Thomas Schick.

Smooth refinement of cohomology. Idea: combine cohomology and differential forms. Main diagram is a commutative square: $I: \hat{H}^*(M) \to H^*(M), R: \hat{H}^*(M) \to \Omega^*_c(M), \Omega^*_c(M) \to H^*_{dR}(M)$, and ch: $H^*(M) \to H^*_{dR}(M)$. We also have a natural transformation $a: \Omega^{*-1}(M)/\operatorname{im}(d) \to \hat{H}^*(M)$. We want an exact sequence: $H^{*-1}(M) \to \Omega^{*-1}(M)/\operatorname{im}(d) \to \hat{H}^*(M) \to H^*(M) \to 0$. We also want to amend this sequence to a commutative diagram with morphisms $d: \Omega^{*-1}(M)/\operatorname{im}(d) \to \Omega^*_c(M)$ and $R: \hat{H}(M) \to \Omega^*_c(M)$.

Definition. Given cohomology theory E^* , a smooth refinement \hat{E}^* is a functor $\hat{E}: \Pi F \to GRPS$ together with transformations I, R, a. We have to use differential forms with values in $E^*(\bullet) \otimes \mathbf{R}$.

Definition: If E^* is multiplicative, we "say" \hat{E}^* is multiplicative if \hat{E} takes values in graded rings and the transformations are compatible with multiplication, where $a(\omega) \cup x = a(\omega \wedge R(x))$ for all $\omega \in \Omega(M)$ and $x \in \hat{E}(M)$.

Definition: \hat{E} has S^1 -integration if there is a natural transformation in M: $\int :\hat{E}^*(M \times S^1) \to \hat{E}^{*-1}(M)$ compatible with the integration of formas and such that \int of p^* is zero and conjugation changes the sign.

Homotopy formula: For every \hat{E} and smooth map $h: \Pi \times [0,1] \to N$ we have

$$h_1^*(x) - h_0^*(x) = a(\int_{\Pi \times [0,1]/M} h^*(R(x)))$$

for all $x \in \hat{E}(M)$.

Theorem (Hopkins-Singer): Additive extensions exist.

It's not evident how to obtain multiplicative structure.

Theorem: Using geometric models multiplicative smooth extensions with S^1 -integration are constructed for K-theory (Bunke-Schick, based on local index theory); MU-bordism (Bunke-Schröder-Schick-Wethamp) and from there Landweber exact cohomology theories.

Uniqueness questions: Assume E^* satisfies $E^k(\bullet)$ is torsion for odd k. Then any two smooth extensions with S^1 -integration are isomorphic up to unique isomorphism.

If \hat{E} and \tilde{E} are multiplicative the isomorphism is multiplicative as well.