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THE HOMOTOPY LIMIT PRCBLEM
*
R. W. Thomason

ABSTRACT. 1 describe a problem which encompasses Segal's Burnside
ring conjecture, Atiyah's theorem on the K-theory of classifying
spaces, my descent theorem for algebraic K-theory, Quillen’'s
conjecture on the algebraic XK-groups of an algebraically closed
field in characteristic p, and results of Giffen, Karoubi, and
Guin on the relation between K- and L-theory.

The general problem is that of the relation of the lax limit
of a group action on a symmetric monoldal category and the homotopy
limit of the group action on the associated spectrum.

I would like to thank C. Giffen, who first formulated the
general homotopy iimit problem and who incited my interest in it.
The formulation I use here is somewhat different from Giffen's,
which is better adapted to L-theory.

1. T begin by recalling some basic facts about homotopy limits of group
actions. Let G be a group acting on a space X. Let EG be the free acyclic
G space which Is the classifying space of the category EG below. The
homotopy limit of G acting on X is the space of equivariant maps from EG

to X (1.1).

{1.1) holim X = MapG(EG, X)
G

This construction commutes with the loop space functor, sc if G acts
on a spectrum X, the homotopy limit is a spectrum.

Flleering EG by skeleta induces a tower of fibrations on the homotopy
limit. The resulting long exact sequences of homotopy groups assemble into

an exact couple, yielding a spectral sequence

P.q _ P/n.
{1.2) By"% = (G M%) B m_ Map(EG, X)

The indexing is funny, so the differential dr has bidegree (r, r-1)

For X a spectrum, this is a half-plane spectral sequence. If X is a space,
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there is some trouble in that ﬂqX is not abelian if q = 1, not a group if
q = 0, and not defined for q < 0 . 1In both cases, convergence of the
spectral sequence is problematic.

If X is a K(M, 0) spectrum for M a G-module, the homotopy limit
is a generalized Eilenberg-MacLane spectrum whose homotopy groups are
the cohomology groups of G with coefficients in M. If X is a generalized
Eilenberg-MacLane spectrum, it corresponds to a chain complex under the
Dold-Kan equivalence of categories. The homotopy groups of the homotopy
limit are then the hypercohomoloegy groups of G with coefficients in the
chain complex corresponding to X. In general, I interpret the homotopy
limit (1.1) as the hypercohomeology spectrum of G with ceefficients in
X. This point of view is inspired by Quillen's "homotopical algebra"
which generalizes homologilcal algebra by replacing the category of chain
complexes in an abelian category with more general categories like the
category of spectra. This generalization is necessary for the development
of higher algebraic K-theory, and accounts for the role of topolegy in
that subjece.

Note that if G acts triwvially on X, there is an isomorphism

{1.3) MapG(EG, X) = Map(BG, X)

The notion of homotopy limit may be defined more generally for any
diagram of spaces or spectra parameterized by a small category 5. The
basic reference, written in terms of simplicial sets, is chapter XI of
[BK]. The case of diagrams of spectra is explicitly developed in [T]

§5. Justification for the statements above is found in these references.

2. Let the group G act on a small category cC. Let EE be the category
whose objects are the elements of G, and with a unique morphism between
any two objects. The lax limit of G acting on C is the category of

equivariant functors and natural transformations from EG te §

(2.1) laxlim C = Cat (EG, C)
G = G = =

An explicit description is this: an object of the lax limit is a
pair (C, )} where C is an cbject of c and } is a function assigning to

each g € G a morphism ¥{g) in c

(2.2) dlg): € —> gC
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The function P must satisfy normalization and cocycle identities

¥ =1 cﬂ)—’gc

P(gh /gUJ(h)

v
gh

(2.3)

p(gh) = g¥(h) - Y(g)

Note 1 = (1) = Ylgg™ D) = g™ + ¥(g), and 1 = gl = glg v(g) v(g™))
= Y(g) - gW(g_l), so each {(g) is an isomorphism

A morphism (€,P) —— (C", $') 1in the lax limit is a morphism

e C > ¢' in C such that {2.4) commutes
i
{2.4) cl l'gc
C! ___________> Cl
Vg B

This construction produces many interesting categories as we'll see
below. For now, note that if § acts trivially on £, the lax limit is the
category of representations of G in .

If C is a symmetric monoidal category and the G action respects this

structure, the lax limit inherits a symmetric monoidal structure with
(2.5) c, 8 (c',) ={(cec.pey)

The concept of lax limit is defined for any diagram of small categories
parameterized by a small category K, and even for peeudo- and lax-diagrams.

The construction in its explicit form is due to Street [8].

3. Let N: Cat > 4°P-sets be the functor sending a category to its
nerve. The geometric realization of the nerve 1Is the usual classifying
space of a category., Let the category n have objects the integers

0,1, 2, ..., n, with a morphism 1 + 3§ if i is less cthan j, Then Ng is

the standard n-simplex Af{n].

An n-simplex of N CatG(gg, €) is a functor n > CatG(EE, C),
> € . As N is full

and faithful, this equivariant functor corresponds to an equivariant

which corresponds to an equivariant functor EG X n

simplicial map
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(3.1} EG % A[n) = N(EG % o) —> N

(1]

This in turn corresponds to an n-simplex of the simplicial mapping space

MapG(EG, NC}. Thus there is an isomorphism of simplicial sets

ne

(3.2) N Cat (EG, C) = Map,(EG, NO)

Applying geometric realizatiom, which 1s a closed functor and so is

compatible with mapping space constructions, one gets a canonical map

of spaces

(3.3) B Cat,(EG, ©) = |Map,(EG, NO)| > Map, (EG, BC)

If C is symmetric monoidal or permutative, one gets a similar map

of the associated spectra built by infinite loop space machines

{3.4) pe(Cat . (EG, C)) > Map(EG, Spt C)

These are maps from the lax limit to the homotopy limit. The homotopy
limit problem asks whether the maps (3.3), (3.4) are homotopy equivalences,
or rather how close they come to being homotopy equivalences.

If every morphism in € is an isomorphism, then NC is a Kan complex and
(3.3) is a homotopy equivalence. If £ is alsc symmetric monoidal, (3.4)
needn't be a homotopy equivalence., The map (3.3) is not a homctopy
equivalence for general C. However, many examples below show that (3.4)
becomes a homotopy equivalence if some appropriate modification is made.

I would like a general principle to explain this phencmenon.

There are general principles that relate lax colimits with homotopy
colimits, both in the case of spaces and of spectra [TH], [TFl]}, [TF2].
This dual problem appears much easier.

I should point ocut that the isomorphism (3.2) was first published by
John Gray in [G]. I now turn form the general problem to a series of

interesting examples.

4. Suppose that E is a symmetric monoidal category on which G acts trivially.
Then laxlim € is the category Rep{G, ) of representations of § in . The
homotopy limit is the spectrum of maps from BG to Spt C. The homotopy

limit problem asks how close the canonical map (4.1) is to being a homotopy

equivalence.
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(4.1} Spt(Rep(G, )} ———> Map(BG, Spt )

1f c is the category of finite sets and isomorphisms, with symmetric
monoidal structure given by disjoint union, then Spt { is the sphere
spectrum by the Barratt-Priddy-Quillen theorem. Rep(G, C) is the category
0 Spr{Rep(G, C)) is
thus the Burnside ring A(G). One form of Segal's conjecture is that {(4.1)

of finite G-sets and isomorphisms. For finite G, ©

induces an isomorphism on homotopy groups 7, after completing the homotopy
groups on the left side with respect to the augmentation ideal of A(G).
Carlsson says this is true at least in non-positive degrees. HNote that
the necessity of completing with respect to the augmentation ideal shows
that {4.1) is not strictly a homotopy equivalence.

Now let g be the category of finite dimensional vector spaces over a
field k. The morphisms are linear isomorphisms, and the symmetric monoidal
structure is given by direct sum. BSpt ¢ is the spectrum K{k) whose homotopy
groups are the algebralc K-groups of k. If G is finite with order invertible
in k, Rep(G, €) is the category of finitely generated projective k[G] modules
and isomorphisms. Thus Spt(Rep{(G, §)} is the algebraic K-theory spectrum
K(k[G]).

One can extend the formalism to the case where C 1s a topological
category. If C is the category of finite dimensional complex vector spaces
and isomorphims with the usual topology om GLn(C) » 8pt(L) is the conmective
0 Spt(Rep(G, ©))
is the complex representation ring R(G). Spt(Rep{G, £}) is a product of

spectrum for topological K-theory, bu. For § finite, m

bu's indexed by a basis of R(G). The homotopy limit problem asks how close
this product is to Map(BG, bu). Atiyah's theorem [A] says that if bu is
replaced by the periodic spectrum BU obtained by inverting the Bott element
and if R{G) is completed with respect to the augmentation ideal, then (4.1)
becomes a homotopy equivalence

(4.2) R(G) & BU ——> Map(BG, BU)
Z

There is an analogue for Ativah's theorem in algebraic K-theory. For
simplicity, I'll restrict to the case where G is a finite f-group for a
prime £ . Instead of completing, I'1l reduce all spectra mod a power of &
by smashing with a EIRU Moore spectrum. I get periedic spectra by inverting

the Bott element in algebraic K-theory [T].

Thecrem 4.1: Let G be a finite fZ-group, £ a prime. Let k be a field
of characteristic not £ {and which contains primitive 16th or 9th roots of

unity if £ = 2 or 3 respectively}. Then there is a homotopy equivalence of
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K-theory spectra, induced by (4.1)
4.3 K2V (k(6)) [871] = Map(ae, k/20) (A7)

If in addition k = TF_ is a finite field, there is a homotopy equivalence

of non-periodic spaces {(not spectra)
AY] - W
(4.4) K/f (IFq {G]} = Map{BG, K/% {u?q))

Pf: If k contains all |G|th roots of unity, k[G] is Morita equivalent
to a product of copies of k indexed by a basis of R(G). Thus Atiyah's proof
in {A] generalizes to this case. If k doesn't centain enough roots of umity,
the result follows by etale cohomological descent [T] from an extension of k.,
The result for Eﬁ follows as inverting B affects only the negative K-groups
of Fq and Fq[G], which 1is Morita equivalent to a products of various

finite fields.

5. Let L'/L be a Galois extension of fields with Galois group 6. Let (

be the category of finite dimensional wvector spaces over L' and iscmerphisms.
G acts on C via its action on L. . If V' is in G, gV. is the abelian group
V' with new L' action given by pulling back the old action along g-l: L' - L'.
The category laxlim C is the category of semilinear representations of G;

its cbjects are vector spaces V‘ together with a compatible family of
isomorphisms (g} V' + gV' . If V is a vector space over L, let (V., W)

be defined by (5.1)

' ' J = '
{5.1) VvV =L v , Weg) =gd1: L 9V
L L L

This extends to a functor from the category of finite dimensional vector
spaces over L to laxlim c. The theory of faithfully flat descent says
that this functer is an equivalence of categories, See [SGA 4%], Arecata 1.4
for more details, in particular for an explanation of how this equivalence
implies Hilbert's Theorem %0,

In this case, the homotopy limit problem asks whether there is an

equivalence of K-theory spectra
1
(5.2} K(L) = HapG(EG, K(L ))

If this were an equivalence, the spectral sequence (1.2) would be the

spectral sequence relating the K-groups of a field extension as conjectured
by Quillen and Lichtenbaum. This conjecture turns out to be false. However
my cohomological descent theorem [T] §2 shows this conjecture is true after

reducing mod a prime power and inverting the Bott element.
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r
Theorem 5.1: Let L /L be a finite Galois extension with Galeis group G.
Let & be a prime invertible in L, and suppose L contains primitive 16th or
9th roots of unity if & = 2 or 3 respectively. Then the map (3.4) induces

a homotopy equivalence
(5.3) K/27 () [B71) ———> Map (56, K/£°HIETD)

Pf: This is proved in [T]. Specifically it results from [T] 2.20,
2,21, 2.30, (3.29), and 3.23., The cases £ = 2,3 will be handled in the

second edition of [T), and in [TE].

This theorem is an important step in understanding the relation between
algebraic and topolegical K-theory. One of the other impertant steps also
fits in the framework of the homotopy limit problem, Let k be an
algebraically closed field of characteristic p. Let ¢q be the qth power
Frobenius map on k. The infinite cyclic group Z acts on the category of
finite vector spaces over k with a generator acting via pullback along ¢q .
Lang's theorem [L] identifies the lax limit to the category of finite
vector spaces over mq. If the map (3.4) were an equivalence, at least on
connected components of zeroth spaces, the spectral sequence (1.2) would

yvield a fibration sequence of K-theory spaces

1-47

(5.4} BGL(IE'q)+ —_— BGL(k)+ > BGL(k)+

This sequence was conjectured by Quillen, It's importance is that it is

equivalent to the sequence (5.5} as shown by Hiller [H]

(5.5) BGL(“]FPJ+ — BoLk) T ——> BoLo ' 6 g
This sequence and Quillen's computation of the K-groups of the algebraically
closed field iiq would yield a calculation of the mod Rv K=groups of the
general algebraically closed field of characteristic p, k. If follows from
[TQ] that these fibration sequences do exist for mod 2’ K-theory after
inverting the Bott element. This suffices for most applications as these
also need the descent theorem 5.1 which itself requires inverting the Bott
element. However, it would be nice to know if (5.4) and (5.5) are true as

stated.

6, Let R be a ring with invelution, and g the category of finitely

generated free R modules and isomorphisms, ll GLn(R). The group G = Z/2

acts on g by sending an isomorphism represented by a matrix M to (ﬁt)_l

the conjugate transpose inverse. The laxlimit is the category of free

R-modules together with an invertible matrix M satisfying the cocycle
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condition, M'(ﬁt)_l =1, Thus laxlim € is the category of free R modules

with non-singular hermitian symmetric form. The higher homotopy groups

of Spt(laxlim C) are the Karoubi L-groups of R. If the map (3.4) were an

equivalence, the spectral sequence (1.2) would relate Z/2 cohomology with

coefficients in K*(R) to the Karoubi L-groups. Guin [Gu] has results

similar to this, and his paper led me to try Karoubi periodicity as a

general method of attack on the homotopy limit problem, While this method

fails to prove the Segal conjecture, it did lead to the proof of cohomological

descent for algebraic K-theory, and it can be used to prove Atiyah’s theorem.
Giffen has shown how to extend the general formalism to include skew-

hermitian and other types of forms, and has proved general Karoubl periodicity

theorems in L-theory. None of the L-theory Karoubi periodicities are as

simple as the form discussed below because of the alternation between

hermitian and skew-hermitian in L-theory.

7. In this section I indicate how a Karoubl periedicity theorem can solve
a homotopy limit problem., Let G be a finite group acting symmetrically

menoidally on €. There is the usual forgetful functor sending (C, ¥) to C

*
(7.1} A o: laxlim C——¢C
G

There is also a transfer functer A, , with A,C = (& gC, ) where the "sum"
is taken over all g € G and WY(h): & gC = & hgC is the obviocus permutation

isomorphism.

(7.2) Ayt E_J'-—> laxlimg
G

If G is the Galeis group of L' over L and ¢ is the category of finite
dimensicnal vector spaces over L', Spt{l*) and Spt(l*) are the usual and
transfer maps respectively on the algebraic K-theory spectra.

1f one works with spectra reduced mod Qv and has a sufficiently general
class of homotopy limit problems to be solved, one can reduce to the case
G=Z/t . See [A] and [T] &2 for examples of each reduction, Henceforth,
1'1]1 assume G = Z/% for £ prime, and let T be a generator of G. Define U

and V by the extended homotopy fibre sequences (7.3}
*

aspt(g) —2> U(g) —%— Spe(laxlim C)

3 > V(g) v

> Spt(C)
(7.3) =

*
§iSpt (laxlim C) > Spt(C) > Bpt{laxlim €)

My slogan for remembering which is which is "U for usual, V for
Verlagerung”. However, when this is specialized to the L-theory examples

of 56, my U becomes Karoubli's V and vice-versa.
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Suppose there is a Karoubi periodicity homotopy equivalence
(7.4 81 U(Q) ——> V(D)

such that Qw+*8+3 = 1-T as an endomorphism of 05pt(C)}. Then there is a

horizontal tower of fibrations with fibre sequence triangles

Spt(laxlim g) e U(C)—QV(C) G Q Spt{laxlim C) <=—— U=Q v

t
/1
(7.5) N\ \ o0,
/
Id

Spt{g) RSpt(C) Q Spt(c)

The tower extends to the right periodically. Suppese that the homotopy
inverse limit of the tower is contractible, as happens If U'B-l'a 1s
null homotopic. Then just as an Adams resoluticn yields the Adams
spectral sequence, this tower yields a spectral sequence converging to

T, Spt{laxlim ép. The E term is a sum of copies of T, Spt(0), with
differential dl induced by five0+3 = 1-7 , and A Ay = 14T +...+TR 1

This El term is thus the canonical perlodilc resclution for computing the
cohomology of the cyclic group Z/% with coefficients in m, Spt(C). Thus

from the E2 term on, the spectral sequence 1Is

(7.6) By'S = WP(Z/R 5 m Spe(g)) m> m _ Spt(laxlim ©)

This looks susplciously like the spectral sequence (1.2). In fact,
if Karoubl periodicity also holds for various Cat(?G, E) with twisted
G-action, one can show that the map (3.4) 1s a homotopy equivalence. For
details in the Galols case, see [T] 2.25-2.30. Similar results hold after
reducing all spectra mod ¥ or after inverting the Bott element B |, provided
Karoubi periedicity holds after doing chis.

8, 1I'll now describe the ideas behind the proof of Karoubi pericedicity for
Atiyah's theorem and for my descent theorem. The technical details of the
latter are quite elaborate, and the discussion below contains sewveral
omissions, oversimplifications, and outright lies, For an accurate and honest
account, see [T] and [TE]. Karoubl's proof of Karoubi periodicity in [K] was
the paradigm for my proof, but is technically simpler.

For Atiyah's theorem, the sequences (7.3) become

'3
J ——> I bu —> bu
1
(3.1) [
v > bu > I bu

1
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Here the products are indexed by the characters of Z/%, a natural basis of
the representation ring R{Z/L£) . Thus V is a product of i-1 copies of
{(Jbu. Inverting the Bott element replaces bu by the periodic spectrum BU.
The equivalence BU = 2?su vields a Karoubi periodicity equivalence U = ¥
after inverting the Bott element. It's necessary to choose the correct
equivalence and to complete with respect to the augmentation ideal to get
convergence in the tower (7.5).

Now let L'/L be a Galois extension of fields with Galois group Z/f.
For any algebra A over L, one has fibration sequences (8.2) of algebraic

K-theory spectra

*

U{A) > K (A} A > K(A 8 L‘)
(8.2) L
' Ay
V(4) —> K(A QL) - > K{A)
L
Congider (8.3)
*
X ' 3
QK(L) —> @K(L )y —> W(L)
/'/ - ’
o 1-T P
w’ R

v *
V(LY — {QK{L } —> {K(L)

*

The composition of 1-T with either & or A, is null homotepic. Choice of
1 1

> (K(L ) and fIK(L ) > V(L)

null homotopies provide lifts U(L)
There is a choice of compatible null homotopies, so the Toda bracket

> QV{L) compatible

*
<3 1-T, » > wvanishes and there is a & : U(L}

.
with the lifts. The compatibilities are non-trivial, so the map B is

non-trivial. To convert this mush into mathematics, one deploys a maze
of fibre sequences to express the Toda bracket on the primary homotopy

level. In fact, one uses diagram (8.4), in which all columns are fibre

segquences
u(a) 8¢a) > QV{A}
o v
(8.4} K{A) —————> D(4) —————> D{4}
A L v
K(A8L) ———=>D(AOL) —> V(ARL)
v
V{a)

r
Here the cup product map is induced by an x € m D{L). ™ V(L )} is the
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augmentation ideal of the group ring ZIZ/L], and x is defined so dx is l-T.
The existence of the lift x expresses the compatibilities mentioned above,
as is evident by the construction in [TE].

This 6(L) satisfies the condition fv+*0+d = l—T_l . If it were a homotopy
equivalence, all would be well, One calculates low dimensional hometopy

groups of U(L) and V(L) from (8.2},

T_, U(L) =0 T, W) = zZ/2
1% *
“—l U{L) =0 m 1 W(L) = coker(k*: L + L)
P *
(8.5) Ty U(L) =L /L
0 ——> coker A,K > 7 V(L) —> ker(A,z L > 1% — 0
2 q *

Note ﬁ—2 8 4is not an isomorphism, s0 something must be done. On the

other hand, Hilbert's Thecrem 90 says that I—T_1 or 9 induces an isomorphism

Tk %
of L /L on the kernal of the norm map, ker A Hilbert's Theorem 90 is

*
part of the faithfully flat descent theory discussed in §5. Hilbert's Theorem

90 is alsc the basis of Kummer thecry, which says that if L is of character-

istic not ® and contains a primitive £th root of unity 7 , then L' = L{a)
for @ an Lth root of a € L. . One can chose o« so that tp/a = £ . I use this
information to show G[B_l] is an equivalence.

Let y € Ty U{L) be the image of o & K (L') '* under the boundary
map, Then QVB(Y) Qvbd(a) = afT = T . Suppose L' contains a primitive

r
22 root of unity v , then ¢ = YR , 80 L is 0 med £ in Kl{L ) . Consider the

tibre sequence of spectra reduced mod £

8

(8.6) F/2(L} > v/ —2 ok

I've shown that the reduction of v in W U/E(L) dies under m Qve , so 1t lifts
toc a t in ﬁOFIQ(L) . If B were an equivalence, F/2(L) would be Q K/L(L) ,
and (8.6) would be a shift of a sequence in (8.2). The element t would be a
basis of QZKIQ(L) as a module over K/%(L} . One dces have (8.7), inducing
the map ¢ on fibres.

/ALY - — - ~ - L 3 L1 eR
(8.7 I} o ¢
U/L(L) > QV/L(L)
L)
v l t l ¢ L]
QE/A(L ) > QKAL)

Everythir.s in sight is a nodule spectrum over the ring spectrum K/%(L) ,

and 4ll wips are e jule maps. Thus the element t determines a cup preduct
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map Ve K/L(L) > F/2(L) . The Bockstein lemma reveals that
P o« U KS/R(L)

L)
This is because B Bocksteins to f = 0vB(y} in Kl(L ) , and it's the

> QZKKE{L) is cup product with the Bott element B .

divisibility of this element by % that allows t to exist.
Consider the map Z induced by the shifred vertical fibre sequences on

the left half of (8.8). Here g1 is a delooping functol on spectra.

/_f——”i\
ut

—
> FfL{L) — % 3 QZKIR(L)

K/ (L}
SV A
(8.8) 0 V(L) ————> ULy ——————> V/L(L)
_]‘_’ 1 UB J’ r 1 J- 1
KA Y ————> DK/L ) > QK/A(L )

If one inverts B so that UZ is a homotopy equivalence, the 5-lemma shows
that 8 = [B_l] is ahomotopy equivalence.
There is alsc a commutative diagram (8.%), which shows = @ [B_l] is a

homotopy equivalence.

/2Ly g™ % > 29k/2(L) 1871

(8.9) k7L Y[R B > QBKJQ(L')[B_l]
? l -1 56 2 ¢ -1

0/ LAY [87] = > QU/L(LYIRT]

Thus 6: U!R(L)[B_l] > QV!R(L)[E_l] is the required Karoubi periodicity
equivalence.
The diagram (8.9) results from the commutative diagram (8.1Q), which

requires some work to verify.

UB

T

(8.10) /2 9 1) Ve > o%k/a’ 8 1)

m 3
: . a1
o “///’;dx AL 2 ‘/1/ *
ORI Y s oy ) = Py '
J s i | 2 ‘/(931(!2& )
U/8L) ——2—> QU/A(L) ————> QPU/L(L)
K/2(L)

I hope this makes the idea of the proof clear. To get a real proof one
just patches all the holes,
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