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1. Introduction

The quantum theory ofgravitation has been discussed in lectures by various
authors, notably Feynman in a course given at CalTec in the academic year
1962-1963, and De Witt, at the 1963 Les Houches school. Since then a cer-
tain amount of progress has been made, and it seems proper to emphasize the
recent developmentsin this course.

The progress mentioned stems basically from two facts. One, we now un-
derstand much better how to quantize a gauge theory, that is a theory with a
Lagrangian possessing an invariance with respect to certain local (i.e. space-
time dependent) transformations. Secondly, the dimensional regularization
method turns out to be a powerful tool in handling infinities, and since infini-
ties are plentiful in gravitation theory such atool isindispensable.

In these lectures we will approach the theory ofgravitation from the point
ofview ofquantum field theory. This in itselfposes directly a restriction,
namely that we abandon from the start things like curved space and Mach's
principle. Of course, the theory that emergesisin the classical limit nothing
but Einstein's theory; but the interpretation is really quite different. We refer
to the book by Weinberg for the classical theory of gravitation developed
from this point of view.

Our starting point will be that gravitation is caused by a particle of spin two.
The reasons for that have been given at many occasions, and may be summa-
rized as follows:

(i) The gravitational field cannot be described by a vector field such as the
em. field because then particles and antiparticles would behave differently,
contrary to experiment.

(i) The gravitationa field cannot be described by a scalar field. The reason
for thisis that we know that gravity couples to energy, which is not a scalar
quantity.

2. Free spin-2 particles

A particle of spin 2 is described by a symmetric two-index tensor field. We
must determine the propagator for such a particle, or equivalently, the part of
the Lagrangian quadratic in the tensor field. Consider a source emitting such a
particle on mass shell. There should be no way in which this particle at rest can
decay into a scalar or spin-1 particle of the same mass. The relevant Feynman
diagram is
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The corresponding expression is
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where ¥, is the vertex function. In case of decay into a scalar particle it can
be proportional to § s, corresponding to the interaction Lagrangian

°Cint = h}m 9,

where 7, and ¢ represent the tensor and the scalar fields respectively. Since
(1) must be zero we must have

£ooky=0 for g2-_p2,

Moo
Similarly
kﬁ f“vaﬂ(k) =0
from the forbiddenness of the interaction

Aaaﬁhaﬁ ;
where 4, is avector field. Finaly, from the fact that the imaginary part of
the diagram

B e —
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must be positive definite (since by unitarity it is equal to the probability of
emitting a spin-2 particle) we find
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We may perhaps mention that the requirement of positive defmitenessis
*
T A pvapZap =0

for any z. The quantity z3 is defined as the complex conjugate of z, disre-
garding the i of the fourth component. Explicitly,

235 = (2,5)" (—1)%ea(—1)%6
In the restframe where k = 0, £, = im the expression for/yi;,g becomes very
smply

1 s
36,1085 + 0,150 ,0) — 38,845,  if waB#4

1

B
0, otherwise .

The positive constant ¢ will be determined to be one.
We must now find a set of symmetric polarization tensors e;‘,, such that

2 eh (00 = 1,8 .

There are five independent tensors satisfying

In the k restframe they can be written down readily,

10 00 I 000 010 0
0Ll 00 0 =109 0 1. 00
\/% . $\/% "\/% 5
00 =1 0 0 000 0000
00 00O 0 000 0000
0010 00 0
0000 00
vi ¢4l
1000 0
0000 0000

These are now normalized to 1 (i.e. eN\e” = 1). Actually we thusfind that
fuwuy ™" be equal to 5, for k2 = -n? which fixesc = 1in eg. (2).
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The Lagrangian corresponding to the propagator with the nominator of
eg. (2) is (apart from an overall factor of 2)

L=Lo +im?(h b —h h ),

[T/Ta ) w

Lopm =30, Ry, 0, B, +30

- hy,0,h

AAL Y v

_%axhwa}\hw+};a}\hwa?\hw. Q)
This follows by working out the inverse of the function 7,,,,,51n eq. (2). We
will do such an inversion in greater detail later on.

All thisis straightforward and easy. But we are really interested in the
massless case, and then things are much more complicated. Evidently, the limit
m—0in eq. (2) makes no sense. We can take the limit m = 0 in the Lagrangian
of eg. (3); if we do that we cannot find a propagator, because the inverse of
the Fourier transform of this Lagrangian does not exist. Brief: the various re-
quirements that we started from do not allow a solution if £2 = 0.

Thus, ifwe are to build a theory of massless spin-2 particles we must relax
our conditions. But we may relax them only insofar that no physically intoler-
able consequences result. Let us for amoment consider quantum electrody-
namics, where the same situation exists. For massive vector particles we have
the propagator

2
5uv + k}u k,Im

K2+m?—ie
This satisfies the various requirements, such as positive definiteness of the nu-

merator. For a massless vector particle such as the photon one often employs
the propagator

1)
My

kK2 —ie

The denominator is not positive definite: when multiplying with a "rea" four-
vector (i.e. avector with real space components and an imaginary fourth com-
ponent) we may get anegative result. However, the situation is saved by gauge
invariance. By requiring gauge invariant coupling of the photon to the rest of
the world the occurrence of negative probabilities is avoided.

Thus we must introduce some kind of gauge invariance. There are a number
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of requirements that may be written down, such as the fact that the gauge
transformations must form a group.

In quantum electrodynamics the gauge transformations are defined such
that a scalar component in the photon field decouples. One requires invariance
for the transformation

A -4 +0 A,
7 [T

with arbitrary space-time dependent A. Similarly we require now invariance
with respect to a transformation that amounts to decoupling vector and scalar
parts in the tensor field. We will require invariance under the gauge transfor-
mation

huvah;w +a,unv +avnu % (4)

where the n,, are four arbitrary functions. It must be noted that we |leave out
aterm of the form & L such a term could be included and amounts, ulti-
mately, to a scde transformation (Weyl transformation).

Now that we have defined a gauge invariance we can proceed aong the
lines known for gauge theories. We leave it to the reader to observe that the
Lagrangian L, in eq. (3) isinvariant (up to atotal derivative) for this trans-
formation. Next we must choose a convenient gauge breaking term, for exam-
ple,

with
C,=d,h, —30.h . (5
With this choice of gauge we have

= L
eC_"Csym_ic __aaxhaﬁakhaﬁ+éakhaaahhﬁ6’ (6)

where L., is defined in eg. (3). This may conveniently be written as

L= *%a)\haﬁ Vaﬁuva}\huy 2 (7)

with

1
6au66v _‘—‘604[38;11) ’ (8)

S I

Vaﬁuu =
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3. The masdless spin-2 propagator
Let us now compute the propagator corresponding to eg. (6). To this pur-
pose we rename the ten independent components of ,,,, into the ten compo-
nent quantities ¥, i = 1,..., 10. Theindex correspondenceis
h 11 2 3B 4 12 13 14 23 24 A
Y 1 2 3 4 5 6 7 8 9 10. (9

In terms of the ¥ the Lagrangian (6) becomes

10 4 4
! i i i i 2
L ZFESa#xpaﬂw 414223”413#\// +8(a”;§xp) .

This can be written as

= —%a“d/’V”bu v,
with
vi=sU if ij>5
L 4 i i
4 4 4 4
L o1 1 1
4 4 4 4 g
1l 4 1 if 1<ij<4
4 3 4 3
I TS (R T |
4 4 4 4
=0 otherwise

Theinverse of this 10 X 10 matrix V is

(vhHi=si if ij>5

1 -1 -1 -1
—1 1 -1 -1

= if 1<ij<4
-1 -1 1 -1
-1 -1 -1 1

=0 otherwise.
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This coincides with the matrix obtained from the expression

auaawi i 6#66!104 5 Suvaaﬁ
if we employ the same index correspondence for the pairsuy = i ande—~>j as
given in eg. (9). The propagator corresponding to the Lagrangian (6) is there-
fore
Suaavri+6u66va *anaaﬁ_ (10)
k2 —ie

It isinteresting to note that there is a difference with the propagator for the
massive case even if k,, is set to zero.

In spaces of dimensionality n instead of 4 as we have here the same proce-
dure leads to the propagator

1 2
K2 — ie %8s 06000 — =5 O 0ap| - (11)
Calculations are somewhat simplified if we introduce the unit matrix 17.1t is
given by

o |
Logw = 5(60418143 * 60!1)8#6) :

(12)

with again a8 = i, uv = j according to (9). Notice that

ﬂaﬁ,uv Il;w,?xk - HaB,)\K 3

adso in n-dimensional space, where the rule §,,,, = nholds. Note furthermore
that the product of (8) and the expression in bracketsin eg. (11) is precisely
the unit matrix given in eg. (12) dso in n-dimensiona space.

4. Unitarity

An urgent question is to what kind of physics the above procedure corre-
sponds. To this purpose we choose another gauge, the so-called Prentki gauge.
Wetake

3
C.=b2s3d
i=1

: B, boo. (13)

I
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The propagator may now be computed again from£,, — ;€ 2 with Lom
from eq. (3). We find

e T
Puv,aﬁ(k) = ;(8%5143 ¥ 8505 — n—2 Suvsaﬁ)

- _ _ _
+f;(6ua5uﬁ4 +5uﬁava4 * 8m8u64 + Bvﬁ5ua4
2 @ 2 = m—6 k?
C—9 5/.1.1181:0434 =3 6&B5uu4) + n—292 k_2 6;“)0434 > (14)
with
k k
2 — 1.2 2 o il
%=k k2, BW—(I—6M4)(1—6V4)(6W— k2) :
8uv4 = 6;4451)4 2 6#1}&64 7 6/.L46v460¢4 864 ¢

In the frame where k; and &, are zero we have, at the pole k% = 0, that
ks = |kl and k4 = i|k|. Then O isnon-zeroonly foru=v=1orpu=rv=2.1n
four dimensions the residue at the pole k2 = 0 (note: not 42 = 0) isthen given
by

Residue = <Sm5ul3 + Buﬁam = 5,“)5043 if wrapf=12

=0 otherwise. (15)

Consider now the two polarization tensors

1 000 0100
R 0=l 00 2 -yl 1000 18)
w oY g oo b]” oY% g0 00|’

0 000 0000

The expression(15) is precisely equal to

2
A LA
2 }Q eweaﬂ 3
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Apart from the factor of 2 we see that the propagator corresponds to the
propagation of two polarization modes. The masdess graviton has two spin
states, as we indeed know to be the correct situation. Note that these polari-
zation tensors are traceless.

We must now comment on the factor of 2. The situation can be cured if
we replace h by /24 in the Lagrangian. This has no effect on the Smatrix
computed with the help of the Feynman rules. Unitarity however requires
that the polarization tensors employed are such that

e;.)t\v fuvaﬁe;\ﬁ i 8?\)\' ¥
where f,,,,5 is the residue on-mass-shell of the propagator as given in eq. (15).

Using polarization tensors given by +/3 times those shown in eq. (16) leads to
the correct answers.

5. Extension to non-Abelian group

Rather than using the gauge invariance under the transformations (4) we will
consider a more general possibility including a free parameter k. Wewill re-
quire invariance under the replacement

hw - huv + K(havi)ﬂna + hwavna + naaahuu) i aﬂ n,+ avnu , (A7
with infinitesimal n. These gauge transformations are acceptable if they form
agroup. Since we work with infinitesimal n the transformation shown differs
by terms of order n% and higher from the full gauge transformation. Let us
apply first a transformation with a function nand next with a function 7.
Writing only the terms containing bothn and 7 we have

huv —)huu ® K(aaﬁvapna * avﬁaauna * aaﬁuavna
= =2 = 2 =
G ap naavna ¥ naaaapnv + naaaavnu) Tk {hﬁvaanﬁau na
+ Ry 8,050, m, + g0 h

auau LS * hﬁp aaﬁﬁavna # hﬁaauﬁﬁal’na

FMg05h0, 0,0, + 10500, 0, Ty + 0y 0,7, +7,8, 1)}

oo up

+termslinear inn or 7 + 0(n?, 7%) . (18)
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This must be equal to a gauge transformation with a function 7 given by

= = 1 =
a na % noz ¥ icaﬁ'ynﬁn'y T, (19)

=

with structure constants Cagy- 1EXMS containing n and 7 arise from lowest or-
der 77, or from terms 72 in the gauge transformations, of which we do not
know the explicit form. However, the latter are symmetricin nand 7, and if
we restrict ourselves to terms antisymmetric in nand 77 they will not bother
us. We leave it to the reader to check that the gauge transformation (18) anti-
symmetrized in n and 7 equal sagaugetransformationoftheform(17),with

instead of n the function
bk (3,7, — M39,m,) - (20)

This also shows that we are dealing with structure constants containing deriv-
atives.

6. Finite gauge transformations

Consider the functions £,(x) and £,(x). Clearly a function of a function of
xis again afunction of x,

) =E,(,(). (21)
Let now £ and £ be infinitesimally near to the unit function
Ex)=x, +n(x)+.., E)=x, +7 () +.... (22)

We find

S = £,(x) +7,(£,(x))
B om,(x)
=%, i nv(x) » np(x) ¥ ox noz(x) s (23)

a

If we write

E(x)=x,+7,(x),
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we have

- anv
() = n,(6) +7,(x) + g 5=+ ... (24)

Antisymmetrizing this gives us indeed the result of eq. (20).
The finite form of which eqg. (17) is the infinitessimal part is easily obtained.
We may rewrite

huv £ h;w +gow au noz * gap,avna ® noc aag;w 2 (25)
where
gyv = 8uv * Kh;.w u (26)

Eliminating h altogether we find from eqg. (25)

Bup T Hy, PEE,0, 0, TRE, 00, YRU 0.8, - 27)

oY

This is the infinitesimal form of

X o Xpu8apg6()) (28)
with
3,00
o 9x
m
E =% runfx) ¥ ... (29)

As a matter of convenience we will from now on write the index of the n on
top. Thus eg. (27) becomes

st E T RELI M Yeg 3 0™ vunl g . (30)

ap v a®uv

The inverse of the tensor g, will be denoted by g*”;it is an infinite seriesin
terms of /,,,.. Wehave

gUSER R R =—h bR K2h b b +... (31)

wotaw T po o By
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The transformation properties of g** follow from those of Fins
oxH ax”

3E%(x) 9&f(x)

Note that we must in fact use the transposed of the inverse of the matrix X
defined above. In the infinitesimal form that leads to an exchange ofindices
on top of the minus sign. The infinitesimal form of the transformation is

g"(x) > g% (£ (%)) (32)

g et — g™ " —ng"l_q" "o g%, (33)

The last term arises from the expansion of g®(x + kn).

It isinteresting to note that if we define z*” asin eg. (31) we would have
obtained another gauge transformation satisfying the group requirement and
equal to the starting point eq. (4) (with — instead of n)

RHY > pM — g (B3 n* + hP*3 n¥ —n®*d_h*") —87nk —dknP.
(34)
We leave it to the reader to check this last transformation against the result
obtained from eqg. (31) using the transformation properties of #,,,.

7. Invariants

We have already one invariant in the theory, namely

I

g*g,, =8k, (39)
Ifwe consider eq. (28) then we see that matrices X, are arbitrary 4 X 4 ma-
trices without specia properties except their reality properties. Their deter-
minant may be anything, except that we exclude determinant zero. The only
invariants that can be build up are then obviously quantities that transform
partly by X, partly by X—1. That indeed is the case withg,, andg#. It is
now easy to extend the procedure to include scaars, vectors, etc.

We must not forget what is the goa of our investigation. The ideais to
build up a gauge invariant Lagrangian (it may change only by atota deriva-
tive) giving the interaction of the gravitationa field with itself and other fields.
Thus it is necessary to invent transformation properties for the other fields
such that gauge invariant expressions can be build up. It will not be possible
to work with invariant fields if we require the existence of one-graviton ex-
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change diagrams. And wereally need those diagrams because they contain
Newton'slaw. Only one-graviton exchange cangive 1/r behaviour. Now, this
requires a vertex of the form

h;w T;w (matter) , (36)

containing only once the gravitationa field. Inhere 7, contains the other
fields, in particular there must be a quadratic term for every elementary par-
ticle.

Evidently, invariance of eg. (36) with invariant 7, isnotpossibleunlessk
is taken zero in the transformation law (17). In that case we have

h;.w Tuv . huv T,uv ¥ (ap nv ¥ avnu)Tuv

=h T —nd T —n o T +tota derivative. (37)

v pp vouT up uovuw

If T isdivergence free thisisinvariant (apart from the irrelevant total deriva
tive). However, to make a divergence free 7, is very difficult, because one is
not alowed to use equations ofmotion in the Lagrangian. For instance, the
traditional 7,,, for ascdar field

= 242
T,,=93,03,6—m?¢*s (39)
is only divergence free because of the equation of motion
02-m?¢=0.
Transformation properties for the fields must be invented and assigned.
Following the discussion above, and considering the transformation (28) of
&,» We can write down transformation properties for vectors such that invari-
ants result if these vectors are contracted with g .
Let there be given avector field 4, (x). We assign the transformation law
4,09 > X, A, EC) (39)
with X from eqg. (29). The infinitesimal form is
A“%AM+Aaaun°‘+n“8aAu . (40)

Here 4, is caled a covariant vector. Let A* be defined by
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db=ghty. (41)

We find for the transformation property of this 4# as a consequence of the
transformation properties of g#* and 4,

AH > AP — 4% n* +0%d A" (42)

Obvioudy 4 * transforms with (X —1)7. 4* will be called a contravariant vec-
tor.

By construction, it is clear that in transforming the quantity g#¥4, 4, the
matrix X will cancel out. However, it is dill not an invariant,

g (x)A4,(x)4,(x) > g" E N4, (ECENA,EX)) -
The infinitesimal form of thisis
g‘”’A'uAV —>g“”AﬂAv + Kn“aa(g‘“’AMAu) :

A field ¢ (x) is therefore called a scalar field if the assigned transformation law
is

¢—>¢+kn®0, ¢. 43)

We have ill no invariant. How can we construct something that changes at
most by atotal derivative? Let us consider the transformation properties of
the determinant of g, We rewrite first the transformation law (30) for the

gﬂp:
8y > 8upl8l + (6718, 0 n* +8Mg 3 n*+n%eP0 g )], @4

where we also absorbed « into 1. In brackets we have the unit matrix plus
something of order n. Asiswell known

det(1+4)=1+Tr(4) +0(4?),
where Tr stands for trace. We o find

detg—>detg[l +Tr( )]

=detg[1+20, 0% + n“gﬁ"’aagw] (45)
to first order in 7.
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Next we compute the derivative of det g to an arbitrary power A,
% = A1

0, (detg)™ =N(detg)" "9 (detg).
Since

g (xtdx)=g (x)+dx*d ¢

=g 6, +g"0 g %),

det(g(x + dx)) = det g(1 +g%8 g ,dx®),

0, (detg) = detg g% aagw ;
We 0 find

9, [(det g)*n®] = (detg)* {0, n* + \eP'd g, .1} . (46)

Eqgs. (45) and (46) may be identified if A = }; the transformation of (detg)!/2
following from (45) may be rewritten as

(det )/ > (det 9)1/? +9_ {n*(det £)1/2} . @7
Thus (det g)l/2 changes by atotal derivative under a gauge transformation.
However, there is more. Consider the product of (det 22 and ascalar ¢ as

defined above. As amatter of notation we will write smply g instead of det g.
The transformation law is

VEO > V& +3,Mm V)bt en*d,¢
=g +3,(M*Ve®) - (48)
Thus also the product of+/g with a scalar changes only by atotal derivative.
If we now construct a Lagrangian that behaves as a scalar and multiply sub-
sequently by /g we then have a gauge invariant expression.

8. Covariant derivatives

Consider the derivative of avector field 4,,. From eq. (40) we deduce its
transformation property,
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9,4, 0,4, +03,4,0,1%+4,0,0,1°
+0,4,8,n%+0%3,0, 4, . (49)

This is amost the transformation law for a tensor (compare eqg. (30)) except
for the term 9,0, n®. We must devise something that eliminates this term. We
thus try to invent quantities " such that

rh4,~@E4 +A4,0,9,1°. (50)

ﬁ)tensor

The first part shows transformation as a tensor. If we have such I" then

DA, =04, — FfﬂA . (51)

transforms as a tensor.
The problem therefore posesitselfas follows: find quantitiesI" such that

Ffu = (Ffu U avapnﬁ : (52)

) tensor

Such aT" cannot be constructed from avector. But it can be constructed from
atwo-tensor having an inverse, for which we can take for example g,,,, up to
now the only two-tensor used. Consider

it L B SRS R (53)
We find as above,
avgua = (avgua)}tensor % gﬁa(av a/.t nﬁ) % guﬁ(av aanﬂ) .
From this follows easily the behaviour (52) for ther.
The same quantities I' can be used to construct a covariant derivative of a
contravariant vector
D ,A*=3 A" +T" 42, (>4)

which behaves as a mixed two-tensor.
In genera
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Buss ...
D?\ T:‘v... - a)\ T;w... . F;\xc T:f e Fﬁo Tliy:...

=~ T L= (55)
defines a properly behaving tensor.
Some properties may now be quoted:
(i) T is by construction symmetric in the lower indices

Fe=r2 (56)
As a consequence
D,A,~D,A,=3,4,-0A4, . (57)

(i) The covariant derivative of the tensor used for the construction of I' is
zero. Here we have taken g; we have

= _1T8 _1Th
Dozg/.w aaguu Fa,ugﬁv Favguﬁ‘

Use of the defining eg. (53) leads to

D,g,,=0. (58)
(iii) Similarly
D g™ =0. (59)

(iv) The definition of covariant derivative obeys the chain rule. For example
D,(4,A%) =0.(A4,4") - Fgu(A gA") T o4, 4 3]
=(D,A4,)A" +4,(D,A"). (60)
From this, on multiplying with 6:,
D(A,A4¥)=0,4,4"),

which isin fact the rule for covariant differentiation of a scalar. Indeed, if
¢(x) isascaar, then 9, ¢(x) transforms as avector,
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3N¢—>5M(¢+n"‘3a¢)=3N¢+3a¢8“n“+n“aaaﬂ¢- (61)
(v) T"is connected to det g. Indeed, from the definition (53) we have

B =1,Ba
Fuﬁ 28 augﬁa

1 e
=—gau\/g, (62)

where we used methods shown before.
(vi) Let A* be acontravariant vector. Then

\/ED“A“ = total derivative. (63)
Indeed,
\/§DMA“ = \/gauA“ + \/grgaA“
= \/§a“A“ +0,124°
=3,(V&4") . (64)
The properties (iv) and (vi) are very important because they tell us that we can
manipulate covariant derivatives in Lagrangiansjust as we were used to. For
example,
VEAMD, ¢ =+/gD,(4"¢) —VE(D,AM)¢
= —/2(D, 4M)¢ + total derivative, (65)
In this connection it may be mentioned that
VeA* (66)
iscalled a density. From the above we see

a#(\/gA #y = \@D“A“ ;
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9. Riemann tensor

Meanwhile we have come in a strange situation. How can we build a gauge
invariant expression for the gravitational field alone? At our disposal is the
tensor g,,,,, and we must construct a scalar.

Unfortunately, covariant derivatives of g are zero. Let us therefore start
from the I" as a starting point. The transformation property of I" isvery close
to that of a tensor (see eg. (52)); it makes sense to consider the covariant de-
rivative of I" and then symmetrize so that the non-covariant pieces cancel.

Thus consider the transformation of the covariant derivative of T,

Da Fgﬁ . (Da Fgﬁ) tensor * Doz ao aﬁn“ : (67)
Subtracting the same with o and g interchanged removes the third derivative
ofn. We are left with

—T%0,0,m —T2:3 d,n* +T 3 d.n” —(a=f). (68)
These terms have the precise structure of I" times the anomalous part in the I'
transformation and can therefore be cancelled away. Indeed

U= Ta v (69)
is already antisymmetric in « and 8, and the anomalous transformation proper-
ties are precisely those shown in eg. (68). Thus we now can write down a ten-
or

R = Fé‘ﬁ =D, ¥ +T* PE~T**

aof a B~ oa ao VB av” of

= aaF(‘;ﬁ = aB IE 18 F(’;ﬁ — I‘I‘)‘BFO"Q : (70)
This tensor is caled the Riemann tensor. It is antisymmetric in e and $. By
multiplication with g,,, one obtains a tensor with only lower indices,

R R¥ (71)

voof =% vu© ooaf "
It is antisymmetric in vo as well. Furthermore it is symmetric for the inter-
change vo > of,

R R ; (72)

voaB " “ofvo
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Finaly it obeys a cyclic symmetry in the last three indices

Ry ¥R g BB 0 =0, (73)

By multiplication with g a two-tensor and a scalar may be defined,

R, =g*R R=g"R . (74)

auyf ?

Note

R =R . (75)

10. Local choice of coordinates; Bianchi identities

In specia relativity many equations can be proven easily by going to a par-
ticular coordinate system. Here that is aso the case. One writes an equation
invariant under gauge transformations and then goes to a particular gauge. Ac-
tually, for agiven point x there exists a gauge such that

R (X)=0 for all g, v ,

0 h (x)=0 forall o, u, v . (76)

aup

To see this we write an infinitesimal gauge transformation
hw)—>hw+avn“ +6#n”. (77)

The question is. can n be chosen such that the right-hand sdeis zero in a par-
ticular point x for any h (obviously taken to be infinitesimal here). Similarly
for the derivative of this expression.

Now develop h and n around this point x. With x = x + y we have

By () =b,,+b b

p.vozya " uuaﬁyayﬁ’ t.. 4

Bix) =
n*(x) aﬂ+a”aya+a#aﬁyay6+a”aﬂ,yyayﬁy7+.... (78)

Setting the right-hand side of (77) to zero leads to equations for the unknown
coefficientsa in terms of the b. In the point x = x we must have
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buv + 211M e @

Evidently, for given 5, we can find «,, such that this holds. For the first de-
rivative we have

8ahw + Baavn“ + aaa“nv =0,
or, in the point x = x,

b 42a - +2q.. =0,

Mo e vuo

Thisis more tricky because b is symmetrical in the first two indices, and the a
in the last two. Nevertheless, this can, for given b, be solved for the a. Let

i, v, o take some particular value, say 1= 1, v= 2 and « = 3. There are three
independent b and three independent a. We must solve

—byy3=2a195 % 2455,

—by3y = 28153+ 243,

=by3y = 2ay15 1 2a5, .

This set of equations can be solved,
4ay13= =bya3 tby3p — b3y
or, generaly,

(_bvua # bvoq./. - buav) >

P

aw)a =
Thus an infinitesimal gauge transformation may be chosen such that an infi-
nitesmal 7,,,, and its first derivatives are eliminated in some point. Repeated
application may be used to remove finite h and its derivatives in that point.
Now choose some point x. The above shows that by a gauge transformation
one can arrive at ag such that

@ =8,  8,2,®=0. (79)

Obviously similar equations hold for g*(x). In that point we then have aso
vanishing I, but the derivatives of I"in general cannot be made zero. Further-
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more, in that point D, = 9,. We leave it to the reader to check that in the
point x we have the identity

(67 @ o o
D'YRﬁuv +DvR6w +Du Bry 0. (80)

In fact, in the point x this equation reduces to
—%ga)\ [apa,y(augﬁ)\ + aﬁgﬂ}\ ol a;\gﬂﬂ) — V] i Cyd-(’)’uv)z 0.

Since eg. (80) is gauge invariant it holds also before gauge transforming and is
therefore generally true. The egs. (80) are called Bianchi identities. Note that
the tensor R depends on second derivatives and can in general not be made
zero by a gauge transformation. In the expansions (78) there are 100 indepen-
dent coefficients 5,5 and 80 independent z,,,,.; that can be chosen, but we
see that thisleaves generaly speaking 20 independent second derivatives.

The Bianchi identities (80) can also be proven directly without going to
this particular coordinate system. But the work is evidently much more cum-
bersome. It may be worthwhile to note that the gauge choice (79) is possible,
independent of the dimension of space-time. Thus the Bianchi identities hold
in arbitrary dimensions. There are other equations, to be considered later, that
hold only in a space of given dimensionality.

11 The Lagrangian for pure gravitation
Since there is only one tensor that can be constructed from the gravitational

field ,,, namely the Riemann tensor, the problem of finding a possible Lag-
rangian for the gravitational field is quite straightforward. The Lagrangian can
be apolynomial in the Riemann tensor; the first few possible terms can be
written easily,

L=vglegte,R+e;RP+¢3R R¥®+e R, R¥P+.}. (8]
Here R*¥ is defined by

RW = ghagBR - (82)
Similarly R#**#. The constantsc, ¢;, €tc. are asyet arbitrary. We must 'work

out this £, inserting g, = 8, + kA,
Now the Riemann tensor contains second order derivatives, and the terms
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quadratic in this tensor will produce terms of the form 824924. By the usual
procedure this will lead to a graviton propagator behaving like k=4, which
is maybe nice for the convergence of the diagrams, but is really unacceptable
because such propagators contain ghosts. In other words, allowing terms R2
leads eventually to negative probabilities or acausal behaviour or other non-
sense. Unless we are forced to for one reason or the other, we must therefore
not alow such terms in the Lagrangian. We are left with two constants that
can be non-zero, namely ¢y and ¢;.

In terms of the fields #,,, the Lagrangian is till very complicated. We must
first find the quadratic part to see that we get the correct propagator. To this
purpose we must expand g and R up to second order in h. It is of some advan-
tage not yet to specify that g, =35, if h = 0. Instead we make the substitu-
tion

B 2“8 YRy (83)

and develop everything to second order in h. Later we will set g, =6, and
replace h by k h. The comma denotes covariant differentiation:

By~ Bl ~ 808, TR, (84)
el R Sl Ry e B (85)
NE=vall £ah” — 5k nE + 1P, (86)
Fug g T B ] e (87)
B =i w0 k), (83)
Lo=—gh™ . R k., (89)
Al 1 L™ 20 B s (90)
RA =Bt sRY PR (°1)

B’;aﬁz%(hu B e ’“)+%R“ h7+%R;’ﬁah,¢,(92)

B, vax vp, « a,vf v, B Yo v
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gfw =Da£56 = DﬁL,,Z * Ezvy;a = Eazljvg 2
oo ,
R =30 o = B o — 1, 1t 1,00

51}0{ = _%Da(hﬁh‘é,v) ik %DB {hg(h’l,a * hz,v i h&z)}

Hahg, v hY g — DRy + R~ hif)
—};(hg,ymg’a— h;g)hg’y,
R=hGo—hE% —RRY,
R =—3D (hEhe®) + 1D, (hEQ2R"S — h37))
# il +H g — D BER +h — 1, 9)
— 520" - hg‘;”)hﬁ,y - %h”"‘hg’m

RN DL+ B = a5 ) vl RiRY

Omitting total derivatives thisleads to the Lagrangian
L=+/gleg {1+ — ZhghE + 4 (hD?}
te R —3hGR +HERS —R((h? — shhf)

~HEBERY ¥ SRS WERE — ik hs”

a,v B

1z
+1n

Bu _lpa pBu lpva
a,#hﬂ Zha,ﬁhu +2hg hg,v}]'

(93)

(94)

(95)

(96)

97

(98)

If we substitute now g, =5, we get R = 0, and furthermore the covariant
derivative becomes the ordinary derivative. Also 4f = g =8, and Ve=1.

We get
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= 1 1 1
L= CO{I ar ihaa = ahaﬁh(xﬂ & gho&ahﬂﬁ}

1 1
tey{—a0,hy50, Ry t40,h,,0, Bs

~ 20k, 0, ke + 30, B0 B 51 . (99)
Here we should still make the substitution % — k 2.With ¢; = 1/k%and cp=0
this is then precisely the Lagrangian £, written down before (see eg. (3),
with apartial differentiation of the second term).

12. The cosmological term

The term ¢ is called the cosmologica term. What are the experimental con-
sequences of this term? First of dl, it leads to a contribution in the classical
equations ofgravity, and as such an experimental limit can be established. It is

o <(1.23X 1072 MeV)* . (100)

In quantum theory anon-zero ¢, implies a contribution to the propagator and
the appearance of a tadpole. With the gauge breaking term C of eg. (5) the
Lagrangian becomes

L=cq(l +ixhy,) +3h,,V, 07— coe®)h, . (101)

This leads to almost the same propagator as before (see eqg. (10)), except that
k2 is replaced by &2 + ¢, «2. This propagator therefore corresponds to the ex-
change of a particle with mass ¢ «2. In first instance the gravitational force
becomes a Y ukawa force with a range given by this mass. However, the theory
is not acceptable in this form because negative probability occurs. Asis known
from the treatment of gauge theories physical sources are those for which the
term

. . (102)

isinvariant under gauge transformations. To zeroth order in K this means

& F =5 J =@, (103)

pluw Tvluw
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Now consider two such sources, J,,,, and J; exchanging a graviton,

— X

*
Tuv Tag

The corresponding expression is

0. 8., 0 0. =0 0
Mo v ug v uv - af J;B’ (104)

i K2 +m? —ie

withm? = ¢, k2. At the pole k% + m? = 0 the residue must be positive definite.
In the k restframe (k = 0, k4 = im) we must have

k,J,=k,J, =0, (105)

or

Now take the following /:
J117d9y =I33=7, al otherszero .
The residue at the pole becomes
LT Ty +Tondny ¥ Tugiia) — (g 0y # 02 = 80P, (106)

which is unacceptable.

However, we have not treated the tadpole, and since we know that tadpoles
may change masses this discussion is not complete. Usudly, atadpoleisre-
moved by a substitution of the form

h;w i huv e a,uv ! (107)

and «,, is chosen in such away that the termslinear in h cancel in the Lagran-
gian. In the a model, and other models with a spontaneous symmetry break-
down this may usually be achieved with constant a. Here thisisimpossible. If
we want the tadpoles to cancel we may fix ,,, from the Lagrangian given be-
fore. Now g, = 6, +a,,, and the condition that there are no tadpoles be-
comes

cl(R;‘—%ég‘R)+%c06g=0. (108)

uv>
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Now, ifgis a constant, then R = 0, and no solution exists for non-zero c,.
Thus a space-time dependent z,,,, must be employed, and subsequently the
guantum theory must be considered with everywhere this c-number function
appearing. Up to now this has not been worked out, not even in the very sm-
ple case of asource J,,, only, as discussed above.

13. Scalar particles

Here and in the following we take the cosmological constant to be zero.
The next task is to try to construct gauge invariant interactions between gravi-
tons and other fields. We will start with scalar fields.

In case that no gravitation is present the Lagrangian for afree scaar field is
of the form

Ly= —%8“¢a”¢—%m2¢2. (109)
This is not a scalar in the sense of the gravitational gauge transformations, but
it is not difficult to write down an invariant Lagrangian that reduces to the
above in the case of zero gravitational field. We restrict ourselves to terms
quadratic in the ¢ fields, and will leave tadpole like terms (in ¢) out of consid-
eration
L, =\&[-3D"*¢D, ¢ —3m*¢? +aR¢* +bR, D*¢D"¢+..]. (L10)
The field ¢ is assigned to be a scalar under general gauge transformations. Then
D,$=0,6, DEo=gl"d ¢. (112)
As afirst step we will consider only the termslinear in the gravitational field
hy,- Also the b term and higher will not be considered, because they imply
more than two derivatives. With the help of equations given before we find
(setting g, =6, inegs.(83)-(96)):

L,~—39,00,0—3m*e? +3h (33,00, ,0 —im?¢%)

+3h,,8,00,6 +a(h,, 0% —h,g3 397 . (112)

The coupling of h to the scdar field can be written in the form
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—K h}w T#v :

with

Tuv = §6Hv(8a¢aa¢ +m2¢2) = %a”q)a,ﬁ

—ab 029 +ad,0,0% . (113)

We have now made the replacement 2~ k4. T, is called the energy-momen-
tum tensor. It contains one free parameter.

The next step is to consider the scattering of scalar particles caused by the
exchange of a graviton. The Feynman rules are

k 1 1

, (114)
@n)ti kK2 +m?—ie
uv op 1 5na6VE+8nﬁam_ [2/(’1_2)]8“1)8&[3 (115)
k Q)i K2 —ie ’
k P
N ik (kp) -6 m?
2 38,,(kp) —38,,m
L =%.p,— 2a5‘wq2 +2aq,q,]. (116)

Consider now the scattering of one scalar particle from another. If we take
two different scalar fields we have less diagrams. In fact, to order k2 we have
only one diagram, see figure.

The second type of scalar is denoted by a dotted line, but couples otherwise
in the same manner. Its mass will be denoted by M. We are mainly interested
in large distance behaviour (i.e. small momentum transfer q) in the non-relati-
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vistic limit. If we neglect k, p, k' and p' compared to m and M the vertex sm-
plifies greatly. We get, taking the dimension n = 4,

B BB
gt S R P L B

M2]
4
qz—ie

a4§ﬁ

=@t imin L (117)
qg-—ie

Note that g = & — ky is of the order g2, so that ¢ isin good approximation
given by ¢2. It is instructive to compare this with the scattering of two charged
particles exchanging a photon. The Lagrangian is

- 2 1
L=—(D,¢)"'D, ¢ —m*¢*¢ —iF F .
with now
D, =8, —ied,, F,=3,4,-04,.
The interaction becomes
. * * 2 %
zeA#(auqb o—¢ 8M¢)— e AHA”qb 0.

The term quadratic in the photon field is of no importance here. The relevant
vertex is

b 4

= @mti-ie-i(p, — k,) .

The contribution of the relevant diagram is

5
@ iiey’(~ik' ~ ik), —=—(~ip' ~ ip),
q°—ie

k k'
\f/ - nticr & *kp +p)
o L q2 — i€

~(2n)ti4e? ;m_M

q° —ie
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This has the opposite Sgn compared to the gravity case: there is repulsion in-
stead of attraction. Furthermore we see that in this approximation gravitation
can be obtained from electricity by replacing e2 by 1k 2mM. Notably Cou-
lomb'slaw

F=eé%r?,
becomes Newton's law
F=x2mM/4r? .
From the comparison one obtains
K=59X 10722 MeV—1. (118)

No experiment in gravitation involves g2 such that the constant a can be meas-
ured. In fact, we see that the termsinvolving a do not have long range (i.e. 1/r)
behaviour.

From the above it may be observed that gauge invariance implies aunique
coupling between gravitons and scaar particles. Thisisunlike in the case of
electrodynamics, where the covariant derivative D, =8, —ied involves the
charge of the particle which is till arbitrary (otherwise stated, the constant e
is not related to something appearing already in the photon part of the Lag-
rangian). In the case of gravity gauge invariance forces dl couplings to be given
by the same k. This is essentidly the principle ofequivalence. Given the free
Lagrangian (i.e. the inertial mass of a particle) the coupling to the gravitational
field is fixed.

14. One-loop divergencies

We will now concentrate on the calculation ofone-loop divergencies. This
requires the discussion of some techniques due to 't Hooft. Important in this
connection is the background field method, introduced originally by De Witt.

Suppose we have a Lagrangian describing a set ofinteracting fields ¢; (some
of them can be the 7,,,,, others scalar or vector fields, etc.):

L=L(9,). (119)

From this Lagrangian Feynman rules can be deduced, and one loop diagrams
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can be computed. One loop diagrams contain vertices, and from each vertex
precisely two lines connect via propagators to other vertices:

Such one loop diagrams can therefore be generated aso by means of a Lagran-
gian containing vertices involving only two fields (and c-number functions de-
scribing the external trees). We may therefore ask to construct next to the Lag-
rangian (119) a Lagrangian quadratic in the fields ¢ such that the same one
loop diagrams are generated. The answer to this question isvery simple. Sub-
stitute in the Lagrangian (119) for the fields ¢, the sum ¢, + ¢,. The ¢, arec-
number functions and are called the background fields. Next develop £ up to
second order in the ¢;,

"C(al +¢,):£O+£1 +£2+... .
The Lagrangian £,, given by

§2¢

1-
£y=5 0.
2 2 8¢18¢] ¢=$ ¢l¢) ’

is precisely the Lagrangian asked for. We leave it to the reader to check this
fact, for instance by considering a number of smple examples. We emphasize
that no reference is made as to whether the fields ¢ obey the classical equa-
tions of motion. Since tree diagrams with the outer legs on mass shell are de-
scribed by fields obeying the classica equations of motion the use of ¢ that
are such solutions is like going on mass shell with the external legs.

Let us now consider some Lagrangians. First

Ly(®)=—30,,0,8; +¢;N#d, 6. +30,(M; — 0, NE)S, . (120)
In here N and M — 9, N* are antisymmetric and symmetric in theindices i and
j-Mand N are classicd functions ofspace time. Matters are simplified by
means of the so-called doubling trick. We add to this Lagrangian the identical
one but with other fields ;. This clearly amounts to doubling the results since
the number of diagrams doubles. Writing now
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6;=Vi4; 47, = —iv/i(4, - 41,
we obtain

%= *
£2(¢) it £2(‘—ﬁ) = _a#Ai auAi + 2A;Nil}€auAi +A;'kMi]'A]' :

Instead of (120) we will thus consider the Lagrangian

L(@)=-3,¢70,8,+ 2¢; Njio, ¢, + ¢ M9, (121)
and to get the resultsin the case of the Lagrangian (120) we only need to di-
vide by two.
To limit the work as much as possible we rewrite this Lagrangian now as
follows:

L(®)=-D,¢"D, ¢+¢*09, (122)
with
(D, 9);=0,6,+PJ¢.. (123)

This coincides with (121) if

Pi= NV
M M’

Gyt 3, Pl eppri=yy,
Note that N and aso P are taken to be antisymmetric in the indicesi,j.

Formally, the Lagrangian (122) possesses a symmetry. It is invariant for the
infinitesimal transformation

¢>d—A9, AV = ATt
O=0+[0 4],
Pu —>PH + [Pu’A] ik a“/\. (124)

For instance,
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D”¢—>Du¢ —Aau¢—(8#/\)¢ —PMA¢+ [P#, A]¢+(a“/\)¢
=Du¢ - Aa#q& — AP”qb

=(1-A)D, ¢,

D,¢">(1—A)D,¢* =D, ¢* (1 +A).

Obviously D, ¢*D,, ¢isinvariant up to terms of order A2

Since the Lagrangian is invariant also the counterterms (the pole termsin
the dimensional regularization method) areinvariant. Since these counter-
terms will be made up from theP and the Q it is therefore of help if we know
what invariants can be made.

First, if 0y, 05, ... are quantities that transform like Q then also the pro-
duct ofthese quantities transforms like Q. The proofis simple; the finite form
of the transformation of Q is evidently

Qe AMQet, (125)

and the statement is obviously true. Furthermore, the trace of a quantity
transforming like Q isinvariant because

Tr(e " Qe?) = Tr(QeP e ) =Tr(Q) . (126)
The finite form of the transformation of thePM is
Py > e_AP“ e + @, g Bl (127)

Indeed, if we substitute in this equation for P the same formula but with a A,
we get

A e e‘APM ehet + e*A(au g~ A)gh gt 4 @, e Meh ,
with
=N A —A a—A A LA
a“e @ a“e e tetet,
and we see that this is again of the same form but with

ehed instead of e’ . (128)
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Actually, dl thisisvery much like in aYang-Mills theory. In SU(2) for exam-
ple the finite form for the transformation of a Yang-Mills vector field is

1 =
W‘f _>fab W: —E eabc(apf)cd(f 1)db ’ (129)

where the 3 X 3 matrix 1, is a rotation in isospin space depending on space
time. Ifwe introduce the 2 X 2 matrices

w,=2wire, (130)

then we get very similar equations.
Turning back to our P and Q we now easily demonstrate that g, defined by

Gy =9,P,—3,P, +[P,,P] (131)
transforms like Q,
- W | SR (132)

Furthermore, for any quantity transforming like Q we may define the covari-
ant derivative,

D X=3 Xt|[P X]. (133
Then EMX transforms like Q,

D_MX—>D—#X+ [D,X,A]. (134)
It is now an easy matter to write invariants

Ti(Q), Ti(@%), TD,D,0Q. TG, g, ec (13

Returning now to the Lagrangian (121) we have the following Feynman rules

i 7 aij 1
k K2 —ie 2m*i
£ £
. 4 - M =
it (2m) 12Nl./.(q)kﬂ , qtk+p=0,
A OR (136)

M(q)
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The following one-loop diagrams are divergent:

X o N O, N R

o o Ny No
N”AN,, N“ANV Nu/\.NV NH/\NV

N, N

S B X
X X (137)

We see that the counter Lagrangian is at most quadratic in M and quartic inN.
In terms of Q and P it must therefore be of the form

L =aTr(Q})+BTH(g,,g,) - (139)
Note that
@,D,-D,D)X= (G, X1, (139)

0 that we need not consider D, D, .
By computing the first and second diagramsiit is easy to determine the co-

efficients « and 5. The first diagram leads to the expression

Ml](k)]W]l(—k)
S (140
p=(p +k)
The divergent part is
L2,
MyM; [d,p ?:ZO Ti(M?), (141)
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with
_ 2in?
Zy=—"0. (142)
The corresponding counterterm is
—Z
O 1rrady=ltida),
@m)*i €
e=8r2(n—4). (143)
The factor £ is because a term A¢2X in the Lagrangian gives the vertex
- x (et (144)

Thus the coefficient «is now determined to be 1/2e. The coefficient gcan be
determined from the two N diagram

N, Q N, (145)

The corresponding expression is
-p,(p k),
Ptk

Developing the denominator and retaining only logarithmic divergencies

4Te(V,N,) [d, p (146)

[a,22B,_ T Pwvﬂ’u""{ 20k + K, 4(pk)
e LB R 1= i

D = p
pX(p +k)? p* © p? p*

» 2

=—Zo{—3k"8,, — 3k, K, t K kg 548,58, +8,,85,+8,,85,)}

=Z {ER%8,, ik k). (147)
The corresponding term in £ is

=1lo
L= ETI {gaaNu aaN” + %a“NMaVNV} 5 (148)
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Egs. (143) and (148) are sufficient to determine the coefficients aand g.We
get for the counter Lagrangian

£=1TG0%+ 4 g, 6.

Q=M-N,N, -3,N,,

™ BMNV — avN” +N“Nv —NVNM ; (149)
We need the counter Lagrangian for an even more general case, namely,

L=+/g(-3,4"8" 0,6 +26*N*3 ¢ +¢*M¢) . (150)
This is considerably more complicated. Again we define

D, ¢ =d o' +Plo]. (151)
We will no more write the indices i, j. Furthermore,

DH¢*=g" D¢,

DD, 6=g"(2,6%0,6) +8*°(2, 6" P, ) +£"(P,6°0,6) .  (152)

Now remember that 9, ¢ is a covariant derivative in the sense of gravitational
gauge invariance. We may therefore partially integrate forgetting the factor
/g, but treating P, asacovariant four-vector. Moreover, D = 0. Thus we
get

a8uv

V(D ¢D,¢) ~>g""(d,¢%3,0) — 28""¢* P, 3,6 — ¢*(D*P )¢ .(153)
Thus dl invariance considerations hold as before. There is one difference:
there are now more invariants to be considered, namely the Riemann scaars,
etc. Now we can have thingslike

Te(QR), R?*Tr(1), R*R,, Tr(L). (154)

Moreover, £. will now contain a factor v/z. The answer is
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£ =—\§TI[%(Q_ éR)2 + llzglw g‘w+ 516 H(R’JVRIJV i %RZ)] . (155)

C

To prove this equation we must show the factors ;OR, g5 R, R*” and &5 R2.
No term of the form

pvof
R“ -, R

needs to be considered, because in four-dimensional space it can be reduced

vof M= . :
B g 4R R +R total derivative
(in four dimensions). (156)

This equation will be proven later.

The coefficient of the term QR can be determined readily by choosing a
particular g. We take

gNV=6MVF9 \/g—=F29 F:I_fs (157)

where/is an arbitrary function ofspace-time. The Lagrangian (150) may be
rewritten,

L=¢*Fd%¢ + 2¢*(FZNH +§8“F)a#¢+¢*F2M¢. (158)

Now substitute ¢* - ¢* F—1. This does not change anything in the diagrams.
Weget

L=¢*32¢ +2¢*(FN* +1F 13 F)d ¢ +¢* FMo . (159)
This L is precisely of the form studied with the substitution

M-FM,

N*>FNt +3F~19 F=N, +}F13 F. (160)
We must now compute R and R, for this particular g. With

fa=0sL> [=0,3,7, (161)

we find
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T =—3F 162 f, +82f, —8,,, (162)
D Z%=p 2% +T% 2%
=9, 2% —{F1(82f,2" +fZR=F22 ), (163)
Rlug = —4F G oy~ 81T, = 0,512 40,01}

—iF 3841, 1, —38L [y f, — LR
+35mfﬁf‘u +53V55f7f7~5w6§‘f7f7). (164)
By contraction

R, =—3F712f,, +8,, 5, ) - 3F 1, f,, (165)
R=-3F72f -3F3f f, (166)
RvaRm = F;4(fcwfav * 2faafvv)

+F3Gf L1, 13 LIV AF S S, (167)

R2=9F4f f +9F5f f.f +3FSL.1 1.1, . (168)
Now for this g one verifies easily eqg. (156). However, for thisg aso
\/§(RWR”” — 1R?) = total derivative.. (169)

We can therefore determine the counter Lagrangian £ only up to terms of this
kind.

Comparing the result eq. (149) with the substitutions (160) to the Lagran-
gian (155) with the appropriate expressions (166) and (168) for R and R?2
shows that indeed in the combination Q + aR the coefficient amust be taken
as L. Moreover the term R2 has the factor =, and we have determined £up to
8(12 expression of the form(169) (in principle one could have additional factors
R?).
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To determine the last unknown coefficient there is nothing to do but to
compute another diagram for some specia case. We consider a Lagrangian
without M and N,

L= \/gT(—aM ¢*g""d 9). (170)
Withg,, =68,, +h,, we must expand up to first order in h,

L=-0,0%0, ¢ +0, ¢" (" — 363 ¢ . (171)
With

B, =R —igmvpo (172
it will be sufficient to compute a graph with two s vertices. Terms of order 42
in the Lagrangian do not contribute for the following reason. We are working
to order 42 in the counter Lagrangian, since no more is needed to determine
the last coefficient. Now a term 42 ¢2 in the Lagrangian is already of order 42
and the diagrams of order 72 involving this vertex cannot involve any other
vertex and are therefore of the tadpole type

i)

Such diagrams do not contain logarithmic divergencies, and may be taken to
be zero.
We must finally compute the divergence of the diagram with two s vertices

>

Vertex:
4
SMV < qppp
=p
The diagram

gives rise to the integral

P, (P +K),p (P k)
p2(p +k)? '

s‘”’s“ﬂfdnp (173)
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The resulting counter Lagrangian is

S o (0 2 1 a2 2 1 .42
E£.=5 5350 S0 Saq t 120078,,078,, + 550 S0 00955

—gﬁaaqysuvaaaﬁsw+;—Oauavswaaaﬁsaﬁ]. (174)
Next we must substitute eqg. (172) and compare with terms R2, R wRM Where

we must evaluate first these terms to second order in h,

R, =3(@,3,h,, —9,8,h, —0,0,h, +3%h,), (175)
R R%=5(@%h,,0%h,, +32h 0% h, , — 20, 0 8,h,,
—28,8,h,0,05h,,+29,0,h,,8,0:h.), (176)
R=3%h,, —2,3,h,,, (177)
R*=09%h,,8%h,, —28%h,,3 d5h. +8,0,h 3,0k, (178)
The result is
£ =3§ [#R? + &R, R® —4RY)], (179)

which shows the correctness of the general counter Lagrangian(155).

15. Divergencies with external gravitational field

The results of the preceding section may be summarized as follows. To the
Lagrangian

L=g(-0,4%8" 0,6+ 2¢*N"2 ¢ +¢* M9) (180)

(where g#”, N* and M are c-number functions of space-time) corresponds the
one-loop counter Lagrangian

= IVETIGQ - 4R + 12 @™ g, + &R, R —3RP)},  (18D)
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with
g =M~ N N -8 N,
G =0 N, ~DN, ¢ [N N]. (182)

Here D, is the covariant derivetive involving g,,,.. AlsoR and R ,,, are con-
structed from g,,,,. From this formula we can already draw some important
conclusions. Suppose that we consider a theory of scalar particles interacting
with themselves and with an external gravitational field. This external field is
represented by g, =6, *+ kA, To zeroth order in the gravitational coupling

constantthedivergenciesaregivenby £ ofeq.(181),with R=R,, =0and
/g = 1. Tofirst order in K we have, from /g, essentially the same divergencies
and there is a new divergence from the term QR, where R is worked out to
first order in K.

The very nice thing is now that this new divergence can be cancelled. If, in
eq. (180) M isreplaced by M + LR then in eq. (181) the term

(- IR 0%,

This suggests that the free constant a in sect. 13, eq. (112) should be taken as
. This prevents the occurrence of new divergencies up to order x. The choice
of a= {5 leads to an energy-momentum tensor that is often called the improved
energy-momentum tensor, and was in this context first proposed by Callan,
Coleman and Jackiw, A. of Phys. 59 (1972) 42.

However, to order x2 we have sill the combination R,,,R*” — JR?. This
represents divergencies in the theory ofgravitation caused by closed loops of
scalars. Now to order k2 we also may get contributions from vector particles,
fermions and the gravitons themselves, so the consideration of these terms here
is not very meaningful.

As afirst step in amore complete treatment we may now consider quan-
tized scdar and gravitational fields together. The case of pure gravitation is
then easily deduced as well.

16. Divergencies with quantized gravitationa field
We will consider the simplified case

T=V&(-R - 10,82"0,9) (89
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The bar on the various quantitiesis for notational reasons. We have not em-
ployed the improved energy-momentum tensor, but that can be done rather
eadly later. Furthermore we suppose units to be such that k = 1. Effectively
this means that our unit of energy is given by 1/k = 1.724 X 1021 MeV, a
rather large value. It shows in fact the irrelevance of gravitation for elemen-
tary particle physicsinsofar as no matters of principle are involved.

Before we get to computing the equivalent second order Lagrangian we
must discuss the question of gauge invariance. The first step is that we write
everywhere

T Ll $=6+9, (184)

where g, and ¢ are background fields.
The Lagrangian(183) with the substitution(184) isinvariant for the gen-
eral gauge transformation

£, 8, T8, A TR By +n"a ., . (185)
The replacement 8 - D where D is constructed from g, notg, may be done:
dl T" terms cancel. We 0 get, using eqg. (184),

h,uv - hw +(g,, t hw)Du n%+ (g}m + hua)DVn"‘ +n°D, h'w . (186)
Similarly,
¢>¢+n*D(+¢) (187)

Again, D involvesg, notg = g + A. The importance of introducing covariance
with respect to the background field g will become clear: the counter Lagran-
gian shdl be invariant with respect to genera gauge transformations of the
background fields g and ¢, simply because the second order £, by a properly
chosen gauge breaking term (to break the gauge invariances with respect to
the quantum fields egs. (186), (187)) will possess that invariance. Thisis the
beauty of the background field method: it offers the possibility of directly
profiting from the symmetry of the theory.

The first and second order variation of the various quantities has been
given before. Simplifying things as much as possible using partial integration
(omitting total derivatives) one finally obtains ondeveloping Lfrom eqg. (183),

L=L+L+L+0(93, h3, 0% h, 0h?), (188)
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L=\g(-3hgR —50,68""0,6h3 + hRY
+3h*0, 60,6 —0,08"0,9), (189)
£=+/g[—}3,90,8(" h2 —2h*) —50,$2,8
X (hEh® —3h2H*) — 30 083,06 — (3(h2)? — ShhE)

X(R+2la”5g”vav<$) hPhPR® + 1 h hVRﬁ_ 1pB pov

B a v a,v B

+5h§;ﬂhg’ —FhG e+ jhEanE . (190)

Let us emphasize and clarify a number ofpoints:

(i) The original Lagrangian is invariant under gauge transformations of the
fields ¢ and g. Thisimpliesinvariance of this Lagrangian with respect to the
gauge transformations (186), (187).

(i) As amatter ofnotation, raising and lowering ofindices and covariant
differentiation in eg. (190) is understood with respect to the background field
8, (50€9.(184)).

(iii)By inspection we see that £ and £, egs. (189) and (190) are formally in-
variant under transformationswhereby h, g, ¢ and ¢ transform as two tensors
and scalars. We emphasize the difference with respect to the origina gauge in-
variance. The transformations(186), (187) derive from egs. (184) if we keep g
and ¢ fixed, and assign tensor and scalar properties to gand @. That is the orig-
ina gauge invariance of the theory. It will have to be broken by a gauge break-
ing term, and a ghost Lagrangian must be introduced. TheLagrangians £ and £
are invariant if we assign transformation properties tog, ¢, h and ¢; for instance,

huu_)huv +hmavn°‘ +hwa#n°‘ +n°‘aahﬂy. (19)

This invariance needs not to be broken by a gauge breaking term because the
classical functionsg and ¢ are involved. The path integral

J Ly (192)

isfinitebecause £ has no invariance with respect to variations of the quantum
fields only.
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We must now aso introduce a gauge breaking term in the origina Lagran-
gian £ and dso find the corresponding ghost Lagrangian. This will give rise to
additions to £ and £, and we must be careful that things are done such that

the "new" invariance mentioned under (iii) remains true.
The following gauge breaking term does what we want:

C,=Ve(h, b —3h2  — 03 B+, (193)
where ¢+ is defined by

pHe pow = Gl (1%9)
Weobtain

—Cy = Ve, — 1y )% — 3R

+\/§(hl,j/:) _%h:,#)¢au$~%\/§¢Zau$av$guv' (195)

The ghost Lagrangian is obtained by subjecting C,, from eg. (193) to the "orig-
inal" gauge transformations(186), (187):

C,~C, +M, +0(n?). (196)

We find, omitting terms containing h or ¢,

Mvz\‘yg{n):uk +ny:)7t 477’;\\# _(aa@(au@na}ﬂw . (197)
Thus
B ™ Ve M, (198)

where now n* and n represent the so-called Faddeev-Popov ghost field.
Without any consequence for the diagrams to be computed we may make
the replacement

gt >~en g™ =gn*H (199)

provided t is non-singular. We so fmd
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Lonost = VEN™ 2 — R, 0% — (3,89, H)n°}. (200)

Thisisinvariant with respect to the "new" gauge transformations if we assign
vector type transformation properties to the ghost field ».

Ofcourse,in actual calculations we may alwaysuse n,, instead of n**, be-
cause the matrix g involved is of no consequence.

It is perhaps worthwhile to mention here that we will be interested only in
one-loop diagrams without external ghost lines. Therefore no term linear in
the ghost (for example terms of the form n4 or n¢) need to be retained. That
is why terms containing h or ¢ have been omitted.

Since Cis quadratic in the quantum fields h, ¢, only the Lagrangian £ will
get a contribution from the term —L 2. Onefinds

L—3C2 =VBI-4hE h” + 5he hB” — 10, 0¢"0,¢

a,v
tIhg X hy + O YRS + 3029}, (201)
X% =2(-38)D*¢D, ¢+ 385D 3D, § — {:6864D ¢D"§

+38584D_¢D7 — ;5261 R + ;885 1R

—38JRE +385RY +3RM,), (202)
&= Loy vy az
Yg=185D,D*$—D; DG
Z=—D”$D“¢

17. Evaluation of the divergencies

The evauation of the counter Lagrangian to (201) is straightforward but
tedious. We must bring the Lagrangian in the form eqg. (180), and after that we
can use the general formula eg. (181). Thefields4,; and ¢ are to beidentified
with the ¢? of eq.(180);since in(180)the covariant derivative on theg? is
treated as if working on a scalar field we must separate, in eg. (201), the terms
0,70,k from the terms containing T.
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Asafirst step we apply the doubling trick to the Lagrangian (201). We get
£y =VEh P D _DVh, + h3 (X% + X
+¢*D Do +¢* YPh  +hy Y ¥ o+ 0" Z9}, (203)
P = i Ry

Let us consider the covariant derivatives. Let 74, be agenera tensor. We
have

- oy ep
Du Taﬁ'y... au TaB'y... +Nuaﬁy.,. Taﬁ'y e (204)
with
alp”)/’ = a' 6’ 'Y, a‘ ﬁ, ’Y' a’ ﬁ’ 'Y'
N/.Laﬂ'y F“a 5’3 57". + §a Fﬂﬂ 57". F 5a 5ﬂ I‘“%" H 2 (205)
Further,
o A aB'y'... o
DvDu Taﬁ'y... avau Taﬂfy... * Pvua}\ Taﬂly... +Nvo43'y... ap Taﬁ ¥ sw
aB'y'... agly...
- (avaaﬁy... )Ta'B"y'... +Nua&y... avTa'ﬁ"y'...
A oY oy ey XBY e
t r‘u,uN)\aﬁ'y... Ta'ﬁ'y'... +Nvaﬂ7... Nya"g”fy".__ Taﬁ L (206)
In short,

D,D,T=D,D,T+N,D,T+(D,N)T+N,D,T+N,N,T. (207)

Here D is defined as the covariant derivative that "sees' only theindices pand
vin eg. (206). From this we have for any tensor T,

=D DY YD D NY o4
D D"T=D D"T+2N"D T+(D N"+N N"T. (208)
Thus
* i ¥ 1y DM
V&hyeD, D" h ;=g {hyD, D" h g

* MYV Ty * Uy
LI CR k. B TR, (209)
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with

F= 571\77 N NY. (210)
In the counter Lagrangian we will need @,,,,,

G DN, ~D N * NN ~NN . (212)

The reader may note the great similarity between @, and the Riemann tensor
Rg#,, (see eg. (70)) in case Nis linear in the I'. Indeed, one finds in the general
case,
oB'y'... = o p f o pp' ¢
gmmm Rw)aﬁ 6;’ * 6a Rﬁ‘ws;f'_. Mmet 5 (212)
Here we have only two terms. We must be careful to symmetrize in of,and
a'f’. Thus,

Gus ~BIRE, 08 +*RE 0 #REBE +RE 55, (213)

For this we find

TH(g* g,,) = gh'h gv'szg,“,v,ag' i1, (214)
where in between square brackets the symmetrized expression from eq. (213)
must be used. Working this out gives

THG g Y =GR, R, (215)
Due to the particular form of F, egs. (209), (210), there are no more contribu-
tions from the covariant derivatives to the counter Lagrangian that indeed wiU
involveonly ' — D, N7 — N, N7 = 0 (compareeq.(182)).

The rest of the calculation is now straightforward. Enumerating the fields
hy,, by a single index going from 1 to 10, and assigning the scalar field ¢ to the
index value 11 we find that the matrix M takes the form
iy Py

M= ; (216)

Y Z

where
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>

Xt s jgrtgn g s

?Olﬁ = gav Yf i (217)

The factors P~ arise from the substitution #* - #*P—1. We must now evalu-
ate

Tr(M — 1R)? , (218)

where R multiplies the 11 X 11 unit matrix. The various contributions can be
worked out,

Tr(P~1XP-1X)=2R2 + 6R, R +3(2,8¢"2,8)* ,

Tr(-1P~1 XR + £R%)= -}R?,

2Ti(YP-1Y)= 2(p, D" F)?* + 4R°‘ﬁ(aa$aﬁa>) .

Tr(Z - §R?) = 5(3,88"8 , §)R + £R? + @, 373 8)? . (219)
The evaluation of the counter Lagrangian arising from the ghost loops is not
difficult. The contribution due to the covariant derivatives is (we have now a
single index field)

TG Bt dnn ™ Rug A - (220)

The minus sign is the well known minus sign for the ghost loops. From the
rest of the ghost Lagrangian (200) one finds

£, gros= —YE (20, 6™, DR + 1R> + R R

cghost— — "¢

+ 1R 0 R+ R¥(3 30.8) + 50, 823,87} . (2)

Together with the previous result (divided by 2, to undo doubling),
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C

L =\/T‘§'—{7§5R2 +E5R R+ 13, 880, B

—{R(2,08"0,6) + 2(D, D*$)*} . (222)
Here we have used the identity
== 2 .
RumﬁR”""‘ﬂ =_R%+ 4RaﬁR°‘ﬁ + total derivative. (223)

Thisidentity will be proven later.

18. Equations of motion

From eq. (189) we see that tadpoles are absent ifg and ¢ obey the follow-
ing equations of motion,

D#D“q? =0, (224)

(3R — 4D, $D*)5* +R* +1D D*$=0. (225)
Taking the trace of eg. (225),

R=-3(D,$D*9).
Substituting this back gives then the equivalent set

D,D*$=0, R, =—3(D,0)D,9, R=-3D,)D"§). (226)
Using thsse equations in the counter Lagrangian (222) gives

L, =—eg?°—03 R? (scalar + gravity). (227)
For pure gravity R = 0, and

£.=0 (gravity). (229)
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19. Riemann tensor identities

Two completely antisymmetric four-tensors can be identified in four dimen-
sons(g = det gw,)

1
afuy — _eaﬁuv ; n = € 229

opuv afuy

Epw =€ =1 for aBm?=12384

= completely antisymmetric .
Under agauge transformation £ we have (see eq. (47))
V=g 0, {£*Ve} . (230)

To see that the ny transforms indeed as tensors under a gauge transformation
we write down an identity valid in four dimensions. Ifindices can take the val-
ues 1, 2, 3 and 4 then obviously any object antisymmetric in five indices is
zero. Thus consider

nuuaﬁ T)\K... & (231)
where T, isanytensor.Thisisalreadyantisymmetricin u, », aand . Ifwe
antisymmetrize in the first five indices we have zero,

n;wozﬁ T)\x... - n}\vaﬁ Tun... = Munag Tvx...
B ny.vkﬁ Touc e n;woz)\ Tﬁk =0. (232)

Let us now see how n behaves under a gauge transformation. We have

Naguy ™ Naguy + 02 1 b Neogun)
Wi +naﬁwa}\g>\+g’\a}\naﬁw. (233
Applying the antisymmetry identity to the second term
Mgy = Magup 5 Mrguw 9,& o Moy aB g Magny au g
+naﬂm\avi§7‘ * E}\a)\naﬁuv' (234)



318 M.J.G. Veltman

Thisis precisely the transformation law for a four-tensor. Similarly for n %+,

Let us now construct a scaar from two n tensors and two Riemann tensors.
Because of the various symmetry properties there is only one non-zero combi-
nation,

\/gR}\U(XBRNo’Q'B'nAaaﬁ n}\oaﬁ E\/g—RRnn (235)

We will show that if g, = g, + 8, then this quantity changes by atotal
derivative. We have

VE>VE (W),

R +R+H,

where the first order variations 6 (+/2) and R have been given before (see
€egs. (84)-(97)). For our purposes we write somewhat more conveniently

8 (Ve) = ivVEg¥sg,,,
P " ©
RE;=-D,T% +D,T

vay a=uB?

5o = _%gxn ‘ng naﬁuv ; (236)

where I' is the first order variation of I'. This equation follows quite directly
from the definition ofthe Riemann tensor, eq. (70). Furthermore,

Roas = 8ruRoog - (237)
From this
Rypop = B3, DgTE, + 8, D, T +0g, 2" R, 0. (238)
We find
8 (VR g Rygrarg 1P 17 %) = —127°8g, ; (VERRnn)
—4v/88), (D, T% IR 110 o6
* 2V 08, 8" R goog Ry ™0 (229)
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If we had worked in n-dimensional space we would have ntensorswith nin-
dices, and the scalar combination of two n’s with 4-index Riemann tensors
would have needed 17~ Riemann tensors. The coefficients of the last two terms
would have been -n and }n.

Let us now apply the antisymmetrization identity to the last term with re-
spect to the indices, A, o, «" and §'. If we denote the last term of eq. (239)
by 2+/2X we find the identity

X=g""6g, (RRnm) —3X, (240)
or
X =j3g""8g, (RRn). (241)

In the n-dimensiona case we would have obtained the coefficient 1/x. Insert-
ing thisidentity we are left with

8 (VERRTM) = —4/88), (DT ) Rys s 7F N6 . (242)
According to the Bianchi identities,

DﬁRaﬁ N A DUIRO('ﬁIﬁN +D}\’Ra’ﬂ’0’ﬁ =0. (243)
Multiplyingwith n*"# we find three times the same thing, and consequently

(DR o)1 ¥ = 0. (244)

o'B'Ne
Furthermore the covariant derivative of n is easily seen to be zero,
AL s
DM =0, (245)
This follows basically from the identity
Ll = E 3k (246)
We therefore may rewrite

8 (VERRNN) = /gD, {48, T% Ry F n* 0} (247)

since aso the covariant derivative of g, iszero. Using
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VeDyXP =0,(gX?), (249)

we see indeed that the result is a total derivative.
As alast step we note that the product of two etensors can be expressed in
products of § functions,

afuy o _N\VPsasBspsy
MO g = 21 (P850 855

The summation goes over dl permutations of the indices o', ', u" and »'".
There are 24 terms. Using thisidentity to work out the combination RRnn
as appearing in eg. (235) one obtains

= 2
RRnn = 4(RMW3R“”°‘B ~4R R¥+R%). (249)

This expression is thus up to a constant atotal derivative (in four dimensions)
and we need to consider only terms of the form R? and R ., R*” in the Lag-
rangian.

20. Fermions and gravitation

If one tries to include fermions into the theory of gravitation it turns out
to be quite difficult. The reason for thisis that there exists no spinor represen-
tation ofthe group oftransformations ofgeneral relativity. For this reason one
is forced to introduce the Lorentz group once more, and treat the fermions
as scalars with respect to general relativity. Thisis an ugly aspect of the the-
ory of gravitation, but for the time being no alternative theory exigs.

Let us now consider this problem explicitly. The Lagrangian for fermions
not in interaction with gravitons is given by

L=—y(y*0o, +m)y. (250)

To agiven Lorentz transformation L, corresponds amatrix Sin spinor space
that acts on the v,

Y'=8y,

and the important properties of Sare (with ¥ = ¢*7*)
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S+74=74S;1 , S~1,Y;LS:LMVYV.

Thus the Sinduce a Lorentz transformation of the y matrices.
Now the most straightforward generalization of eg. (248) would seem to
be

L=e{-¥(y*D, +m)y}. (251)

Thisis acceptable if y# transforms as a contravariant vector. The problem
therefore arises. let there be given a gauge transformation characterized by
the functionsn. Is it now possible to define a gauge transformation of the
fields ¢ (x) in such away that y* ¢ transforms as co- or contravariant vec-
tor? The answer to that is simply no.

For this reason we must now introduce the Lorentz group once more, ugly
asit is. We introduce two kinds of indices, and the first kind indicates gauge
transformation properties of genera relativity, the other kind simply Lorentz
transformation properties.

The central quantitiesin our treatment will be the so-called vierbein fields
e (). A general gauge transformation is characterized by four functionsn%(x),
and a Lorentz transformation is characterized by the six quantities A#2(x),
where \@ = \ba_Thus§@b + N\ is simply an infinitesimal Lorentz transfor-
mation. The behaviour of the vierbein field e/ under these transformations is
given by

eﬁ»ez+e,‘fa“n”+n”avez+)\”b65. (252
Thuslatin indicesa, b, etc. indicate transformation with A, and greek indices
indicate transformation with ».

We must now construct covariant derivatives. Let there be given the four-
vector 44(x). One has a gauge behaviour

Aa_>Aa‘+ 7\abAb +77VaVAa )
We now want to define the covariant derivativeD“ such that D A® transforms
like the vierbein field. This can be done quite precisely like in the foregoing.
Consider first 9,4

b b b 4 b
E)MA“-*B”A”+7\” auA +6M)\" A +a“n"avA“+n”auaVA”.
(253)
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Wewant
a a v a v a ab b
D, A%~>D A%+03,n"D,A% +0"d, D A% +A?D A°. (254)
Comparison of (254) and (253) shows that we must try to find quantities wgb
such that under a gauge transformation

w® > (w? —-9 X% (255)

b)tensor
Thisis provided by

w® = %e””(aaef — aue£)+§e“"eb"(aae§ =8, ef)es —(aeb), (256)

where we used the definitions
e =%l (257)

Thus the g,,,, are no more the basic quantities of the theory, but rather the ef.
The gravitational field is described by the difference between el and unity,

eZ = Bﬁ + hau ; (258)
We have, to first order in the h,

ez eg = (63 + hau)(5ff * hav) = 5W % (hw +h

™ (259)
The gravitational field that we had before is the symmetrical part of the vier-
bein field.

Let usnow go back to eg. (256). To see that this has the correct behaviour
one observes

b b
aa eu i (aa ev )tensor

b b
te,0,0,n%+3, N o (260)
e‘"’(aaef - avei’) g | )tensor T aoz Ll eavegavy\bc ’ (261)

ap ,bo ¢ €X 40
eWe (aae/J Bpeo)ea.

L )tensor +eb ao A% e; = ap x> eg ¢ (262)
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The rule for covariant differentiation is now clear. For example,
- b 4b
DAy =3, 4) —ToA twid,, (263)

with the transformation properties that have been given before, eq. (255) and

eg. (52).
Let us first list some equations concerning the vierbein field. We have

g=¢e (~ = transpose).

Thisisnothing but an abbreviated notation ofeq. (257). Now transposition
and inversion commute,

el
since

ele=1-8EH=1.
Consider now

eg e (= eﬁg“”ei’) ;
Wehave

eg le=e(e1)e=1,
or

ef eba = gab (264)
Furthermore, the I" are related to the w. One has by inspection

g B et Bl =l (265)
Using this one obtains (compare eg. (53))

ao b
%

wﬁb = %gd”(aﬁgﬂv = avgw +ePd el —e%9 o

¥ B uw v opB

=% TR g, e el — o2 o), (266)
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or
O 2
Fﬁ# =e

b, .ab
i gh oo 4 ¢fp of . (267)

From this one may derive that the covariant derivative of the vierbein fidd is
zero,

(7 2 a__po a ab b
Dueﬁ a”eﬁ Fuﬁea+wu eg - (268)

Using egs. (267) and (264) we get

@ a _ . sb.ab a ab b —
D, e 6“eﬁ eg wi a“eﬁ+wu eg =0. (269)

21. Fermionfields

Under an infinitesimal Lorentz transformationA afermion field is custom-
arily supposed to transform according to

Y > (14302 0)y, (270)
with

0% = L(y*y —yPy9). (2mn)
This is in fact the infinitesimal form of the transformations S mentioned be-
fore. The only difference with the usual treatment is now that the A are space-
time dependent.

We must now define covariant differentiation of the . We have evidently,

from eg. (270),

3, ¥>(1+30%A%)d y +10%3 APy (272)
From this we infer that the correct definition of covariant derivative is

D,y=(,+50"wi)y. (273)

Now the Lagrangian for fermions interacting with gravitons can be written

Le=e{—¥7*e™D y—myy}, (274)
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withe = Det(e) =+/Det g. The gravitational Lagrangian is constructed from
the g,,, as before. The main difference is that we now have ¢, + ¢, instead
of 2,,,,, which introduces some extra symmetrization in a number of places.
As an interesting trick we make the substitution

¥~>D Jvybet.
This gives (we ignore the mass term here)
Li=e{-D yy°vy> eb”e‘”‘Dﬂ Ul

Thisis symmetric in x and v: interchange of u and v can be obtained via partial
differentiation, using that De = 0. Therefore we get symmetry ina and b, and
we may substitute

x> Mt + P 1) =82,
We 5o find

Ly=e[-D,Ug" D, y].

22. Further invariants

Consider now the tensor R£2 defined by

(0,D,-D,D)Y=4RDo?y. (275)
One has
Dy=0,y+iw®e®y, (276)

D,D,y=3,D,¢-T2&D ¥+iw?e“D y
=3,0,¥ +13, (WP 0™ +JwP ey

=TED b4} wﬁd o) Y+ ﬁwﬁd w®gdghy (277)
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Using equations such as

[GCd Uzzb]zébdaac +§2d gcb 4 sbe yda 4 sac ;bd - (278)
that follow from the definition eg. (271) one finds

RE =3 @l 0,0l ralfu® —o®ul, (279)
which indeed is quite analogous to eqg. (70). Obviously R%’ behaves as a ten-
sor, which can also be deduced directly, if we first rewrite

sz}’ =D, wz‘fb L wﬁb ~ gl wfb % wﬁb , (280)

and then use the transformation properties of w, eg. (255).
The vierbein field can be used to "transform” alatin index into a greek in-
dex and vice versa. For instance

aa b pab — pa
e R = Re s (281)

This may be seen as follows:

ax b pab — ,ac b ab aby . e b ae el - o0, eb
e eﬁRW e eﬁ(DMwV Dku) e eﬁ(co” 0<% = Gt wu)

=8, Fg‘v —B, an — D“(e”“ ayeg) +D (e a# eg

b, .ch b, .ch
— e wifew” +ewifef ws, (282)
where we used the fact that the covariant derivative of the e is zero. We leave
it to the reader to work out further eqg. (282).
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