
Monads and Interaction
Lecture 3

Tarmo Uustalu, Reykjavik University

MGS 2021, Sheffield, UK, 12–16 April 2021

Comonads

Comonads = Co-monads

Comonads on C are monads on Cop.

You don’t like this, what?

Ok, they are comonoids
in the (strict) monoidal category ([C, C], IdC , ·).

What else can there be to say?

Comonads

A comonad on a category C is given by a

a functor D : C → C,
a natural transformation ε : D

.→ IdC (the counit),
a natural transformation δ : D

.→ D · D (the comultiplication)

such that

DY
δY //

δY

��

D(DY)

DεY

��
D(DY)

εDY
// DY

DY
δY //

δDY

��

D(DY)

DδY

��
D(DY)

δDY

// D(D(DY))

CoKleisli triples

A coKleisli triple (comonad in extension form, no-iteration form) is
given by

an object mapping D : |C| → |C|,
a family of maps εY : DY → Y
indexed by X ∈ |C|,
a family of maps (−)†X ,Y : C(DX ,Y)→ C(DX ,DY)
indexed by X ,Y ∈ |C | (the coKleisli coextension operation)

such that

εy ◦ k† = k for k : DX → Y ,
ε?Y = idDY ,
(` ◦ k†)† = `† ◦ k† : DX → DZ for k : DX → Y , ` : DY → Z

Functoriality of D, naturality of ε, (−)† are not required, but follow.

Comonads = coKleisli triples, for the same D : |C| → |C |, ε.

FP intuition

D – a “notion” of environment (environments of some flavor with
whose help computations can run)

An environment ≈ a process that is able to serve computations and
is at any moment in some state.

Y – states

DY – environments with states of type Y

D(DY) – environments with, as states, environments with states of
type Y

εY : DY → Y – extract from an environment its initial state
(useful for “halting” the environment at the start moment)

δY : DY → D(DY) – “blow up” an environment into one that has
as its state at any given moment the current remainder of the
environment
(useful for “pausing” the environment whenever, with the intent to
“resume”)

CoKleisli category of a comonad

A comonad D on a category C induces a category CoKl(D) called
the coKleisli category of D defined by

an object is an object of C,
a map of from X to Y is a map of C from DX to Y ,
D idY = DY

εY // Y ,

` D◦ k = DX
δX //

k†

55DDX
Dk // DY ` // Z

for k : X D → Y , ` : Y D → Z

From C there is an identity-on-objects functor J to CoKl(T),
defined on maps by

Jf = DX
εX // X f // Y for f : X → Y

If ε is epi, then J is faithful.

CoKleisli adjunction

In the opposite direction of J : C → CoKl(D), there is a functor
L : CoKl(D)→ C defined by

LY = DY ,

Lk = DX
k† // DY for k : X D → Y .

L is left adjoint to J.

CoKl(D)

L

��
a

C

J

[[
X D →

JY︷︸︸︷
Y

DX︸︷︷︸
LX

→ Y

We have L · J = D. Indeed,

L(JX) = TX ,
if f : X → Y , then L(Jf) = (f ◦ εX)† = Df .

And the counit of the adjunction is ε.

Comonad coalgebras

A coalgebra of a comonad (D, ε, δ) is an object Y with a map
χ : Y → DY such that

Y

χ

��
DY

εY // Y

Y
χ //

χ

��

DY

Dχ

��
DY

δY // D(DY)

A map between two coalgebras (X , ξ) and (Y , χ) is a map h such
that

X
h //

ξ

��

Y

χ

��
DX

Th // DY

The coalgebras of the comonad and maps between them form a
category Coalg(D), called the coEilenberg-Moore category, with an
obvious forgetful functor U : Coalg(T)→ C.

FP intuition

A coalgebra (Y , ξ : Y → DY) – a coeffect producer (should we call
it a cohandler?)

Y – a fixed type of states

ξ : Y → DY –
a (consistent) assignment of an environment to every initial state

(think, e.g., that you have a state machine over state set Y that you
can start in any state and obtain a behavior)

CoEilenberg-Moore adjunction

In the opposite direction of U : Coalg(D)→ C there is a functor
R : C → Coalg(D) defined by

RY = (DY , δY),
Rf = Df : (DX , δX)→ (DY , δY) for f : X → Y .

R is right adjoint to U.

Coalg(D)

U

��
a

C

R

[[
(X , ξ)→

RY︷ ︸︸ ︷
(DY , δY)

X︸︷︷︸
U(X ,ξ)

→ Y

This is says that (DY , δX) is a coalgebra of the comonad D,
moreover, it is the cofree one.

U · R = D. Indeed,

U(RY) = U(DY , δY) = DY ,
if f : X → Y , then U(Rf) = U(Df) = Df .

The counit of the adjunction is ε.

Comonads from adjunctions

Any adjunction gives rise to a comonad.

Given an adjunction

D

L

��
a

C

R

^^
LX → Y

X → RY

the endofunctor D = L · R on C carries a comonad structure with ε
the counit of the adjunction.

Adjunctions so related to a comonad are called its resolutions.

Resolutions of a comonad form a category.

The coKleisli and coE-M adjunctions are resolutions. The coKleisli
resolution is the initial, the coE-M resolution the final object of this
category.

Coreader and cowriter comonads

The coreader comonad for an object S (of states) is

DY = S × Y
εY : S × Y → Y
ε (, y) = y
δY : S × Y → S × (S × Y)
δ (s, y) = (s, (s, y))

The cowriter comonad for a monoid (P, o,⊕) (of updates) is

DY = P ⇒ Y
εY : P ⇒ Y → Y
ε e = e o
δY : P ⇒ Y → P ⇒ P ⇒ Y
δ e = λp. λp′. e (p ⊕ p′)

Costate comonads

The costate comonad (originally called array comonad) for an object
S (of states) is

DY = S × (S ⇒ Y)
εY : S × (S ⇒ Y)→ Y
ε (s, f) = f s
δY : S × (S ⇒ Y)→ S × (S ⇒ S × (S ⇒ Y))
δ (s, f) = (s, λs ′. (s ′, f))

A variation, the external costate comonad for an object S of states,
is

DY = C(S ,Y) • S
The costate monads for S arise from the adjunction

C

−×S
��
a

C

S⇒−

^^
X × S → Y

X → S ⇒ Y

C

−•S
��
a

Set

C(S,−)

^^
I • S → Y

I → C(S ,Y)

Coalgebras of costate comonads

Coalgebras of the costate comonad for S are (by definition) objects
Y with a map χ : Y → S × (S ⇒ Y) subject to two equations.

They are in a bijection very well-behaved lenses between Y and S .

Those are (by definition) pairs of maps coget : Y → S ,
coput : Y × S → Y such that

y = coput (y , coget y)),
coget (coput (y , s)) = s,
coput (coput (y , s), s ′) = coput (y , s ′).

Cofree functor-coalgebras comonads

The following comonad G † delivers (carriers of) cofree algebras of a
functor G :

DY = νW .Y × GW DY ∼=ν Y × G(DY)
(G -branching trees with Y -labelled branching nodes)

ε t = fst (out t)
(extracts the root label of a tree)

δ t = out−1 (t,G δ (snd out t)
(relabels each node of a tree with the subtree rooted by that node)

For GY = Y , we get DY = νW .Y ×W ∼= StrY
(streams and suffixes).

For GY = 1 + Y , we get DY = νW .Y × (1 + W) ∼= NEColistY
(nonempty colists and suffixes).

Coalgebras of cofree functor-algebras comonads

The category Coalg(G †) of coalgebras of the comonad G † is
isomorphic to the category coalg(G) of coalgebras of the functor G .
The isomorphism is identity on carriers.

E.g., the a coalgebra of the stream comonad D is an object Y with
a map χ : Y → StrY subject to two equations

It is described by map ψ : Y → Y subject to no equations.

χ is defined from ψ by shd (χ y) = y , stl (χ y) = χ (ψ y)

ψ is constructed from χ by ψ y = shd (stl (χ y)).

The comonad G † is the free comonad on the functor G .

