1, . . . ,m. A straightforward calculation shows these sections are orthonormal w.r.t.
the Riemannian structure defined above: 〈Θa,Θb〉 = δab. Now denote z = x+ iy and consider the
Fourier modes

F(r,s) = exp
(
2πi

(
rx+

s

τ
y
))
. (4.3.86)

Let us denote X(r,s) = grad−iωFr,s and define the (rescaled) Toeplitz operators

P
(m)
(r,s) = i

(
1 +

πτ

m

(
r2 +

s2

τ2

))
exp

(
− πτ

2m
(
r2 +

s2

τ

))
ρ(m) ◦

(
−∇(m)

X(r,s)
+ imF(r,s)

)
. (4.3.87)

Then it is shown in [65] that these operators constitute the unitary algebra on the m-dimensional
space of holomorphic sections of L(m):

〈Θa|P (m)
(r,s)|Θb〉 = mω(m−r)s/2(Ωm−r

1 Ωs
2)ab , ω = e−2πi/m (4.3.88)

where Ω1 and Ω2 are the ’t Hooft clock and shift matrices, given in (4.2.49). Consequently these
fulfill the su(m)⊕ u(1) algebra relation

[P (m)
r , P (m)

s ] =
m

π
sin

(π(r × s)
m

)
P

(m)
r+s , (4.3.89)

which shows that the Berezin deformation of Poisson algebras is the generalisation of the regular-
isation methods of the torus algebras considered in the previous paragraphs.

We already mentioned that we have not given a geometrical meaning of automorphic forms of
fractional weight. Moreover, in the deformation procedures of the previous paragraphs the pa-
rameter t (which is here identified as r) could take arbitrary values in R, though for irrational
values the deformation remained infinite-dimensional. The question how to generate automorphic
forms of arbitrary weight was solved in [80]. In this paper, the authors construct a noncompact
covering of the Riemann surface which supports automorphic forms of arbitrary weights, but for
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which the values r = n/(g − 1) yield Hilbert spaces that are isomorphic to the spaces on the
Riemann surface. The covering is constructed by taking an infinitely generated subgroup Γ0 of
Γ and considering the covering of Σ which has this group as its first fundamental group. If Γ is
generated by A1, B1, . . . , Ag, Bg obeying A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g = 1, the subgroup Γ0 is
taken to be generated by

Ag , B−n
g AiB

n
g , B−n

g BiB
n
g , n ∈ N , i = 1, . . . , g − 1 . (4.3.90)

The covering U(Σ) of the surface can then be shown to be noncompact, and should be thought of as
an infinite cylinder with an infinite number of handle bodies attached to, each body containing g−1
handles. The existence of multipliers is essentially a cohomologous question, and it is obstructed
by elements in the second cohomology space of the Fuchsian group. A multiplier is a 1-cochain, a
mapping Γ −→ C, and the requirement (4.3.42) can be restated as the coboundary of this mapping
being a 2-cocycle cohomologous to zero in H2(Γ,Z). However, the Eilenberg-MacLane theorem
states that

H∗(Γ,Z) ' H∗(M,Z) (4.3.91)

Hence, for the covering U(Σ) we have by Poincaré duality H2(U(Σ),Z) ' H0
c (U(Σ),Z) = 0, since

constant functions have no compact support on U(Σ). This is the reason why on U(Σ) multipliers
on all weights exist. Properties of the resulting deformed Poisson algebra (such as its expected
infinite-dimensionality) remain to be investigated for these values of r.

Finally, we mention a method developed in [81], based on a discrete set of translations on the
Riemann surface, acting on a space of multi-valued functions. The author finds explicitly a g-
fold tensor products of representations of su(N) on a space of Jacobi theta functions by cutting
each of the complex holomorphic cycles in N pieces, i = 1, . . . , g, and applying the translations
along these pieces to the theta functions. There are however a number questions left concerning
this procedure. First, Bars finds a representation of ⊗gsu(N), but a morphism to the algebra
of Hamiltonian vector fields is missing. An idea would be to construct the small translations
from the flow of the gradient vector fields, because this identification preserves the Lie bracket.
However, it is then not clear how to truncate these flows to a lattice of translations along the
homology cycles. Secondly, the dimension of the unitary algebras depends differently on the genus
of the surface than the regularisation described above. The latter procedure yields matrices of a
size which depends linearly on g, namely su((g − 1)(4m − 1)), while the former approach yields
su(Ng). It seems rather that the author has found a regularisation of the algebra of Hamiltonian
vector fields on the 2g-dimensional torus T 2g (compare e.g. with the treatment of tori in [65]). It
seems therefore not convenient to pursue this path.

4.4 Compactification

4.4.1 Wrapping Membranes around Target-Space Tori

In this section we assume the bosonic sector of the target space to have one or more compactified
directions. Geometrically, these directions are assumed to be flat, so we replace the transverse
and longitudinal target manifold R10 by R/2πR1Z × . . . × R/2πRkZ × R10−k as it would be
unphysical to replace the (lightcone) time direction by some compact loop. A contractible loop
on the spacesheet of the membrane is homotopy equivalent to a point. Assuming continuity of
the bosonic variable Xa, the composition with the homotopy on the spacesheet gives a homotopy
on the bosonic image, which is therefore contractible. So noncontractible loops on the bosonic
image only exist for membranes modeled on higher genus spacesheets. If the bosonic target space
is compactified, such a loop may wind around the wrapped dimensions. For Cλ, λ = 1, . . . 2g a
basis of the homology of the surface and Xi a compactified coordinate on the flat unit circle, we
obtain its winding numbers by ∮

Cλ

dXi = 2πni,λ . (4.4.1)
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This immediately shows the modifications: we are no longer working with real-valued differen-
tial forms, but with U(1)-valued forms, which do not automatically give zero when closed and
integrated along a closed loop. The closed form above, which is an element of dΩ0(Σ,R/2πZ)
may actually be expanded in a basis of H1(Σ,Z) ⊕ d(Ω0(Σ,R)); if ϕλrdσr is a basis of cocycles
orthogonal w.r.t. the homology basis Cλ, such a decomposition looks like

dXa = 2πnaλϕλ +XaMdYM , (4.4.2)

where {YM} is a complete basis of C∞(Σ,R). In the dual vector field language, the symplectic
gradient of a circle-valued object can be decomposed into integer multiples of harmonic vector
fields and the gradient of a real-valued function:

gradν(Xa) = 2πnaλφλ + gradνf . (4.4.3)

Consequently the sequence (3.5.22) is no longer exact if one replaces the C∞(Σ,R) by the Poisson
algebra of circle-valued smooth functions. It should be modified to

0 −→ H0(Σ) −→ C∞(Στ ,R/2πZ)
gradν−→ Xν(Στ )

γ−→ H1(Στ ,R)
H1(Στ , 2πZ)

−→ 0 . (4.4.4)

Now the map γ is given by γ(ξ) = [[ιξν]] where the inner brackets are the equivalence class resulting
from modding out exact forms and the outer denote the equivalence class under α ∼ α+ 2πnλϕλ,
taking the 2g-dimensional flat unit torus in the cohomology vector space. This space is equipped
with the zero bracket to make it an exact sequence of Lie algebras.

If 2 coordinates Xa, Xb are nontrivially wound around the periodic directions in the target space,
the exterior product of their differentials is not exact,

∫

Σ

d2σ
√
w{Xa, Xb} =

∫

Σ

dXa ∧ dXb = 2πn ∈ 2πZ \ {0} . (4.4.5)

Configurations with n 6= 0 are called irreducible. By a theorem of A. Weil, there exists a principal
U(1) bundle and a connection on it such that dXa ∧ dXb is its curvature. If Xa and Xb are the
only compactified coordinates, this makes the doubly-wrapped membrane equivalent to a gauge
theory on the space sheet coupled to the remaining scalars and fermions [82]. Formulated on a
Riemann surface Σ = D/Γ, a closed form dZ, where Z is a complex function from the surface to
the unit circle with winding numbers

1
2π

∮

Ai

dZ = ni ,
1
2π

∮

Bi

dZ = mi (4.4.6)

can be expanded in the basis ϕ1, . . . , ϕg of Ω1
H(Σ,C) plus an exact real-valued form,

dZ = λiϕi + λ
i
ϕi + df , (4.4.7)

where
λi =

iπ

det(Im(Ω))
(ni −

∑

j

mjΩji) , (4.4.8)

where Ω is the g × g complex periodicity matrix of the Riemann surface, which can be expressed
as the integrals over the B-cycles of a system of holomorphic differentials that are normalised over
the A-cycles:

Ωij =
∫

Bi

ϕj ,

∫

Ai

ϕj = δij . (4.4.9)

The 2g real harmonic forms ϕλ are given in terms of these holomorphic basis vectors by ϕi+ϕi and
(Ω−1)ijϕi + (Ω−1)ijϕi. We construct a winding function f : Σ −→ R/2πZ with winding numbers
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nλ by requiring that for each generator Aλ of the discrete group Γ we have f(Aλ(z)) = f(z)+2πnλ.
The Fuchsian group of the 2-torus is generated by 2 translations σ1 = Re(z) 7→ σ1 + 2π and
σ2 = Re(z) 7→ σ2 + 2π, so a function a winding function on the torus can be expanded as

f(σ1, σ2) = n1σ
1 + n2σ

2 +
∑

k,`∈Z
cke

2πi(kσ1+`σ2) . (4.4.10)

Suppose now we have performed the gauge-fixing from section (3.4), with the requirement that
X+ takes its values in R. The first nontrivial property to check when a number of embedding
coordinates is compactified is the independence of the mass of the CM modes. This is quickly
verified to hold since the integral of dXa ∧ df , where f is an ordinary real-valued function, is zero.
The first term in dγa (cf. (3.4.38)) is of this form because

d({Xa, Xb}dXb) = d ∗ (dXa ∧ dXb) ∧ dXb

= − ∗ d∗
[
(dfa + 2πnaλϕλ) ∧ (df b + 2πnbλ′ϕλ′)

]
∧ dXb

= d ∗ (dfa ∧ df b) ∧ dXb . (4.4.11)

The last line is obtained using harmonic properties of the nonexact APD generators: d∗ϕλ = 0.
More important is the construction of constraints from equation (3.5.1). If there is a nontrivial
winding in the X− coordinate, the right hand side of this equation is closed and may be expanded
into exact and harmonic forms with the X− winding numbers nλ, yielding constraints

ψ ≡ d(∂0Xa) ∧ dXa + dθ̄Γ− ∧ dθ = 0 , (4.4.12)

ψλ ≡
∫

Στ

ϕλ ∧ ∗(∂0XadX
a + θ̄Γ−dθ) = 2πnλ . (4.4.13)

Note that by consistency, the winding number is not a dynamical variable. Clearly (cf. equa-
tion (4.4.3)), to describe a regularisation of nontrivially wound bosonic coordinates one needs a
representation of the harmonic vector fields. Where in the uncompactified case we were able to
describe the theory in the gauge Aλ = 0, symmetries generated by the constraints corresponding
to these auxiliary fields not taken into account, now the cocycles don’t act as outer derivations on
these fields and therefore should find themselves as adjoint transformations in the matrix regu-
larised action. We have introduced new physical variables, the winding numbers, which can only
be measured by integrating the bracket with (normalised) harmonic vector fields. Since physical
observables such as the mass depend on these numbers, the regularised theory should contain the
winding data as well, and consequently we should find operators in matrix theory corresponding
to the cocycles.

4.4.2 APD Gauge Theory and Supersymmetry Algebra in Compactified Target
Space

If we denote X̃a to be the real valued function satisfying dX̃a = dXa−2πnaλϕλ (uniquely defined
up to a constant), an APD generating vector field ξ = gradνfξ + χλφλ acts on this field by

LξX
a = {fξ, X̃

a}+ φr
λ(2πnaλ∂rfξ − χλ∂rX̃

a)− 2π
√
wχλnaλ′εrsφ

r
λφ

s
λ′ . (4.4.14)

Gauge theory of area-preserving diffeomorphisms is constructed to exhibit these kind of symme-
tries. Assuming the winding number is a constant, the covariant derivative receives two contribu-
tions

∇0X
a = ∇0X̃

a − 2πnaλφr
λ∂rω + 2π

√
wAλnaλ′εrsφ

r
λφ

s
λ′ . (4.4.15)

This has its impact on the momentum eigenvalues: the second term vanishes when multiplied by√
w and integrated, but the third term does not. Hence the total momentum corresponding to

this coordinate becomes
P a

0 = P̃ a
0 + 2πP+

0 A
λna

λ , (4.4.16)
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where

P̃ a
0 = P+

0

∫

Σ

d2σ
√
w∂0X̃

a (4.4.17)

is the non-winding momentum part. The modification ψλ = 2πnλ can be implemented in an
area-preserving diffeomorphism gauge theory using a simple trick: one just adds a total derivative
term proportional to

√
w∇0X

− to the Lagrangian density,

L = dτ ∧ |d2σ|P+
0

√
w

[
1
2∇0X

a∇0Xa + θ̄Γ−∇0θ − 1
4 (P+

0 )−2{Xa, Xb}{Xa, Xb}

+ (P+
0 )−1θ̄Γ−Γa{Xa, θ}+∇0X

−
]
. (4.4.18)

Using the expansion of the covariant derivative in compact directions (4.4.15) we see that adding
this term corresponds to adding 2 ordinary total derivatives (a nonphysical gauge change) and a
term 2πP+

0 wA
λnλ′εrsφ

r
λφ

s
λ′ . This adds a term 2πnλP+

0 to the right hand side of the equation of
motion of the gauge field Aλ. Furthermore adding such a total derivative preserves the manifest
APD-invariance of the Lagrangian and its supersymmetry. An essential feature of compactification
of supersymmetric field theories is the appearance of central charges in the supersymmetry algebra.
Under nontrivial winding the boundary integrals in (3.5.49) may take nonzero values. In particular,
a short analysis shows that dβa and dβabcd are exact as real-valued forms, but dβab has a nontrivial
decomposition into harmonics if the transverse coordinates wind around compact dimensions,

∫

Σ

dβab =
∫

Σ

dXa ∧ dXb = 4π2nλ
anλb ≡ Zab ,

∫

Σ

dXa ∧ ψ = 4π2nλ
anλ− ≡ Za . (4.4.19)

These are integer multiples of (2π)2. They become the nonzero central charges in the supersym-
metry algebra:

{Q−α , Q−β }D = − 2(Γ−)αβP
+
0 ,

{Q+
α , Q

−
β }D = − (ΓaΓ+Γ−)αβP

a
0 − (ΓabΓ+Γ−)αβZab ,

{Q+
α , Q

+
β }D = 2(Γ+)αβHτ − 2(ΓaΓ+)αβZa . (4.4.20)

It is well-known that central charges ’lift’ the mass spectrum of a supersymmetric field theory.
This can be seen by defining the zero-mode supercharges Q+(0)

α = 2P a
0 Γaθ0, which generate su-

persymmetry transformations on the CM coordinates. These variables obey the algebra [58]

{Q+(0)
α , Q

+(0)
β } = (Γ+)αβ(P̃ a

0 P̃ 0a + 1
2ZabZ

ab) + 2(Γ+Γa)αβP̃
b

0 Zab , (4.4.21)

and they commute with the remaining part of the supercharges, Q+(1)
α = Q+

α −Q+(0)
α . The mass

operator for the winding supermembrane is defined as

M 2
τ = 2Hτ − P̃ a

0 P̃ 0a − 1
2ZabZ

ab . (4.4.22)

Subtracting the brackets of the CM-mode supercharges from the expression (4.4.20) yields the
commutator

{Q+(1)
α , Q

+(1)
β }D = (Γ+)αβM 2

τ − 2(Γ+Γa)αβ(Za + P̃ b
0 Zab) . (4.4.23)

Since the supercharges are Majorana spinors, the left hand side is equal to {Q+(1)
α , (Q+(1)

β )c}D,
which becomes a positive definite operator under quantisation. Hence we find for half of the spinor
indices that for a simultaneous mass-central charge eigenstate |φ〉

〈φ|M 2|φ〉 ≥ (Γa)αβ〈φ|Za + P̃ b
0 Zab|φ〉 . (4.4.24)
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So membrane states with two or more coordinates irreducibly14 winded cannot be massless. How-
ever, if only one target space direction is compactified, both Za and Zab are the zero operators and
the spectrum is not lifted. Note that this does not mean the spectrum of (irreducibly) wrapped
supermembranes becomes discrete, because also such configurations can grow string-like spikes
and there is no reason to believe that in this setting supersymmetry and zero-point quantum
fluctuations remove this property. In connection with matrix string theory this poses no problem:
viewing the membrane as limit of Dirichlet particles may even give a physical interpretation of a
continuous spectrum.

4.4.3 Compactifying the Matrix Model

How does compactification work in matrix theory? A matrix variable X is wrapped by imposing
gauge equivalence under a discrete set of translations along the unit matrix [83, 84],

U−1XU = X + 2πR1 . (4.4.25)

Here U is a unitary matrix and R is a constant bigger than zero, the compactification radius.
Taking the trace of both sides immediately leads to the conclusion that (excluding the trivial
representation) a finite-dimensional matrix representation cannot satisfy this winding criterium.
Moreover, elements proportional to the unit matrix are not included in the Lie algebras of U(N).
The condition (4.4.25) will be fulfilled by a set of linear operators on an infinite-dimensional vector
space, called the loop algebra of u(N) [85],

u(N)loop = C∞(S1, u(N)) , (4.4.26)

consisting of smooth mappings of the unit circle S1 in the complex plane into the unitary algebra.
The elements of the loop algebra may be written as the tensor product of a C-valued function on
S1 and a matrix in u(N). For Y1, Y2 ∈ u(N)loop, we define the loop algebra element [Y1, Y2] by

[Y1, Y2](ρ) = [Y1(ρ), Y2(ρ)] , (4.4.27)

where ρ ∈ [0, 2π) is the (real) angle parameterising S1. This turns uloop(N) into an infinite-
dimensional Lie algebra. The element U is considered to be a linear operator on the loop algebra
too and will be required to act unitarily on this space with respect to the inner product

〈Y1, Y2〉 =
∮
dρTr(Y1(ρ)Y ∗2 (ρ)) . (4.4.28)

These definitions now allow a solution for the condition (4.4.25): take V = uloop(N), and define
U,X ∈ End(V ) by

X(Y )(ρ) = 2πiR
∂Y (ρ)
∂ρ

+ [A, Y ](ρ) ,

U(Y )(ρ) = e−iρY (ρ) , (4.4.29)

where A is an arbitrary element in uloop(N). Note that U is an element of the loop group
C∞(S1, U(N)), acting on the loop algebra by left translation. More important is the appear-
ance of the operator X, whose first term is an outer derivation on the loop algebra: ∂ρ ∈
H1(u(N)loop; u(N)loop) represents a nonzero cohomology class. This fundamentally changes the
rôle of the compactified coordinate from a Lie algebra element to a derivation. However, we can
extend the loop algebra to include this derivation, obtaining the so-called affine algebra

ũ(N) = u(N)loop ⊕ C ∂

∂ρ
. (4.4.30)

14Irreducibly winded means there is no linear transformation on the bosonic coordinates which makes all (but
possibly one) winding numbers vanish. We shall discuss this requirement in more detail below.
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A more conventional way of looking at it is to consider a principal U(N)-bundle over the unit
circle: the unwrapped coordinates are sections of the associated adjoint bundle, while the winding
coordinate X defines a covariant derivative on the adjoint bundle with connection form (gauge
field) A. The generalisation of this procedure can be straightforwardly extended to compactifica-
tion on higher-dimensional compact spaces [84], adding more and more loop variables (although
only tori are considered because of calculational difficulties).

The simplest compactification of the matrix model is wrapping a single coordinate, say X9, around
a circle of radius R9. With a coordinate substitution ρ̃ = (2πR9q)−1ρ ∈ R/q−1Z, the brackets
with the compactified coordinate become

q[Xi, X9] 7→ i∂ρ̃X
i − q[A1, X

i] ≡ ∇1X
i , i = 1, . . . 8 ,

∇0X
9 7→ ∂0A1 − i∂ρ̃A0 − q[A0, A1] ≡ F01 , (4.4.31)

and similarly the bracket with matrix-valued spinors gets modified. Of course all field variables
become dependent of time and the circle parameter. The trace in the D-particle Lagrangian gets
replaced by the inner product (4.4.28) and one obtains the so-called matrix string Lagrangian

L = −πR9

∮
dρTr

[
− (∇0X

i)2 + (∇1X
i)2 − (F01)2 + θT (−∇0 + Γ9∇1)θ

+
q2

2
[Xi, Xj ]2 − θT Γi[Xi, θ]

]
. (4.4.32)

Wherever a square in the formula above, a (Euclidean) summation over repeated Latin indices is
understood. The Lagrangian above describes the low-energy effective behaviour of an ensemble of
N Dirichlet 1-branes (strings), since it is just super-Yang-Mills theory reduced to the worldsheet of
a string. Indeed, the Lagrangian above exhibits supersymmetry and the global U(N) symmetry of
the original model is extended to a full U(N) gauge symmetry: a map Ψ : C∞(S1, u(N)) −→ ΓTF
which acts on the fields as

ιΦ(Y )δX
a = [Y,Xa] , ιΦ(Y )δA0 = ∇0Y , ιΦ(Y )δA1 = ∇1Y . (4.4.33)

The classical vacuum, consisting of the Cartan subalgebra of uloop(N) of diagonal ρ-dependent
matrices, has a residual symmetry group U(1)loop × . . .× U(1)loop (N times).

The Lagrangian above was derived in [86] by exploiting T-duality rather then imposing the pe-
riodicity condition (4.4.25). The T-dual of a system of D-strings is an infinite number of copies
of the D-particle Lagrangian (4.2.11) on the real line and subsequently modding out the lattice
Z of the resulting gauge theory, where the winding direction is imposed to fulfill an additional
periodicity constraint as in (4.2.11). The infinite number of copies of D0-branes is described by
an infinite number of u(N) matrices Xa

n, θ
α
n where a = 1, . . . , 9, α = 1, . . . , 16 and n ∈ Z; these

degrees of freedom may equally be captured by infinite blocks of matrices Xa
nm, θ

α
nm satisfying

(Xa
nm)† = Xa

mn and (θα
nm)† = θα

mn and fulfilling the boundary conditions

Xa
nm = Xa

(n−1)(m−1) , θα
nm = θα

(n−1)(m−1) . (4.4.34)

Consequently, all information is carried by the matrices Xa
n ≡ Xa

n0 and θα
n ≡ θα

0n. The Lagrangian
of such a system of copies of D-particle ensembles is not simply taken the noninteracting sum of
the Lagrangians of the subsystems: one takes a Lagrangian in which the copies interact with each
other as if they were D-particles themselves; the bosonic part reads

L =
1
2q

Tr
[
(∇0X

a) n
m (∇0Xa) m

n − q2

4
(
(Xa) q

m (Xb) n
q

− (Xb) q
m (Xa) n

q

)(
(Xa) r

n (Xb) m
r − (Xb) r

n (Xa) m
r

)]
, (4.4.35)
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where summation over repeated indices is understood. Equivalently, one can obtain this model
by dividing the variables in the U(∞)-matrix model into blocks of size N × N and imposing
elements on the same diagonal to be equal. The winding of, say, the ninth direction is described
by modifying the conditions (4.4.34) for this matrix variable into

X9
nm =

{
2πR91N +X9

(n−1)(n−1) if n = m,

X9
(n−1)(m−1) if n 6= m . (4.4.36)

Substituting these conditions into the Lagrangian above yields exactly the Fourier transform of
the matrix string Lagrangian. Both approaches to the compactification of a matrix model are
rather ad-hoc and a natural formalism seems not to exist.

A solution of the compactification condition (4.4.25) was given by a set of operators acting on
the infinite-dimensional space of sections of a topologically trivial U(N)-bundle over the unit
circle. Such a solution however is not unique. Since the unit circle is not simply connected,
we might consider topologically nontrivial bundles, so-called twisted bundles, whose sections are
single-valued on the circle up to a (global) unitary transformation,

Xi(ρ+ 2π) = V Xi(ρ)V † . (4.4.37)

Since the eigenvalues on both sides of this equation are the same, V acts on diagonalised matrices
by a permutation of their eigenvalues (it is an element in the Weil group of U(N)). Hence
the twisted sectors can be distinguished into equivalence classes corresponding to the conjugacy
classes of the permutation group SN [87]. Where the vacuum of the untwisted theory generated
an ensemble of N closed strings of equal length, the twisted sectors are able to generate the full
Type II spectrum because arbitrary string lengths can be achieved, depending on the conjugacy
class. A particular sector is the full cyclic permutation of the N eigenvalues; for

Xa(ρ) =




xa
1(ρ) 0

xa
2(ρ)

. . .
0 xa

N (ρ)


 , (4.4.38)

this sector imposes the twisted boundary condition

xa
n(ρ+ 2πR) = xa

n+1(ρ) , xa
N (ρ+ 2πR) = xa

1(ρ) . (4.4.39)

This kind of configuration is called a long matrix string. In the limit N −→ ∞ the eigenvalue
functions may be ’glued’ together to form a smooth function from R/2πNR to U(1). Since
every permutation may be decomposed into small cycles, every sector’s Hilbert space is actually
the tensor product of smaller long string Hilbert spaces, where the length of these individually
wrapped strings is 2π times their winding number, the length of the cycle.

4.4.4 Hamiltonian Vector Fields from Affine su(N)

Wrapping a matrix model automatically introduces a continuous parameter in the symmetry group,
and as a consequence a new outer derivation on the (loop) algebra given by differentiation w.r.t.
this parameter. Observe that this is exactly what is needed to include harmonic vector fields in
the regularisation procedure of the supermembrane. The strategy to find a matrix representation
in the affine su(N) will be to deform the ideal XG

ν (Σ) and consistently project it into su(N)loop

and find a representation of the harmonic vector fields as (independent) linear combinations of the
outer derivations on the loop algebra such that the commutators among themselves are represented
as well. Let us take the Poisson algebra on the torus to illustrate this. As we have seen, for rational
values of the deformation parameter t, this algebra with rescaled brackets [ . , . ]t → t[ . , . ]t could
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2π
� �

2π

Figure 7: On the left: a graphical interpretation of the twisted sector of the N = 3 matrix string model representing
a long matrix string. On the right: a configuration in a twisted sector of the N = 8 matrix string representing
three strings of lengths 2π (top), 10π (middle) and 4π (bottom).

be consistently projected onto su(N), where N is the denominator of t. For t = 1/N the rescaled
deformation of the torus algebra in Fourier basis is

[Lm, Ln]∗ = 2 sin
(2π
N

m× n
)
Lm+n , [φr, Lm]∗ =

mr

N
Lm , [φ1, φ2]∗ = 0 , (4.4.40)

where r = 1, 2 and Lm denotes the symplectic gradient of a Fourier mode with wave vector
m ∈ Z2/N(Z ⊕ Z). Note that the last commutator differs in [88]. This comes from the fact
that the authors approximate the algebra of circle-valued functions, which is a central extension
of the algebra of Hamiltonian vector fields above (the zero in the third commutator representing
the zero vector field). It is however more convenient to choose the former because the there is
no notion of differential geometry in matrix models. Let σ̃r denote the circle-valued functions
winding one time around the cocycles Cr, which should satisfy gradν σ̃

r = φr = ∂r. The definition
of the Poisson bracket of such functions arises naturally from the Lie bracket of vector fields by
keeping the symplectic gradient a Lie algebra homomorphism. This implies gradν({σ̃1, σ̃2}) =
(2π)−2[∂1, ∂2] = 0. The bracket is therefore a constant. This constant can be determined using
the normalisation of the cocycles ϕλ,

∫

Σ

d2σ
√
w{σ̃1, σ̃2} =

∫

Σ

dσ̃1 ∧ dσ̃2 =
∫

Σ

ϕ1 ∧ ϕ2 = 1 , (4.4.41)

which determines this constant to be 1, provided
√
w is normalised. Rather than representing

(4.4.40) we shall seek a matrix representation of the star commutator algebra

[Lm, Ln]∗ = 2 sin
(2π
N

m× n
)
Lm+n , [σ̃r, Lm]∗ =

mr

N
Lm , [σ̃1, σ̃2]∗ =

1
N
. (4.4.42)

Let us now seek a mapping into affine su(N) based on the 2-torus. By this we mean the vector
space C∞(T 2, su(N))⊗⊕C∂1 ⊕ C∂2, equipped with the brackets

[gm(ρ1, ρ2)Tm, hn(ρ1, ρ2)Tn] = f k
mn gm(ρ1, ρ2)hn(ρ1, ρ2)Tk ,

[∂r, f
m(ρ1, ρ2)Tm] = ∂rf

m(ρ1, ρ2)Tm ,

[∂1, ∂2] = 0 , (4.4.43)

where f k
mn are the structure constants of su(N) and ρ1, ρ2 are the real angles parameterising the

torus. Analogously to the regularisation procedures mentioned before, we can only approximate
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the algebra (4.4.42) with affine su(N)⊕u(1) since we have to include the zero modes in the Poisson
algebra above. From previous sections we know that the ’t Hooft clock and shift matrices Ω1 and
Ω2 (cf. (4.2.49)) provide a representation of the central extended unitary algebra with sine-algebra
structure constants. One possibility of a Lie algebra homomorphism into affine su(N)⊕ u(1) with
two derivations is

Lm −→ eim1ρ1/R1eim2ρ2/R2 ⊗ ω−s1s2/2Ωs1
1 Ωs2

2 ,

σ̃1 −→ − iR1

N
∂1 − i

2R2
ρ2 ⊗ 1N ≡ D1 ,

σ̃2 −→ − iR2

N
∂2 +

i

2R1
ρ1 ⊗ 1N ≡ D2 , (4.4.44)

where we have denoted sr = mr mod N and ω is some N -th root of unity. The parameters R1

and R2 denote the two radii of the torus T 2 on which the unitary loop algebra is constructed. At
this stage, they can be completely absorbed in a rescaling of the torus parameters, but (as was
the case for the matrix string) they will become prefactors when we regularise the supermembrane
Lagrangian with the identifications above. The representation of the derivations differs from those
in [88]. Writing Dr = −(iRr/N)∂r + iVrsρ

s (summation over s), the bracket [D1, D2] = N−1

puts no restriction on the diagonal elements of V , while the off-diagonal are restricted to lie on
the real line defined by R1x + R2y = 1. In the Fourier basis of C∞(T 2,R), it is quickly seen
that the derivations ∂r induce a double grading on the algebra, and each eigenspace is isomorphic
to su(N). Were the identifications above only show that the regularised algebra of Hamiltonian
vector fields can be embedded in affine unitary algebras, it is shown in [74] that the former algebra
with only one harmonic vector field included coincides with C∞(S1, su(N))⊕ C∂1. As was noted
by Cederwall [67], the difficulty here is identifying the standard derivations of the affine special
unitary algebra, whose eigenspaces are isomorphic to ordinary su(N), with the harmonic vector
fields in the APD algebra. Because this correspondence is not trivial, the root system of the APD
algebra is ’slanted’ w.r.t. the root system of affine su(N).

4.4.5 1 + 0 Super Yang-Mills Theory from the Toroidal Supermembrane

With the results from the previous paragraph, it becomes a matter of substituting the generators of
the gauge algebra to find the matrix regularised theory for winding membranes (based on toroidal
spacesheets). We have gained even more: we are now able to include the harmonic vector fields
for the non-compactified supermembrane as well. The APD gauge field A = gradνω +A1(τ)φ1 +
A2(τ)φ2, becomes in the regularised theory

A −→ A0(ρ1, ρ2, τ) +A1(τ)D1 +A2(τ)D2 , (4.4.45)

where the affine algebra elements Dr are given in (4.4.44). This corresponds to a compactification
of the gauge field A0, the remaining component of the Yang-Mills gauge field upon dimensional
reduction. The expression above of the gauge field follows from the periodicity conditions

UrA(ρ1, ρ2, τ)U−1
r = A(ρ1, ρ2, τ) +

Rr

N
Ar(τ)1 , r = 1, 2 , (4.4.46)

where the action of the unitary loop group elements Ur is multiplication by the unitary matrix
eiρr

1N . We want to relate the resulting theory to a non-winding membrane, so we impose

UrX
aU−1

r = Xa , Urθ
αU−1

r = θα . (4.4.47)

Hence the embedding coordinates will take values in the su(N)loop-subalgebra of the affine algebra.
The matrix theory Lagrangian then becomes

L =
1
2q

∮
dρ1dρ2Tr

[
∇AX

a∇AXa − q2

2
[Xa, Xb][Xa, Xb] + θT∇Aθ + qθT Γa[Xa, θ]

]
, (4.4.48)

128



4 MATRIX REGULARISATION 4.4 Compactification

where the covariant derivative acts as

∇AX
a = ∂0X

a − iq

N

(
A1R1

∂

∂ρ1
+A2R2

∂

∂ρ2

)
Xa − q[A0, X

a] . (4.4.49)

This can be simplified by a rescaling of the torus coordinates, ρ̃r = −(N/qRr)ρr, at the cost of a
prefactor (q/N)2R1R2 in front of the Lagrangian. The Lagrangian exhibits the usual supersym-
metries of the original matrix model (4.2.13), with the transformation of the new gauge fields A1,
A2 trivial. The corresponding supercharges are integrated over the loop group torus,

Q+ = −q−1

∮
dρ1dρ2Tr

[
(∇AXaΓa + 1

2 [Xa, Xb]Γab)θ
]
,

Q− = −q−1

∮
dρ1dρ2Tr θ . (4.4.50)

More important is the extended gauge symmetry of the model (4.4.48), which corresponds to the
extended gauge symmetry of the supermembrane action on nontrivial spacesheet topologies. The
gauge theory is constructed such that there is a map Φ : Γ(C∞(T 2, su(N))⊕C∂1 ⊕C∂2,M

1) −→
ΓTF which satisfies LΦ(Y ) = dα. Writing for such a section of the gauge algebra bundle Y =
Y0(ρ1, ρ2) + Y1D1 + Y2D2, it acts on the matrix coordinates by

ιΦ(Y )δX
a = [Xa, Y ] = [Xa, Y0] +

i

N
(R1Y1∂1 +R2Y2∂2)Xa , (4.4.51)

and ιΦ(Y )δθ
α = [θα, Y ]. It acts on the gauge field A as ιΦ(Y )δA = ∇AY , or equivalently

ιΦ(Y )δA0 = ∂0Y0 − q[A0, Y0] +
iqR1

N
(A1∂1Y0 − Y1∂1A0)

+
iqR2

N
(A2∂2Y0 − Y2∂2A0)− q

N
(A1Y2 −A2Y1)1N ,

ιΦ(Y )δA1 = ∂0Y1 , ιΦ(Y )δA2 = ∂0Y2 . (4.4.52)

Notice the contribution to the zero mode of the gauge field due to winding of the section of
the gauge bundle Y . In the supermembrane theory this contribution is absent, which is again
a manifestation of the fact that the correspondence between the matrix theory and membrane
theory does not take these constants into account. As usual, the gauge fields are not dynamical
and should be taken on-shell when the transition to the Hamiltonian formalism is made. This
corresponds to a set of constraints on the other fields, which are nothing but the Euler-Lagrange
equations of A. This will amount to the Gauss-law constraint of the uncompactified matrix model,
extended by 2 global constraints coming from the extra vector potentials A1 and A2. The structure
of the symmetry group tells us these fields can only depend on time, so their equations of motion
should be integrated over the whole loop group torus,

ψ = [∇AX
a, Xa] + [θT , θ] = 0 ,

ψr =
∮

dρ1dρ2Tr
[∇AX

a∂rXa + θT∂rθ
]

= 0 , r = 1, 2 . (4.4.53)

where we have rescaled the spinor coordinates by a factor
√

2. The second and third constraints are
the matrix-regularised versions of the Noether generators of the area-preserving diffeomorphisms
along the two cocycles on the toroidal spacesheet. Note that a membrane theory with compactified
longitudinal coordinate X− is not generated , since this coordinate has no analog in the matrix
models (coming from a dimensional reduction of ten-dimensional SYM). The constraints above
ensure unique time evolution of a quantum mechanical state, governed by the Hamiltonian

H = q

∮
dρ1

∮
dρ2Tr

[1
2
P aPa +

1
4
[Xa, Xb][Xa, Xb]− 1

2q
θT Γa[Xa, θ]

]
, (4.4.54)
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where P a = q−1∇AX
a. In conclusion, the harmonic vector fields change the regularisation of the

supermembrane drastically, as for each independent spacesheet cocycle a new parameter should be
introduced. The question arises whether these vector fields, which are essentially artifacts of the
chosen space to model the membrane upon, can have such an impact. The answer lies in the way
the original matrix model is ’embedded’ in the theory above: upon 2 gauge choices one recovers
it! One can simply use the extended gauge symmetry to fix

A1 = A2 = 0 . (4.4.55)

This fixes the gauge parameters Y1 and Y2 in (4.4.52) and reduces the symmetry under the full
affine algebra to a symmetry under the loop algebra,

ιΦ(Y )δX
a = [Y0, X

a] , ιΦ(Y )δA0 = ∂0Y0 − q[A0, Y0] . (4.4.56)

Implementing this gauge fixing, the Lagrangian remains unchanged but the covariant time deriva-
tive reduces to the familiar expression ∇AX

a = ∂0X
a − q[A0, X

a]. Hence the gauge-fixed La-
grangian posses no longer derivatives in the spatial torus directions, and one can fix the system
to any point on the torus to describe the dynamics. More precisely, the extended gauge sym-
metry (4.4.52) consists of local (torus-position and time dependent) unitary transformations and
time dependent translations along the torus. The latter can be used to fix the gauge fields. The
gauge-fixed theory possesses a residual symmetry under global (time-independent) translations.
However, the absence of terms containing spatial derivatives which do not couple to the gauge
fields, cause the gauge-fixed Lagrangian to possess an extra local translation symmetry along the
torus, Π : ΓT (T 2) −→ ΓTF such that for a vector field ξ(ρ1, ρ2) on T 2,

ιΠ(ξ)δX
i(τ, ρ) = ξr(ρ)∂rX

i(τ, ρ) , ιΠ(ξ)δA0(τ, ρ) = ξr(ρ)∂rA0(τ, ρ) , (4.4.57)

and similarly it acts on the spinor matrices. A local translation symmetry as above allows a set
of gauge-fixing conditions

∂rX
a = ∂rθ

α = ∂rA0 = 0 . (4.4.58)

And consequently the gauge-fixed Lagrangian becomes the torus volume times the space-independent
integrand, the matrix model Lagrangian. The space-dependent translation invariance is expected
to originate from some space-dependent translation symmetry of the Lagrangian (4.4.48). Because
all space derivatives are coupled to gauge fields, one would proceed by letting the variations δΠ(ξ)Ar

to consist of the correct counter terms to cancel the space derivative variations. However, such
variations would be in contradiction with the constraint that these fields are space-independent.
Hence we restrict the translational vector field ξ such that no terms have to be canceled at
all. This is equivalent to letting Y1 and Y2 in the gauge transformations (4.4.52) to be space-
dependent too: this will only modify the transformation laws of the fields Ar. The restriction on
the (times-dependent) vector field Y r∂r on the torus comes from the preservation of the equations
∂1Ar = ∂2Ar = 0, yielding

(∂0 +A1∂̃1 +A2∂̃2)Wrs = 0 , Wrs = ∂̃rYs , (4.4.59)

where we have used the rescaled coordinates ρ̃r. Imposing the gauge-fixing conditions (4.4.55),
one quickly sees that this symmetry breaks up in time-independent translations with arbitrary
space-dependence, as was claimed above.

4.4.6 1 + 1 Super Yang-Mills Theory from the Toroidal Supermembrane

The embedding of the Lie algebras of Hamiltonian vector field in affine unitary algebras on tori
allows a straightforward regularisation method for winding supermembranes. The regularised
models will always yield a dimensionally reduced super Yang-Mills theory upon fixing the gauge
fields. Let us start with the single-wrapped toroidal membrane; we shall restrict ourselves to
configurations where the membrane coordinate X9 winds w1 times around the first homology
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loop. The regularised theory will be the torus matrix model of the previous paragraph, with the
exception of the ninth coordinate, which is imposed to be of the form

X9 −→ w1D1 +B , B =
∑

m∈Z2

X9
meim1ρ1/R1eim2ρ2/R2Tm mod (N) . (4.4.60)

The APD gauge theory action is regularised to

S =
1
2q

∫

M1
dτ

∮
dρ1

∮
dρ2Tr

[
(FAB)2 +∇AX

i∇AXi −∇BX
i∇BXi − q2

2
[Xi, Xj ][Xi, Xj ]

+ θT (∇A − Γ9∇B)θ + qθT Γi[Xi, θ]
]
, (4.4.61)

where the covariant derivative ∇A is given by (4.4.49) and we have replaced

∇BXi = q[Xi, X
9] = − iR1w1

N

∂

∂ρ1
Xi + [B,Xi]

FAB = ∇AX
9 = ∂0B − iq

N

(
A1R1

∂

∂ρ1
+A2R2

∂

∂ρ2

)
B − q[A0, B]− iw1qR1

N
∂1A0 +

qA2w1

N
1N .

The winding data is contained in the flux integral
∮

dρ1

∮
dρ2Tr[FAB ] = 4π2R1R2qA2w1 , (4.4.62)

which gives a nonzero contribution to the total momenta. Except for this contribution, there are
no other central charges which arise from compactifying a single matrix coordinate. In particular,
the mass spectrum is not raised by these winding configurations. The Lagrangian above exhibits
gauge invariance (4.4.52), where the B-field transforms as

ιΦ(Y )δB = −∇BY0 − iR1

N
Y1∂1B − w1

N
Y1 . (4.4.63)

Examining the local translational symmetries along the torus, one observes that the term (∇BX)2-
term breaks this symmetry down to local translations depending only on the ρ2-coordinate, satis-
fying

(∂0 +A2∂̃2)∂̃2Yr = 0 . (4.4.64)

Performing the gauge-fixing A1 = A2 = 0, the gauge symmetry breaks up in ρ2-dependent trans-
lations and (τ, ρ1, ρ2)-dependent unitary transformations. The local translational invariance now
only allows the gauge fixing

∂2X
i = ∂2θ

α = ∂2A0 = ∂2B = 0 , (4.4.65)

which further reduces the gauge group to (τ, ρ1)-dependent unitary transformations. The coordi-
nate ρ2 can be integrated out of the Lagrangian, giving a factor 2πR2 and a single integral; what
remains is (after some rescalings) exactly the matrix string Lagrangian (4.4.35).

4.4.7 1 + 2 Super Yang-Mills Theory from the Toroidal Supermembrane

As an introduction to the general case, consider the doubly-wrapped supermembrane. First sup-
pose that the ninth coordinate wraps around both homology cycles of the torus with winding
numbers w1 and w2. The matrix regularisation then becomes X9 −→ w1D1 + w2D2 + B. This
system is equivalent to the winding configuration above upon a linear transformation on the torus

(
ρ̃1

ρ̃2

)
=

(
w−1

1 −R2w2
R1w1

0 1

)(
ρ1

ρ2

)
, (4.4.66)
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provided w1 6= 0. If so, one simply interchanges the torus coordinates and will end up with matrix
string theory on a circle of radius R2. Note that with such a linear transformation comes a Jacobian
in front of the action and a redefinition of the gauge fields A1 and A2. On the other hand, suppose
both the eighth and ninth coordinate wrap around the first homology cycle: X8 −→ w8

1D1 + C
and X9 −→ w9

1D1 + B. Now let O denote the element in the transverse galilean group (which is
a symmetry of the action) which acts by a rotation in the X8 −X9-plane over an angle θ which
is determined by ( √

(w8
1)2 + (w9

1)2
0

)
=

(
cos θ sin θ
− sin θ cos θ

) (
w8

1

w9
1

)
. (4.4.67)

The resulting theory is equivalent to the matrix string, with winding number
√

(w8
1)2 + (w9

1)2
(this factor can then be scaled away). Finally, let us consider the general case

(
X8

X9

)
= W

(
D1

D2

)
+

(
B
C

)
, (4.4.68)

where W is a 2 × 2-matrix with integer entries. We can act independently from the left on W
with orthogonal transformations embedded in the super-Galilean group and from the right with
linear transformations on the loop algebra torus. This allows us to restrict ourselves to two classes
of winding configurations: if det(W ) = 0 (as was the case for the two examples above), we can
diagonalise W to the form diag(λ, 0), where λ may be assumed real and bigger than zero (as we
shall see below): the resulting regularised theory becomes the (untwisted) matrix string. If W
is invertible, we can diagonalise it to diag(λ1, λ2) where λ1 ≥ λ2 > 0 and the regularised theory
changes fundamentally; we call such configurations irreducible. The matrix model Lagrangian
becomes

L =
1
2q

∮
dρ1

∮
dρ2Tr

[
(FAB)2 + (FAC)2 − (FBC)2 + (∇AX

i)2

− (∇BX
i)2 − (∇CX

i)2 − q2

2
([Xi, Xj ])2

+ θT (∇A − Γ8∇B − Γ9∇C)θ + qθT Γi[Xi, θ]
]
, (4.4.69)

where now i runs from 1 to 7. The covariant derivatives are given by

∇BX
i =

iqR1λ1

N
∂1 + q[B,Xi] , ∇CX

i =
iqR2λ2

N
∂2 + q[C,Xi] , (4.4.70)

and the curvatures are

FAB = ∂0B − iq

N
(A1R1∂1 +A2R2∂2)B − q[A0, B] +

iqR1λ1

N
∂1A0 +

qλ1

N
A21N ,

FAC = ∂0C − iq

N
(A1R1∂1 +A2R2∂2)C − q[A0, C] +

iqR2λ2

N
∂2A0 − qλ2

N
A11N ,

FBC = − iq
N

(λ1R1∂1C − λ2R2∂2B) + q[B,C] +
qλ1λ2

N
1N . (4.4.71)

The transition to the Hamiltonian formalism is made by substituting P 8 by q−1FAB and P 9 by
q−1FAC . The Gauss constraint receives a Bianchi-identity contribution,

ψ = q[P i, Xi] + [θT , θ]−∇BFAB −∇CFAC , (4.4.72)

and the global constraints ψr receive contributions which are proportional to the components of
the Yang-Mills field,

ψr = 2π2i
( ∑

s=1,2

εrsRsλ
2
s

)
Ar +

∮
dρ1

∮
dρ2Tr

[
FAB∂rB+FAC∂rC+qP i∂rXi +θT∂rθ

]
. (4.4.73)
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The Hamiltonian takes the form

Hτ =
1
2q

∮
dρ1

∮
dρ2Tr

[
q2(P i)2 + (∇BX

i)2 + (∇CX
i)2 +

q2

2
([Xi, Xj ])2 − qθT Γi[Xi, θ]

+ θT (Γ8∇B + Γ9∇C)θ + (FBC)2
]
. (4.4.74)

The model above is nothing but super Yang-Mills theory dimensionally reduced to a torus; to see
this first break time-dependent translational invariance to fix the gauge

A1 = A2 = 0 . (4.4.75)

The residual translation invariance is global (independent of the coordinates (ρ1, ρ2)) because of
the covariant spatial derivatives in the Lagrangian. Subsequently rescale the torus coordinates
ρr 7→ (N/qRrλr)ρr and construct the vector field Aµ, µ = 0, 1, 2 from the gauge fields by setting
A1 = B and A2 = C. After these substitutions one obtains SYM reduced to the loop algebra
torus, with an additional constant term in the spacelike curvature FBC , resulting in a constant
magnetic flux, ∮

T 2
dxµ ∧ dxνTr[Fµν ] = 4π2qR1R2λ1λ2 . (4.4.76)

This nonzero constant is a direct consequence of the irreducibility of the winding configuration. It
is nothing but the central charge in the supersymmetry algebra, in accordance with the membrane’s
supersymmetry algebra bracket

{Q+
α , Q

−
β }D = −(ΓaΓ+Γ−)− 4π2R1R2(Γ89Γ+Γ−)λ1λ2 , (4.4.77)

where R1 and R2 are the compactification radii in the eighth and ninth direction of the target
space. Another essential feature of irreducible winding is the appearance of an energy gap in the
spectrum. The flat valleys of the classical potential of the transverse bosonic variables correspond
to directions in the Cartan subalgebra of the gauge algebra. For the non-winding membrane this
it was spanned by a set of Fourier modes depending on a single linear combination of the two
spacesheet coordinates and for the D-particle Lagrangian the set of diagonal matrices. In the
regularised theory above, the potential is modified with spatial covariant derivatives, which act
nontrivially on different modes in the Cartan subalgebra, causing the flat valleys to disappear (at
the classical level). Take for example the set L(m,0), m ∈ Z as a maximal commutative torus
in the Poisson algebra on the membrane spacesheet. These correspond the affine su(N) elements
eimρ1/R1⊗T(m mod N,0). Although the Lie bracket in the loop algebra vanishes as it is proportional
to the sine of the outer product of the indices, the space-like covariant derivative (∇BX

i)2 in the
Hamiltonian (4.4.74) contributes terms

q3

2N
λ2

1

∑

p,q∈Z,n∈EN

(Xi)pN+n(Xi)pN−n(pN + n)(pN − n)ei(p+q)Nρ1/R1 , (4.4.78)

where EN = {0, 1, . . . , N − 1} and (Xi)n are the Fourier components of the i-th matrix variable
w.r.t. the first coordinate. The potential is therefore seen to depend explicitly on these compo-
nents, and obviously no other choice of Cartan subalgebra removes this dependence. Using this
argument it is shown in [89] that all the modes get confined, i.e. the growth of zero-energy density
spikes is suppressed and the spectrum of the supermembrane becomes discrete. In [90] this result
was obtained by geometrical methods.

The results above allow a straightforward generalisation to membranes based on spacesheets of
arbitrary genera, with any number of embedding coordinates wrapping around the homology
cycles. Suppose g is the genus of Σ and let W denote the integer-valued (9×2g)-matrix capturing
the winding information, ∮

Cλ

dXa = 2πRaW aλ , (4.4.79)
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where no summation over a is understood. Because each (co-)homology cycle represents an outer
derivation on the Poisson algebra, this system is expected to allow a regularisation to C∞(T 2g,
su(N)) ⊕C∂1 . . .⊕ C∂2g, where the coordinates take the form

Xa −→W aλDλ +Ba . (4.4.80)

where the Dλ are constructed from the canonical derivations ∂λ such that the harmonic part of
the Lie algebra of Hamiltonian vector fields is generated:

[Dλ, TM ] = f N
λM TN , [Dλ, Dλ′ ] = Pλλ′ = f M

λλ′ TM , (4.4.81)

where TM are the generators of the unitary algebra spanned by the Toeplitz operators on the
Riemann surface and Pλλ is the matrix determined by the Toeplitz operator corresponding to the
hamiltonian vector field Φλλ′ = [φλ, φλ′ ]. To simplify the theory we have orthogonal transforma-
tions acting on Xa, and therefore acting from the left on W and invertible transformations on
the 2g-dimensional torus, acting from the right on the winding matrix. The following well-known
theorem [91] provides this simplification,

Theorem (Singular Value Decomposition) 4.5 Let A be a real m × n matrix with rank r.
Then there exists an m× n matrix of the form

X =
(

D 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
with D =




λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 0 . . . λr


 , (4.4.82)

where all λi are real and λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 and there exist an m ×m orthogonal matrix U
and an n× n orthogonal matrix V such that

A = UXV T . (4.4.83)

So if r = rank(W ) we can apply a Lorentz transformation V on the embedding coordinates and a
rotation in the covering space of the 2g-dimensional torus to obtain a regularisation

Xa −→ λaDa +Ba , 1 ≤ a ≤ r ≤ 9 ,
Xa −→ Xa , r < a ≤ 9 ,

A −→ AλDλ +A0 . (4.4.84)

since all the λi are nonzero, we can scale the loop algebra torus and put them equal to one. Note
that these simplifications can already be done at the level of the supermembrane by performing a
Lorentz transformation on the embedding coordinates and change of basis vectors in the harmonic
sector of the Lie algebra of Hamiltonian vector fields. Furthermore, the affine generators Dλ may
be replaced by the usual partial derivatives because the Cλ fields may be absorbed in the gauge
fields by redefining

Ba 7→ Ba + Ca , A0 7→ A0 +AλCλ . (4.4.85)

The matrix model Lagrangian becomes

L =
(N
q

)2g

(2qR1R2 . . . R2g)−1

∮

T 2g

d2gρTr
[
− 1

2
FµνF

µν − (∇µX
i)(∇µXi)− q2

2
([Xi, Xj ])2

− θT Γµ∇µθ + qθT Γi[Xi, θ]
]
, (4.4.86)

where µ = 0, 1, . . . r and i = r + 1, r + 2, . . . , 9 and T 2g is the torus with all radii equal to
2πN/q. The summation over µ is with respect to the metric in r-dimensional Minkowski space
with signature (−+ + . . .+). The covariant derivatives are given by

∇0X
i = ∂0X

i − iAλ∂λX
i − q[A0, X

i] , ∇aX
i = i∂aX

i + q[Ba, X
i] , (4.4.87)
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where a runs from 1 to r. The curvatures are

F0a = ∂0Ba + i∂aA0 + q[A0, Ba] + iAλ∂λBa , Fab = i∂[aBb] + q[Ba, Bb] . (4.4.88)

Now one uses the SU(N) gauge symmetry on the torus to fix Aλ = 0. The resulting theory
possesses local translation invariance in the directions ρr, ρr+1, . . . , ρ2g. This allows us to take all
the fields independent of these coordinates and integrate them out. We obtain

L ∝
∮

iT r

drρTr
[
− 1

2
(Fµν)2 − (∇µX

i)2 − q2

2
([Xi, Xj ])2 − θT Γµ∇µθ + qθT Γi[Xi, θ]

]
, (4.4.89)

where iT r denotes the imaginary r-dimensional torus with radii 2πiN/q and the connections and
curvatures are the usual Yang-Mills expressions,

∇µX
i = ∂µ + q[Bµ, X

i] , Fµν = ∂[µBν] + q[Bµ, Bν ] . (4.4.90)

So after some gauge fixing the theory of a rank-r wrapped supermembrane reduces to super-
Yang-Mills theory reduced to an r-dimensional imaginary torus. Note that we did not need the
explicit function basis and Poisson algebra deformation on the Riemannn surface to establish
this result, due to the following three results: (i) all the Hamiltonian vector fields represent
independent derivations not cohomologous to zero or each other, and extending the loop group
C∞(T k, su(N)) has k-dimensional second cohomology space, (ii) the general expression of the
regularised Hamiltonian vector field is by previous statement one of the 2g outer derivations on
C∞(T 2g, su(N)) plus some inner derivation, but the latter are irrelevant since they can always
be absorbed into the gauge fields, (iii) the Hamiltonian vector field only give rise to propagating
degrees of freedom along the torus if embedding coordinates wind around their respective homology
cycles, and consequently the gauge-fixed action is SYM reduced to a space which is determined
by the rank of the winding, as is explained above.

4.4.8 From Membranes to the Twisted Sectors

Finally we discuss how the regularised membrane is embedded in the twisted sectors of the gauge
theories above. Let us again start with the toroidal case Σ = T 2, governed by the generalised
torus star-commutator algebra

[Lm, Ln]∗ = 2 sin
(2πM

N
m× n

)
Lm+n , [σ̃r, Lm]∗ =

mr

N
Lm , [σ̃1, σ̃2]∗ =

1
N
. (4.4.91)

There exists an embedding of this algebra into the twisted sector of affine su(N). By this we mean
the space of functions f : R2 −→ su(N) which obey twisted boundary conditions:

f(ρ1 + 2πR1, ρ
2) = AdU (f(ρ1, ρ2)) , f(ρ1, ρ2 + 2πR2) = AdV (f(ρ1, ρ2)) , (4.4.92)

for some U, V ∈ SU(N), which may depend on f . We have already seen that these mappings,
together with the derivatives ∂r, r = 1, 2 meet the compactification conditions of the matrix
model. Obviously there is a subalgebra which, together with the derivatives, is isomorphic to the
deformed membrane algebra, namely the untwisted mappings (which have U = V = 1). With the
new sectors there appear more subalgebras which fulfill this property:

Lm −→ exp
( iM
N

(
m1

ρ1

R1
−m2

ρ2

R2

))⊗ ωs1s2/2Ωs1
1 Ωs2

2 , sr = mr mod N ,

σ̃r −→ Dr = − iRr

M
+ iVrsρ

s ⊗ 1N , (4.4.93)

where M and N are required to be co-prime, ω = exp(2πiM/N) and Ω2 = diag(1, ω, ω2, . . . ,
ωN−1). The matrix Vrs may be taken off-diagonal with entries laying on the real line

R1V12 +R2V21 =
M

N
. (4.4.94)
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The periodicity matrices U and V mentioned above are just ’t Hooft’s twist matrices:

Lm(ρ1 + 2πR1, ρ
2) = Ω1Lm(ρ1, ρ2)Ω†1 ,

Lm(ρ1, ρ2 + 2πR2) = Ω2Lm(ρ1, ρ2)Ω†2 . (4.4.95)

The twisted configurations above may be viewed as the ’N/M -th root’ of untwisted ones, as
Lm(ρ1 + 2πNR1/M, ρ2) = Lm(ρ1, ρ2 + 2πNR2/M) = Lm(ρ1, ρ2). Recall the conclusion of the
deformation theory of the Poisson algebra on the torus: for each rational value of the deformation
parameter there was a Lie algebra homomorphism to su(N)⊕u(1), where N was the denominator
of this rational value. The mappings above generalise this result to the full algebra of Hamiltonian
vector fields: deforming the subalgebra of gradient vector fields yields a Lie algebra homomor-
phism for each rational value of the deformation parameter to twisted affine su(N). The number
N , the denominator of the parameter, is also the maximal number of twists a mode can make,
but this is a purely algebraic result (it is the order of the Weil group, the permutation group of
the N eigenvalues).

One can now use the identifications above to build matrix models from membrane theory on the
torus. Without winding, the twisting is irrelevant as all the (ρ1, ρ2)-dependence drops out. If one
(or more) embedding coordinates wind around one of the homology cycles15 the winding matrix
rank is one, and one obtains matrix string theory, including its twisted sectors generating mul-
tiple D-strings with various lengths. Finally if there is irreducible double wrapping, one obtains
super-Yang-Mills reduced to a torus with twisted configurations, which is interpreted as an en-
semble of toroidal D-membranes of various areas. The generalisation to supermembranes based
on spacesheets of higher genus again lacks an explicit expression of the regularised modes. We
expect however a g-fold tensor product of the twisted matrix representations above, which allows a
mapping to all the twisted sectors of the Dp-brane theories for p ≤ 10. It seems that the maximal
twisting number may depend on the direction on the dual torus, which indicates a deformation
of the Poisson algebra with g independent parameters t1, . . . , tg, which reduces to twisted affine
unitary algebras if all the parameters are rational.

15or vice versa, one embedding coordinate winds around both cycles
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5 Conclusion and Outlook

For the lightcone gauge-fixed Green-Schwartz supermembrane [53] based on a toroidal spacesheet,
the regularisation procedure is explicitly calculable and discussed in the thesis; there is a consistent
mathematical procedure, based on a deformation of the Poisson algebra, together with a series of
projections onto su(N), regularising the theory to the corresponding matrix models. Because only
the Poisson algebra is approximated, which is a central extension the ideal in the Lie algebra of
Hamiltonian vector fields spanned by the gradient vector fields, the remaining generators have no
place in this procedure. These additional vector fields, originating from the nontrivial topology
of the spacesheet, are called harmonic vectors and they represent the outer derivations on the
Poisson algebra. Here appears the underlying reason why they cannot be regularised within a
finite N matrix model: the unitary algebras possess no outer derivations.

Super-Yang-Mills theory, dimensionally reduced from ten-dimensional Minkowski space to the time
line is a regularisation of the membrane in a particular gauge, such that the freedom generated by
the harmonic vector fields is fixed. This is a well-defined mapping of field theories as long as the
target space directions are noncompact. If there are circular directions in the embedding space,
coordinates may wind around them several times as they run along a noncontractible loop on the
spacesheet. The ’embedding’ coordinates of the membrane transform under the adjoint repre-
sentation of their symplectic gradient; for winding mappings into compactified target spaces, the
gradient is nontrivially decomposed into a gradient of an ordinary, real-valued function plus the
winding numbers times the respective harmonic vector fields. This poses a fundamental problem
for regularising wrapped supermembranes: variables take values in the Lie algebra which cannot
be approximated.

The solution comes from wrapping the matrix model; this is done upon postulating certain period-
icity conditions on the matrix variables [83], which turn out to be solvable only if one introduces
extra continuous variables, replacing su(N) by the loop algebra C∞(T 2, su(N)). The wrapped
matrix variables turn out to be represented by the independent outer derivations on this algebra,
the derivatives along the loop algebra torus T 2. As such, they exactly fulfill the requirements a
regularised Hamiltonian vector field should (so there is no deformation of the brackets involving
these vector fields). Another, perhaps more instructive way to compactify the matrix model to a
higher dimension is by taking the N −→ ∞ limit of the SU(N) matrix model and dividing the
matrices into blocks of size n × n. As such, one arrives at an interacting system of ensembles of
D-particles, which is the T -dual of a system of type IIA matrix strings. Imposing certain period-
icity conditions on the blocks yields the Fourier transform of the matrix string model [86].

The appearance of derivatives along the compactification torus allows us to regularise the su-
permembrane in noncompact target space without fixing the gauge freedom represented by the
Hamiltonian vector fields. This is established by requiring only the gauge fields representing this
symmetry to be compactified. The result is, as expected, equal to super Yang-Mills dimensionally
reduced to a point, upon a gauge fixing. This is because the derivatives along the torus are all
multiplied by gauge fields in the Lagrangian; subsequently one can fix the gauge and put these
gauge fields zero, such that the action contains no longer propagating degrees of freedom along the
torus, making it equivalent to a dimensional reduction to a single point on it. Secondly, the iden-
tification of the Hamiltonian vector fields makes it possible to regularise the theory constrained
by arbitrary winding configurations. Here the rank of the winding matrix determines the effective
dimension of the reduced super-Yang-Mills theory, as well as the possible appearance of a mass
gap in and the discreteness of the spectrum of the supermembrane [89, 90]. It should be noted
that the mapping from the gradient vector fields into the loop algebra is by no means surjective:
only Fourier modes of which the wave numbers and the powers of the ’t Hooft twist matrices differ
by multiples of N are generated. In this sense matrix model states may be used to approximate
membrane states, but not vice versa.
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For membranes based on spacesheets of higher genus, an explicit deformation of the algebra of
Hamiltonian vector fields is not known. There is however an axiomatical approach, using the
Bergman kernel to associate to each function a unitary operators on a Hilbert space of automor-
phic forms [78]. This can be viewed as a discrete sequence of deformations of the Poisson algebras,
where the parameter takes a countable number of values corresponding to the weights of these
automorphic forms. This may be embedded in a deformation with a continuous parameter by
considering the spaces of automorphic forms on a particular covering of the spacesheet, which by
non-compactness allows automorphic forms of arbitrary real weights [80]. If the deformation pa-
rameter takes integer values m, the deformation corresponds to the operator algebra of covariant
derivatives w.r.t. the Hamiltonian vector fields, acting on the holomorphic sections of the m-fold
tensor product of a Hermitian line bundle on the Riemann surface [65, 79]. Applied to the Poisson
algebra on the torus, it was shown that this regularisation method reduces to the noncommutative
deformation of the torus [67]. Without knowing the explicit regularisation, we can already state
that the genus-g spacesheet with harmonic vector fields should be regularised to a matrix theory
on a 2g-dimensional torus. Again, the rank of the winding matrix determines possible reduction
of this theory. This rank is at most 9 (as there are 9 transverse bosonic membrane coordinates),
so a membrane based on a spacesheet of genus greater than 9 with irreducible winding regularises
to ordinary 9-dimensional super-Yang-Mills theory.

It remains to be investigated what happens in the arbitrary-genus situation. The difficulty here
is the absence of a Fourier analysis on arbitrary Riemann surfaces. The deformation on the torus
can be induced by replacing the pointwise product of functions by the Moyal star product [67].
This leads to the consideration of gauge theories on noncommutative Riemann surfaces [92], which
for certain rational values of the noncommutativity parameter reduce to (twisted) matrix models.
Another outstanding problem is the application of the regularisation procedure to membranes in
curved superspaces [47]. Although under certain conditions on the background supergravity fields
the system can still be described by a gauge theory of area-preserving diffeomorphisms [47, 93],
many problems appear, such as the explicit dependence of the Lagrangian on the longitudinal
coordinate X−, and it is not known how matrix regularisation can be reconciled with general
target space covariance. These problems are closely related to the ones encountered when one
tries to compactify the matrix model to curved spaces [94, 95], as opposed to flat tori.
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