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ABSTRACT
A new universal conserved current, depending on a
field and two variations of the field, is defined and
shown to provide a general approach to the covariant
description of the phase space of a Lagrangian field
theory. The global symplectic — and in certain cases

Kahlerian —— geometry of phase space is examined for
particular models. The moduli space of Riemann
surfaces makes an unexpected appearance in three
dimensional field theory; in particular, gravity. A
brief discussion of quantization concludes a mainly
classical treatment of field theory and action

principles.
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INTRODUCTION

Mcdern physics has achieved a high degree of
mathematical coherence through its virtually universal
application of certain abstract principles. Hamilton’s
principle of least actiocn is basic throughout
mechanics, field theory, particle physics, and, lately,
string theory. Noether®s principle —— a continuous
symmetry of the action leads to a conservation law ——
is equally basic. Time translation invariance, for
examples yields the law of conservation of energy.

We have discovered a new universal conservation
law that holds for any system governed by a least
action principle. We have investigated and exploited
this new law in a wide variety of physical models and
related mathematical problems. Our conservation law
endows the phase space of the physical system with a
mathematical structure generalizing the canonical

1]. Moreover, this

structure of Hamiltonian mechanics
generalized canonical structure becomes, for various
field theories, the starting point for a guantum
mechanical investigation. Finally, our appreoach to
phase space preserves all the symmetries of the
original variational problem. Hence, whenever the
action is relativistically invariant, both the
classical and gquantum structures are explicitly
compatible with Einstein’s special and/or general
principles of relativity.

E. Noether®s famous 1218 paper, "Invariant

Variational Problems"EJ,

crystallized essential
mathematical relationships among symmetries,
conservation laws, and identities for the variational
or "action"” principles of physics. Modern accounts of
Noether *s paper appear in 31, 41, 51. Noether herself
was moctivated by the then new theory of general

relativitybj. In the last decade, physicists have been
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attempting to unify general relativity with gquantum

71

particle physics. Supergravity theory and

superstring theoryB]

are related approaches to unified
physics {(see 91 for an introductory account for
mathematicians.) String theory has spawned string
field theory, which, unlike previous models in physics,
involves infinite component fields on space—-time {(see
101). Virtually all physical models begin with the
formulation of an action principle invariant with
respect to a Lie group and/or Lie algebra, usually
infinite dimensional. Thus, Noether’s abstract

analysis in 21 continues to be relevant to contemporary
physics (as well as to applied mathematics (see 51)).

A basic notion in Noether’s theory is that of a
conserved current: if the space—-time X is
n—dimensional, then such a current is an (n-1)-form J
= J{¥) which is "local" in the field v (see below),
and which is closed whenever ¥ is an extremal for the
action principle. Extremal fields are the solutions to
the Euler—-Lagrange field equations derived from the
action. Linearization of the field equations about a
given extremal leads to the Jacobi equations and their
solutions, the Jacobi fields. One can generalize the
notion of a conserved current as follows: consider an
(n-1)—form J = J{¥;83¥,...>8,¥%) which is local in ¥
and a finite number S$;v,...»%,v of infinitesimal
variations of w; assume further that J is closed
whenever ¥ is extremal and the variations
84¥s ... 8n¥ are Jacobi fields for . Our universal
conservation law, alluded to above, amounts to a
completely general construction of a universal
conserved current U = Ul¥, 8,¥,85¥%) which is

alternating bilinear in &;v and §pv. Particular

examples of the universal current U appear in 111,
121, 131, 143. 1In the next section, we formulate a
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theory of conserved currents {alternating multilinear
in the variations) in terms qf differential forms on
the product X = & of space—-time, X, with the
infinite dimensional manifold % of field

configurations cver X.

1. LOCAL DIFFERENTIAL FORMS

Let =#n:Y > X be a smooth fibration of a manifold
Y over the space—time manifold X (incidentally, we
are using the term space—-time in a rather vague way;
we are not assuming X has a semi—-Riemannian metric,
as in general relativity). Let £ be the manifcld of
smooth sections of Y over X. The de Rham complex
QAUX x 8) of smooth differential forms on X = & has a
number of nontrivial special features:

1) X x 8) is bigraded according to the product

structure of X = 5. We will write

MY x &) = || PUX » S).
Ps:q

Corresponding tc this bigradation, the exterior
derivative d on X =z £ breaks into two cperators:
D, of type {(1,0), and & of type (0,1). UuWe have

d=D+ 5, d© =D2 = &2 = D5 + & = 0.

2) If T e P NUX x8 and v €8, define a
p~form J{¥) on X by J{¥){x) = J{x,¥). DI will be

in @P*1:0(y . 8, and we will have
{(DI){(¥) = d{T{W¥)),

where the d on the right is the exterior derivative
on X.

3) More generally, if J e @P*89(X x 8), ¥ €8,
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and 31Ws---s3qW are vectors in ng —— the tangent
space of & at ¥ ——, then we can define a p—form

J(V,Slv,...,sqv) on X by

Tl Sy wren a8 WI ) = {18y W) - --i(8 V)T {x,¥)

q q

where 1(&y) 1is the operaticn of interior
multiplication {(contraction) of a tangent vector

against a form. We will have

(DI (W3 Sy ¥r--usSq¥) = d{T(¥s Sy ¥snnnsSo¥))

q q

where again d is the exterior derivative on X.
4) XX x 8) bhas a canonical sub—-bicomplex

QoctX *» 8) defined as follows: let J® be the
manifold of infinite jets of sections of Y at points

of X (see 151). Let ¢, be the evaluation map from

X » & to JI%W: e (x,¥%) = the wjet of ¥ at x. We

have the induced map 52 from QUI®Y) to X = £).

The image, €;Q(JmY), is stable under both D and &,
and hence is a sub-bicomplex, which we call Qloc(x x
). UWe will write

QoctX x 8 = 11 FHrAUX = .
P:q

=
Takens~J defines a canonical bicomplex structure on

XMI®). It turns out that the map E; yields an

isomorphism of bicomplexes between QUI®Y) and
octX x 8.

We call a form K on X = £ 1local if K 1lies in
QoctX x 8. Thus, if K e X x 8, ¥ €8, and
Slw,...,&qw = TySs the space-time p—form
K(’V’Slv,...,sq
*sSlv,...,qu in a local fashion, i.e.
Fl¥s8y¥s...,8

¥) {(see 3) above) depends on

qv)(x) depends only on {(finite) jets of

¥r8y¥s...,8_ % at . {Note: we can regard TWS as

q
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the sections of an appropriate vector bundle cver X;
hence, we can speak of a "jet at »x" of an element &y
of TWS).
5) The space c@aé of local, type (n,1),
151,

2

forms on X » £ has a distinguished subspace we

call K e Q?éé a source form if for v & and 8Sv¥ €
T, the n—form K{4,&¥)(x) depends cnly ocn & finite
jet of ¥ and the zero—jet of 8y at x.

We write ggéérce for the space of scurce forms.

Qgéé alsc contains the subspace Dﬁqgé’l.

LEMMA 1193,
1 _ 1 —1,1
QT&C - ggéurce ® DQTGC ?
i.e. if ¥ 1is a local {nyl) forms there exists a
unigue source form 6 and a lccal {n-1,1) form H

such that
£ = 6 + DH.

&) We have a useful ccochomological result for the

D operator on 43,3

THEOREM 2197: 1If K e 29 with p <n and q 21,
then DK = 0 implies K = DF for a local form in

Qg;é’q. However, D-closed {(p.0)-forms need nct be
D—-exact; moreover, (nsq)—forms, which are always
D-closed,; need not be D-exact. For example, a nonzero
scurce form (type (n;1)) is never D-exact.

7) The entire thecry of local forms on X =

(%

—_

can be written in suitable loccal cocordinates: let 2
denote the fiber of Y over X — thus, X can be

covered by open coordinate charts % such that ni¢an
is diffeomorphic to % = 25 morecver. Y can be
covered by coordinate charts of the form U » 9 with



4 as above and with ¢ an open coordinate chart in

Z. We label by x4ys...3%,4 the coordinates on %4 and

by ujys...sup the coordinates on 4. Let 4y x 9

be the set of pairs (x,¥) such that w{x) is in Y x ¢
— then & = %) is an open subset of X »x &, and

X » £ is covered by these special open subsets. For
any such ¢} = (% » 3 we can explicitly describe

Qocl¥) as follows: define functions x; on 3 by
xi(x,v) = xi(x); then define functions uj,I on 4
by

uj,l(x,v) = DI[uj(v(x))]s

where D;p is the partial derivative with respect to
the x;°s and correspending to the multi-index I =

(il""’in)’ il""’in ¥ 0. The functions x;

u;,; are type (0,0) 1local forms; dx; and &u,
are local forms of type (1,0) and (0,1)
respectively. Any local (0,0) form F on & is
smooth function of finitely many of the variables
Xjs Ujq- Any local (psgq) form is expressible as a
finite sum

LF, .
ETTRERTT TS TS SRFIPPY S IFS S YA

f‘\l-l"t\a_l ,I

dxil.f'\"'."\ dxip A a-ljl’ll

igriq
where each F(_._) is a local {(Q,0) form.
For the differentials D and & we have the

formulae:

D){i = dll‘ 9>:i -= 0.!
=Y
Duj 1 = & uj,1 u ¢iddx;s
Rug,1 = By, 13



DF=E%dx- + L& Du; 1}

|
™~

& = a"j,l;

where F is a local {(0,0) form.

A variation £¢ of s with (x,v) in %l

determines a function s¥ from a neighberhood of x

into R"™. We find that

Bujy, 10 ¥s %) = Dylu (S¥ix) 1.

Thus, for any K & @203, (x,¥) €8, and S;¥...,

Sqw e TVS, we can in principle write an explicit
expression for the evaluation at = of the p—form

K(¥s Sy ¥seuesSq¥).
2. THE UNIVERSAL CONSERVED CURRENT

Suppose we now fix L in OR%X x &. Then a
is in Q?éé(x x 8y and by 1,5) we can write & = E
+ DMy where E 1is a source form in c@;é(x x &) and
M is a form in cg;é’ltx x £). We can then define U

in O7l*8(x x & by setting U = &M. We will have
8 =0 and DU = D&M = —-9DM = —3{3 — E) = + 8. We

summarize our construction below:

THEQREM 3 (The Fundamental Formulae):¥*

1) To any L & QT&?(X x £) there is a system of
fqrms {E,M,U> satisfying

*During the preparation of this paper we learned of a
July, 1984 letter from P. Deligne to D. Kazhdan in
which Deligne sketches a result essentially equivalent
to our Theorem 3, Part 1).
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1
a) E & Q3 elX x 8

b) Me Flrlix x &

) U e dtlhEx x &
d) & = E + DM

e) U= &M

f) & =0

g) DU = &

2) a) E is determined uniquely by L3 moreover, if
we replace L by L + DK, with K e of=1:0(x x &, E
does not change.

b) M is not uniiquely determined by L.
however, the class of M modulo addition of forms DN,

N Q?;E’I(X x 8)y is uniquely determined by L.
c) U is uniquely determined by L, modulo the
addition to U of a term DV, where V is in

QT;E’E(X x 8); moreover, if we replace L by L + DK,

K e QT;é’O(X x 8y then U modulc D-exact forms does

not change. 1In other words, the association of U to

L defines a linear map U
e T 0 —1,0 —1:2,non—2,2
u: g@éclbggoc’ 2 Q?oc’ /DQTDC,

PROOF: We have explained part 1); 2 a) follows from
Lemma 153 2 b) and c) follow from (Taken’s) Theorem 2.

 Theorem 3 above is quite abstract and needs to be
interpreted in the more concrete terms of the calculus
of variations and Lagrangian field theory:

1) The form L € Qgég leads to an n—form L{wv)
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on X. L{w¥) is.called the Lagrangian density
{strictly speaking, L{w¥)/{fixed volume form on X) is
often referred to as the Lagrangian density; but we
have no specific choice of volume form in general, so
we work here with L{y) instead). L{w) is local

in ¥ — almost all Lagrangians in physics are local.
The action of ¥ in a space—time domain % € X is

defined as the integral

Iﬁ Liw) .

2) Suppose ¥ €8, U is a domain in X with
smooth boundary &, and Sy & T*g is a variation
that vanishes along &U. We consider the variation of

the action:

skjuw)= Qjaxmsw

Applying our abstract formula &L = E + DM, we cbtain
AL Al¥s8¥) = E{¥,8¥%) + d{M{w,S¥)),

and hence, by Stokes Theorem,
ey Ltw) = Jo Etvs 20

DEFINITION 4: ¥ €8 is an extremal for the Lagrangian
field theory determined by L if Sfﬂ L{y) = 0 for all

pairs Y4 and &¥ such that % is a {(relatively
compact) domain in X and &y is a variation of ¥

that vanishes on the boundary of 4.

PROPOSITION S: ¥ is an extremal for L if and only
if ¥ satisfies the equations E(w,8¥) = 0, where 3¥
runs over all variations of w. 1In local coordinates,
the system E{(¥,8¥) = 0 is equivalent to the standard

Euler—-Lagrange equations (see S1).
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DEFINITION &: The solution variety £ associated to

L is the set of extremals for L.

€ is not in general a submanifold of &.
However,; we can still define, for each ¥ € SL, a

tangent space to ¥ in £, which we dencte by ngL:

DEFINITION 7: The subspace ngL of ng, for

¥ €8, consists of those 8y that satisfy the Jacobi
equations — the linearization about ¥ of the
Euler—-Lagrange equations.

It is possible to write the Jacobi equations in
our abstract global formalism. We skip the details
here, but we do mention an important property of Jacobi
fields:

LEMMA B: 1If v & E and & ¥ and 8y¥ are in TVSL’
then
6E(4', 81’?, Sa’{l) = (0.

-

3) Apparently the form M of Theorem 3 has

disappeared from our discussion of Lagrangian field

theory. It was E. Noether®d whc observed (in local
coordinates) that M is essential to the construction

of conservation laws associated to L.

DEFINITION 9: Fix L: a form J e qué’o is called a
conserved current for L if whenever ¥ € SL, J{¥) is

a closed (n-1)-form on X3 more generally, a form

K e Qyoé’q is a conserved current for L if whenever

¥Y¥E8g§ and slv,...,sqw 1= T*SL, then
K(Wyslvg...,sqv) is a closed (n—-1)—form on X.
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Following the ideas of Sophus Lie, Noether
introduced what are now called (see 5]) generalized
symmetries of a Lagrangian L. Moreover, she proved in
21 her celebrated theorem that to every generalized

symmetry of L there is an associated conserved

current J in 1;é’0- The form M is an essential
ingredient in Noether’s construction of J. We give
some details of Noether’s theory in part 5) of this
section.

4) Of course, since U is defined as &4, the
form M 1is essential to our own work. @Our main result

is the following:

THEOREM 10: a). For any Lagrangian L, the associated

form U € Q?;é’e(x x & is a conserved current.
b) The restriction of U to the manifold portion

{smooth locus) of X x & defines a closed {(n+l)-form.

PROOF; Combine the equations &UJ = 0, DU = 8, and
dU = U + DU with Lemma 8.

DEFINITION 11: We call U the universal conserved
current associated to L.

Suppose now that € is a compact oriented

{n—-1)-dimensional submanifold of X. Define a l1-form

BC and a 2—-form ug on & via

9C=..|.CM, (-8=..|.CU5
more explicitly, if ¥ &5 and 8§;¥,83¢ € T¢§, then

8ct¥s 839 = fo Miv, 8,9, and
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Qv S ¥ So¥) = Jo Ul¥s 8%, So¥)
LYoy ¥rop c Lt AR A

Then BC and ug are smooth on &, and ug =
dég. ~In particular, dug = 0.

COROLLARY OF THEOREM 10: The restriction of o to
the smooth part of & is a closed 2-form, denoted by
urcyr wWhich depends only on the homology class of C

in X.

BUESTION: Biven X, Y —%—3 X, L, and € as above:
when is oppg symplectic —— nondegenerate at every
point of the smooth part of 5 7

O0f course, the manifold X wmay not contain any
homologically nontrivial submanifolds € of
codimension one. We can try in that case to integrate
Ul¥s 8y ¥:8o¥) over a noncompact submanifold —— but then
we need appropriate boundary conditions to guarantee
convergence of the integral as well as ensure the
invariance of the integral under a deformation of the
noncompact manifald — contour — inside X. In
reference 121 we discuss linear field equations on an
anti—de Sitter space~time X, which is diffeomorphic to

D3 » R. The noncompactness of the 3-ball D3  leads to
nontrivial difficulties with the two form ubg = 153 U.

If we choose not to integrate at all, then Theorem
10 b) tells us that the restriction of U to X = &,

where & is the smooth locus of 3L defines a

cohomoleogy class in Hn+1(X » & sR). We can ask under
what conditions this "universal" cohomology class is
nonzero.

S) Suppose next that X does contain a

homologically nontrivial (n-l)-cycle, C — a compact
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oriented (n—1)—-submanifold without boundary. Even for
such a space X, the nondegeneracy of -7 depends
nontrivially on symmetry properties of L.

DEFINITION 12: a) A smooth vector field £ on £ is
local if when we regard TWE as sections of a vector
bundle over X depending on ¥ € 5, then £(¥{(x) 1is
a function of some jet of + at x.

b) A local vector field £ is a generalized

symmetry of a Lagrangian L if for some R in
Q?;égo, we have

() (¥, £(¥)) = (DR)Y(¥)

for all ¥ in §&. In octher words, the variation of L
by £ does not change the class of L modulo D-exact
local forms.

c) A family of local vector fields £{(=) which
depend locally and linearly on an arbitrary smooth
section ¢ of some fixed vector bundle over X ——

(=) {y){x) depends only on same jets of + and = at
X —— is a generalized gauge symmetry of a Lagrangian

L if for some family R{g) in 5?;é’0 that depends

locally on =, we have
(¥ 5(e){(¥)) = DR{e){¥)
for all + in & and all sections =.

THEOREM 13: a) Suppose a Lagrangian L admits a
generalized symmetry £z then for any v in £ »
£2{¥) 1is in ngL — 4{v¥) is a Jacobi field for #3;
morecver, the Lie derivative of owgp; along £
vanishes on & .

b) Suppose a Lagrangian L admits a generalized
gauge symmetry £{=): then for any extremal ¥ in
& » the Jacobi field £(e){(4) 1is in the radical of
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the two—form orpj(¥) —— for any Jacobi field 8¥ in
TS we have

orp1{¥s S(a) (¥, 8¥) = 0

for all sections €.

PROOF: The details will appear in a forthcoming
preprintlbj. A sketch of the proof follows:

We remark here that our Definition 12 is a

globalization of concepts that play a key role in

Noether’s paperE]. In fact, it is easy at this point
to state Noether’s main results.

DEFINITION 1l4: Suppose £ is a generalized symmetry
of a Lagrangian L. The Noether current Ji

associated to L and 4 is given by
Jel¥) = R(¥) — M{¥, £(¥))

for ¥ in &. (Recall that the form R occurs in the
condition that £ be a generalized symmetry.)

THEOREM 1587: a) Suppose ¢ is a generalized
symmetry of L: then the Noether current Ji is
conserved —— ng(#) = 0 for any extremal .

b) Suppose £{e) 1is a generalized gauge symmetry
of L: then the Noether current Ji(z) has the
following triviality property: for any extremal ¥,
Ji(i)(v) is an exact (n-1)-form on X.

The relationship between Noether?®s theorem and our
Theorem 13 is clear from the following:
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PROPOSITION 146: Suppose $§ is a generalized symmetry
of L: then for any ¥ in SL and S¥ in T*SL we
have

(ng)(v,Sv) = o3l $(¥) s 8¥),
where

Qetv) = Jo Ketw) —

the Noether charge associated to ¥, £, L, and C.

Thus, the argument for Theorem 13 b) is simple:

If £(=) 1is a generalized gauge symmetry of L, and

¥ 1s an extremal, then Ji(v) is exact on X, by
{Noether’s) Theorem 15 {(part b)). Therefore, the Noether
charge 8:(.){(¥) vanishes by Stoke’s theorem, since C

is compact without boundary. Finally, by Proposition

14 we conclude that u[CJ(v,g(e)(w), 8¥) is zero for

any Jacobi field Sv in TwSL.

Part a) of Theorem 13 is a consequence of the
theory of Jacobi fieldsy which will be discussed in
1463.

&) Suppose 6 i1s a connected Lie group that

operates smoothly on the fiber bundle Y -I3 X: thus
6 operates on both Y and X, and for any y € Y, g
€6 we have n{g-y) = g-*n{y). We have induced actions
of G on & X =2 &, and the bicomplex of local forms

QpctX x 8.

DEFINITION 17: G 1s a symmetry group of a Lagrangian

L if for any g € G, then gL - L = DK for some
—1,0

K e g?oc’ -

Suppose € 1is a compact {(n—-1l)—cycle in X.
Because 6 1is connected, the homology class [C1 of
€C will be G-invariant. Because 6 is a symmetry
group of L wmod D-exact local forms, the
Euler-Lagrange equations of L will be left invariant
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by the action of 6. Thus: G operates on SL and on

the differential forms on I .

THEOREM 18: Given L, G, and C as above:

a) the closed 2-form gy on §  is
G—invariant;

b) Suppose ¥ € & and we denote by BW the
stability group of ¥ for the actionof & on § .
Then the tangent space T*ﬁL carries a linear
representation of G, moreover, the alternating
bilinear form orcy{vs&¥:8p¥) 1is invariant for this
By representation; finally, T*ﬁL/radical wreg )
carries a symplectic representation of B*.

REMARK: In the above Theorem 18, B8 and BW may both
be noncompact, and the various representations of G*

may be infinite dimensional (see for example 121).

3. EXAMPLES

We give now some examples of variational
principles:

1} Suppose X = R with coordinate t, Y = R x &,
and n is projection onto the first factor. A section
¥ €85 is just a path in Z. Suppose at first that L{¥y)
is first arder in ¥. Working in local coordinates

u; 1in a patch on £, we have

a = |& ault+3L }}\dt
EYH e
Miat Py
= (& _d Su; A dt
fu;  dt|
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where L = L/dt. If we define p; as at/Sui,t, we
see that M = —-p;&4;, and U = —-8p; A ;. An
{n-1)-cycle € in X is just a point, t5» so that
we have oppq = (= 8p; A 8u;)(tg)s this form is
nondegenerate when we can solve for Uy ¢ in terms of
the “canonical variables” {u,sp, 3. Relabeling u; as
q; we see that our general theory reproduces the
symplectic structure of classical mechanics.

If 2 is a Riemannian or more generally,
semi-Riemannian manifold, the arclength action provides
a nontrivial case of a first order action with gauge
invariance — in this case reparameterization
invariance. Let & be the variety of complete

parameterized geodesics: ¢ is a subvariety of ¥ .

The set % of unparameterized geodesics in 2Z can be
constructed as the quotient of the unit tangent bundle
of Z by the action of the geodesic flow. By Theorem

13, our 2-form u[toj drops down to a 2-form on %.

However, % may not be a manifold at any point:
consider the case when 2 is a compact surface with
negative curvature: the geodesic flow is ergodic, and

% is a nasty object (perhaps apprcachable by Connes?

171y . 1¥ is a

]

noncommutative differential geometry
sphere, % is quite nice: it is a homogeneous compact
Kahler variety, for which the Kahler form is our form
u[toj, pushed forward from & to é.

Specific higher—order "mechanical" actions arise
in elasticity!8] and in the theory of the Kdv

111 pur universal current leads again to the

equation
known symplectic structures.

2) Suppose X is a three—-manifold Mg and 6
is a Lie group, regarded as a real matrix group, with

matrix Lie algebra &. Let O be the space of
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connections: &-valued 1—-forms on X. Define the

191 ‘

Chern—-Simons action of A €@ by

JoTreA A dn + gA AR AR,
C-
4 a domain in Mg. The Euler-—-Lagrange equation is F
= 0, where F is the curvature of A. The gauge

group is enormous: the semi-direct product of

Diff(Mg) with Cm(MB,G). Consequently, £  modulo
gauge transformations is small: it is the space ¥ of
geometrical classes of flat BG-connections over Mg.

If ny{M3) is finitely presented, ¥ is the quotient
of a finite dimensicnal real algebraic variety by the
discrete group ™ of components of Diff(Mg). UWhen

6 = 5L{2,€) we are studying Kleinian groups, i.e.
homomorphisms of ny(M3) to SL(2,0).

If B = 5L(2,R) and we assume X |is
diffeomorphic to« 8§ =« Ry, with S8 a compact criented
surface, then an open subset of ¥ is identifiable
with the moduli space of Riemann surface structures on
S.

The 2-form orgjy» pushed forward to ¥ via
Theorem 13, vyields the Weil-Petersson symplectic form
on moduli space. This symplectic form is in turn a

multiple of the Kahler form for the known Kahlerlian
structure on moduli spaceecj.

3) Suppose X is a two—dimensional Riemannian or
Lorentzian manifold and M is a given background
space—-time manifold. The energy of a map from X to
M defines an “action” familiar in mathematics. If we
regard the energy as a functional in both the map and
the metric ecn X we obtain instead the Polyakov action

81, The symplectic structure

for bosonic string theory
for this physical model is studied in the physics

literature by means of conformal gauge fixingsj.
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4) If we consider the Yang-Mills action on an
arbitrary space—-time, our universal current U
specializes to the simple form

here A 1is a Yang-Mills potential with variations §4A

&4

and '5As and corresponding curvature variations &F
and &pF; "¥" is the Hodge * operator induced by the
background space—-time metric. Our formula agrees with

the formula in Crnkovic~witten13].

For instantons on a compact closed four—-manifold
X; all periods of U{A,;%;A»3ipA) vanish, for in this
case the universal form is exact. It.-is unclear what
happens when X is a compact manifold with boundary,
as in 213.

5) Suppese X is an arbitrary manifold and we
consider the Einstein action with cosmological constant
for {(semi-)Riemannian metrics on X. In this case our
universal current U specializes to the Crnkovic-UWitten

a1l41,  1f

the space-time X is three—-dimensional, the extremal

currentlg] and the current in Ashtekar et.

gravitational metrics have constant curvature. In the
case of negative curvature we are led back to flat
SL{(2,L) connections over three manifolds, as in 2)
above.

In 161 we will compare our "covariant” symplectic
geometry for Yang—-Mills and Einstein theory with the
more standard non-covariant "3 + 1" formalism of

Fischer and Marsdeneej.

&) If X is Rab (Rlo), Witten’s open string

1014211) ffars

field {(open superstring field) action
the most sophisticated and mathematically involved
variational principle ever considered. The string

{superstring) field has infinitely many components.
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The Witten action is a kind of noncommutative

171

differential geometry analog of the Chern—-Simons

action discussed in 2) above. Witten proposes in 211 a
covariant symplectic structure for the solution variety
modulo string gauge transformations. We plan to
investigate the relationship between our universal

current U and Witten’s symplectic 2-form.

4. CONCLUDING REMARKS

We have limited our discussion to classical
bosonic field theory. Fermionic fields may be

introduced by extending our formalism to fibrations

Y 23 X of a supermanifold Y over a superspace-time
X. It should then be possible to incorporate

superparticlesEQJ, superstringssl, and supergravity

fields’3285] into our collection of physical examples.
Buantum fields -— in a covariant operator
formalism —— would be the ultimate goal of our
covariant appreoach to Lagrangian field theory. Under
reasonable conditions, the form oppy should
push—forward to a symplectic form on the gquotient of

& by gauge transformations. {When the gauge algebra

has field-dependent structure coefficients, as in

supergravity theoryesj, we have a new difficulty with

taking such a quotient.) We would then regard this
quotient as our covariant phase space, . Under ideal
conditions {(see Example 2) in Section 3) our phase

space P would be Kahlerian with the Kahler form equal

to the push—forward of our wrpy. Suppose this Kahler
form represented an integral cohomology class of =

then, following the ideas of geometric
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263,27],

gquantization there would be a holomorphic

Hermitian line bundle ¥ with connection such that the

curvature 2-form wcoculd equal the Kahler form. The
Hilbert space ¥ of square—integrable global
holomorphic sections of ¥ would serve as the gquantum
state space for our quantum field theory. There would
be two main difficulties: defining "square—integrable"
when F 1is infinite dimensional; and identifying the
classical observables — functions on ¥ ——, the
guantum cbservables —— operators on # —, as well as
the connection between these two sets of observables.
An ideal testing ground for geometric quantization
is gravitational theory on topologically nontrivial
three-manifaldss X. If X is diffeomorphic to S » R
with § a compact oriented surface, and we choose the
cosmclogical constant to have the proper sign, then our
phase space F will be the space of hyperbolic
structures on X =8 » F. If we let fit denote the

moduli space of Riemann surface structures on S5, then
it is known=?l that & = fl » v where @ is the

subset of complete hyperbolic metrics on X, and %

is the space of Riemann surface structures on g°PPP,

i.e. S5 with the opposite prientation.

Our form orgy becomes a Kahler form for the

complex structureEOJ on M = %. The theory of

Teichmuller modular forms should imply that our gquantum
state space ¥ for three—dimensional gravity is finite

dimensicnall

One last remark: the appearance of Teichmiller

theory above has nothing obvious to do with the current

applications of that theory to strings and

superstringsas]. In the latter theories, the moduli

space fi shows up in the quantum theory —— the Feynman
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path intagral reduces te an integral over W Clearly,

the correspondence between deep mathematical objects

and deep physical models is not one-to—cone!
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