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Preface

Parity, charge conjugation and time-reversal are three discrete transforma-
tions which act on the fields in the Standard Model, parity and time-reversal
being the improper Lorentz transformations with det Λ = −1, and charge con-
jugation relating particles to their antiparticles. It was thought for a long time
that physics was invariant under each of these transformations, and indeed,
this is the case for both QED and QCD. However, the chiral nature of the elec-
troweak interactions and the complex phase in the CKMmatrix which mixes the
quark families in the charged-weak current, mean that the electroweak sector is
neither P (parity), C (charge conjugation) nor T (time-reversal) invariant.

1 Parity

The operation of parity inversion, P , is associated with the spatial map x →
xP = (x0,−x).

1.1 Scalar Fields

If φ(x) is a classical scalar field, the operation of parity on φ is defined by the
transformation

φ(x) −→ ηPφ(xP ) , (1)

where ηP is the intrinsic parity of the field or particle. Since repeating the
parity operation leaves x unchanged we would expect to have P 2 = 1. For a
classical real field φ this means that ηP = ±1.

In the case of a quantum field theory P is represented by a unitary operator
P̂ acting on the Fock space of particle states. For a quantum scalar field φ(x)
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the parity transformation becomes

P̂ φ(x)P̂−1 = ηPφ(xP ) . (2)

Since a quantum state is arbitrary up to a phase factor, we need only require
that |ηP | = 1. However, in practice one may always definite ηP = ±1. ηP = −1
is called pseudo-scalar.

1.2 Vector Field

For vector fields, the spatial components should reverse sign under parity, so
one has

P̂ V µ(x)P̂−1 = ηPVµ(xP ) (3)

recalling that V 0 = V0 and V i = −Vi for i ∈ {1, 2, 3}. If V µ is hermitian,
ηP = ±1 and ηP = −1 is called pseudo-vector or axial-vector.

1.3 Dirac Field

The Dirac quantum field transforms under parity as

P̂ψ(x)P̂−1 = ηPψ
P (x) = ηPγ

0ψ(xP ) , P̂ψ(x)P̂−1 = ηPψ(xP )γ
0 . (4)

We have required that the transformed field also satisfies the Dirac equation,
which is the equation of motion of the field. (It is not enough simply to invert
the spatial coordinates x of the field ψ(x).) To show this we have, letting
x → −x, since γµ∂µ = γ0∂t + γ·∇,

(

iγ0∂t − iγ·∇ −m
)

ψ(xP ) = 0 . (5)

Now since γ0(γ0, γ)γ0 = (γ0,−γ) and (γ0)2 = I, or (γ0)−1 = γ0, it is straight-
forward to see that, with the definition of ψP in (4),

(iγµ∂µ −m)ψP (x) = 0 , (6)

as required.
Under the parity transformation the positive energy Dirac spinor of momen-

tum p transforms as

u(p, λ)e−ip.x → γ0u(p, λ)e−ip.xP = u(pP , λ)e
−ip

P
.x , (7)

using
γ0u(p, λ) = u(pP , λ) , (8)

That is, the spatial part of the momentum has been reflected but the spin state
has been left unaltered which is just what is expected from a parity transfor-
mation.
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Using the properties of γ0 it is easy to verify that under P bi-linears in
fermion fields transform as

ψ(x)ψ(x) → ψ(xP )ψ(xP ) scalar,
ψ(x)γ5ψ(x) → −ψ(xP )γ5ψ(xP ) pseudoscalar,
ψ(x)γ0ψ(x) → ψ(xP )γ

0ψ(xP ) charge density,
ψ(x)γψ(x) → −ψ(xP )γψ(xP ) current density.

(9)

2 Charge Conjugation

The operation of charge conjugation C exchanges particles and anti-particles.

2.1 Scalar Field

A scalar quantum field φ(x) has the decomposition in terms of creation and
annihilation operators

φ(x) =
∑

p

[

a(p)e−ip.x + b(p)†eip.x
]

, (10)

where a(p) annihilates particles and b(p) creates anti-particles of momentum p.
Acting on the Fock space we require a unitary transformation Ĉ such that for a
general single particle state Ĉ|p, particle〉 = |p, anti-particle〉. This is achieved
by requiring Ĉ|0〉 = |0〉 and Ĉa(p)Ĉ−1 = b(p). Assuming also Ĉb(p)Ĉ−1 = a(p)
then

Ĉφ(x)Ĉ−1 = φ(x)† . (11)

We have also
Ĉφ(x)†Ĉ−1 = φ(x) . (12)

2.2 Dirac Field

The charge conjugation operation on the Dirac field must again interchange
particles and anti-particles. The transformation therefore involves the hermitian
conjugation of the quantum field. However we define the field after charge
conjugation so that it satisfies the Dirac equation.

In order to find the correct transformation property we use the following
notational conventions:

ψ(x) =











ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)











, ψ(x)∗ =











ψ1(x)
†

ψ2(x)
†

ψ3(x)
†

ψ4(x)
†











, (13)

and
ψ(x)† =

(

ψ1(x)
†, ψ2(x)

†, ψ3(x)
†, ψ4(x)

†
)

. (14)

and so ψ(x) = ψ(x)†γ0. ψα(x)
† is the hermitian conjugate of a single component

of the spinor.
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Under charge conjugation we assume

ψ(x) −→ ψC(x) , ψC(x) = Cψ(x)t = C(γt)0ψ(x)∗, (15)

with t denoting transpose. The matrix C is then chosen to ensure ψC(x) satisfies
the Dirac equation. Earlier we saw that the Dirac equation for ψ̄(x) was

ψ̄(x)(−iγ ·
←

∂ −m) = 0. (16)

So taking the transpose of this we immediately obtain
(

−i(γt)µ∂µ −m
)

ψ(x)t = 0 , (17)

and so
(

−iC(γµ)tC−1∂µ −m
)

ψC(x) = 0 . (18)

Assuming C satisfies
C(γµ)tC−1 = −γµ , (19)

then from (18)
(iγµ∂µ −m)ψC(x) = 0 , (20)

as required. From (19) we can further straightforwardly obtain

Cγ5
tC−1 = γ5 , C(γµγ5)

tC−1 = γµγ5 . (21)

In the Dirac representation we have an explicit form for C

C = iγ0γ2 =
(

0 iσ2
iσ2 0

)

. (22)

Charge conjugation on the quantum Dirac field is then given by

Ĉψ(x)Ĉ−1 = Cψ(x)t ≡ ψC(x) ,

Ĉψ(x)Ĉ−1 = −ψ(x)tC−1 . (23)

A particularly important operator is the electric current jµ(x) = ψ(x)γµψ(x).
We have

Ĉjµ(x)Ĉ
−1 = Ĉψα(x)Ĉ

−1(γµ)αβĈψβ(x)Ĉ
−1 (24)

= −(ψ(x)tC−1)α(γµ)αβ(Cψ(x)
t)β

= −ψα′(x)(C−1γµC)α′β′ψβ′(x) .

But C−1γµC = −γµt so therefore

Ĉjµ(x)Ĉ
−1 = ψα′(x)(γµ)β′α′ψβ′(x) (25)

= −ψβ′(x)(γµ)β′α′ψα′(x),

using the anticommutation property of the fermion fields. Hence

Ĉjµ(x)Ĉ
−1 = −jµ(x) . (26)
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Hence the current four-vector changes sign under charge conjugation, which is
as we would expect since particles and antiparticles have opposite charges. For
the axial current

ĈjAµ (x)Ĉ
−1 = Ĉψα(x)Ĉ

−1(γµγ5)αβĈψβ(x)Ĉ
−1 (27)

= −(ψ(x)tC−1)α(γµγ5)αβ(Cψ(x)
t)β

= −ψα′(x)(C−1γµγ5C)α′β′ψβ′(x) .

But C−1γµγ5C = (γµγ5)
t, so therefore

ĈjAµ (x)Ĉ
−1 = −ψα′(x)(γµγ5)β′α′ψβ′(x) (28)

= +ψβ′(x)(γµγ5)β′α′ψα′(x)

= ψ(x)γµγ5ψ(x) = jAµ (x) .

We note that the axial current is invariant under charge conjugation whereas
the vector current changes sign. Theories where linear combinations of vector
and axial currents appear, e.g. the electroweak sector of the standard model,
where we have differentiated between left and right-handed currents, will not
be invariant under charge conjugation.

2.3 Vector Field

We can work out the charge conjugation properties of the photon by impos-
ing that the electromagnetic interaction jµ(x)Aµ(x) is invariant under charge
conjugation. This implies that

ĈAµ(x)Ĉ
−1 = −Aµ(x). (29)

For a general quantum vector field Vµ(x) this becomes

ĈVµ(x)Ĉ
−1 = ηCVµ(x)

† . (30)

An N photon state therefore has charge conjugation (−1)N and a π0 meson
(which has charge conjugation +1) can decay to two photons but not three, as-
suming charge conjugation is an exact symmetry of electromagnetic and strong
interactions.

3 Time Reversal

This interchanges initial and final states with identical positions but opposite
velocities and hence momenta. T̂ must be defined as an anti-linear transforma-
tion, i.e. it complex conjugates scalar products. To see why we consider the
action of time-reversal on a matrix element for initial and final states |i〉 and
|f〉, i.e. 〈f |S†|i〉. Using the notation |iT 〉 = T̂ |i〉 etc. we have

〈f |S†|i〉 = 〈fT |ST
†|iT 〉∗, (31)
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that is
〈f |S†|i〉 = 〈iT |ST |fT 〉 . (32)

Under T̂ symmetry of the Hamiltonian one can show that since S = exp(−i ∫ tf
ti Hint dt)

and (Hint)
† = Hint, then ST = S† therefore

〈f |S†|i〉 = 〈iT |S†|fT 〉 . (33)

In turn this implies that the probabilities, rates or cross-sections are equal for
two processes related by time-reversal, and we obtain this desired result by
demanding that the time-reversal transformation is anti-linear.

For time reversal of quantum scalar fields

T̂ φ(x)T̂−1 = φ(xT ). (34)

For the Dirac field itself, we have a complicated transformation, but under
T are

T̂ ψ(x)ψ(x)T̂−1 = ψ(xT )ψ(xT ) , (35)

and for the electric current

T̂ j0(x)T̂−1 = j0(xT ) and T̂ j(x)T̂−1 = −j(xT ) . (36)

Time-reversal therefore leaves the charge density unchanged but reverses the
flow of the current, as one might expect.

For vector fields one has

T̂ V µ(x)T̂−1 = ηTVµ(xT ) . (37)

This maintains the invariance of the interaction term with the current.

4 CP Violation

Many quantum field theories are invariant under C, P and T separately, e.g.
QED, QCD. However, it is straightforward to check that C and P are violated
for chiral interactions:

Lint(x) = ψ(x)γµ(1− γ5)ψ(x)Aµ(x) (38)

≡ ψ(x)γµψ(x)Aµ(x)− ψ(x)γµγ5ψ(x)Aµ(x) (39)

= jµV (x)Aµ(x)− jµA(x)Aµ(x), (40)

where jµV (x) is the vector current and jµA(x) is the axial current. Under C

Aµ(x) → −Aµ(x) (41)

jµV (x) → −jµV (x) (42)

jµA(x) → jµA(x), (43)
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and hence
Lint(x) → jµV (x)Aµ(x) + jµA(x)Aµ(x). (44)

However, under P

Aµ(x) → Aµ(x) (45)

jµV (x) → jµV (x) (46)

jµA(x) → −jµA(x), (47)

and therefore

Lint(x) → jµV (x)Aµ(x)− jµA(x)Aµ(x) ≡ Lint(xP ). (48)

Hence, Lint is violated by both C and P but is invariant under C and P com-
bined.

Most of the terms in the Standard Model Lagrangian are invariant under C
and P or under CP , but consider the quark coupling to the W

LqW =
∑

i

∑

j

− g

2
√
2
(ūiγ

µ(1− γ5)VijdjWµ + d̄jγ
µ(1− γ5)V ∗ijuiW

†
µ). (49)

Under C and P

ūiγ
µ(1− γ5)djWµ → d̄jγ

µ(1− γ5)uiW
†
µ (50)

d̄jγ
µ(1− γ5)uiW

†
µ → ūiγ

µ(1− γ5)djWµ (51)

which leads to

LqW →
∑

i

∑

j

− g

2
√
2
(ūiγ

µ(1− γ5)V ∗ijdjWµ + d̄jγ
µ(1− γ5)VijuiW

†
µ). (52)

This would be invariant if the mixing matrix were real, i.e Vij = V ∗ij . However,
this is not true for the CKM matrix for three fermion families which has a
complex phase. Hence the quark coupling to the W particles violates CP in
the Standard Model.

However, T leaves this interaction term invariant except that it interchanges
Vij and V ∗ij (from the fact that it complex conjugates c-numbers). Hence, the
above term is invariant under the combined CPT transformation as is every
other term in the Standard Model Lagrangian (all the rest being invariant under
CP and T separately). It is a general theorem that any Lorentz invariant
Lagrangian L(x) formed from products of quantum fields at the point x is
invariant under CPT .

5 Neutrino Masses

We now know that neutrinos do have masses, albeit very small ones, or more
precisely there is a very small difference between the neutrino masses, which
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from comparison with other lepton families we assume implies that the masses
are of a similar size. If the neutrino mass eigenstates are labelled by 1,2,3, then

∆m12 ∼ 10−5eV ∆m23 ∼ 10−3eV. (53)

In order to obtain this neutrino mass we must introduce a right-handed neutrino
field νR into the Standard Model. We might think that this is simply done in
an analogous fashion to up-type quarks, i.e. the mass term is

Llept,φ = −
√
2[L̄Nf

−
NMφRM− + L̄Nf

0

NMφ
cRM0 + h.c.], (54)

where RM0 = (νM)R.
However, for neutrinos there is an added complication. In the second term

we have the hypercharge assignments L̄N : Y = 1

2
, φc : Y = −1

2
, and therefore

RM0 : Y = 0. This is consistent since RM0 is also a weak singlet and we want
Q for RM0 to be zero.

This means that the right-handed neutrino carries no quantum numbers at
all and is automatically invariant under any gauge transformations. (It also
means it is real.) This invariance allows it to appear in a completely new mass
term which is forbidden for all other fermion fields in the Standard Model.

We have defined the charge conjugate field by ψc(x) = Cγ0tψ∗(x) (and
(ψ(x))c = −ψ(x)tC−1), and this means we can have a Majorana mass term

−1

2
Mm(ψR)

cψR + h.c. , (55)

where we make the definition

(ψR)
c = (ψ

c
)1
2
(1 + γ5). (56)

This type of term would not usually be allowed since (ψR)
c and ψR carry the

same quantum numbers, rather than opposite, so the term would not be gauge
invariant. However, here there is no gauge transformation for the field, and
hence no problem.

For a single neutrino the complete mass term in the Lagrangian is thus

Lm = −MDψLψR − 1

2
Mm(ψR)

cψR + h.c. (57)

It is possible to show that the Lagrangian can be written such that we obtain

a mass matrix M =
(

0 MD

MD Mm

)

. If MD is real and positive and |Mm| ≫
MD, diagonalizing the matrix results in masses which are approximately |Mm|
and M2

D/|Mm|, with corresponding eigenstates approximately (ψR)
c and ψL

respectively. Therefore the heavy neutrino is more or less neutral, and decouples
from the rest of the physics, and the light neutrino is very light and is the one
which takes part in the weak interactions. This scenario is known as the “seesaw
mechanism” and often assumes that MD is similar to the masses of the charged
leptons, whereasMm ∼ 1015GeV (justified by many beyond the Standard Model
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theories). This is then a way of justifying the very small masses of the neutrinos
we observe.

When we consider the full three families of neutrinos we have to diagonalize
both the 2-d matrices incorporating the mixing between Dirac and Majorana
mass terms and the 3-d matrices which exist in family space, i.e. the elements
MD above actually come from the f 0

NM in eq.(54) and there will be an equivalent
3× 3 matrix for Mm. This diagonalization in family space will lead to unitary
matrices equivalent to the U and V matrices defined in section 3.1 for the
quark sector, and because these will not be identical for the charged leptons
and neutrinos, expressing the charged weak current for leptons

Jµ = 2L̄Nγ
µσ+LN

= 2
(

ν̄τ ν̄µ ν̄e
)

L
γµ







τ ′

µ′

e′







L

, (58)

in terms of lepton mass eigenstates will, as for the quarks, lead to a mixing
matrix

Jµ =
(

ν̄3 ν̄2 ν̄1
)

γµ(1− γ5)Vlept







τ
µ
e





 . (59)

The parameters of this matrix are determined by neutrino oscillation experi-
ments, and the mixing angles are quite large. As for the quarks the matrix
leads to CP -violation. Note that this time the mixing is associated with the
neutrinos by convention, i.e. charged leptons are simultaneously mass and weak
eigenstates, whereas neutrinos are not, while in the quark sector it was the down
type quarks which were defined to mix.

9


