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Lecture 1: 2013-04-17

1 Motivation
Consider the functor A → Ω1

A, assigning to a commutative algebra A its module of
Kähler differentials. It only captures infinitesimal deformations, therefore it is too coarse
to capture all the deformation theory of A.
Idea: Left-derive this functor to get

A→ LA

where LA is the cotangent complex of A, which is a complex of A-modules. It captures
all the deformation theory.
For N a projective module, N⊗A− is exact!
Recipe:

i) Embed i : ModA ↪→ ChA, where ChA is the category of non-negatively graded
chain complexes. For N ∈ModA, the complex i(N) is concentrated at degree 0.

ii) Fact: For everyN ∈ModA, there is a complex P• ∈ ChA of projectives and a quasi-
isomorphism ϕ : P• → i(N), that is ϕ induces isomorphisms on the homology
groups.

iii) We can now define N⊗L
A − := P• ⊗A −. This is a much richer object.

The abstract key features of this construction are as follows. For a functor F : C→ D,
we would like to derive

• An embedding C ↪→ C ′, where C ′ is a suitable category that has some notion of
qis (quasi-isomorphism).

• An extension F ′ of F:

C D

C ′

F

F ′

• Some collection of objects P ⊆ Ob(C ′) well adapted to F.

• For all c ∈ C there should be a p ∈ P and a qis ϕ : p 7→ i(c).

We can then define LF(c) := F ′(p) and finally apply this toΩ1.
Recall that if

A→ B→ C
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is a sequence of algebras and algebra morphisms, then

Ω1
B/A ⊗B C→ Ω1

C/A → Ω1
C/B → 0

is an exact sequence of C-modules. If A → B → C are smooth morphisms, then the
sequence is also left exact. There seems to be some kind of analogy between projective
(modules) and smooth (morphisms).

What should C ′ be for AlgA? Quillen gave the answer: It should be C ′ = sAlgA, the
category of simplicial A-algebras.

Theorem 1.1 (Quillen). The category sAlgB is a model category.

2 Model categories
Model categories are abstract categories where homotopy theory works.

Definition 2.1 (Lift). Let

A X

B Y

f

i

g

p

be a commutative diagram in some category C. A lift is a morphism h : B→ X such that
the resulting triangles commute:

A X

B Y

f

i

g

p
h

Definition 2.2 (Retract). A morphism f : X→ X ′ is a retract of g : Y → Y ′ if there exists a
commutative diagram

X Y X

X ′ Y ′ X ′

f

i

i ′

g

r

r ′

f

such that r ◦ i = id and r ′ ◦ i ′ = id.

4



Definition 2.3 (Model category). Amodel category structure on a category C consists of
three classes of morphisms, weak equivalences ( '−→), fibrations (�) and cofibrations (↪→),
such that the following axioms hold.

1. Each class contains the identity and is closed under composition.

2. C has all limits and colimits.

3. Let f,g be composable morphisms. If two out of {g, f,g ◦ f} are weak equivalences,
so is the third.

4. Let f be a retract of g. If g is a cofibration, fibration or weak equivalence, then f is a
cofibration, fibration or weak equivalence, respectively.

5. In the diagram in Definition 2.1, a lift exists if
i) i is a cofibration, p a fibration and a weak equivalence
ii) i is a cofibration and a weak equivalence, p a fibration

6. Any morphism f : X→ Y can be factored as both

X Y

X ′

f

'

and

X Y

X ′

f

'

where both diagrams are commutative.

Definition 2.4 (Cofibrant and fibrant). Let C be a model category. Since the (empty) limit
and colimit exist, we get an initial object ∅ and a terminal object ∗. An object c ∈ C is
cofibrant if ∅→ c is a cofibration and fibrant if c→ ∗ is a fibration.

Definition 2.5 ((Co)fibrant replacement). For an object c, factor the morphism ∅ → c

and the morphism c→ ∗ as

∅ c c ∗

Q(c) R(c)

' '
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The object Q(c) is called a cofibrant replacement of c and R(c) is called a fibrant replace-
ment of c.

Example 2.6. The category Top. The three groups of morphisms are:

• Weak equivalences: weak homotopy equivalences, that is f : X → Y inducing
for all points x ∈ X bijections π0(X, x) → π0(Y, f(x)) and group isomorphisms
πi(X, x)→ πi(Y, f(x)) on the homotopy groups.

• Cofibrations: A continuous map i : A→ B is a cofibration if it is a retract of a cell
attachment.

• Fibrations: A continuous map p : X→ Y is a fibration if it is a Serre fibration.

Example 2.7. Let A be a ring and consider the category ChA of non-negatively graded
chain complexes.

• f : M• → N• is a weak equivalence iff it is a qis.

• i : M• → N• is a cofibration iff ∀n > 0 the map Mn → Nn is injective with
projective cokernel.

• p : M• → N• is a fibration iffMn → Nn is surjective ∀n > 1.

In particular:

• Cofibrant objects are exactly the complexes of projectives.

• Cofibrant replacements are exactly the projective resolutions.

• Every object is fibrant.

2.1 The homotopy category
Definition 2.8 (Cylinder object). Let ∇ be defined by the commutative diagram

∅ A

A A
∐
A

A

∇

id

id

A cylinder object C(A) for A ∈ Ob(C) is a factorization
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A
∐
A A

C(A)

∇

'

Roughly this corresponds to C(A) = A× [0, 1] in “normal” homotopy.

Definition 2.9 (Left homotopy). Let f : A → X and g : A → X. A left homotopy from f

to g with respect to a cylinder object C(A) for A is a map H : C(A) → X that fits in the
commutative diagram

A
∐
A C(A)

X

i

(f,g) H

The dual notion is of course a right homotopy, which is defined in terms of a path
object.

Definition 2.10 (Path object). Let ∆ be defined by the commutative diagram

X

X× X X

X ∗

id

id

∆

A path object P(X) for X is a factorization

X X× X

P(X)

∆

'

Definition 2.11 (Right homotopy). Let f : A→ X and g : A→ X. A right homotopy from
f to g with respect to a path object P(X) for X is a map H : A → P(X) that fits into the
commutative diagram
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A X× X

P(X)

(f,g)

H

Definition 2.12 (Homotopy category). The homotopy category Ho(C) of a category
C with respect to some class of morphisms W ⊆ Hom(C) is C[W−1], satisfying the
following universal property: There is a functor φ : C→ Ho(C) such that for all functors
F : C → D satisfying ∀f ∈ W : F(f) is an isomorphism, there exists a unique functor
F ′ : Ho(C)→ Dwith F = F ′ ◦ φ.

Lecture 2: 2013-04-24

Remark 2.13. For morphisms between cofibrant fibrant objects the notions of left and
right homotopy coincide. Hence we get an equivalence relation on morphisms and can
define the equivalence classes to be the homotopy classes of morphisms.

Definition 2.14. Let C be a model category. Then let CCf be the category with

• Objects the objects in C that are both cofibrant and fibrant.

• Morphisms the homotopy classes of morphisms in C.

Theorem 2.15 (Fundamental theorem of model categories). Let C be a model category,W
the set of weak equivalences and Ho(C) the homotopy category of C with respect toW. Then
F ′ : Ho(C)→ CCf is an equivalence of categories.

2.2 Quillen functors
Definition 2.16. Let C,D be model categories. A Quillen functor is an adjoint pair (F,G)
of functors F : C→ D and G : D→ C such that

i) F preserves cofibrations and weak equivalences between cofibrant objects.

ii) G preserves fibrations and weak equivalences between fibrant objects.

This means roughly that F is right exact and G is left exact.

Definition 2.17. Let (F,G) be a Quillen functor. The left derived functor of F is given by
LF(X) = F(Q(X)) where Q(X) is a cofibrant replacement for X. The right derived functor
of G is given by RG(Y) = G(R(Y)) where R is a fibrant replacement for Y.

Theorem2.18. Let (F,G) be aQuillen functor. ThenLF : Ho(C)→ Ho(D) andRG : Ho(D)→
Ho(C) is an adjoint pair.

Remark 2.19. You should think of the Hom and ⊗ functors as an example of these.
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3 Simplicial algebras
3.1 Simplicial sets – sSet

Definition 3.1. Let ∆ be the category with objects [n] = {0, . . . ,n} and the usual ordering
on this set and morphisms φ : [m]→ [n] that are order-preserving.

Example 3.2. We define two special examples of morphisms. Let di : [n− 1]→ [n] for
0 6 i 6 n be defined by

di(j) =

{
j, j < i

j+ 1, j > i

This morphism “skips” i. Additionally, let sj : [n+ 1]→ [n] for 0 6 j < n+ 1 be defined
by

sj(i) =

{
i, i 6 j

i− 1, i > j

This morphism “doubles” j.

Remark 3.3. Every φ ∈ Hom(∆) is a composition of sj and di.

Definition 3.4. Let C be a category. Its category of simplicial objects sC is the functor
category Fun(∆op,C).

Remark 3.5. There is a geometric realization functor | | : sSet → Top giving CW com-
plexes.

Definition 3.6. We define ∆n = ∆(−, [n]) = Hom(−, [n]) ∈ Fun(∆op, Set)

Remark 3.7. |∆n| is the n-simplex.

Definition 3.8. We set
∂∆n =

⋃
06i6n

di∆n−1 ⊂ ∆n

the boundary of ∆n (so |∂∆n| is the boundary of the n-simplex) and

∆nk =
⋃
i 6=k

di∆n−1 ⊂ ∆n

the k-th horn of ∆n.

Theorem 3.9. The category sSet is a model category with the following three classes of morphisms:

1. The weak equivalences are morphisms f : X→ Y such that |f| : |X|→ |Y| is a weak homotopy
equivalence.

2. The cofibrations are i : X→ Y such that in : Xn → Yn are monomorphisms ∀n > 1.

3. The fibrations are p : X → Y such that p has the left lifting property with respect to all
i : ∆nk → ∆n for n > 1 and 0 6 k 6 n.

The condition for fibrations is called the Kan condition.
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3.2 The model category of simplicial algebras sAlgA
Theorem 3.10 (Stealing along a right adjoint). Let (F,G) : C→ D be an adjoint pair and let
C have a model structure generated by cofibrations. Let I be the set of generating cofibrations
and J be the set of generating cofibrations and weak equivalences. Then f : X→ Y ∈ Hom(D)
is a weak equivalence if and only if G(f) is a weak equivalence and p : X→ Y ∈ Hom(D) is a
fibration if and only if G(p) is a fibration.
Assume further that G commutes with directed colimits and every cofibration with the left

lifting property with respect to all fibrations is a weak equivalence. Then D is a model category.

We now apply this to

sSet sMod sAlgA
for for

Free Mod Sym

Here “for” is short for the forgetful functor.

Theorem 3.11. The categories sModA and sAlgA are model categories with f : X→ Y a weak
equivalence (fibration) if and only if for(f) is a weak equivalence (fibration).

Theorem 3.12 (Dold-Kan or Dold-Puppe). The functor N : sModA → ChA given by

N(M)n =
Mn

s0Mn−1 + · · ·+ sn−1Mn−1

is an equivalence of categories.

4 The cotangent complex
Remark 4.1. Let A→ B ∈ sAlgA. ThenΩ1 applied levelwise givesΩ1

B/A ∈ sModB:

Ω1
B0/A0

Ω1
B1/A1

. . .

Definition 4.2. Let A→ B ∈ sAlgA and

A X B
'

be a cofibrant replacement (A is the initial object in sAlgA). Define LB/A = Ω1
X/A⊗XB ∈

sModB. Via the theorem we can regard it as a complex, called the cotangent complex of
A→ B.
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4.1 Quillen’s construction
Recall the following. Let A→ B ∈ AlgA andM ∈ModB. Then B⊕M ∈ AlgA/B is the
trivial square-zero extension of B byMwith multiplication

(b1,m1) · (b2,m2) = (b1 · b2,b1 ·m2 + b2 ·m1)

Definition 4.3. Let A→ C→ B ∈ AlgA/B andM ∈ModB. We set

DerA(C,M) = {D ∈ HomA(C,M) | D(c1c2) = c1D(c2) +D(c1)c2}

Definition 4.4. An object X in a category C is abelian if C(·,X) is naturally an abelian
group.

Lemma 4.5. DerA(C,M) ∼= HomAlgA/B(C,B⊕M)

Exercise 4.6. In AlgA/B, B⊕M is an abelian group object.

Lemma 4.7. The functor Φ : ModB → (AlgA/B)ab is an equivalence of categories. It
sendsM to A→ B⊕M→ B. Hence we have a fancy way to describe LB/A as adjoint of
inclusion in the following diagram:

(AlgA/B)ab A→ B⊕M→ B

AlgA/B ModB M

A→ C→ B Ω1
C/A ⊗ B

ab

incl.
'

Hence

HomAlgA/B(C,B⊕M) ∼= DerA(C,M)

∼= HomModC(Ω
1
C/A,M)

∼= HomModB(LB/A,M)

Lecture 3: 2013-05-08

Definition 4.8. Let B ∈ sAlgA. The category ModsB is the category of modules over B
i.e. M ∈ModsB is a simplicial abelian group plus a composition B×M→M such that
eachMi is a Bi-module and everything is compatible with the simplicial structure.

Remark 4.9. We have an inclusion AlgA ↪→ sAlgA, given by B 7→ i(B), where i(B) is the
following simplicial algebra:

B B B . . .
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Here all arrows are the identity.

Definition 4.10. Let B ∈ sAlgA and M ∈ ModsB. Define B ⊕M by applying trivial
square-zero extensions levelwise, i.e.

B⊕M = B0 ⊕M0 B1 ⊕M1 B2 ⊕M2 . . .

Definition 4.11. Let C ∈ sAlgA/B,M ∈ModsB. We saw that

DerA(C,M) = HomsAlgA/B(C,B⊕M)

are the derivations. We now define

RDerA(C,M) = HomHo(sAlgA/B)(C,B⊕M) = HomsAlgA/B(Q(C),R(B⊕M))

Lemma 4.12. The pair of functors

sAlgA/B ModsB
Ω1

−/A
⊗−B

B⊕−

is a Quillen pair.

Proof. Adjointness follows from levelwise adjointness. As for the Quillen pair property,
it is enough to check that B ⊕ − preserves fibrations and weak equivalences between
fibrant objects (as we are treating adjoint functors between model categories). Therefore
we can take the derived functors and obtain adjunction on the homotopy categories.

Theorem 4.13. The cotangent complex represents derived derivations, i.e.

RDerA(C,M) ∼= HomHo(ModsB)(LC/A ⊕C B,M)

Corollary 4.14. LB/A is well-defined in Ho(ModsB) i.e. independent of the choice of
cofibrant replacement.

Proof. Take B = C→ B the identity and apply the theorem. We see that LB/A represents
RDerA(B,M) on Ho(ModsB). By Yoneda it is well-defined.

4.2 Fundamental properties
We first recall on exact triangles (cofiber sequences). In topology we have the following
mapping cone construction:
Why the cone? It is meaningful in the homotopy category on the level of chain com-

plexes.
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Definition 4.15. Let f : M• → N• be a map of chain complexes ofA-modules. Remember
that they are non-negatively graded and the differential goes down. Then we define

cyl(f)n =Mn−1 ⊕Mn ⊕Nn

with differential

dcyl(f) =

dM idM −f
0 −dM 0
0 0 dN


We also define the cone

cone(f)n =Mn−1 ⊕Nn
with differential

dcone(f) =

(
−dM −f

0 dN

)
Definition 4.16. A null-homotopy for f : M• → N• is a map S : M → N[−1] such that
(dn ◦ Sn−1) − (Sn−2 ◦ dM) = f, i.e.

Mn Mn−1 Mn−2

Nn Nn−1 Nn−2

dM dM

dN dN

fn fn−1 fn−2sn−1 sn−2

We say that f,g : M• → N• are chain homotopic if f− g is null-homotopic.

Definition 4.17. Amap f : M• → N• is a chain homotopy equivalence if there is g : N• →
M• such that g ◦ f is chain homotopic to idM and f ◦ g is chain homotopic to idN.

Definition 4.18. A sequence X•
g−→ Y•

h−→ Z• in Ch(ModA) is a cofiber sequence if there
exists a diagram

X• Y• Z•

M• N• cone(f)

g h

f

a b c

such that a,b, c are chain homotopy equivalences and both of the small squares commute
up to homotopy.

Lemma 4.19. Every split exact sequence is a cofiber sequence.

Proof. Consider
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X• Y• Z•

X• Y• cone(f)

f g

s

f

id id φψ

where φ(z) = (sdZ − dZs, s) and ψ(x,y) = g(y).

Remark 4.20. A cofiber sequence X• → Y• → Z• gives rise to a long exact sequence in
homology

· · · → H1(X•)→ H1(Y•)→ H1(Z•)→ H0(X•)→ H0(Y•)→ H0(Z•)→ 0

Remark 4.21. If X• → Y• → Z• is a cofiber sequence, then X• → Z• → X•[1] is a cofiber
sequence as chain homotopy to X• → cyl(f)→ cone(f).

Proposition 4.22. Let A → B → C be a sequence of morphisms of algebras. Then we have a
cofiber sequence

LB/A ⊗B C→ LC/A → LC/B
in ModsC ' Ch(ModC).

Proof. Choose cofibrant replacements P of B and P ′ of C and set Z = P ′ ⊗P B. Then we
get the following diagram (use the 2 out of 3 property):

Z

A B C

P P ′

' '
'

'

Observe that the pushout of a weak equivalence in sAlgA is again a weak equivalence.
This is called left-properness of sAlgA.

From the diagram we get a split short exact sequence

Ω1
P/A ⊗P P

′ → Ω1
P ′/A → Ω1

P ′/P (1)

Applying −⊗P ′ C yields

Ω1
P/A ⊗P C→ Ω1

P ′/A ⊗P ′ C→ Ω1
P ′/P ⊗P ′ C

On the other hand,
Ω1
P ′/P ⊗P ′ C

∼=−→ Ω1
Z/B

14



and applying −⊗Z C here yields

Ω1
P ′/P ⊗P ′ C

∼=−→ Ω1
Z/B ⊗B C

Thus (1) is
LB/A ⊗B C→ LC/A → LC/B

Lecture 4: 2013-05-15

Lemma 4.23. Let A→ B be a morphism in AlgA. Then H0(LB/A) ∼= Ω1
B/A.

Proof. Consider the factorization

A P B
'

Ω1 is a left adjoint, therefore it preserves colimits (remember RAPL). Therefore

Ω1
B/A = Ω1

−/B(lim−→P1 ⇒ P0) = lim−→(Ω1
P1/B

⇒ Ω1
P0/B

) = H0(LB/A)

Corollary 4.24. LetA→ B→ C bemorphisms of algebras. There is a long exact sequence

· · · →H1(LB/A ⊗B C)→ H1(LC/A)→ H1(LC/B)→
Ω1
B/A ⊗B C→ Ω1

C/A → Ω1
C/B → 0

4.2.1 Base change

Recall the base change property for Kähler differentials. For a cartesian diagram

A A ′

B B ′ = B⊗A A ′

we get an isomorphism
Ω1
B/A ⊗B B

′ ∼=−→ Ω1
B ′/A ′

Even without the cartesian property, a commutative diagram

A A ′

B B ′

yields a morphism
LB/A ⊗B B ′ → LB ′/A ′

which is constructed as follows. First we factor A→ B over P and get the diagram

15



A A ′

P A ′ ⊗A P P ′

B B ′ B ′

' '

This gives us

Ω1
A ′⊗AP/A ⊗A⊗AP P

′ Ω1
P ′/A ⊗P B

LB/A ⊗B B ′ LB ′/A ′

Theorem 4.25 (Base change theorem for flat morphisms). Let

A A ′

B B ′ = B⊗A A ′

g

f f ′

g ′

be a cocartesian diagram of algebras. Assume that either f or g are flat. Then

LB/A ⊗B B ′ → LB ′/A ′

is an equivalence.

Proof. Without loss of generality, we may assume g to be flat. Then we get a commutative
diagram

A A ′

P P ⊗A A ′

B B ′

'

g

where the weak equivalence comes from the flatness property of g. By base change for
Ω1 we get

Ω1
P/A ⊗P (P ⊗A A ′)

'−→ Ω1
P⊗AA ′/A ′

16



Now apply −⊗P⊗AA ′ B ′ which yields the equivalence

LB/A ⊗B B ′
'−→ LB ′/A

Remark 4.26.

• TheΩ1
P/A are simplicial P-modules and a complex, not just modules.

• Let P ∈ sAlgA,M ∈ModsP. ThenMi is a Pi-module, so in particular an A-module.
ThereforeM ∈ sModA ∼= Ch(ModA).

• Underlying the simplicial stuff is always a chain complex.

4.2.2 Localization

Geometrically, if U ↪→ X is an open embedding, thenΩ1
U/X = 0 because the tangents to

U are the same as those to X. We get an algebraic analogue for the cotangent complex:

Proposition 4.27. Let S ⊆ A be a multiplicatively closed set, B = S−1A. Then LB/A ' 0.

Proof. Consider the commutative diagram

B = B⊗A B B

B A

By base change, we have

LB/A = LB/A ⊗B B
'−→ LB/B = 0

4.2.3 Mayer-Vietoris sequence

If

B X

C Y

is a cocartesian diagram of A-algebras (so Y = X⊗B C), then we have the sequence

Ω1
B/A ⊗B Y → (Ω1

X/A ⊗C Y)⊕ (Ω1
C/A ⊗C Y)→ Ω1

Y/A → 0

The geometrical interpretation is simply that the (relative) tangent space of a product
(over a point) is the direct sum of the tangent spaces, in formulas

TX×X = TX ⊕ TX, TX/Y×X/Y = TX/Y ⊕ TX/Y

We will now derive the same formula for the cotangent complex.

17



Proposition 4.28. Let

B X

C Y

g

f

be a cocartesian diagram of A-algebras (i.e. Y = X⊗B C) with either f or g flat. Then we have a
cofiber sequence (which is the same as an exact triangle)

LB/A ⊗B Y → (LC/A ⊗C Y)⊕ (LX/A ⊗X Y)→ LY/A

Proof. As usual (take a cofiber replacement . . . ).

Remark 4.29. If we replace

A B ′

B B⊗A B ′

by the derived tensor product

A A ′

P P ⊗A A ′

B

'

with P ⊗A A ′ := A ′ ⊗L
A B, then base change and Mayer-Vietoris hold without flatness

assumptions.

Recall that f : A→ B is formally étale if for every square zero extension T ′ → T and all
diagrams

T B

T ′ A

f
h

h exists and is unique.
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Theorem 4.30. If f : A→ B is formally étale, then LB/A ' 0.
Proof. Consider the following diagram:

B

B⊗A B B

B A

f

f

q

q

i

id

id

Since f is étale, f is flat and i is a localization morphism (geometrically an open embed-
ding). Therefore we can use flat base change:

LB/A ⊗B (B⊗A B)
'−→ LB⊗AB/B

Now we use the transitivity triangle / cofiber sequence for the composition i ◦ q:

LB⊗AB/B ⊗B⊗AB B→ LB/B
=0
→ LB/B⊗AB

Remember that if X→ Y → Z is a cofiber sequence, then Z[−1]→ X→ Y is, too. Also,
if X → Y → 0 is a cofiber sequence, then X ' Y, i.e. X and Y are quasi-isomorphic.
Therefore we get

LB/B⊗AB[−1] '−→ LB⊗AB/B ⊗B⊗AB B
But the first term is ' 0 since i is a localization morphism and the second term is

LB⊗AB/B ⊗B⊗AB B ' LB/A ⊗B (B⊗A B)⊗B⊗AB B ' LB/A
We used in the proof that you can just pass back and forth between simplicial B-modules
and (non-negatively graded) chain complexes.

Remark 4.31. If f is formally étale, thenΩ1
B/A = 0. The converse is not true! But we will

see later that f is formally étale if and only if LB/A ' 0 and f is finitely presented.
We see yet again that the cotangent complex is a much more powerful invariant. Here

it can detect étaleness.
Lecture 5: 2013-05-22
Here are some references.
• Introduction to model categories: Dwyer-Spalinsky – Homotopy theory and model

categories. It is contained in the handbook of algebraic topology or available from
the homepage of William Dwyer.

• Cotangent complex and simplicial algebras: Goerss-Schemmerhorn – Model cate-
gories and simplicial methods. Available on the arXiv.

• Also good: The original article by Quillen – On the (co)homology of commutative
rings. It appeared in some book.
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5 Deformation theory
Today we start with real deformation theory. A (not very readable) reference is “Complex
cotangent et déformations” by Illusie. It appeared as a Springer Lecture Notes book,
available at the library.

5.1 Motivation
We give some motivational thoughts first.

The key thing for deformation theory is the extension of theΩ1-sequence to the left.
We will see this by considering the 2 central problems in deformation theory.

5.1.1 First problem: Kodaira-Spencer theory

Geometric situation LetX be a smooth projective variety over k = C,X→ Spec(k) = ∗.
We deform X over a base S. Let X be the deformation, that is we have a cartesian diagram

X X

∗ S

flat

Question: If we take a slightly bigger base S ′, can we extend the deformation? Given
a square-zero extension S ↪→ S ′ (given by an ideal sheaf of S in S ′ with I2 = 0) and the
diagram

X

S S ′

is it possible to find X ′ such that

X X ′

S S ′

is cartesian?
Answer (in the 60s, before Quillen): There exists a class α ∈ H2(X, TX/S ⊗ I) such that

α = 0 if and only if X ′ → S ′ exists and makes the diagram cartesian. Here TX/S is the
relative tangent sheaf. The set of solutions is then a torsor over H1(X, TX/S ⊗ I) if this set
is not empty.
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Algebraic situation We can instead do the same without all assumptions, purely
algebraically. Here we start from a diagram in the category of algebras

B

I A ′ A
g

f

with f flat and g a square-zero extension.
Question: Does there exist a commutative diagram

B ′ B

A ′ A

such that B ′ ⊗A ′ A ∼= B?
Answer: There exists a class α ∈ Ext2(LB/A, I ⊗A B) such that α = 0 if and only if

such a B ′ exists and makes the diagram cartesian. The set of isomorphism classes of
solutions is then a torsor over Ext1(LB/A, I⊗A B).
Remark 5.1. In practice (with real examples) it can be very complicated to get a handle
on this α. Therefore the theory is most useful if we know Ext2 = 0, for instance if LB/A
is small, e.g. concentrated in degree 0.
Remark 5.2. Illusie does everything with topoi, so that globally he doesn’t need to
concern himself with gluing problems.

5.1.2 Second problem: Lifting morphisms

Geometric situation Here we pose the following Question: Given a commutative
diagram

T X

T ′ Y

f

where T ↪→ T ′ is a square-zero extension, is there a lift h : T ′ → X, making both triangles
commutative? The most important special case (e.g. for moduli problems) is

Spec(A) X

Spec(A ′) Spec(k) = ∗
∃h?
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where A,A ′ are Artinian local algebras. Often we want to know how coherent sheaves
deform under thickening of points. Are we sitting at a smooth point of our moduli space?
The connection with the diagram is the following:

Definition 5.3 (Smoothness according to Grothendieck). By definition, f : X → Y is
smooth, if for all test diagrams

T X

T ′ Y

h

with T → T ′ a square-zero extension, the lifting h exists.

Remark 5.4. In general, this concept of smoothness differs from regularity.

Picture it like this: For a square-zero extension T → T ′, both T and T ′ have the same
underlying topological space. We may think of square-zero extensions as a thickening
up, adding a little bit more nilpotent stuff. For points, you can reduce to the case of
Artinian local algebras.

Answer: We will later see that there exists a class α ∈ Ext1(p∗LX/Y , I) such that α = 0
if and only if h exists. The set of solutions is a torsor over Ext0(p∗LX/Y , I). Here I is the
ideal of the square-zero extension.

Algebraic situation Once again we have theQuestion: For a commutative diagram

T B

T ′ A

f∃h?

with T ′ → T a square-zero extension, is there a lift hmaking the diagram commutative?
Answer: There exists a class α ∈ Ext1(LB/A ⊗B T , I) such that α = 0 if and only if h

exists and the set of solutions is a torsor over Ext0(LB/A ⊗B T , I).

5.1.3 Discussion

So we have this wonderful machine (L) that takes difficult algebraic problems and
transforms them into simple homological algebra. Why does it work? Why don’t the
Kähler differentials suffice?
This is the key point of the lecture. The reason is that the cotangent complex classifies

square-zero extensions, i.e. to give a square-zero extension of A-algebras

I→ B ′
ϕ−→ B
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with kernel I is the same as to give a morphism

LB/A → I[1]

where I[1] is the embedding of the kernel in ChA, degree-shifted by 1.
So there are two things to remember from this lecture: First, right adjoints preserve

limits (RAPL) and second, deformation theory is all about square-zero extensions and L
classifies them. An example for this, in the case of the second problem (lifting): To the
diagram

T B

T ′ A

I

f

g

f ′

of algebras corresponds the diagram of complexes

LB/A LT/A

I[1]
α ! f ′

where α ∈ Ext1(LB/A, I). The map LB/A → LT/A is the derivative of g.
We will now go on to prove all this. There we have our program for the next 2–3 weeks.

5.2 Square-zero extensions give derivations
Definition 5.5 (Square-zero extension). Let ϕ : B̃ → B be a surjective morphism of
A-algebras, I = kerϕ. We say ϕ is a square-zero extension, if i · i ′ = 0 for every i, i ′ ∈ I.
This is equivalent to I2 = 0 or to the commutativity of the diagram

I⊗B̃ I I

0

m

where the multiplication mapm is given by i⊗ i ′ 7→ i · i ′.

Lemma 5.6. Let ϕ : B̃→ B be a square-zero extension, I = kerϕ. By b · i := b̃ · i, where
ϕ(b̃) = b, we get a well-defined B-module structure on I.

Proof. By calculation.
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Definition 5.7 (Trivial square-zero extension). A square-zero extension is called trivial,
if there exists s : B→ B̃

B̃ B

s

ϕ

such that ϕ ◦ s = idB. By the splitting lemma, it follows that B̃ ∼= B⊕ I.

Lemma 5.8. Let I → B̃
ϕ−→ B be a square-zero extension and d ∈ DerA(B, I). Then

f : B̃→ B̃, defined by b̃ 7→ b̃+ dϕ(b̃), is an automorphism of B̃.

Proof. We only check that it is an algebra homomorphism.

f(b̃) · f(b ′) = (b̃+ dϕ(b̃)) · (b ′ + dϕ(b ′))
= b̃b ′ + b̃dϕ(b ′) + b ′ dϕ(b̃) + 0
= b̃b ′ +ϕ(b̃)dϕ(b ′) +ϕ(b ′)dϕ(b̃)
= b̃b ′ + d(ϕ(b̃)ϕ(b ′))
= f(b̃b ′)

Lemma 5.9. Let

I B̃ B

s

s ′

be a trivial square-zero extension with two sections s and s ′. Then s− s ′ ∈ DerA(B, I).

Proof. Exercise.

In summary, we have proved the following:

Proposition 5.10. Let I→ B̃
ϕ−→ B a trivial square-zero extension. ThenAut(ϕ) ∼= DerA(B, I).

Here an element of Aut(ϕ) is an automorphism α of B̃ with ϕ = ϕ ◦ α.

Remark 5.11. Here are just some other stupid ways of formulating the preceding lemma:

Aut(ϕ) ∼= DerA(B, I)
∼= HomModB(Ω

1
B/A, I)

∼= HomChA(Ω
1
B/A, I)

∼= Ext0
ModB(Ω

1
B/A, I)

Remark 5.12. Since the automorphism group of a trivial square zero extension is isomor-
phic to Ext0(ΩB/A, I), it is very tempting to think that isomorphism classes of general
square-zero extensions should correspond to Ext1(ΩB/A, I). However, this is not true!
ΩB/A again fails to do the job.
It only becomes true if we replaceΩ1

B/A by LB/A.
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5.3 Derivations give square-zero extensions
Let α ∈ Ext1(Ω1

B/A, I). It represents a morphism η : Ω1
B/A → I[1] (caution: We are being

sloppy about the categories we’re working in and probably have to choose resolutions
and so on). In the earlier lectures we proved

HomModsB(Ω
1
B/A, I[1]) ∼= HomsAlgA/B(B,B⊕ I[1])

We can form the fiber product (cartesian diagram)

Bη B

B B⊕ I[1]

f

d0

η

where d0 is the trivial derivation, given as the section B→ B⊕M, b 7→ (b, 0) of the map
B⊕M→ B. We now claim: f is a square-zero extension.

Lemma 5.13. Bη is a discrete algebra, i.e. Hi(Bη) = 0 for all i > 1.

Proof. The diagram

Bη B

B B⊕ I[1]

f

d0

η

is a fiber product of chain complexes of ModB, which is an abelian category, therefore
we get an exact triangle

Bη → B⊕ B→ B⊕ I[1]

Here is a part of the corresponding long exact sequence in homology:

H2(B⊕ I[1])→ H1(Bη)→ H1(B⊕ B)→ H1(B⊕ I[1])→ · · · → H0(B⊕ I[1])

Since B is concentrated in degree 0 and I[1] is concentrated in degree 1, we have H2(B⊕
I[1]) = 0 and H1(B⊕B) = 0 and it follows H1(B

η) = 0. The higher homology groups are
0 by a similar argument.

Remark 5.14. If I f−→ B
ϕ−→ C is a morphism in sAlgA, I = kerϕ (taken level-wise), then

there is a multiplication mapm : I⊗B I→ I, given by

I⊗B I
id⊗f−−−→ I⊗B B ∼= I
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Definition 5.15 (Square-zero extension). Let ϕ : B→ C a morphism in sAlgA, levelwise
surjective. We call ϕ a square-zero extension, if the diagram

kerϕ⊗B kerϕ kerϕ

0

m

is commutative.

Lecture 6: 2013-06-05
Last time we made the statement that (infinitesimal) deformation theory is equivalent
to understanding square-zero extensions. We had the problem of lifting morphisms,
whether there is

Spec(A) X

Spec(A ′) Spec(k) = ∗
∃h?

for all local artinian k-algebrasAwith residue field k and square-zero extensionsA ′ → A.
We say again that this can be very hard to check. Spec(A) is never a variety, except
when it is a field. These objects are not in itself very interesting. Basic examples are
Spec(k[x]/x2), which describes first-order deformations of the point in one direction and
Spec(k[x]/x3) which describes second-order deformations. Sometimes it is enough to
check all Spec(k[x]/xn) (called curvilinear square-zero extensions), but the assumptions
non X etc. for this to work are horrible. The condition on X is called T 1.

Our goal is therefore to show that LB/A classifies square-zero extensions, i.e.

ExalcommA(B, I) ' Ext1(LB/A, I) = HomD(ModB)(LB/A, I[1])

The first objects has its name from french “extensions algèbres commutatifs”. Isomor-
phisms of square-zero extensions are similar to group extensions:

I B ′ B

I B ′′ B

∼=

How does this equivalence work? Given B ∈ sAlgA and a morphism η : Ω1
B/A →M[1]

of B-modules this corresponds to η : B→ B⊕M[1] and we know

HomModsB(Ω
1
B/A,M[1]) ∼= HomsAlgA /B(B,B⊕M[1]) =: DerA(B,M[1])

Then we can form the fiber product (what kind of fiber product?):
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Bη B

B B⊕M[1]

φ

η

s0

where s0 is the zero derivation b 7→ (b, 0). We now claim that Bη → B is a square-zero
extension andM = kerφ.

Remark 5.16. Consider morphisms I ψ−→ B
φ−→ C in sAlgA where I = kerφ. Then we

have a multiplication map

m : I⊗B I
id⊗φ−−−→ I⊗B B

∼=−→ I

Definition 5.17. A morphism B
φ−→ C in sAlgA is called square-zero extension if the

multiplication mapm : I⊗B I→ I factors through 0.

Proposition 5.18. Let B ∈ sAlgA and η : Ω1
B/A → M[1] be an element of DerA(B,M[1]).

Then Bη φ−→ B is a square-zero extension.

Proof. The proof was messed up and complete nonsense. Wewill try again next time.

The upshot is thus: The functor

Φ : Ω1
B/A\ModsB → sAlgA /B

factors over the square-zero extensions. By A\C we denote the under category C under
A with objects A→ B, the dual notion to the more familiar over (or comma) category
C/A. We want an adjoint functor in the other direction.

Definition 5.19. Define a functor Ψ : sAlgA /B→ Ω1
B/A\ModsB by sendingA→ B→ C

toΩ1
B/A → Ω1

B/C.

Remark 5.20. Technically the category Ω1
B/A\ModsB starts in degree 1. It is a pain to

show this is a model category.

Lemma 5.21. The functors Ψ and Φ are an adjoint pair, i.e. Ψ is left adjoint to Φ.

Proof. Only a sketch, the proof is very boring. We have to show

HomΩ1
B/A

\ModsB(Ω
1
B/A,M[1]) ∼= HomsAlgA /B(C,Bη)

Consider the diagram
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C

Bη B

B B⊕M[1]

φ

s0

f

g

h

Giving f is the same as giving g,h. SinceΩ1 represents derivations, this is the same as

Ω1
C/A ⊗C B Ω1

B/A

M[1]

0

TheΩ give an exact sequence so this is the same as

Ω1
B/A Ω1

B/C

M[1]
!

Here we have the morphism that we wanted.

Lemma 5.22. Even more is true: The functors Ψ and Φ are equivalences of categories
and form a quillen pair.

Proof. Since cofibrations are hard objects to deal with, we show something about weak
equivalences and fibrations. It suffices to show that Φ preserves fibrations and weak
equivalences. Then automatically it preserves cofibrations. We didn’t prove this (it
follows from stealing), but it’s true.
Let U : sAlgA /B → s(ModA) be the forgetful functor. It is a right adjoint, so it

preserves limits. So f is a fibration (respectively a weak equivalence) if and only if U(f)
is. Now we know that f is a fibration if and only if it is surjective. Let

Ω1
B/A

M[1] N[1]

θη

Since
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Bη B

B B⊕M[1]

is a pullback,

U(Bη) U(B)

U(B) U(B⊕M[1])

is a pullback in sModB (since RAPL) which is an abelian category. Therefore

0→ U(Bη)→ U(B)⊕U(B)→ U(B⊕M[1])→ 0

is an exact sequence. We now drop the U from the notation. We get the following
diagram with exact rows:

0 Bη B⊕ B B⊕M[1] 0

0 Bθ B⊕ B B⊕N[1] 0

0 0 0

Φ(f) id id⊕ f

where the cokernels are exact too, therefore 0. This shows Φ(f) is surjective, hence Φ
preserves fibrations.

For weak equivalences, we consider the same diagram with f a w.e., then we have to
show Φ(f) is a quasi-isomorphism. This corresponds to the cone being zero. Instead of
the cokernel, we therefore take the cones, they are ' 0 in the third and fourth column.
Every exact sequence is an exact triangle, hence the cones also form an exact tirangle. It
follows

cone(Φ(f)) ' 0

and therefore Φ(f) is a weak equivalence.

Lecture 7: 2013-06-19
Let’s try again with the proposition of last time.

Proposition 5.23. If B ∈ sAlgA and η : Ω1
B/A → M[1], then Bη → B is a square-zero

extension.

Proof. Let M̃ = ker η. We have
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B B⊕Ω1
B/A B⊕M[1]

b (b, db) (b,ηdb)

η

and

B B⊕Ω1
B/A B⊕M[1]

b (b, db) (b, 0)

s0

Hence Bη as a set is {(b,b ′) | (b,ηdb) = (b ′, 0)}.
Let’s consider

B ′ B

M̃ Ω1
B/A

f

d

hence B ′ as a set is
B ′ = {(b, m̃) | db = f(m)}

Multiplication is (b, m̃)·(b ′, m̃ ′) = (b·b ′,b·m̃ ′+b ′·m̃) and themorphismB ′ → B is given
by (b, m̃) 7→ b, hence B ′ is a square-zero extension. But Bη ' B ′ by (b,b ′) 7→ (b, db).

So now we can say that Φ factors over the square-zero extensions. As (Ψ,Φ) is a
Quillen pair, we have adjunctions

Ho(sAlgA /B) Ho((Ω1
B/A\ModsB)1)

Ho(Ψ)

Ho(Φ)

A problem is, that (Φ,Ψ) is not a Quillen equivalence, even on square-zero extensions.

5.4 Some further homological algebra
Let A be a ring,M a complex of A-modules (non-negatively graded).

Definition 5.24. M is

• n-truncated if Hi(M) = 0 for all i > n.

• n-connective if Hi(M) = 0 for all i < n.

• discrete ifM is zero-truncated.

Remark 5.25. LetM f−→ N be a morphism of complexes. ThenM f−→ N→ cone(f) is an
exact triangle. We get that cone(f)[−1] → M → N is again an exact triangle. Caveat:
This makes sense i.e. stays exact in our category if Ho(M)→ Ho(N).
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Remark 5.26. Other terminology for cone(f) is the cofiber of f and cone(f)[−1] is called
the cocone of f or the fiber of f.

Definition 5.27. M f−→ N is called

• n-connective if fib(f) is n-connective.

• n-truncated if fib(f) is n-truncated.

Lemma 5.28. Amorphism f : M→ N is n-connective if and only if Hi(f) is an isomor-
phism for i < n and surjective for i = n.

Proof. Check the long exact sequence coming from fib(f)→M→ N.

Remark 5.29. There is an internal Hom on complexes of non-negatively graded A-
modules:

(Hom(M,N))n =
∏
q

Hom(Mq,Nq+n)

The differential df is defined by

df(m) = dNfm− (−1)|f|f(dM(m))

where |f| = n if f ∈ (Hom(M,N))n.
Check: Hi(Hom(M,N)) are the chain homotopy classes of mapsM→ N[i].

Definition 5.30. Let P →M be a projective resolution (cofibrant replacement). Then

RHom(M,N) := Hom(P,N)

and
Hi(RHom(M,N)) := Exti(M,N) = HomHo(ChA))(M,N[i])

Recall that Hom(−,N) : ChA → ChA and RHom(−,N) : Ho(ChA)→ Ho(ChA) where
Ho(ChA) = D(A).

5.5 n-concentrated square-zero extensions
Definition 5.31. A derivationΩ1

B/A →M[1] is n-concentrated ifM is n-truncated and
n-connective, i.eM ∼= N[n] for N discrete.

Definition 5.32. We call A→ C
f−→ B in sAlgA /B an n-concentrated square-zero exten-

sion if

• if n > 0 then fib(f) is n-truncated and n-connective

• if n = 0 then fib(f is 0-truncated and 0-connective and fib(f) ⊗C fib(f) → fib(f)
factors over the 0 morphism.
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Lecture 8: 2013-06-26
Assume B is cofibrant. Then our functors do the following:

Ho(Ψ) : (A→ C→ B) 7→ (LB/A → LB/C)

and

Ho(Φ) : (LB/A
η−→M) Bη B (A→ Bη → B)

B B⊕M

s0

Sadly, this is not an equivalence even for square-zero extensions.

Remark 5.33. Let A,B be discrete algebras. Then A→ B ′ → B is 0-concentrated if and
only if B ′ → B is a square-zero extension of B in the usual sense.

Definition 5.34. SqZA/Bn ⊂ Ho(sAlgA /B) is the full subcategory of n-concentrated
square-zero extensions.

Definition 5.35. DerA/Bn ⊂ Ho(Ω1
B/A\ModB) is the full subcategory of n-concentrated

derivations.

Lemma 5.36. Given Ω1
B/A

η−→ M, let Bη f−→ B be the image of η under Ho(Φ). Then
fib(f) 'M[−1].

Proof. We have the homotopy fiber sequence

Bη B

B B⊕M

f

s0

η

Hence fib(s0) ' fib(f). AlsoB→ B⊕M→M is an exact triangle, soM[−1]→ B→ B⊕M
is an exact triangle. Therefore fib(s0) 'M[−1].

Remark 5.37. Let A→ B be a morphism of algebras,m : B⊕A B→ B the multiplication
map, I = kerm, I/I2 = Ω1

B/A. IfA→ B is a square-zero extension, then I2 = 0, therefore
Ω1
B/A = I = kerm.

Now let A → B be a morphism of simplicial algebras and I ′ = fib(m : B⊗A B→ B).
We get the homotopy pushout

I ′ ⊗ I ′ I ′

0 LB/A

m
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If A→ B is a square-zero extension, then LB/A = fib(m).

Theorem 5.38 (Main theorem of the lecture). Assume A→ B is cofibrant. Then

Φn : DerA/Bn → SqZA/Bn

is an equivalence of categories.

Proof. We split the proof in several parts. It will be quite long.

• Let η ∈ DerA/Bn . ThenΦn(η) ∈ SqZA/Bn sinceLB/A
η−→M is concentrated in degree

n+ 1 and therefore Ho(Φ)(η) : Bη
f−→ B, fib(f) 'M[−1] which is concentrated in

degree n. Moreover, fib(f)⊗ fib(f)→ fib(f) factors over the 0 morphism.

• Adjointness problem:

Ho(Ψ) : (A→ C→ B) 7→ (LB/A → LB/C)

does not end up only in degree n + 1. But Φn admits a left adjoint by Ψn :=
τ6n+1 ◦Ho(Ψ) where τ6n+1 simply truncates at n+ 1.
We have to show that

LB/A → LB/C → τ6n+1LB/C ∈ DerA/Bn

Identify

LB/C B⊗C B B ∼= B⊗C C B⊗C fib(f)
m

id⊗f

The first and the last three terms are each an exact triangle with section. So

LB/C ' (fib(f)⊗C B)[1]

and therefore Ψn has target DerA/Bn .

• We saw that Ho(Φ) is conservative, i.e. f is an isomorphism if and only if Ho(Φ)(f)
is an isomorphism. Therefore Φn is conservative.

• It suffices to check that the unit transformation u : id→ Φn ◦Ψn is an isomorphism.

B ′
f−→ B ∈ SqZA/Bn B ′

(LB/A
η0−→ LB/B ′) Bη0 B

(LB/A
η−→ τ6n+1LB/B ′) Bη B

Ho(Ψ)

τ6n+1

Φ

Φ

fg

f ′

g ′

f ′′
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We have to show that g ′ ◦ g is an equivalence of simplicial algebras. Consider the
kernels ker f = fib(f), ker f ′ = LB/B ′ [−1], ker f ′′ = τ6n+1LB/B ′ [−1]. This results
in the following diagram:

fib(g)

fib(f) B ′

LB/B ′ [−1] Bη0 B

τ6n+1LB/B ′ [−1] Bη

• It suffices to show that fib(f)→ fib(f ′) is an isomorphism in degree n. We have an
exact triangle

fib(g)→ fib(f)→ fib(f ′) = LB/B ′ [−1]

We have just seen
LB/B ′ ' (fib(f)⊗B ′ B)[1]

and therefore LB/B ′ [−1] ' fib(f)⊗B ′ B. This gives us

fib(g)→ fib(f) → fib(f)⊗B ′ B

and
fib(f)⊗B ′ fib(f) m−→ fib(f)⊗B ′ B

id⊗f−−−→ fib(f)⊗B ′ B

andm is homotopic to 0. Then

fib(f)⊗B ′ B→ fib(f)⊗B ′ B→ (fib(f)⊗B ′ fib(f))[1]

and so
fib(f ′) ' fib(f)⊗B ′ B ' fib(f)⊗ fib(g)[1]

The degrees are > n, n and 2n+ 1. Then fib(f ′) and fib(f) must be isomorphic in
degree n.

Remark 5.39. For n = 0 and ordinary algebras, the “cofibrant” can be omitted.

Lecture 9: 2013-07-03
Remember: We had a correspondence between sAlgA /B andΩ1

B/A\ModsB. Assume B
is cofibrant as A-algebra. ThenΩ1

B/A = LB/A. HereΩ1
B/A does not denote the complex

concentrated in degree 0, butΩ is applied level-wise. Passing to the homotopy category
we get
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Ho(sAlgA /B) Ho(LB/A\ModsB)
Ho(Ψ)

Ho(Φ)

We also had the following theorem:

Theorem 5.40 (The fundamental theorem). There is an equivalence of categories

SqZA/Bn ' DerA/Bn

induced by Ψn and Φn.

Remark 5.41. For ordinary algebras A and B we can drop the cofibrancy condition on B.
The theorem then still holds for n = 0 with DerA/Bn replaced by

d DerA/Bn = Ho(LB/A\ sModB)

6 Solution of deformation theory problems
6.1 Lifting morphisms
Let the following commutative diagram be given:

T B

T ′ A

f

Here A→ T ′ → T is an element in SqZA/Tn . By the correspondence we get η : LT/A →
M[1]. Then we can look at

α : LB/A ⊗B T → LT/A →M[1]

We get the first morphism from the transitivity sequence. This gives us a class [α] ∈
Ext1

T (LB/A ⊗B T ,M).
As promised: Let f : A→ B be either amorphism of simplicial algebraswithB cofibrant

or an ordinary morphism of algebras with n = 0. Then:

Theorem 6.1. The class [α] is 0 if and only if a lifting h : B→ T ′ exists, making the resulting
diagram commutative.

Proof. The question is equivalent to: Is T ′ → T a square-zero extension of B-algebras?
Also, the existence of h is equivalent to the existence of h ′ such that the following diagram
commutes up to homotopy:
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LT/A LT/B

M[1] M[1]

η h ′

∼=

This again is equivalent to α being homotopic to 0 in the following diagram where the
top row is given by the exact triangle cofiber sequence:

LB/A ⊗B T LT/A LT/B

M[1]

α η
h ′

And this of course is equivalent to [α] = 0.

Remark 6.2. The analogue of the method used in the proof for modules is

M M/N

P

∃
⇔

N M M/N

P

0

Remark 6.3. Isomorphisms classes of liftings are given by Ext0
T (LB/A ⊗B T ,M). As

usually, they are parametrized by Ext in one degree less.

Theorem 6.4. Let A→ B be a morphism of rings, B finitely presented as an A-algebra. Then f
is étale if and only if LB/A ' 0. Remember: ForΩ in⇐ you only get unramified.

Proof. We did⇒ a long time ago. Therefore, let LB/A ' 0. Since B is finitely presented,
formally étale implies étale. We check a test diagram

T B

T ′ A

M

f

The obstruction to the existence of a lifting h is

[α] ∈ Ext1
T (LB/A

=0
⊗B T ,M[1]) = 0

therefore we get the lift. Similarly, Ext0
T (LB/A ⊗ BT ,M) = 0 and hence h is unique up to

isomorphism.
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Remark 6.5. Let f : A→ Bwhere B is finitely presented.

• f smooth follows from LB/A ' Ω1
B/A withΩ1

B/A projective by essentially the same
proof (Ext1 vanishes, therefore we have existence, not necessarily unique, therefore
smooth).

• f unramified follows from H0(LB/A) ' Ω1
B/A ' 0.

6.2 Kodaira-Spencer theory
Recall the problem. We start with

B

A A ′ I

flat

f

We ask whether there exists an A ′-algebra B ′ with B ′ ⊗L
A ′ A

∼= B. A weaker condition to
satisfy would be B ′ ⊗A ′ A ∼= B and

B B ′ J

A A ′ I

∃u

This is weaker because u doesn’t have to be an isomorphism. We have u is an iso if and
only if it is flat.

Lemma 6.6. Assume B ′ exists. Then fib(B ′ → B) = I⊗A ′ B ′.

Proof. We have the cofiber sequences

I→ A ′ → A→ I[1]

Therefore

A ′ A I[1]

B ′ B I[1]⊗A B

where both squares are homotopy pushouts. Hence

cofib(B ′ → B) = I⊗A B[1]

and therefore
fib(B ′ → B) = I⊗A B ∼= I⊗A ′ B ′
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Lemma 6.7. Assume B ′ exists. Then A ′ → B ′ is flat.

Proof. LetM ∈ModA. We have to showM⊗L
A ′ B

′ is discrete. We have an exact sequence

0→ IM→M→M/IM→ 0

and applying −⊗A ′ B ′ gives

IM⊗L
A ′ B

′ →M⊗L
A ′ B

′ →M/IM⊗L
A ′ B

′

is a cofiber sequence (an exact triangle). To show the discreteness (i.e. concentrated in
degree 0) it therefore suffices to show IM⊗L

A ′ B
′ andM/IM⊗L

A ′ B
′ are discrete. Let N

be one of these two. In both cases IN = 0, therefore N is an A ′-module. It follow

N⊗L
A ′ B

′ ∼= N⊗L
A (A⊗A ′ B ′) ∼= N⊗L

A B

which is discrete because B is flat over A.

Remark 6.8. If J→ B ′ → B and I→ A ′ → A are square-zero extensions, then

B B ′ J

A A ′ I

is a morphism of square-zero extensions if and only if

LB J[1]

LA ⊗A B I[1]

ηJ

df
ηI

commutes.

As before, take

B

A A ′ I

We have the following diagram:
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LB/A[−1] LA ⊗A B

I[1]⊗A B

α

By shifting around
LA ⊗A B→ LB → LB/A

we can introduce LB/A[−1]→ LA⊗A B on the left. So α : LB/A[−1]→ I⊗A B[1] induces
α : LB/A → I⊗A B[2] and therefore a class [α] ∈ Ext2

B(LB/A, I⊗A B).

Theorem 6.9. We have [α] = 0 if and only if there exists anA ′-algebra B ′ such that B ′⊗L
A ′A

∼=
B.

Proof. For the necessary condition we need:

1. B ′ → B is a square-zero extension by I⊗A B

2. For commutativity:

LA ⊗A B I⊗A B[1]

Lb I⊗A B[1]

∼=
β

Therefore B ′ exists if and only if there is a map β as in the above diagram which is the
case if and only if there is an α ∼ 0 as in the following diagram making the left triangle
commutative:

LB/A[−1] LA ⊗A B LB

I⊗A B[1]

α
β

This is equivalent to [α] = 0 in Ext2
B(LB/A, I⊗A B).

The isomorphism classes are again given by Ext1 and the automorphisms are given by
Ext0.

7 The conormal sequence and Postnikov decomposition
Let A be a simplicial algebra. A priori this seems to be a very complicated object. A is
given by

39



A0 A1 A2 . . .d1

d2

We now define
π0(A) = A0/(d1(A1) − d2(A1))

and start constructing a sequence τ6iA as in the following schematic:

τ62A

τ61A

A π0A1-connective

3-connective

2-connective

Here τ60A = π0A is 0-truncated, τ61A is 1-truncated, i.e. πi(τ61A) = 0 for all i > 2 and
so on. Remember: i-connective means isomorphism on k < i and surjective on i. The
fascinating thing is: All τ6kA→ τ6k−1A are square-zero extensions.

That means: Simplicial algebras are not that complicated. Instead of an infinite amount
of algebras you start with one (i.e. π0A) and add square-zero extensions. Especially it is
easier to find morphisms than one could think.
Geometrically this means: We start with a derived scheme X = Spec(A) and get a

decomposition into a “usual” scheme Spec(π0(A)) and schemes τ6kXwith additional
nilpotents in every degree 6 k. X will then be equivalent to the homotopy colimit of the
τ6kX.
Lecture 10: 2013-07-10

Okay, let’s do this in greater detail. As an introduction, consider the manifold S2 which
is embedded in R3 by i : S2 ↪→ R3. At a point p ∈ S2 we have the 2-dimensional tangent
space TpS2 and the fiber Np of the normal bundle. They fit into the exact sequence

0→ TpS
2 ↪→ Ti(p)R3 → Np → 0

The dual sequence is

0→ N∗p → (Ti(p)R3)∗ → (TpS
2)∗ → 0

Algebraically, we start with a sequence

0→ I→ A→ B→ 0
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and the conormal exact sequence is

I/I2 → Ω1
A ⊗A B→ Ω1

B → Ω1
B/A = 0

On the level of the cotangent complex this becomes

LA ⊗A B→ LB → LB/A
which gives us the long exact sequence

H1(LA ⊗A B) H1(LB) H1(LB/A) H0(LA ⊗A B) H0(LB) H0(LB/A)

I/I2 Ω1
A ⊗A B Ω1

B Ω1
B/A = 0

We can rephrase this is a fancy way. Let A→ B be surjective. Then

(I⊗A B)[1] = I/I2[1]→ LB/A
is an isomorphism in degrees 0 and 1.

Theorem 7.1. Let f : A → B be a morphism of simplicial rings with n-connective cofiber K.
This means A f−→ B→ cofib(f) is an exact triangle such that πi(cofib(f)) = 0 for i < n. Then
there exists a canonical (2n)-connective morphism εf : K⊗A B→ LB/A.

Proof. This is pretty hard, we are not going to do it!

In the preceding theorem, we can also have∞-connective which means a weak equiv-
alence. We’re going to have a look at the construction of εf: The morphism

LA ⊗A B
α−→ LB

η−→ LB/A
corresponds to a square-zero extension A → B ← Bη. Does it lift? The obstruction to
lifting is η ◦ α. But since we have an exact triangle, [η ◦ α] = 0, so it indeed lifts:

A Bη

A B K

0 LB/A LB/A
=

ε ′f

The second and third row are cofiber sequences. By adjunction, we get εf : K⊗A B→
LB/A.

Corollary 7.2. Let f : A→ B be a morphism of simplicial rings such that π0(f) : π0(A)→
π0(B) is an isomorphism. ThenLB/A isn-connective if and only if cofib(f) isn-connective.

Proof. No proof given. Here⇒ is the hard direction to prove. Checking LB/A is just
homological algebra, while checking how surjective a ring morphism is is hard.
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7.1 Postnikov decomposition
The first step is the natural map A→ π0(A). Remember that A is given in nonnegative
degrees and

π0(A) = A0/(d1A1 − d2A1)

Lemma 7.3. A f−→ π0(A) has 2-connective cofiber (which is the same as saying f is 1-
connective).

Proof. We know that f is an isomorphism on π0 and surjective on π1. Check the long
exact sequence belonging to A → π0(A) → K, this immediately gives π0(K) = 0 and
π1(K) = 0, i.e. K is 2-connective.

Corollary 7.4. Lπ0(A)/A is 2-connective.

Remark 7.5. LetM be any n-connective module. ThenM[−n] is 0-connective, therefore
M[−n]→ π0(M[−n]) = πn(M), thereforeM→ πn(M)[n] is n-connective.

Now define A1 by

η : Lπ0(A) → Lπ0(A)/A → π2(Lπ0(A)/A)[2]

We know that η classifies a square-zero extension

A1 := π0(A)
η

A π0(A)

Lemma 7.6. A→ π0(A) lifts to A→ A1.

Proof. The obstruction is given by

LA ⊗A π0(A)
α−→ Lπ0(A)

η−→ π2(Lπ0(A)/A)[2]

By definition η factors as

η : Lπ0(A)
φ−→ Lπ0(A)/A → π2(Lπ0(A)/A)[2]

and [φ ◦ α] is 0 (exact triangle).

We have thus constructed

A1

A π0(A)

f1

f

square-zero
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and f is 1-connective. We now show that A1 is a better approximation to A than π0(A):
It sees both π0 and π1 of A.

Lemma 7.7. A f1−→ A1 is 2-connective.

Proof. It suffices to show that LA1/A is 3-connective, since

A
f1−→ A1 2-connective

⇔fib(f1) 2-connective
⇔ cofib(f1) = fib(f1)[1] 3-connective
⇔LA1/A 3-connective

Here
LA1/A ⊗A1 π0(A)→ Lπ0(A)/A → Lπ0(A)/A1

But we know what Lπ0(A)/A1 is. Since A1 → π0(A) is a square-zero extension, we have a
cofiber sequence

A1 → π0(A)→ π2(Lπ0(A)/A)[2]

using εf : π2(Lπ0(A)/A1)
∼= π2(Lπ0(A)/A). Now look at the corresponding long exact

sequence in homology. Everything in degree6 2 vanishes, as doesH2(LA1/A⊗A1 π0(A)).
The other degree-2-parts are then isomorphic and we get that LA1/A is 3-connective.

Now proceed inductively. Assume fn : A→ An is n-connective. Define An+1 via

LAn → LAn/A → πn+2(LAn/A)[n+ 2]

Using exactly the same arguments

An+1

A An

fn+1

fn

lifts (obstruction is 0 by exact triangle) and fn+1 : A→ An+1 is (n+ 1)-connective. We
have proved the following theorem.

Theorem 7.8. Let A be a simplicial ring. Then

A
'−→ holim {· · · → A1 → π0(A)}

where each An+1 → An is a square-zero extension and the An are n-truncated.
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8 Final remarks
There are a lot of open questions about LX. For example, Quillen conjectured the follow-
ing. Let A→ B a homomorphism of Noetherian rings and assume that LB/A is of finite
projective dimension. Then:

1. The projective dimension of LB/A is 6 2.

2. Assume B is of finite Tor dimension as A-module. Then LB/A has projective
dimension 6 1.

The first one is very open. The second is now a theorem of Abramovich. So there are
effectively 3 possibilities for LB/A. It is smooth, LCI or it explodes.
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