LECTURE 11: CARTAN’S CLOSED SUBGROUP THEOREM

1. CARTAN’S CLOSED SUBGROUP THEOREM

Suppose G is a Lie group and H a closed subgroup of G, i.e. H is subgroup of G
which is also a closed subset of G. Let

h={X e€g| exp(tX) € H for allt € R}.

In what follows we will prove the closed subgroup theorem due to E. Cartan. We will
need the following lemmas:

Lemma 1.1. b§ is a linear subspace of g.

Proof. Clearly b is closed under scalar multiplication. It is closed under vector addition
because for any t € R,

, tX ty \" . HX +Y) 1 "
H> nh_g)lo (exp(Y) exp(g)) = nh_}r{)lo (exp <T + O($)>) = exp(t(X+Y)).
OJ
Lemma 1.2. Suppose X1, Xs, -+ be a sequence of nonzero elements in g so that
(1) X; —» 0 as i — oc.
(2) exp(X;) € H for all .
(3) limi oo 57 = X € 9.
Then X € b.
Proof. For any fixed t # 0, we take n; = [D?\] be the integer part of ﬁ Then
exp(tX) = lim exp(n;X;) = lim exp(X;)" € H.
71— 00 11— 00
OJ

Lemma 1.3. The exponential map exp : g — G maps a neighborhood of 0 in b bijec-
tively to a neighborhood of e in H.

Proof. Take a vector subspace b’ of g sothat g=H&h. Let D:g=bdbH — G be
the map

(X +Y) =exp(X)exp(Y).
Then as we have seen, dPo(X +Y) = X +Y. So @ is a local diffeomorphism from
g to G. Since exp |y = Py, to prove the lemma, it is enough to prove that ® maps a
neighborhood of 0 in b bijectively to a neighborhood of e in H.
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Suppose the lemma is false, then we can find a sequence of vectors X; +Y; € b b/
with Y; # 0 so that X; +Y; — 0 and ®(X; + Y;) € H. Since exp(X;) € H, we must
have exp(Y;) € H for all i. We let Y be a limit point of 2:'s. Then according to the

Y;
previous lemma, Y € h. Since b’ is a subspace and thus a closed subset, Y € h’. So we
must have Y = 0, which is a contradiction since by construction, |Y| = 1. O

Now we are ready to prove

Theorem 1.4 (E. Cartan’s closed subgroup theorem). Any closed subgroup H of a Lie
group G is a Lie subgroup (and thus a submanifold) of G.

Proof. According to the previous lemma, one can find a neighborhood U of e in G and
a neighborhood V of 0 in g so that exp™ : U — V is a diffeomorphism, and so that
exp {(UNH) =V nNh. It follows that (exp~, U, V) is a chart on G which makes H a
submanifold near e. For any other point h € H, we can use left translation to get such
a chart. 0

As an immediate consequence, we get

Corollary 1.5. If p : G — H is Lie group homomorphism, then ker(p) is a closed Lie
subgroup of G whose Lie algebra is ker(dyp).

Proof. Tt is easy to see that ker(y) is a subgroup of G which is also a closed subset.
So according to Cartan’s theorem, ker(y) is a Lie subgroup. It follows that the Lie
algebra of ker(yp) is given by

Lie(ker(y)) = {X € g | exp(tX) € ker(p), Vt}.
The theorem follows since
exp(tX) € ker(p), Vt <= p(exp(tX)) = e, Vt
< exp(tdp(X)) = e, Vt
< dp(X)=0.

As an application, we have

Theorem 1.6. Any connect abelian Lie group is of the form T" x R¥.

Proof. Let G be a connect abelian Lie group. Then we have seen that exp : g — G is
a surjective Lie group homomorphism, so G is isomorphic to g/ker(exp).

On the other hand side, ker(exp) is a Lie subgroup of (g, +), and it is discrete since
exp is a local diffeomorphism near e. By using induction one can show that ker(exp) is
a lattice in (g, +), i.e. there exists linearly independent vectors vy,--- , v, € g so that

ker(exp) = {niv1 +--- + nyv, | n; € Z}.
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Let V; = span(vy, - -+ ,v,) and V4 be a linear subspace of g so that g =V} x V5. Then
G ~ g/ker(exp) = V /ker(exp) x Vo ~ T" x R*.

Another important consequence of Cartan’s theorem is

Corollary 1.7. Every continuous homomorphism of Lie groups is smooth.

Proof. Let ¢ : G — H be a continuous homomorphism, then

Iy ={(g:0(9)) | g € G}
is a closed subgroup, and thus a Lie subgroup of G x H. The projection

p:l"(ﬁ—i)GxH‘igG

is bijective, smooth and is a Lie group homomorphism. It follows that dp is a constant
rank map, and thus has to be bijective at each point.So p is local diffeomorphism
everywhere. Since it is globally invertible, p is also a global diffeomorphism. Thus
¢ = proop!is smooth. U

As a consequence, for any topological group G, there is at most one smooth struc-
ture on GG to make it a Lie group. (However, it is possible that one group admits two
different topologies and thus have different Lie group structures.)

2. SiMPLY CONNECTED LIE GROUPS

Recall that a path in M is a continuous map f : [0,1] — M. It is closed if
f(0) = f(1).
Definition 2.1. Let M be a connected Hausdorff topological space.

(1) Two paths f,g:[0,1] — M with the same end points (i.e. f(0) = g(0), f(1) =
g(1)) are homotopic if there is a continuous map h : [0,1] x [0,1] — M such
that

h(S, O) = f(5)7 h(S, 1) = 9(3)
for all s, and
h(0,2) = f(0),h(1,t) = f(1)
for all t.
(2) M is simply connected if any two paths with the same ends are homotopic.
(3) A continuous surjection 7 : X — M is called a covering if each p € M has a
neighborhood V' whose inverse image under 7 is a disjoint union of open sets

in X each homeomorphic with V' under 7.
(4) A simply connected covering space is called the universal cover.
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For example, R™ is simply connected, T" is not simply connected. The map
R" - T" =R"/Z", 2 — x + Z"
is a covering map. The following results are well known:

Facts from topology:

o Let m: X — M is a covering, Z a simply connected space. Suppose o : Z — M
be a continuous map, such that a(zg) = mg. Then for any x¢ € 7=1(my), there
is a unique “lifting” & : Z — X such that 7 o & = o and a(z) = .

e Any connected manifold has a simply connected covering space.

o If M is simply connected, any covering map « : X — M is a homeomorphism.

Theorem 2.2. The universal covering space of a connected Lie group admits a Lie
group structure such that the covering map s a Lie group homomorphism.

Proof. Since G is connected, it has a universal covering 7 : G — G. One can use the
charts on GG and the lifting map to define charts on G so that G becomes a smooth
manifold. Moreover, one can check that under this smooth structure, the lifting of a
smooth map is also smooth.

To define a group structure on é, and show 7 is a Lie group homomorphism, we
consider the map L
a:GxG—= G, (q1,0) — 7(§)m(g) "
Choose any ¢ € 7w 1(e). Since G x G is simply connected, there is a lifting map
& : G x G — G such that mo & = a and such that a(é,é) = é. Now for any 1,3, € G
we define
g_l = d(~7 )7

By uniqueness of lifting, we have ge = e

!

o= (g1, G5 ).

g for all g € G, since the maps

Qe
I =

g—rge, gwreg, g—g
are all lifting of the map g — 7(g). Similarly gg=' = g7'¢g = ¢, and (§1G2)g3 = §1(7233)-
So G is a group. One can check that the group operations are smooth under the smooth
structure chosen above. So G is actually a Lie group.
Finally by definition 7(g~') = 7(g)~" and 7(g1g2) = 7(g1)7(g2). So 7 is a contin-
uous group homomorphism between Lie groups, and thus a Lie group homomorphis-
m. 0



