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1 Introduction

Given a group G and a set M , a group action (of G on M) is a map G ×M → M
written as (g, p) 7→ g · p satisfying

1. e · p = p for all p ∈M (“the identity acts as the identity”)

2. g1 · (g2 · p) = (g1g2) · p for all g1, g2 ∈ G and p ∈M (associativity)

This notion is familiar from group theory, as some groups are defined by their action
(e.g., the symmetric group is what it does – the elements are permutations). In topol-
ogy and geometry, one can add structure to G and M and therefore to the group
action of G on M . Some examples are the following:

1. If G is a topological group (i.e., a group whose underlying set has a topology
such that both group operations are continuous) and M is a topological space,
we might ask that the group action is continuous, in which case the action is a
continuous action.

2. If G is a Lie group (i.e., a group with a smooth manifold structure such that
the group operations are smooth) and M is a smooth manifold, then one can
study smooth actions of G on M .

3. If G is a Lie group and M is a Riemannian manifold, then one can study
isometric actions.

We will discuss basis properties of group actions in Section 3. In this section, we
will discuss two familiar situations in which group actions arise naturally. These are
surfaces of revolution and spaces of constant curvature. In both cases, we will start
with a well-known Riemannian manifold, and show that it contains a large group of
symmetries (called isometries).

1.1 Surfaces of revolution

Given a function F : [0, π] → R that is positive on the interior of [0, π] and zero at
the end points, we can rotate the graph

graph(F ) = {(t, F (t)) | t ∈ [0, π]}

of F around the x-axis to obtain a (smooth, if we’re lucky – see [Pet06, Chapter 1])
surface M2 in R3. This surface, as a set, is

M = {(t, F (t) cos θ, F (t) sin θ) | t ∈ [0, π], θ ∈ [0, 2π]}.
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If F is smooth, then the surface is smooth away from t = 0 and t = π. If F (0) > 0,
then the points on M corresponding to t = 0 form a smooth boundary component.
If F (0) = 0, then M is smooth at the point (0, 0, 0) if and only if the function f(s)
defined below satisfies f ′(0) = 1 and f (r)(0) = 0 for all even r ≥ 1 (i.e., every even
derivative vanishes at t = 0 – see [Pet06, p. 13]).

Since R3 comes equipped with the flat metric g0 = dx2 + dy2 + dz2, the inclusion
map i : M → R3 induces a Riemannian metric g = i∗(g0) on M . Using φ(t, θ) =
(t, F (t) cos θ, F (t) sin θ) as local coordinates, we obtain the following local formula for
the metric g:

g = (φ ◦ i)∗(dx2 + dy2 + dz2) =
(√

1 + F ′(t)2dt
)2

+ F (t)2dθ2.

After applying the coordinate change t 7→ s(t) where

s(t) =

∫ t

0

√
1 + F ′(u)2du,

letting s 7→ t(s) denote the inverse map, and defining f(s) = F (t(s)), we have the
following familiar expression for g:

g = ds2 + f(s)2dθ2.

The fact that g takes such a simple form reflects the fact that it is rotationally
symmetric. To formalize this statement, we define an action of SO(2) on M as follows:
We identify R2 ∼= C so that elements of SO(2) are complex numbers of unit length
and elements of M are expressed as (t, f(t)eiθ). The action of SO(2) on M is given
by

SO(2)×M → M

(eiα, (t, f(t)eiθ)) 7→ eiα · (t, f(t)eiθ) = (t, f(t)ei(α+θ)).

For each eiα ∈ SO(2), we claim that eiα acts by isometries on M . That is, the map
A : M →M given by A(p) = eiα · p is an isometry. Another way of saying this is that
the action above is an isometric action.

Proof. In local coordinates (for small α, which suffices for the proof), A · φ(s, θ) =
φ(t, θ + α). Hence

A∗

(
∂

∂s

)
=

d

du

∣∣∣∣
u=0

φ(s+ u, θ + α) =
∂

∂s

∣∣∣∣
A·φ(s,θ)

.

Similarly, ∂/∂θ is preserved by A∗, so A∗ : Tφ(s,θ)M → Tφ(s,θ+α)M is the identity
map (with respect to the coordinate bases at these two points), which, in particular,
implies that A is an isometry.

Alternatively, one can simply compute

A∗(g) = ds2 + f(s)2d(θ + α)2 = g.
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1.2 Isometry groups of space forms

For a fixed Riemannian manifold M , compositions and inversions of isometries are
isometries, hence the set of all isometries of M is a group, denoted Isom(M) and
called the isometry group. Moreover, it is a nontrivial fact that this group is a Lie
group and therefore has a manifold structure and a dimension. We study isometry
groups of the simply connected space forms:

1. In Euclidean space, Rn, it is easy to see that, for all v ∈ Rn, the translation
map Tv : Rn → Rn defined by Tv(u) = u+ v is an isometry with respect to the
standard metric. Moreover, any element of O(n) preserves the metric, so the set
of all isometries of Rn contains the set

G = {Tv ◦ A | v ∈ Rn, A ∈ O(n)}.

Moreover, it is easy to see that composing two elements in G yields another
element of G and that inverses of elements in G are also in G, so G is a subgroup
of Isom(Rn).

We claim that, in fact, G = Isom(Rn). That is, we claim that every isometry of
Rn lies in this set.

Proof. Let φ : Rn → Rn be an isometry. Set v = φ(0), and note that (Tv)
−1 ◦ f

is an isometry of Rn that fixes the origin.

Next, consider the derivative of T−1
v ◦ f at 0, which is a map T0(Rn)→ T0(Rn).

This map is a linear isometry, so it is equal to some A ∈ O(n).

We claim that T−1
v ◦ f = A. Indeed, both maps are isometries of Rn, they both

fix the origin, and their derivatives at the origin coincide. (Note that D(A)0 = A
since A is linear.) The claim, and hence the proof, follows since the Riemannian
exponential map is surjective and commutes with isometries.

It follows from this that the dimension of the isometry group of Rn is n +
dim O(n) = n+ n(n−1)

2
= n(n+1)

2
.

2. A similar proof shows that Isom(Sn) = O(n + 1), which also has dimension
n(n+1)

2
.

3. And for hyperbolic space, Isom(Hn) = O(n, 1), which again has dimension
n(n+1)

2
.

Among simply connected spaces, this “maximal symmetry” condition character-
izes these spaces (see [Kob72, Chapter II.3] for a proof):
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Theorem 1.2.1 (Maximal symmetry degree). The isometry group of a Riemannian

manifold Mn has dimension at most n(n+1)
2

. Moreover, if M is simply connected and
this dimension is achieved, then M is isometric to the sphere, Euclidean space, or
hyperbolic space.

If M is not simply connected and its isometry group has dimension n(n+1)
2

, then
M is isometric to Sn/Z2 = RPn.

Observe that RPn occurs since its isometry group is O(n + 1)/ ± id, however no
other space of constant curvature and nontrivial fundamental group appears.

As a final comment, it can be shown that the standard product metric on the
n-manifolds R×Mn−1 and S1 ×Mn−1, where M any of the four constant curvature
examples with maximal isometry group, has isometry group of dimension

1 + dim Isom(Mn−1) = 1 +
(n− 1)n

2
.

For n-manifolds (with n > 4), no closed subgroup of Isom(Mn) has dimension strictly

between 1 + (n−1)n
2

and n(n+1)
2

. (See [Kob72] for further statements, a classification

of metrics satisfying dim Isom(Mn) = 1 +
(
n−1

2

)
, and references to further work on

related questions.)

1.3 Conclusions and curiosities

Question 1.1. Using the idea of the calculation of Isom(Rn), prove that Isom(Sn) =
O(n+ 1) when the metric on Sn is the standard, or “round”, metric.

Question 1.2. Given that Isom(Sn) = O(n + 1), prove that Isom(RPn) = O(n +
1)/Z2, where Z2

∼= {±I} ⊆ O(n+ 1).

Question 1.3 (Lens spaces). What are the isometry groups of the lens spaces L3
q =

S3/Zq? If q = 2, then L3
q = RP3, so assume q > 2. By Theorem 1.2.1, the dimension

of the isometry group must be less than maximal!
As a first case to consider, suppose that Zq acts via a restriction of the (free) Hopf

action, i.e., suppose z · (z1, z2) = (zz1, zz2). Observe that U(2) commutes with this
action on S3, hence the U(2)-action descends to L3

q. (See [McC] for the general case.)

Question 1.4 (Isometry groups of 1-, 2-, and 3-dimensional manifolds).
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1. If M is a one-dimensional manifold (i.e., R or S1), Theorem 1.2.1 states that
dim(Isom(M, g)) ∈ {0, 1} for every metric g on M .

Construct metrics that realize both possibilities.

2. If M is a two-dimensional Riemannian manifold, then the possibilities for the
dimension of the isometry group are 0, 1, 2, and 3. Can you construct metrics
that realize all of these possibilities?

3. For Riemannian 3-manifolds M , we have dim(M) ∈ {0, 1, 2, 3, 4, 5, 6}. Again,
are all of these possible? (The answer is no. There is no metric on any 3-manifold
with 5-dimensional isometry group – again see [Kob72, Chapter II.3].)

2 Lie groups: a crash course

[[[I mostly referred to Ziller’s notes on Lie Groups and Symmetric Spaces. In class,
we covered just the basics, up to the Lie group exponential map, which is needed to
defined action fields.]]]

Example 2.0.1 (S3 as unit quaternions). The Lie group SU(2) ∼= S3, as can be
seen by parameterizing the matrices in SU(2). However, we wish to think if S3 in a
different way. Just as we define

C = {a+ bi | a, b ∈ R}

where i is a new object not in R, and just as we can define multiplication on C using
the relation i2 = −1, we can similarly define the quaternions H ∼= R4. In fact, let i,
j, and k be distinct elements (not in R) such that

i2 = j2 = k2 = −1 and ij = −ji = k.

Define
H = {a+ bi+ cj + dk | a, b, c, d ∈ R}

and define multiplication simply by distributing terms and using the relations on i,
j, and k.

Define the norm | · | : H→ R≥0 by

|a+ bi+ cj + dk|2 = a2 + b2 + c2 + d2.

One can check that |q1q2| = |q1||q2| for all q1, q2 ∈ H (i.e., that the norm is multiplica-
tive). It follows that

S3 = {q ∈ H | |q| = 1}
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is closed under multiplication. Moreover, the inverse of q = a + bi + cj + dk is the
conjugate

q̄ = a− bi− cj − dk,
so S3 is a group. It has the usual smooth structure given by identifying it as a
hypersurface in R4 ∼= H, and the multiplication and inversion maps are smooth,
hence S3 is a Lie group.

3 Group actions on manifolds

Throughout this chapter, we use the following notation:

• G denotes a Lie group. For example, G will be the cyclic group Zk = Z/kZ,
the circle group S1, the torus T r = S1 × · · · × S1, the additive group R, or any
of the many nonabelian Lie groups (including products of O(n), SO(n), U(n),
Sp(n), etc.)

• M denotes a connected smooth manifold.

• α : G ×M → M denotes a smooth group action. Another way of saying this
is that the induced map φ : G → Diff(M) given by φ(g) = α(g, ·) is a group
homomorphism.

We will often consider isometric group actions on Riemannian manifolds. For these
actions, the map φ : G→ Diff(M) has image inside the isometry group of M . As we
will see, every smooth action by a compact group induces an isometric group action
on M . On the other hand, we will often assume that M already has a Riemannian
metric and that some group acts isometrically on M . In this case, averaging the metric
over a larger subgroup of diffeomorphisms might not be possible while preserving the
preexisting curvature condition.

In fact, given a smooth action by a compact group G on a smooth manifold M ,
we can always define a Riemannian metric on M such that G ⊆ Isom(M). We prove
this now, since we will use it frequently.

Theorem 3.0.2 (Invariant metrics). If G is a compact Lie group acting smoothly on
a smooth manifold M , then there exists a G-invariant Riemannian metric on M .

Proof. We first recall that compact Lie groups admit bi-invariant measures, called
Haar measures, such that G has unit volume (see, for example, [?, Exercise 1.7]).

Given such a measure dµ on G, we proceed to the proof. We begin with any Rie-
mannian metric Q(·, ·) on M , then we define a new metric Q̃(·, ·) on M by declaring,
for all p ∈M and X, Y ∈ TpM that

Q̃(X, Y ) =

∫
G

Q(g∗(X), g∗(Y ))dµg.
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Since dµ is left-invariant, this defines a G-invariant Riemannian metric on M .

3.1 Basic concepts and examples

One should keep in mind the following examples as we define fundamental concepts
in the next subsection:

Example 3.1.1 (S1 on S2). SO(2) = S1 acts on S2 = {(w, t) ∈ C×R | |w|2 + t2 = 1}
by rotation about the z-axis. One way to write this action is as z · (w, t) = (zw, t).

We could define another action by z · (w, t) = (zkw, t). Notice however that k-
th roots of unit act trivially (i.e., as the identity), so the homomorphism φ : S1 →
Diff(S2) has kernel ker(φ) ∼= Zk. We therefore get an induced map

φ̄ : S1/ ker(φ)→ Diff(S2).

Since the kernel is a normal subgroup, and since quotients of Lie groups by normal
subgroups are again Lie groups (see Theorem 3.2.1). In this case, we easily see that
S1/ ker(φ) ∼= S1/Zk

∼= S1. Moreover, under this identification, the action φ̄ is takes
the form

z · (w, t) = (zw, t) or z · (w, t) = (z−1w, t).

Example 3.1.2 (Z2 on Sn). If g ∈ Z2 denotes the generator, we define the free
antipodal action of Z2 on Sn via

g · (x0, . . . , xn) = (−x0, . . . ,−xn).

The quotient is, by definition, real projective space RPn.

Example 3.1.3 (S1 on S3). We consider S1 ⊆ C and S3 ⊆ C2, we let k, l ∈ Z, and
we define an action of S1 on S3 by

z · (z1, z2) = (zkz1, z
lz2).

As in the previous example, this action has nontrivial kernel if gcd(k, l) > 1. One
can see that dividing by Zgcd(k,l) ⊆ S1 yields a new action with gcd(k, l) = 1. We will
make this assumption.

Note that special case of k = l = 1 is a free circle action on S3, called the Hopf
action. In fact, the space of orbits is S3/S1 ∼= CP1 ≈ S2, and the map S3 → S2 is
called the Hopf fibration.

Also note that the subaction of a Zq ⊆ S1, by which we mean simply the restriction
of φ to Zq, yields quotient spaces S3/Zq that include the lens spaces. (One should check
that gcd(k, q) = 1 and gcd(l, q) = 1 are required for the quotient to be a manifold.
The requirement on the action is that the action is free – see Theorem 3.2.1)
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Example 3.1.4 (S3 on S4n+3). Writing S3 as the unit quaternions, and writing

S4n+3 = {(q0, . . . , qn) ∈ Hn+1 |
∑
|qi|2 = 1},

we can define an action of S3 on S4n+3 by

q · (q0, . . . , qn) = (qq1, . . . , qqn).

(Question: What other actions are possible? Be careful since S3 is not commutative!)
This action can be seen to be free, and the orbit space is quaternionic projective space
HPn.

Elements of the orbit space are denoted by equivalence classes [q0, . . . , qn], and we
can define new group actions on this space. For example, the torus T n+1 acts by

(z0, . . . , zn) · [q0, . . . , qn] = [zk00 q0, . . . , z
kn
n qn].

Question: Do some group elements act trivially?

So far, the groups have been pretty small relative to the manifold, at least in terms
of dimension. Here are some examples where the group is very large relative to the
manifold:

Example 3.1.5. The standard actions of O(n) on Rn, U(n) on Cn, and Sp(n) on
Hn take unit vectors to unit vectors, hence we obtain actions of

• O(n) on Sn−1,

• U(n) on S2n−1, and

• Sp(n) on S4n−1.

Since these actions commute with the actions described above of Z2, S1, and S3 on
Sn−1, S2n−1, and S4n−1, respectively, we obtain the following induced actions on the
corresponding projective spaces:

• O(n) on RPn−1,

• U(n) on CPn−1, and

• Sp(n) on HPn−1.

Finally, it is important to note the Lie subgroups H ⊆ G induce natural actions:

Example 3.1.6. Given a subgroup H ⊆ G, we obtain an action of H on G by
left multiplication: h · g = hg. Another action is h · g = gh−1. A third action is by
conjugation: h · g = hgh−1.
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We will discuss further example at the end of the section.
As we proceed through the basic definitions and properties of group actions, the

reader is encouraged to see what each new term means in a few of the examples above.
Throughout, we will keep the notation φ : G → Diff(M) for a group action of G

on M .

Definition 3.1.7. The action φ is

• effective if ker(φ) = {e} (that is, only the identity acts as the identity),

• almost effective if ker(φ) is finite.

Since ker(φ) ⊆ G is a closed normal subgroup, the quotient group Ḡ = G/ ker(φ)
is another Lie group, and we get an induced, effective action Ḡ→ Diff(M). For this
reason, we almost exclusively consider effective actions.

Definition 3.1.8 (Two things called “G-p”). The orbit through p ∈ M is denoted
by Gp, G(p), or G · p, and it is the subset

G · p = {g · p | g ∈ G}.

The isotropy group at p ∈M is denoted by Gp and is defined by

Gp = {g ∈ G | g · p = p}.

Observe the following:

Lemma 3.1.9. For all g ∈ G and p ∈ M , Gg·p = gGpg
−1, so isotropy groups along

an orbit lie in the same conjugacy class.

Proof. Easy. Just write down the set definitions.

Definition 3.1.10 (Orbit space). We define M/G as a set to be the set of G-orbits.
Equivalently, we identify p ∼ q iff p = gq for some g ∈ G.

The topology on M/G is the quotient topology, i.e., U ⊆ M/G is declared to be
open iff its inverse image under the quotient map M →M/G is open.

Sometimes, the orbit space is a manifold. A sufficient condition for this to occur
in the case of compact group actions is that the action is free, as in the following
definition:

Definition 3.1.11 (Free actions). The action of G on M is

• free if Gp = {e} for all p ∈M (that is, the only thing that fixes anything is that
which fixes everything).

• almost free if Gp is finite for all p ∈M .
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• semifree if Gp is {e} or G for all p ∈M .

• trivial if Gp = G for all p ∈M .

Observe that, actions by finite groups are automatically almost free. Also note
that we have seen examples of free and semifree actions. (Which ones?)

Also note that these definitions are given in terms of the isotropy groups. Other
important definitions are in terms of the orbits:

Definition 3.1.12 (Transitive actions). The action of G on M is transitive if G ·p =
M for some (equivalently, for all) p ∈M .

A final basic concept is that of action fields :

Definition 3.1.13 (Action fields). Recall that g is the Lie algebra of left-invariant
vector fields on G, and that g ∼= TeG. Let X (M) denote the space of all smooth vector
fields on M . We define a map

g −→ X (M)

X 7→ X∗

where X∗(p) = d
dt

∣∣
t=0

(exp(tX) · p).

The following lemma is an important fact about action fields:

Lemma 3.1.14. For all X ∈ g, the action field X∗ is smooth. Additionally, for all
p ∈ M , the map g → TpM given by X 7→ X∗(p) is linear with kernel gp and image
Tp(G · p).

In other words, the tangent space to the orbits are spanned by action fields, and
X∗(p) = 0 if and only if exp(tX) ∈ Gp for all t ∈ R.

Proof. Exercise. (To get injectivity, use uniqueness of flows and the fact that exp(tX)
is the flow of X∗. Surjectivity can be shown using a dimension count. For linearity,
one can apply the Baker-Campbell-Hausdorff formula.)

3.2 Quotients by free group actions

As mentioned in the previous section, free actions by compact Lie groups admit
smooth quotient spaces. We prove this now:

Theorem 3.2.1 (Quotients by free actions are manifolds). If G is compact and acts
freely on M , there exists a smooth structure on M/G such that π : M → M/G is a
principal G-bundle (and, in particular, a submersion).
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Proof of theorem. By Theorem 3.0.2, we can endowM with aG-invariant Riemannian
metric. Hence we assume without loss of generality that M is a Riemannian manifold
and that G acts by isometries.

Our task is to construct coordinate charts on M/G. Fix any p ∈M , and define the
map G→M by g 7→ g · p. This map is an embedding. (Proof: It is injective because
the G-action is free, it is an immersion by Theorem 3.1.14 since the differential at
e ∈ G is X 7→ X∗(p) and at other g is a left translate of this, and therefore it is an
embedding because G is compact.)

Since the orbit (i.e., the image of the map G→M above) is an embedding, there
exists G-invariant tubular neighborhood

Nε(G · p) = exp(ν<ε(G · p)) = exp({v ∈ ν(G · p) | |v| < ε})

around G · p. Here we are using the Riemannian exponential map. Define the slice at
p to be the set

Sp = exp(ν<εp (G · p)).
Observe that π(Sp) ⊆M/G is open since its preimage is the open set Nε(G · p).

We define charts on M/G as follows: For p̄ ∈ M/G, choose any p ∈ π−1(p̄),
choose an ε-tubular neighborhood as above, then define coordinates on π(Sp) by the
composition

Rk f−→ ν<εp (G · p) exp−→ Sp
π−→ π(Sp),

where k = dim(M)−dim(G) is the codimension of the orbit G · p and where f is any
diffeomorphism identifying Rk and νεp(G · p).

Assuming for a moment that these charts are smooth, it follows from the definition
of π that it is a submersion. Indeed, Tπ(p)(M/G) is identified via π∗ with Tp(Sp), both
of which have dimension dim(M)− dim(G).

These coordinate charts clearly cover M/G, so it suffices to show that the coordi-
nate interchanges are smooth. For this, it will be important to note the following

Fact: g · Sp ∩ Sp is empty for all g ∈ G \ {e}.
(To prove this, use the fact that exp : νε(G · p)→ Nε(G · p) is a diffeomorphism and
hence injective. In particular, the slices Sp and Sg·p are disjoint whenever g · p 6= p.
Since the action is free, Sp and Sg·p are disjoint for all g 6= e.)

Suppose therefore that π(Sp) and π(Sq) are overlapping coordinate charts onM/G.
Upstairs, in M , this means that the G-orbit through some r0 ∈ Sp intersects Sq.
Choose g ∈ G such that g · r0 ∈ Sq. CLAIM: For all r ∈ Sp ∩ π−1(π(Sq)), we have
g · r ∈ Sq

Given this, we see that the coordinate interchange is given by the smooth compo-
sition

Rk ∼= ν<εp ⊇ exp−1
p (Sp ∩G · Sq)

expp−→ Sp ∩G · Sq
g·−→ G · Sp ∩ Sq

exp−1
q−→ ν<εq

∼= Rk.

This concludes the proof that M/G admits a smooth structure such that M →M/G
is a submersion.
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Proof that M →M/G is a principal G-bundle. We define the local trivializations by
using the open sets π(Sp) from above, and the trivialization diffeomorphisms

h : π(Sp)×G −→ π−1(π(Sp))

where (q, g) 7→ g · q.
Given two local trivializations (π(Sp1), h1) and (π(Sp2), h2), we choose h ∈ G such

that h · p1 = p2 and conclude that h−1
2 ◦ h1 maps

(π(q), g) 7→ h−1
2 (g · expp1(v))

= h−1
2 (gh−1 · expp2(h∗v))

= (π(expp2(h∗(v))), gh−1)

= (π(q), gh−1).

In other words, the transition function

G
h1(q̄,·)−→ π−1(π(q))

h2(q̄,·)−1

−→ G

is given by g 7→ h · g = gh−1.

With this theorem in hand, we obtain a couple of important corollaries.

Corollary 3.2.2. If G is compact and if H ⊆ G is a closed submanifold, then G/H
is a manifold and G→ G/H is a principal H-bundle.

Proof. Let H act on G on the right. This action is clearly free, so the theorem im-
plies G/H admits a smooth manifold structure. Moreover, this structure satisfies the
property that π : G→ G/H is a principal H-bundle.

A corollary of this corollary is the following:

Corollary 3.2.3. Orbits of compact Lie group actions are embedded submanifolds.

Proof. We already saw that orbits G · p are homeomorphic to G/Gp and hence admit
a smooth structure. But we can now show that the inclusion G · p→M is a smooth
embedding.

The map G×M →M is smooth, hence the restriction to the embedded subman-
ifold G× {p} ⊆ G×M is a smooth map

G = G× {p} →M

whose image is the orbit G · p through p. Observe that the restriction of this map to
Gp is the constant map, hence we get an induced map

G/Gp →M.

Now the theorem states that G→ G/Gp is a submersion, hence this induced map is
smooth ([Lee02, Chapter 7]).

Finally, this induced map is an injective (easy), an immersion (see Lemma ?? below
– if X∗(p) = 0 in Tp(G · p), then X ∈ gp and hence X = 0 in g/gp), and therefore an
embedding (because G, and hence G/Gp is compact – see [Lee02, Chapter 7]).
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3.3 The slice theorem

In the case of free actions, we saw in the previous section that the orbit space is
smooth. Moreover, the orbits were embedded submanifolds with G-invariant tubular
neighborhoods whose slices were diffeomorphic to the open sets of the orbit space.

For smooth actions which are not free, we lose the property that M/G is smooth.
However, we still obtain “nice” G-invariant tubular neighborhoods of the orbits. This
is crucial for studying local properties of group actions. The result is the following:

Theorem 3.3.1 (Slice Theorem). Let G be a compact group acting isometrically on
a Riemannian manifold M . For all p ∈M , the orbit G · p is embedded in M .

Moreover, for all p ∈M , there exists an ε > 0 so that the slices

Sx = expx(ν
<ε
x (G · p))

at x ∈ G · p and the tubular neighborhood

G · Sp = Nε(G · p) =
⋃
x∈G·p

Sx

about G · p satisfy all of the following:

1. The slices Sx are pairwise disjoint.

2. g · Sx = Sg·x for all g ∈ G and x ∈ G · p.

3. Gx acts on Sx, and the action is G-equivariant via expx to the isotropy repre-
sentation Gx → O(νx(G · p)).

4. For q ∈ Sp, the isotropy group Gq is a subgroup of Gp, and, in general, for
q ∈ Nε(G · p), Gq is conjugate to a subgroup of Gp.

5. There map [g, q] 7→ g · q is a well defined diffeomorphism

G×Gp Sp −→ Nε(G · p),

where G×Gp Sp is the quotient space (G×Sp)/Gp of the right action h · (g, q) =
(gh, h−1 · q). In fact, this diffeomorphism is G-equivariant if we let G act on
G×Gp Sp by h · [g, q] = [hg, q] and on Nε(G · p) by simply restricting the action
of M to Nε(G · p).

6. If the isotropy representation at p is trivial (i.e., Gp acts trivially on Sp), then
clearly Nε(G · p) is diffeomorphic to (G/Gp)× Sp.

7. The map [g, q] 7→ [g] defines a G-equivariant fiber bundle projection

G×Gp Sp −→ G/Gx
∼= G · p

with fiber Sp and group Gx. In fact, it is the (Sp)-fiber bundle associated to the
(Gp)-principal bundle G→ G/Gp.
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Using these neighborhoods, we can generalize the statement that M/G is smooth
if G acts freely:

Corollary 3.3.2. If G acts on M with a unique isotropy type, then M/G is a smooth
manifold.

Here, we say that isotropy subgroups are of the same type if they are conjugate
to each other. The proof of this corollary mimics that of the proof of Theorem 3.2.1.

The proof of the slice theorem is sketched as follows:

Proof of the slice theorem. We begin by assuming that G acts isometrically on M ,
and we choose tubular neighborhoods Nε(G · p) = exp (ν<ε(G · p)) as in the proof of
Theorem 3.2.1. Properties (1) and (2) follow immediately. Property (3) follows from
(2) together with the fact that the Riemannian exponential commutes with isometries.

Property (4) also follows immediately from (1) and (2). In fact, if q = expp(v) for
some v ∈ ν<εp (G · p), then

Gq = {g ∈ Gp | g∗(v) = v}.

Observe that, in fact, the subrepresentation Gq → O(νp(G · p)) has an invariant
subspace (spanned by v). One can push this analysis further to conclude that, up to
conjugacy, there are only finitely many isotropy subgroups Gp′ for p′ ∈ Sp. Moreover,
since isotropy groups along a G-orbit are conjugate (see Theorem 3.1.9), this proves
that Nε(G · p) contains only finitely many isotropy types. Since p ∈M was arbitrary,
we conclude that, when M is compact, that there exist only finitely many isotropy
types of M . (See Corollary 3.3.3 below.)

Checking that the maps in (5) and (7) are as claimed is straightforward. To check
smoothness, one can use Theorem 3.2.1 together with the fact that Gp acts freely on
G× Sp. Property (6) is straightforward, so this completes the proof sketch.

We proceed to a number of other important corollaries.

Corollary 3.3.3. If G and M are compact, then any action of G on M has only
finitely many isotropy types.

Proof sketch. We induct over the dimension of M . Clearly, if dimM = 0, then M is a
disjoint union of a finite number of points (by compactness), hence the set of isotropy
groups {Gp | p ∈M} is already finite.

Assume the result for manifolds of dimension less than n, and suppose dim(M) =
n. Since each point is contained in an open slice neighborhood, we may use compact-
ness to cover M by finitely many slice neighborhoods. It suffices to show that each
slice neighborhood has finitely many isotropy types.

Fix a slice neighborhood Nε(G · p) =
⋃
x∈G·p Sx. Since every q ∈ Nε(G · p) is equal

to g ·r for some r ∈ Sp (which implies Gq = gGrg
−1), all isotropy types are repesented
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in the slice Sp at p. Hence it suffices to show that the action of Gp on the slice Sp has
only finitely many isotropy types.

To prove this, we recall that the slice theorem implies that the Gp action on Sp is
(Gp)-equivariant (via expp) to the Gp action on ν<εp (G · p). Since this action is linear,
the isotropy groups at tv for unit vectors v and t ∈ (0, ε) are constant. Hence we see
that it suffices to count the number of isotropy types of the restriction action of Gp

on the sphere of radius ε/2 inside ν<εp (G ·p). Since this is a compact group action on a
compact manifold of dimension less than n, we conclude by the induction hypothesis
that it has only finitely many isotropy types. This concludes the proof.

Exercise 3.3.4. Prove directly (without inducting over the dimension of M) that
circle actions on compact manifolds have finitely many isotropy types.

As a consequence of the previous corollary, one has the following special, useful
result about torus actions. I can’t remember the proof, so I’m stating it as an exercise:

Exercise 3.3.5 (Free circle actions from torus actions). If T is a torus acting on a
compact manifold M such that every isotropy subgroup has codimension greater than
one, then there exists a circle inside T that acts freely on M .

We will come back to the slice theorem repeatedly. For now, we proceed to an
important consequence of the slice theorem. It is important enough to merit its own
section.

3.4 Isotropy types and the principal orbit theorem

At every point p ∈ M , we have the orbit G · p through p and an isotropy subgroup
Gp ⊆ G. However, many of these orbits are diffeomorphic, and many of these groups
are isomorphic. To better understand this picture, we make the following definition:

Definition 3.4.1 (Orbit types and isotropy types). We define a relation on the set
{Gp | p ∈ M} of isotropy groups by declaring that Gp and Gq have the same type if
and only if they are conjugate in G. We call the equivalence classes isotropy types.

Similarly, we define a relation on the set {G · p | p ∈ M} of orbits by declaring
that G · p and G · q have the same type if and only if the isotropy subgroups at p and
q are conjugate in G (i.e., of the same type).

More generally, we define the following:

Definition 3.4.2 (Partial ordering on isotropy and orbit types). If H and K are
isotropy subgroups of G, we denote their isotropy types by (H) and (K), and we say
that (H) ≤ (K) if and only if H is conjugate to a subgroup of K. This defines a
partial ordering on the set of isotropy types.

Similarly, we say that one orbit type is less than or equal to another if and only
if the first orbit’s isotropy type is greater than or equal to the second orbit’s.
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The principal orbit theorem below states, in particular, that a minimal isotropy
type exists for compact group actions on compact manifolds. Before proving the
theorem, we give a few examples.

Example 3.4.3 (Torus actions have trivial principal isotropy group). If G is an
abelian Lie group, then distinct isotropy subgroups belong to distinct isotropy types.
In particular, the closed subgroup

⋂
p∈M Gp of G is a Lie subgroup when G is compact.

On the other hand, this subgroup is equal to the kernel of the action. Dividing the
action by this ineffective kernel yields a new action with trivial principal isotropy
subgroup.

Example 3.4.4 (Principal isotropy groups of some transitive actions). Consider the
standard action of O(n+1) on Sn. The isotropy subgroup at every point is easily seen
to be a subgroup conjugate to a standard block embedding of O(n) into O(n + 1).
The principal isotropy group for this action is therefore O(n).

Another transitive action is given by any group G acting on itself by left transla-
tion. In this case, the action is free, which implies that the principal isotropy group
is trivial.

Example 3.4.5 (Finite but nontrivial principal isotropy group). Let G = SO(n).
Identify Rn2

with the set Mat(n,R) of n-by-n matrices with real entries, and let G
act on Rn2

by conjugation. Observe that the linear subspace Sym(n,R) of symmetric
matrices is invariant under this action, as is the linear hyperplane Mn(n+1)/2−1 of
Sym(n,R) given by matrices with trace zero. Finally, define the usual (G-invariant)
norm on Rn2

by declaring |A|2 = tr(ATA), and consider the unit sphere Sn(n+1)/2−2

inside M . In short, identify

Sn(n+1)/2−2 = {A ∈ Mat(n,R) | AT = A, trA = 0, tr(ATA) = 1}.

For example, this construction produces an action of SO(2) on itself, of SO(3) on
S4, and of SO(5) on S13.

Since symmetric matrices are orthogonally diagonalizable (over the real numbers),
every orbit passes through a diagonal matrix. Since isotropy groups are conjugate
along orbits, we can classify the isotropy types by examining those at diagonal ma-
trices. Moreover, at least for n ≥ 3, we see that every orbit passes through a diagonal
matrix p = diag(λ1, λ2, . . . , λn) with λ1 ≤ · · · ≤ λn. The isotropy subgroup at p
depends on (and only on) the number of distinct eigenvalues. If there are k distinct
eigenvalues, the isotropy subgroup will be the subgroup

S(O(m1)× · · · ×O(mk)) ⊆ O(m1)× · · · ×O(mk) ⊆ O(n)

of block-diagonal matrices with determinant one, where m1, . . . ,mk are the multiplic-
ities of the eigenvalues. Clearly the minimal isotropy type corresponds to the case
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where λ1 < · · · < λn. (Observe that this is the generic case, i.e., this condition holds
on an open and dense subset.) The principal isotropy group is therefore

Zn−1
2
∼= S (O(1)× · · · ×O(1)) ,

the subgroup of diagonal matrices with entries ±1 subject to the condition that the
determinant is one.

The following theorem is of great importance when studying the orbit space of a
group action:

Theorem 3.4.6 (Principal Orbit Theorem). Let G be a compact Lie group acting
isometrically on a Riemannian manifold M . The following hold:

1. There exists a unique maximal orbit type.

2. The union M0 of maximal orbits is open and dense in M .

3. The G-action on M restricts to M0, and M0 →M0/G is a Riemannian submer-
sion. It is also a fiber bundle with fiber G/H, where H is a principal isotropy
group.

4. The quotient M0/G of the principal part is open, dense, and connected in M/G.

The first conclusion, of course, is equivalent to there existing a unique minimal
isotropy type. The orbits of maximal type are called the principal orbits, and the
isotropy groups of minimal type are called principal isotropy groups.

Points whose orbits are maximal are called regular points. Other points are called
exceptional points or singular points, according to whether their orbits have dimen-
sion equal to or less than, respectively, the dimension of the principal orbits. For
example, for the circle action on S2, the poles are singular points since their orbits
have dimension less than one, while all other points are regular points. Examples of
exceptional points arise any time the isotropy at a point is a (nontrivial) finite group.

The union of the principal orbit types is also denoted by Mreg. Since the projection
π : M → M/G is continuous and open (since M/G has the quotient topology), we
conclude from the principal orbit theorem that π(M0) is also connected, open, and
dense in M/G. Moreover, since the G-action on M restricts to a G-action on M0,
and since this action has a unique isotropy type, we have from Theorem 3.3.2 that
π(M0) = M0/G admits a smooth manifold structure such that M0 → π(M0) is a
Riemannian submersion and, in fact, a fiber bundle projection with fiber G/H, where
H is a principal isotropy group.

In general, for any isotropy type (H), one can define M(H) to be the union of
orbits with isotropy type (H) and conclude the following:

• M(H) is a (disjoint) union of embedded submanifolds (the orbits – see Theo-
rem 3.2.3).
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• M(H) is G-invariant (i.e., the G-action restricts to a G-action on M(H)).

• M(H) → M(H)/G is a Riemannian submersion and a fiber bundle projection
with fiber G/H (since (H) is the unique isotropy type – see Theorem 3.3.2).

We can say more. Let MH denote the fixed-point set of H. Observe that MH ⊆M(H).
Points in the latter subset are fixed by subgroups conjugate to H but perhaps not by
H itself. In fact, the following holds:

M(H) =
(
MH ∩M(H)

)
×N(H)/H (G/H)

where N(H) = {g ∈ G | gHg−1 = H} is the normalizer of H. That is, M(H) can be
expressed as a fiber bundle with fiber G/H over the points in M fixed by H but not
by anything else.1

Other important facts hold for these G-invariant subsets of M , however we return
to our analysis of the regular part of M , that is, M0, the union of principal orbits.
The proof of the principal orbit theorem uses the following simple, but important,
lemma:

Lemma 3.4.7 (Kleiner’s lemma). Assume G acts isometrically on M . If c : [0, 1]→
M is a minimal length curve curve from G · c(0) to G · c(1), then

Gc(t) = {g ∈ G | g · c(s) = c(s) for all s ∈ [0, 1]} =
⋂

s∈[0,1]

Gc(s).

In particular, Gc(t) is constant along the interior of im(c) and is a subgroup of both
Gc(0) and Gc(1).

Proof. Define Gc = {g ∈ G | g · c(t) = c(t) for all t ∈ [0, 1]}. Let t ∈ (0, 1). We claim
that Gc(t) = Gc for all t ∈ (0, 1). If this is not the case, there exists s ∈ (0, 1) and
g ∈ G such that g fixes c(s) but not all of c. Since G acts isometrically on M , the
curve t 7→ g · c(s) is another minimal geodesic from G · c(0) to G · c(1). Since g · c 6= c,
the derivative of this curve at s is not equal to c′(s). Hence the curve

c̃(t) =

{
c(t) if t ∈ [0, s]

g · c(t) if t ∈ [s, 1]

is a minimizing curve from G ·c(0) to G ·c(1) that fails to be smooth. This contradicts
the first variation of energy formula.

Proof of the principal orbit theorem. To prove the first statement, we show existence
and uniqueness separately. To begin, suppose

G ≥ K1 ≥ K2 ≥ · · ·
1Is this correct?
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is any decreasing chain of isotropy subgroups. It suffices to show that this chain sta-
bilizes (i.e., that the Ki have the same type for all sufficiently large i). Observe that,
since isotropy subgroups are closed subgroups, each Ki is a Lie subgroup of Ki−1.
In particular, each Ki has a dimension. We first claim that the dimensions dim(Ki)
are decreasing in i. Indeed, Ki ≥ Ki+1 implies that Ki+1 is conjugate to a subgroup
of Ki. Conjugation is a Lie group isomorphism of Ki+1 and its conjugate, and the
inclusion a Lie subgroup in and immersion, hence dim(Ki) ≥ dim(Ki+1). It follows
that the dimensions dim(Ki) stabilize and hence that the identity components of the
Ki are isomorphic for all sufficiently large i. (Use that injective vector space homo-
morphisms are, in fact, isomorphisms, together with the fact that an isomorphism of
Lie algebras induces an isomorphism of the indentity components of Lie groups.) By
the compactness of G and the fact that isotropy groups are closed subgroups of G,
we see that these Ki have only finitely many components, hence the isotropy type
stabilizes as well.

To see that the minimal isotropy type is unique, suppose for a moment that there
were two minimal isotropy types, Gp and Gq. Connect the corresponding maximal
orbit types by a minimal geodesic c. Using the notation of Kleiner’s lemma, we con-
clude that Gc is conjugate to a subgroup of both Gp and Gq. However minimality
implies that Gc is conjugate to all of Gp and to all of Gq, so Gp and Gq are conjugate
to each to other and hence have the same isotropy type.

To prove the second statement, let M0 denote the union of the principal orbits.
We claim that M0 is open and dense in M

• (M0 is open.) Let p ∈ M0 and chose a slice neighborhood G · p. By the slice
theorem, points in the slice Sp at p are conjugate to subgroups of Gp and hence
are also minimal. Other points in the (open) slice neighborhood around p are
obtained by conjugating groups Gq with q ∈ Sp, hence they are also minimal.

• (M0 is dense.) Let p ∈ M . Choose any minimal geodesic c : [0, 1] → M con-
necting G · p to any principal orbit G · q. Kleiner’s lemma implies that Gc(t)

is constant along c and that it is conjugate to a subgroup of Gc(1), which as
the same type as Gq. Since Gq is a principal isotropy type, so is Gc(t) for all
t. Since t ∈ (0, 1) can be chosen arbitrarily small, we see that there are points
with minimal istropy type arbitrarily close to p.

To prove the third statement, we first note that G preserves M0 since isotropy
groups along orbits are of the same type. We then apply Theorem 3.2.1 to conclude
that M0/G admits a smooth structure and a Riemannian metric such that M0 →
M0/G is a Riemannian submersion. The fact that it is a fiber bundle with fiber G/H
follows from the slice theorem, generalizing the proof in the case where the action is
free.

To prove the last statement, note that M0/G is automatically open and dense in
M/G since the quotient map M → M/G is open and continuous. It suffices to show
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that M0/G is connected. For this, we work upstairs. Let G · p and G · q be any two
distinct orbits, and connect them by a minimal geodesic. Since the isotropy type at
points in G · p and G · q are minimal, Kleiner’s lemma implies that the isotropy type
along the minimal geodesic are also minimal. Projecting to M/G, we see that the
points in M/G corresponding to G · p and G · q are in the same path component of
M/G. This concludes the proof.

We remark that, if the orbits of G are connected (e.g., if G is connected), then
the proof actually shows that M0 is connected in M . Indeed, if p, q ∈ M0, then so
are all of the points in the path connected orbits G · p and G · q. Applying Kleiner’s
lemma as in the proof, the claim follows. For general actions, however, the regular
part might not be connected:

Example 3.4.8 (M0 need not be connected). Let Z2 act on S2 (or any even-dimensional
sphere) by reflection across the equator. Points away from the equator have trivial
isotropy, while points on the equator are fixed and hence singular points. The regular
part therefore is the disjoint union of the open northern and southern hemispheres.

A related, but less trivial example is given by starting with the linear action of
SO(3) on S2, and considering the subaction of O(2), where we identify O(2) as a

subgroup of SO(3) by the map A 7→
(
A 0
0 det(A)

)
. Here, the equatorial points no

longer singular since their orbits have dimension one, however they are exceptional.
Indeed, points away from the equator have trivial isotropy while those on the equator
have isotropy Z2. Once again, the regular part is the complement of the equator and
hence disconnected.

Exercise 3.4.9. For the specific actions of SO(2) on S2 by rotation, or of SO(3) on
S5 = {A ∈ Mat(3,R) | AT = A, trA = 0, tr(ATA) = 1} by conjugation, prove “by
hand” the principal orbit theorem.

3.5 Fixed point sets and induced actions

Definition 3.5.1. For H ⊆ G, the fixed point set MH of H is the set of points in M
fixed by every element of H.

The following is a basic, but important structure result for fixed point sets of
isometries:

Theorem 3.5.2. For an isometric G-action on M , the components of MG are totally
geodesic, embedded submanifolds of M .

Moreover, if G contains an element of order greater than two, then MG has even
codimension. If G contains an element of order greater than two and M is oriented,
then MG is oriented as well.
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Proof. Let p ∈ MG and choose U ⊆ TpM such that expp : U → Ũ is a normal

neighborhood around p. Observe that points expp(v) in Ũ lie in MG if and only if

expp(v) = g · expp(v) = expp(g∗(v)).

Since expp : U → Ũ is injective, we see that Ũ ∩MH = expp(U ∩V ) where V is the set
of vectors in TpM fixed by every element of G. Since V ⊆ TpM is an embedding and
expp : U → Ũ is a diffeomorphism, we conclude that U ∩MH ⊆ U is an embedding
and, in fact, totally geodesic, at p. Since p ∈ MG was arbitrary, this proves the first
statement.

For the second statement, consider the action of G on the normal space νp(M
G)

to MG at a point p ∈MG. By assumption, G contains a cyclic subgroup 〈g〉 of order
greater than two. Since the irreducible representations of such groups are of complex
dimension one acting by multiplication by a root of unity (of order greater than two),
νp(M

G) has even (real) dimension and an orientation induced by g. This proves that
MG has even codimension and, in the case where M is oriented, that MG has an
induced orientation.

Next, we study induced group actions on fixed point sets.

Definition 3.5.3 (Normalizer). For a subgroup H ⊆ G, the normalizer N(H) is the
subgroup of G given by

N(H) = {g ∈ G | Hg = gH}.

The importance of the normalizer is the following basic fact: Elements of N(H)
act on MH . That is, given g ∈ N(H) and p ∈MH , the point g · p ∈MH because, for
all h ∈ H, there exists h′ such that hg = gh′ and hence

h · (g · p) = (hg) · p = (gh′) · p = g · (h′ · p) = g · p.

This fact is especially useful for abelian group actions, since, in that case, the nor-
malizer of any subgroup is the entire group.

Note however that the induced action of N(H) on MH need not be effective.
Indeed, H itself is a subgroup of N(H) that fixes MH . Since H is a normal subgroup
of N(H), we therefore obtain a new group action by N(H)/H on MH .

4 Group actions and positive curvature: Planting

the seed

Among simply connected, closed manifolds of dimension 2 and 3, the classification
of those that admit positive curvature is complete. Only spheres arise. In higher
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dimensions, one finds other examples such as the projective spaces CPn, HPn, and
the Cayley plane CaP2.

Other known examples include certain homogeneous spaces and so-called biquo-
tient spaces, however there is only a finite list of families of manifolds that are known
to admit a metric with positive sectional curvature. Aside from the rank one sym-
metric spaces listed above, the dimension of the known examples are 6, 7, 12, 13, and
24. That’s it.

In this section, we wish to prove a beautiful theorem about isometric group actions
on positively curved spaces:

Theorem 4.0.4 (Hsiang–Kleiner, [HK89]). Let M4 be a closed, simply connected
manifold. If M admits a Riemannian metric with positive sectional curvature and an
isometric circle action, then M is homeomorphic to S4 or CP2.

This result has been improved, generalized, and used as motivation for a variety of
results in higher dimensions. We make a few comments on related results in dimension
four.

• Using classification results of Fintushel and Pao for smooth circle actions on
4-manifolds, the conclusion can be improved to a diffeomorphism classification.
Recently, Grove and Wilking strengthened the conclusion to an equivariant
diffeomorphism classification (see [?]). In particular, the action of the circle on
M is equivalent to either a linear action on S4 or to a linear action on S5 that
descends to an action on CP2.

• If one removes the assumption that π1(M) = 0, the only additional example
that arises is RP2. (This follows immediately from Synge’s classical theorem and
was included [HK89]. Note that CP2 does not admit a free Z2 action.)

• If one removes weakens the assumption on the metric so that it is only non-
negatively curved, then the unpublished part of Kleiner’s thesis (see also Searle–
Yang’s paper [?]) includes the proof that M is homeomorphic to S4, CP2, S2×S2,
or one of the two possible connected sums of CP2 with itself. As with the
positive curvature case, the work of Grove–Wilking mentioned above improves
this conclusion to a classification up to equivariant diffeomorphism.

In addition to these results for 4-manifolds, the Hsiang–Kleiner theorem sparked
a new research program on positively (and non-negatively) curved metrics with sym-
metry. Karsten Grove was instrumental in many of the early developments of the
program, so it is now called the Grove research program. We will survey some portion
of the results and techniques from the Grove program in the next section. In this
section, we prove the Hsiang–Kleiner theorem.
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4.1 The Hsiang–Kleiner theorem

The proof brings together many important ideas from Riemannian geometry and the
theory of group actions. We will spend the rest of this section building up to and
proving this result. Along the way, we will sometimes introduce relevant ideas in a
broader context than was originally discovered.

First, the proof uses Freedman’s classification of simply connected manifolds. Since
M is a smooth manifold, the Kirby-Siebenmann invariant vanishes. Freedman’s clas-
sification in this case means that the homeomorphism type of M is determined by its
intersection form

H2(M ; Z)⊗H2(M ; Z) −→ H4(M ; Z).

If b2(M) = 0, then Freedman’s theorem implies that M is homeomorphic to S4, and if
b2(M) = 1, then the theorem implies that M is homeomorphic to CP2. Finally, since
M is a closed, simply connected manifold, we can determine b2(M) from the Euler
characteristic χ(M) = 2 + b2(M). We therefore must show the following:

Claim: χ(M) ≤ 3.

Second, we will prove this claim by analyzing the fixed point set MS1
of the circle

action. The relevance of this information comes from the following, old result:

Theorem 4.1.1 (Conner [Con57], Kobayashi [Kob58]). For smooth actions of S1 on
a closed manifold M , χ(M) = χ(MS1

).

Proof. Cover M by open neighborhoods U and V , where U is a (possibly empty or
disconnected) tubular neighborhood of MS1

and V is the complement of MS1
. A

consequence of the Mayer-Vietoris theorem is that

χ(M) = χ(U) + χ(V )− χ(U ∩ V ).

Since U deformation retracts onto MS1
, it suffices to show that χ(V ) = χ(U ∩V ) = 0.

One way to proceed is to to argue that V and U ∩V have vanishing Euler charac-
teristic since they admit a smooth, nowhere vanishing vector field. However some care
has to be taken as these are not closed manifolds. An alternative is to apply the facts
that the circle action on M has finitely many isotropy types and that cyclic groups
of prime order always act semifreely (since every nontrivial element is a generator).
Together, these facts imply that MS1

= MZp for all subgroups Zp ⊆ S1 of sufficiently
large prime order. In particular, Zp acts freely on V and U ∩ V . By covering space
theory, this implies that

χ(V ) = pχ(V/Zp) ≡ 0 mod p

and likewise for χ(U ∩V ). As p was arbitrarily large, we conclude χ(V ) = χ(U ∩V ) =
0.
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4.2 Proof of the Hsiang–Kleiner theorem

Given the prerequisites of the previous section, we see that it suffices to prove that
χ(MS1

) ≤ 3. By ??, we see that the components of MS1
are positively curved, closed,

oriented manifolds of dimension 0 or 2. In other words, the components of MS1
are

isolated fixed points or two-dimensional spheres.
Suppose for a moment that a two-dimensional fixed-point component N ⊆ MS1

exists. By Wilking’s connectedness theorem, the inclusion N → M is c-connected
with

c = 4− 2(2) + 1 + 1 = 2.

In particular, Z ∼= H2(N ; Z)→ H2(M ; Z) is a surjection, so b2(M) ≤ 1, as required.
Alternatively, one may apply the following, which directly classifies the diffeomor-

phism type of M :

Theorem 4.2.1 (Grove–Searle: Diffeomorphism classification of fixed point homoge-
nous circle actions). If S1 acts isometrically on a closed, positively curved Riemannian
n-manifold M such that S1 acts transitively on the normal spheres of some component
N ⊆MS1

, then M is diffeomorphic to Sn or CPn/2.

Note that the assumption on the circle action is equivalent to there existing a
component of codimension two (or dimension two when dim(M) = 4, as in our case).

From now one, we assume that MT has no two-dimensional component. It suffices
to show that there are at most three isolated fixed points. We first need the following:

Lemma 4.2.2. Assume S1 acts on the unit sphere S3 ⊆ C2 by z ·(z1, z2) = (zkz1, z
lz2)

for some nonzero, relatively prime integers k and l. If x1, x2, x3 ∈ S3/S1, then∑
1≤i<j≤3

dS3/S1(xi, xj) ≤ π.

Note that we will apply this lemma to the the isotropy representation S1 →
SO(TpM) at an isolated fixed point p ∈MS1

. The condition that k and l are nonzero
holds since p is an isolated fixed point, and the relatively prime condition holds since
the S1 action on M is effective.

Proof. We define “coordinates” on U = {(z1, z2) ∈ S3 | z1 6= 0, z2 6= 0} = S3 \
(S1 × 0 ∪ 0× S1) using the map (0, π/2)× S1 × S1 → U given by

φ : (t, θ1, θ2) 7→ (cos(t)eiθ1 , sin(t)eiθ2).

(I am using Petersen’s notation from this book.) The circle action restricts to a free
action on U and is given in coordinates by

eis · φ(t, θ1, θ2) = φ(t, θ1 + ks, θ2 + ls).
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The quotient π : U → U/S1 is defined by

(cos(t)eiθ1 , sin(t)eiθ2) 7→ [cos(t)eiθ1 , sin(t)eiθ2 ] = [cos(t), sin(t)ei(kθ2−lθ1)/k].

We define similar “coordinates” Φ : (0, π/2)× S1 → π(U) on the quotient of U by

Φ : (r, θ) 7→ [cos r, sin reiθ/k].

Since the circle action on U is smooth, the orbital distance function on S3/S1 is
induced by the submersion metric. We wish to calculate this metric in coordinates.
First, note that the round metric on U ⊆ S3 is given by

g = dr2 + cos2 rdθ2
1 + sin2 rdθ2

2.

The action field of the circle action is given in coordinates by

X∗ = k
∂

∂θ1

+ l
∂

∂θ2

.

We can extend this to an orthogonal basis using

∂r =
∂

∂r
and Y = −l sin2(r)

∂

∂θ1

+ k cos2(r)
∂

∂θ2

.

The metric ḡ on S3/S1 such that S3 → S3/S1 is a Riemannian submersion satisfies

|π∗(∂r)|ḡ = |∂r|g, |π∗(Y )|ḡ = |Y |g, and ḡ(π∗(∂r), π∗(Y )) = g(∂r, Y ) = 0.

Since π∗(∂r) = ∂r, we conclude from this that the metric on the quotient takes the
form

ḡ = dr2 + f(r)2dθ2

for some f (see also the original paper). To complete the calculation of f(r), we
calculate

π∗(Y ) = −l sin2(r)π∗(∂θ1) + k cos2(r)π∗(∂θ2) = (l2 sin2(r) + k2 cos2(r))∂θ

and

|Y |g = (−l sin2(r))2|∂θ1|2 + (k cos2(r))2|∂θ2|2 = (k2 cos2 r + l2 sin2 r)2 cos2 r sin2 r.

Using the fact that |Y |g = |π∗(Y )|ḡ, we conclude

ḡ = dr2 +
cos2 r sin2 r

k2 cos2 r + l2 sin2 r
dθ.

Using this, we define a distance-decreasing homeomorphism F : X1,1 → Xk,l by
declaring that the restriction U1,1 → Uk,l is the identity map in the Φk,l coordinates.
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Observe that F : U1,1 → Uk,l is a diffeomorphism. Let x, y ∈ U1,1. Using the fact that
U1,1 is all of X1,1 except for two points, we can choose a sequence of smooth curves ci
in U1,1 from x to y such that their lengths L(ci) → d(x, y) as i → ∞. Since we have
the inequality of metrics ḡ1,1 ≥ ḡk,l, the integral formula for arclength implies

L(ci) ≥ L(F ◦ ci) ≥ d(F (x), F (y))

for all i. Taking i to infinity, we conclude that F is distance-decreasing on U1,1. Since
U1,1 ⊆ X1,1 is dense, this proves that F : X1,1 → Xk,l is distance decreasing.

An immediate corollary is that, given x1, x2, x3 ∈ Xk,l, we can choose y1, y2, y3 ∈
X1,1 with F (yi) = xi and conclude that∑

d(xi, xj) =
∑

d(F (yi), F (yj)) ≤
∑

d(yi, yj),

and hence that it suffices to prove the lemma for the case (k, l) = (1, 1). However, the
metric ḡ1,1 on U1,1 ⊆ X1,1 is

ḡ1,1 = dr2 + cos2 r sin2 rdθ2 = dr2 +
sin2(2r)

4
dθ2,

which extends smoothly to all of X1,1 (see the discussion of surfaces of revolution in
the first section of these notes). Moreover, it has curvature

−(sin(2r)/2)′′/(sin(2r)/2) = 4

on U and likewise on X1,1 \ U1,1, hence X1,1 is the round sphere of radius 1/2. It
is an fun, undergraduate level exercise to verify that, on the round sphere of radius
1/2, the the maximal sum of distances between three points is π. This concludes the
proof.

Lemma 4.2.3. There are at most three isolated fixed points.

Proof. Suppose p1, p2, p3, p4 ∈MS1
are (distinct) isolated fixed points of the S1 action.

For 1 ≤ i < j ≤ 4, let Cij denote the set of minimal-length, unit-speed geodesics from
pi to pj. Given γ ∈ Cij and δ ∈ Cik with j < k and i 6∈ {j, k}, we can measure the
angle between γ′(0) and δ′(0). We denote the minimum such angle by αi,jk. Note that
the minimum exists since γ and δ range over a compact set. There are twelve such
(minimum) angles, and we calculate their sum in two ways.

First, we group the angles into four groups, each corresponding to a triangle with
vertices pi, pj, and pk for some 1 ≤ i < j < k ≤ 4. We claim that the sum

αi,jk + αj,ik + αk,ij

of the angles in each triangle is greater than π. To do this, we apply Toponogov’s com-
parison theorem. Since M is compact and positively curved, its curvature is bounded
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below by some κ > 0. Choose vertices p̃i, p̃j, and p̃k of a triangle on the round sphere of
curvature κ such that d(pi, pj) = d(p̃i, p̃j) and likewise for the other two side lengths.
Now αi,jk is realized as the angle between the initial vectors of some γ ∈ Cij and
δ ∈ Cik, so Toponogov’s theorem implies that αi,jk ≥ ˜αi,jk, where ˜αi,jk is the angle
at p̃i in the comparison triangle. Repeating this argument (choosing a new hinge at
each of the vertices pj and pk), we conclude that the cyclic sum of the αi,jk is at least
that of the ˜αi,jk. But the latter sum is greater than π, so the proof of the claim is
complete. Given the claim, it follows that the sum of all of the angles satisfies∑

1≤i<j<k≤4

(αi,jk + αj,ik + αk,ij) > 4π.

On the other hand, we may regroup this sum according to the base points of the
angles. The above inequality therefore implies∑

1≤i≤4

∑
1≤j<k≤4

i 6∈{j,k}

αi,jk > 4π.

We claim, however, that the interior sum is at most π for each 1 ≤ i ≤ 4. We prove
this for the i = 4 term, and observe that the proof at other points follows from
shuffling indices.

Fix any γj ∈ C4j for 1 ≤ j ≤ 4, and denote their initial (unit) vectors by vj ∈
Tp4M . Note that the angle between vj and vk is equal to the distance dS3(vj, vk)
between vj and vk on the unit sphere in Tp4M . By definition of α4,jk, therefore,
dS3(vj, vk) = α4,jk for all 1 ≤ j < k ≤ 4. Moreover, since S1 acts isometrically on M ,
the S1-orbits of vj and vk also have distance at least α4,jk from each other. The images
of v1, v2, and v3 under the quotient map S3 → S3/S1 satisfy the property that the sum
of their distances is at least the sum of the α4,jk, which is greater than π. However
this directly contradicts Lemma 4.2.2, so the proof of the lemma is complete.

This concludes the proof of the Hsiang-Kleiner theorem.

4.3 Exercises

Exercise 4.3.1 (Frankel’s theorem). Let M be a closed Riemannian manifold, and
let N1 and N2 be closed submanifolds of M . Prove that N1 and N2 intersect in each
of the following situations:

1. M has positive sectional curvature,N1 andN2 are totally geodesic, and dim(N1)+
dim(N2) ≥ dim(M).

2. M has positive sectional curvature, and N1 and N2 are minimal hypersurfaces.

3. M has positive Ricci curvature, and N1 and N2 are totally geodesic hypersur-
faces.
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Exercise 4.3.2 (Frankel’s theorem with symmetry). Suppose M is a closed Rieman-
nian manifold with positive sectional curvature. If a circle acts isometrically (and
effectively) on M , and if N1 and N2 are distinct components of the fixed point set,
then

dim(N1) + dim(N2) ≤ dim(M)− 2.

(Observe that this already follows from Frankel’s theorem together with ?? in case
where dim(M) is even.)

Exercise 4.3.3 (q-extent). One might ask, in general, how large the average distance
that q points on a sphere can be. This question is answered in [?]. For related results
on quotients of spheres and their applications to positive or non-negative curvature,
see [?, ?, ?, GGS12].
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