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Preface

It is a fact of everyday life that our knowledge about the world around us is always
incomplete and imperfect. We may feel pretty sure that we locked the front door
when we left our house this morning, but less sure about how much milk there is left
in our fridge. A mathematical theory that deals with such incomplete knowledge
is probability theory. Since the early 1930-ies, in particular since the monograph
of Kolmogorov [Kol33], probability theory is based on measure theory. Incomplete
knowledge about a physical system is described by a probability space (Ω,F , µ),
where Ω is a set, called the state space, F is a σ-algebra on Ω, and µ is a probability
measure on F .

At the same time when Kolmogorov’s monograph laid the axiomatic basis for
probability theory as it had been around since the times of Fermat, physicists
were discovering a whole new type of probability theory. With the arrival of the
Copenhagen interpretation of quantum mechanics, it became clear that quantum
mechanics, at its heart, is a theory about probabilities, and that these probabilities
do not fit into Kolmogorov’s scheme. In order to describe incomplete knowledge
about a quantum physical system, instead of a probability space (Ω,F , µ), physi-
cists use a pair (A, ρ) where A is a C∗-algebra and ρ is a positive linear form
on A. If A is noncommutative, then these ‘quantum probability spaces’ do not
correspond to anything classical, and put a severe strain on our imagination.

The aim of the present course is to make acquaintance with this quantum probabil-
ity formalism, its interpretation, its difficulties, and its applications. Prerequisites
for this course are elementary knowledge of complex numbers and linear algebra. It
is helpful if one has some familiarity with the basic concepts of probability theory
such as independence, conditional probabilities, expectations, and so on.

Sections marked with * can be skipped at a first reading.



6 CONTENTS



Chapter 1

Linear spaces

1.1 Linear spaces

Let K denote either R or C.1 By definition, a linear space (or vector space) over
K is a set V , with a special element 0 ∈ V called origin, on which an addition
(φ, ψ) 7→ φ+ ψ and multiplication with scalars (a, φ) 7→ aφ are defined, such that

(i) (φ+ ψ) + χ = φ+ (ψ + χ),
(ii) φ+ ψ = ψ + φ,
(iii) φ+ 0 = φ,
(iv) (ab)φ = a(bφ),
(v) 0φ = 0,
(vi) 1φ = φ,

(vii) a(φ+ ψ) = aφ+ aψ,
(viii) (a+ b)φ = aφ+ bφ

for all φ, ψ, χ ∈ V and a, b ∈ K.

A subset of V that is closed under addition and multiplication with scalars is called
a linear subspace. By definition, the span of a subsetW ⊂ V is the linear subspace
defined as2

span(W) := {a1φ(1) + · · ·+ anφ(n) : φ(1), . . . , φ(n) ∈ W}

We say that W spans the linear subspace span(W). We say that a linear space V
is finite dimensional if there exists a finite set W such that V = span(W).

1In fact, more generaly, all of Section 1.1 is true when K is division ring, but we will not need
this generality.

2In these lecture notes, the symbol ⊂ means: subset of (and possibly equal to). Thus, in
particular, A ⊂ A.

7
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A finite collection {φ(1), . . . , φ(n)} of elements of a linear space V is called linearly
independent if the equation

a1φ(1) + · · ·+ anφ(n) = 0

has no other solutions than a1 = a2 = · · · = an = 0. If moreover {φ(1), . . . , φ(n)}
spans V then we call {φ(1), . . . , φ(n)} a basis for V . Let {e(1), . . . , e(n)} be a basis
for V . Then for every φ ∈ V there exist unique φ1, . . . , φn ∈ K such that

φ = φ1e(1) + · · ·+ φne(n).

Thus, given a basis we can set up a linear isomorphism between our abstract vector
space V and the concrete linear space Kn := {(φ1, . . . , φn) : φi ∈ K ∀i = 1, . . . , n}.
We call (φ1, . . . , φn) the coordinates of φ with respect to the basis {e(1), . . . , e(n)}.
Note that if we want to label a collection of vectors in V , such as {φ(1), . . . , φ(n)},
then we put the labels between brackets to distinguish such notation from the
coordinates of a vector with respect to a given basis.

It can be shown that every finite dimensional linear space has a basis. (Note
that this is not completely straightforward from our definitions!) If V is finite
dimensional, then one can check that all bases of V have the same number of
elements n. This number is called the dimension dim(V) of V . From now on, all
linear spaces are finite dimensional, unless stated otherwise.

Let V ,W be linear spaces. By definition, a map A : V → W is called linear if

A(aφ+ bψ) = aAφ+ bAψ (a, b ∈ K, φ, ψ ∈ V).

We denote the space of all linear maps from V into W by L(V ,W). In an obvious
way L(V ,W) is itself a linear space. If A ∈ L(V ,W), {e(1), . . . , e(n)} is a basis
for V , and {f(1), . . . , f(m)} is a basis for W , then

(Aφ)i =
n∑
j=1

Aijφj (i = 1, . . . ,m),

where φj (j = 1, . . . , n) and (Aφ)i (i = 1, . . . ,m) are the coordinates of φ and Aφ
with respect to {e(1), . . . , e(n)} and {f(1), . . . , f(m)}, respectively, and A11 · · · A1n

...
...

Am1 · · · Amn


is the matrix of A with respect to the bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)}.
The numbers Aij ∈ K are called the entries of A.
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Exercise 1.1.1 If A ∈ L(U ,V) and B ∈ L(V ,W) , then show that

(AB)ij =
∑
k

AikBkj.

The kernel and range of a linear operator A ∈ L(V ,W) are defined by

Ker(A) := {φ ∈ V : Aφ = 0},
Ran(A) := {Aφ : φ ∈ V}.

One has
dim(Ker(A)) + dim(Ran(A)) = dim(V).

If a linear map A : V → W is a bijection then one can check that its inverse A−1 is
also linear. In this case we call A invertible. A linear map A : V → W is invertible
if and only if Ker(l) = {0} and Ran(l) = W . This is equivalent to Ker(l) = {0}
and dim(V) = dim(W).

For any linear space V , we write L(V) := L(V ,V) for the space of all linear maps
A : V → V . We also call such linear maps linear operators. We define the
commutator of two operators A,B ∈ L(V) by

[A,B] := AB −BA,

and we say that A and B commute if [A,B] = 0, i.e., if AB = BA.

By definition, the trace of a linear operator in L(V) is given by

tr(A) :=
n∑
i=1

Aii.

Here Aij denotes the matrix of A with respect to any basis {e(1), . . . , e(n)} of V ;
it can be shown that the definition of the trace is independent of the choice of the
basis. The trace is linear and satisfies

tr(AB) = tr(BA) (A ∈ L(V ,W), B ∈ L(W ,V)).

By definition, an eigenvector of a linear operator A ∈ L(V) is a vector ψ ∈ V ,
ψ 6= 0, such that

Aψ = λψ

for some λ ∈ K. The constant λ is called the eigenvalue corresponding to the
eigenvector ψ. By definition,

σ(A) := {λ ∈ K : λ is an eigenvalue of A}

is called the spectrum of A.
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Exercise 1.1.2 Show that σ(A) = {λ ∈ K : (λ− A) is not invertible}.

The following proposition holds only for linear spaces over the complex numbers.

Proposition 1.1.3 (Nonempty spectrum) Let V 6= {0} be a linear space over
C and let A ∈ L(V). Then σ(A) is not empty.

Proof (sketch) The eigenvalues of A can be found by solving the equation det(A−
λ) = 0. Here det(A− λ) is a polynomial of order dim(V) which, as we know, has
dim(V) complex roots.

A linear operator is called diagonalizable if there exists a basis {e(1), . . . , e(n)} for
V consisting of eigenvectors of A. With respect to such a basis, the matrix of A
has the diagonal form Aij = λiδij, where λi is the eigenvalue corresponding to the
eigenvector e(i), and

δij :=

{
1 if i = j,
0 otherwise.

1.2 Inner product spaces

Let H be a linear space over K = R of C. By definition, an inner product on H is
a map (φ, ψ) 7→ 〈φ|ψ〉 from H×H into K such that

(i) 〈φ|aψ+bχ〉 = a〈φ|ψ〉+ b〈φ|χ〉 (φ, ψ, χ ∈ H, a, b∈C),
(ii) 〈φ|ψ〉 = 〈ψ|φ〉∗ (φ, ψ ∈ H),

(iii) 〈φ|φ〉 ≥ 0 (φ ∈ H),
(iv) 〈φ|φ〉 = 0 ⇒ φ = 0.

Here a∗ denotes the complex conjugate of a complex number a. A linear space that
is equipped with an inner product is called an inner product space. By definition,

‖ψ‖ :=
√
〈ψ|ψ〉 (ψ ∈ H)

is the norm associated with the inner product 〈·|·〉. Two vectors φ, ψ are called
orthogonal if 〈φ|ψ〉 = 0. A basis {e(1), . . . , e(n)} of H is called orthogonal if
〈e(i)|e(j)〉 = 0 for all i 6= j. It is called orthonormal if in addition 〈e(i)|e(i)〉 = 1
for all i. Every inner product space has an orthonormal basis.

Dirac’s [Dir58] bracket notation is a clever way to ‘decompose’ the inner product
〈ψ|φ〉 on an inner product space H into two parts, 〈ψ| and |φ〉, which Dirac called
a bra and a ket, so that together they form a bra(c)ket 〈φ|ψ〉. For any ψ ∈ H,
define operators 〈ψ| ∈ L(H,K) and |ψ〉 ∈ L(K,H) ∼= H by

〈ψ|φ := 〈ψ|φ〉 (φ ∈ H),
|ψ〉λ :=λψ (λ ∈ K).
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Then for any φ, ψ ∈ H, the composition 〈φ| |ψ〉 is an operator in L(K,K) ∼= K
that can be associated with the number 〈φ|ψ〉 ∈ K. Here we write ∼= to indicate
that two linear spaces are in a natural way isomorphic.

If {e(1), . . . , e(n)} is an orthonormal basis of H and φ ∈ H, then the coordinates
of φ with respect to this basis are given by

φi = 〈e(i)|φ〉.

If H1,H2 are inner product spaces with orthonormal bases {e(1), . . . , e(n)} and
{f(1), . . . , f(m)}, respectively, and A ∈ L(H1,H2), then the matrix of A with
respect to these bases is given by

Aij = 〈f(i)|A|e(j)〉.

One has
A =

∑
ij

Aij|f(i)〉〈e(j)|.

Note that 〈e(j)| ∈ L(H1,K) and |f(i)〉 ∈ L(K,H2), so the composition |f(i)〉〈e(j)|
is an operator in L(H1,H2). In particular, for the identity map 1 ∈ L(H) =
L(H,H) one has the useful relation

1 =
∑
i

|e(i)〉〈e(i)|.

If H1,H2 are inner product spaces and A ∈ L(H1,H2), then there exists a unique
adjoint A∗ ∈ L(H2,H1) of A, such that

〈φ|Aψ〉2 = 〈A∗φ|ψ〉1 (φ ∈ H2, ψ ∈ H1),

where 〈·|·〉1 denotes the inner product in H1 and 〈·|·〉2 denotes the inner product
in H2. It is easy to see that

(aA+ bB)∗ = a∗A∗ + b∗B∗ (A,B ∈ L(H1,H2), a, b ∈ K),

i.e., A 7→ A∗ is colinear, and
(A∗)∗ = A.

If A ∈ L(H1,H2) and B ∈ L(H2,H3) then one has

(AB)∗ = B∗A∗.
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Exercise 1.2.1 Let A ∈ L(H1,H2) and let {e(1), . . . , e(n)} and {f(1), . . . , f(n)}
be orthonormal bases for H1 and H2, respectively. Show that the matrix of A∗ is
given by

A∗ij = (Aji)
∗.

Exercise 1.2.2 We can view K in a natural way as a (one-dimensional) inner
product space with inner product 〈a|b〉 := a∗b. Show that for any inner product
space H and φ ∈ H,

|φ〉∗ = 〈φ|.

Exercise 1.2.3 Let H1,H2 be inner product spaces and let A ∈ L(H1,H2). Show
that 〈φ|A∗ = 〈Aφ| for all φ ∈ H1.

Exercise 1.2.4 Let H1,H2 be inner product spaces and let A,B ∈ L(H1,H2).
Show that

tr(A∗B) =
∑
ij

(Aji)
∗Bji.

Show that 〈A|B〉 := tr(A∗B) defines an inner product on L(H1,H2).

An operator A ∈ L(H) is called normal if it commutes with its adjoint, i.e.,

AA∗ = A∗A.

The following theorem holds only for inner product spaces over C.

Theorem 1.2.5 (Diagonalization of normal operators) Assume that H is an
inner product space over C. Then an operator A ∈ L(H) is normal if and only if
there exists an orthonormal basis {e(1), . . . , e(n)} and complex numbers λ1, . . . , λn
such that

A =
n∑
i=1

λi|e(i)〉〈e(i)|. (1.1)

Note that (1.1) says that the matrix of A with respect to {e(1), . . . , e(n)} is diag-
onal, i.e., Aij = λiδij. The constants λ1, . . . , λn (some of which may be the same)
are the eigenvalues of A.

Proof of Theorem 1.2.5 (sketch) If A is normal, then we claim that

‖A∗φ‖ = ‖Aφ‖ (φ ∈ H).

Indeed, this follows by writing ‖A∗φ‖2 = 〈A∗φ|A∗φ〉 = 〈φ|AA∗φ〉 = 〈φ|A∗Aφ〉 =
〈Aφ|Aφ〉. Next, we claim that

Aφ = λφ implies A∗φ = λ∗φ.
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Indeed, Aφ = λφ implies (A − λ)φ = 0. Since A − λ is normal, it follows that
‖(A− λ)∗φ‖ = ‖(A− λ)φ‖ = 0 and hence A∗φ = λ∗φ.
By Proposition 1.1.3, each A ∈ L(H) has at least one eigenvector φ, say Aφ =
λφ. We claim that A maps the space {φ}⊥ := {ψ ∈ L(H) : 〈ψ|φ〉 = 0 into
itself. Indeed, 〈ψ|φ〉 = 0 implies 〈Aψ|φ〉 = 〈ψ|A∗φ〉 = λ∗〈ψ|φ〉 = 0. Applying
Proposition 1.1.3 to the restriction of A to the smaller space {φ}⊥, we see that A
must have another eigenfuction in {φ}⊥. Repeating this process, we arrive at an
orthogonal basis of eigenvectors. Normalizing yields an orthonormal basis.

If H1,H2 are inner product spaces and U ∈ L(H1,H2), then we say that U is
unitary if

〈Uφ|Uψ〉2 = 〈φ|ψ〉1 (φ, ψ ∈ H1),

i.e., U preserves the inner product.

Exercise 1.2.6 Let H1,H2 be inner product spaces and U ∈ L(H1,H2). Assume
that H1 and H2 have the same dimension. Show that an operator U ∈ L(H1,H2)
is unitary if and only if U is invertible and U−1 = U∗. Hint: consider the image
under U of an orthonormal basis of H1.

Note that since any invertible operator in L(H) = L(H,H) commutes with its
inverse, Exercise 1.2.6 shows that unitary operators in L(H) are normal.

Exercise 1.2.7 Let H be an inner product space over C. Show that an operator
U ∈ L(H) is unitary if and only if U is of the form

U =
n∑
i=1

λi|e(i)〉〈e(i)|

where {e(1), . . . , e(n)} is an orthonormal basis of H and λ1, . . . , λn are complex
numbers such that |λi| = 1 for i = 1, . . . , n.

An operator A ∈ L(H) is called hermitian or self-adjoint if A = A∗. In coordinates
with respect to an orthonormal basis, this means that Aij = (Aji)

∗. Obviously,
hermitian operators are normal.

Exercise 1.2.8 Let H be an inner product space over C with orthonormal basis
{e(1), . . . , e(n)}, and let

A =
n∑
i=1

λi|e(i)〉〈e(i)|

be a normal operator on H. Show that A is hermitian if and only if the eigenvalues
λi are real.
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Remark For hermitian operators, Theorem 1.2.5 also holds for inner product
spaces over R. To see this, let H be an inner product space over R and let
A ∈ L(H) be hermitian. We need to show that A has at least one eigenvector. By
the same arguments used in the proof of Theorem 1.2.5, one can then construct an
orthonormal basis of such eigenvectors. To see that A has at least one eigenvector,
let {e(1), . . . , e(n)} be an orthonormal basis for H. The matrix of A with respect
to this basis satisfies Aij = (Aji)

∗, so we may view A as a hermitian operator on
the space Cn := {(φ1, . . . , φn) : φi ∈ C ∀i}. By Proposition 1.1.3, A has at least
one eigenvector φ = (φ1, . . . , φn) ∈ Cn. We are done if we can show that A has an
eigenvector in Rn. To this aim, we observe that if φ ∈ Cn is an eigenvector with
eigenvalue λ, then its complex conjugate φ∗ := (φ∗1, . . . , φ

∗
n) is also an eigenvector,

with the same eigenvalue. Indeed, (Aφ∗)i =
∑

j Aijφ
∗
j = (

∑
j Aijφj)

∗ = (λφi)
∗ =

λφ∗i , where we have used that λ is real. It follows that Re(φ) := (φ∗ + φ)/2 and
Im(φ) := (iφ∗− iφ)/2 also satisfy ARe(φ) = λRe(φ) and AIm(φ) = λIm(φ). Since
at least one of these vectors must be nonzero, we have found a real eigenvector
for A.3

An operator A ∈ L(H) is called positive if and only if A is hermitian and all its
eigenvalues are nonnegative. We define a partial order on the space of all hermitian
operators by

A ≤ B ⇔ B − A is positive.

Let H be an inner product space and let F ⊂ H be a linear subspace of H. Let

F⊥ := {φ ∈ H : 〈φ|ψ〉 = 0 ∀ψ ∈ F}.

denote the orthogonal complement of F . Then each vector φ ∈ H can in a unique
way be written as

φ = φ′ + φ′′ (φ′ ∈ F , φ′′ ∈ F⊥).

We call φ′ the orthogonal projection of φ on the subspace F , and write

φ′ =: PFφ.

One can check that P ∗F = PF = P 2
F . The next exercise shows that conversely,

every operator with these properties is of the form PF .

Exercise 1.2.9 Let H be an inner product space and assume that P ∈ L(H)
satisfies P ∗ = P = P 2. Show that there exists a linear subspace F ⊂ H such that

3Our proof shows that for any linear space V over R, we may without loss of generality assume
that V is embedded in (i.e., a subspace of) a complex inner product space W on which is defined
a colinear bijection φ 7→ φ∗ such that V = {φ ∈ W : φ∗ = φ}. Such a space W is called a
complexification of V.
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P = PF . Hint: since P is hermitian, we can write P =
∑

i λi|e(i)〉〈e(i)|. Consider
F := span{e(i) : λi = 1}.

In view of Exercise 1.2.9, we call any operator P ∈ L(H) such that P ∗ = P = P 2

a projection. Obviously, projections are hermitian operators.

By definition, a partition of the identity is a finite set of projections {P1, . . . , Pm}
such that

m∑
i=1

Pi = 1 and PiPj = 0 (i 6= j).

If F1, . . . ,Fm are subspaces of H, then PF1 , . . . , PFm is a partition of the identity if
and only if F1, . . . ,Fm are mutually orthogonal and span H. In terms of partitions
of the identity, we can formulate Theorem 1.2.5 slightly differently.

Theorem 1.2.10 (Spectral decomposition) Let H be an inner product space
over C and let A ∈ L(H) be normal. For each λ ∈ σ(A), let

Fλ := {φ ∈ H : Aφ = λφ}

denote the eigenspace corresponding to the eigenvalue λ. Then {PFλ : λ ∈ σ(A)}
is a partition of the unity and

A =
∑

λ∈σ(A)

λPFλ .

Using the spectral decompositon, one can define a ‘functional calculus’ for normal
operators. If H is a complex inner product space, A ∈ L(H), and f : C→ C is a
function, then one defines a normal operator f(A) by

f(A) :=
∑

λ∈σ(A)

f(λ)PFλ .

Exercise 1.2.11 Let H be an inner product space over C and let A ∈ L(H) be
a normal operator. Let a0, . . . , an ∈ C and let p : C → C be the polynomial
p(z) := a0 + a1z + · · ·+ anz

n. Let p(A) be defined with the funcional calculus for
normal operators. Show that p(A) = a01 + a1A+ · · ·+ anA

n.

Exercise 1.2.12 Let H be an inner product space over C and let A ∈ L(H) be
a normal operator. Let f : C → C be the function f(z) := z∗ and let f(A) be
defined with the funcional calculus for normal operators. Show that f(A) = A∗.
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Exercise 1.2.13 Let H be an inner product space and A ∈ L(H). By definition,
eA :=

∑∞
n=0

An

n!
. (SinceH is finite dimensional, it is not hard to see that the infinite

sum converges.) In the special case that A is normal, show that eA, defined with
the funcional calculus for normal operators, coincides with our previous definition
of eA.

Exercise 1.2.14 Let A be a hermitian operator. Show that eiA (defined with the
functional calculus for normal operators) is a unitary operator.

Exercise 1.2.15 Let H be an inner product space over C and A ∈ L(H). Show
that A is hermitian if and only if 〈φ|A|φ〉 is real for all φ ∈ H.

Exercise 1.2.16 Let H be an inner product space over C and A ∈ L(H). Show
that the following conditions are equivalent.

(1) A is a positive operator.

(2) 〈φ|A|φ〉 is real and nonnegative for all φ ∈ H.

(3) There exists a B ∈ L(H) such that A = B∗B.

Exercise 1.2.17 Let H be an inner product space over C. Let P,Q ∈ L(H) be
projection operators and assume that (1− P )Q = 0. Prove that Q ≤ P .

1.3 Dual, quotient, sum, and product spaces*

Dual spaces

Let V be a linear space over K = R or C. By definition,

V ′ := L(V ,K)

is the dual of V . The elements of V ′ (usually denoted by l) are called linear forms
on V . The dual space V ′ has the same dimension as V . If {e(1), . . . , e(n)} is a
basis for V then the linear forms {f(1), . . . , f(n)} given by

f(i)(e(j)) := δij

form a basis of V ′, called the dual basis of {e(1), . . . , e(n)}. There exists a natural
isomorphism between V and its double dual:

V ∼= V ′′.
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Here we map a φ ∈ V to the linear form Lφ ∈ Lφ(V ′,K) given by

Lφ(l) := l(φ) (l ∈ V ′).

Since the kernel of the map φ 7→ Lφ is zero and V and V ′′ have the same di-
mension, this is a linear isomorphism. Note that since V and V ′ have the same
dimension, there also exist (many) linear isomorphisms between V and V ′. How-
ever, if dim(V) > 1, it is not possible to choose a ‘natural’ or ‘canonical’ linear
isomorphism between V and V ′, and therefore we need to distinguish these as
different spaces.

If V1,V2 are linear spaces and A ∈ L(V1,V2), then by definition its dual is the
linear map A′ ∈ L(V ′2,V ′1) defined by

A′(l) := l ◦ A (l ∈ V ′2),

where ◦ denotes composition.

If H is an inner product space then the map φ 7→ 〈φ| is a colinear bijection from
H to H′. In particular,

H′ = {〈φ| : φ ∈ H}.
If H1,H2 are inner product spaces and A ∈ L(H1,H2), then its dual A′ is the map

A′(〈φ|) = 〈A∗φ| (φ ∈ H2).

Quotient spaces

Let V be a linear space over K and letW be a linear subspace of V . For any φ ∈ V
write φ+W := {φ+ ψ : ψ ∈ W}. Then the quotient space

V/W := {φ+W : φ ∈ V}

is a linear space with zero element 0 +W and

a(φ+W) + b(ψ +W) := (aφ+ bψ) +W (a, b ∈ K, φ, ψ ∈ V).

Exercise 1.3.1 Show that linear combinations in V/W are well-defined, i.e., if
φ+W = φ̃+W and ψ +W = ψ̃ +W , then (aφ+ bψ) +W = (aφ̃+ bψ̃) +W .

Exercise 1.3.2 Let l : V → V/W be the quotient map l(φ) := φ+W . Show that
Ker(l) =W and Ran(l) = V/W . Show that

dim(V) = dim(V/W) + dim(W).
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Exercise 1.3.3 Let l : V1 → V2 be a linear map. Show that there exists a natural
linear isomorphism

V1/Ker(A) ∼= Ran(A),

Exercise 1.3.4 Let V3 ⊂ V2 ⊂ V1 be linear spaces. Show that there exists a
natural linear isomorphism

(V1/V2) ∼= (V1/V3)/(V2/V3).

The direct sum

Let V1, . . . ,Vn be linear spaces over K = R or C. By definition, the direct sum of
V1, . . . ,Vn is the space

V1 ⊕ · · · ⊕ Vn := {(φ(1), . . . , φ(n)) : φ(1) ∈ V1, . . . , φ(n) ∈ Vn},

which we equip with a linear structure by putting

a(φ(1), . . . , φ(n)) + b(ψ(1), . . . , ψ(n)) := (aφ(1) + bψ(1), . . . , aφ(n) + bψ(n)).

If V is some linear space and V1, . . . ,Vn are linear subspaces of V such that every
φ ∈ V can in a unique way be written as φ = φ(1) + · · · + φ(n) with φ(1) ∈
V1, . . . , φ(n) ∈ Vn, then there is a natural isomorphism V ∼= V1 ⊕ · · · ⊕ Vn, given
by

φ(1) + · · ·+ φ(n) 7→ (φ(1), . . . , φ(n)).

Also in this case, we say that V is the direct sum of V1, . . . ,Vn. We often look at
a direct sum in this way. Thus, we often view V1, . . . ,Vn as linear subspaces of
V1 ⊕ · · · ⊕ Vn, and write φ(1) + · · ·+ φ(n) rather than (φ(1), . . . , φ(n)). One has

dim(V1 ⊕ · · · ⊕ Vn) = dim(V1) + · · ·+ dim(Vn).

If U ,W are linear subspaces of V such that V = U ⊕W , then the projection on U
with respect to this decomposition is the map P : V → U defined by

P (φ+ ψ) := φ (φ ∈ U , ψ ∈ W).

Note that this is a good definition since every χ ∈ V can in a unique way be written
as χ = φ + ψ with φ ∈ U and ψ ∈ W . Warning: the definition of P depends not
only on U but also on the choice of W !
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Exercise 1.3.5 Show that
(U ⊕W)/W ∼= U .

If V is a linear space and W ⊂ V a linear subspace, are then V and V/W ⊕W in
a natural way isomorphic?

If H1, . . . ,Hn are inner product spaces with inner products 〈·|·〉1, . . . , 〈·|·〉n, respec-
tively, then we equip their direct sum H1 ⊕ · · · ⊕ Hn with the inner product

〈(φ(1), . . . , φ(n))|(ψ(1), . . . , ψ(n))〉 :=
n∑
i=1

〈φ(i)|ψ(i)〉.

Note that if we viewH1, . . . ,Hn as subspaces ofH1⊕· · ·⊕Hn, then these subspaces
are mutually orthogonal in the inner product on H1 ⊕ · · · ⊕ Hn.

Exercise 1.3.6 Let H be an inner product space and F a linear subspace. Show
that

H ∼= F ⊕ F⊥,

where ∼= means that the two spaces are isomorphic as inner product spaces.

Exercise 1.3.7 Let H be an inner product space and F a linear subspace. Show
that H/F and F⊥ are isomorphic as linear spaces.

The tensor product

Let U ,V , and W be linear spaces. By definition, a map b : U ×V → W is bilinear
if

φ 7→ b(φ, ψ) is linear for each fixed ψ ∈ V ,

ψ 7→ b(φ, ψ) is linear for each fixed φ ∈ U .

Proposition 1.3.8 (Definition of the tensor product) For any two linear
spaces U ,V there exists a linear space U ⊗V, called the tensor product of U and V,
and a bilinear map (φ, ψ) 7→ φ⊗ψ from U ×V into U ⊗V, satisfying the following
equivalent properties

(i) If {e(1), . . . , e(n)} and {f(1), . . . , f(m)} are bases of U and V, respectively,
then {

e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m
}

is a basis for U ⊗ V.
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(ii) For any linear space W and for any bilinear map b : U × V → W, there
exists a unique linear map b : U ⊗ V → W such that b(φ ⊗ ψ) = b(φ, ψ) for
all φ ∈ U , ψ ∈ V.

We postpone the proof of Proposition 1.3.8 to the end of this section. The next
lemma says that the tensor product of two linear spaces is unique up to linear
isomorphisms.

Lemma 1.3.9 (Uniqueness of the tensor product) Let U ,V be linear spaces.
Then the tensor product U ⊗ V of U and V is unique in the following sense. If
a linear space U⊗̃V together with a bilinear map (φ, ψ) 7→ φ⊗̃ψ from U × V into
U⊗̃V satisfy properties (i) and (ii) of Proposition 1.3.8, then there exist a unique
linear bijection l : U⊗̃V → U ⊗ V such that l(φ⊗̃ψ) = φ⊗ ψ for all φ ∈ U , ψ ∈ V.

Proof Since (φ, ψ) 7→ φ⊗ψ is bilinear, by the fact that U⊗̃V satisfies property (ii),
there exists a unique linear map l : U⊗̃V → U ⊗ V such that l(φ⊗̃ψ) = φ⊗ ψ for
all φ ∈ U , ψ ∈ V . By property (i), l maps some basis of U⊗̃V into a basis of U ⊗V ,
hence l is a linear bijection.

Exercise 1.3.10 Let Ω1,Ω2 be finite sets. Show that CΩ1 ⊗CΩ2 ∼= CΩ1×Ω2 . Here
∼= means that there is a natural linear bijection between the two spaces.

It is obvious from Proposition 1.3.8 that

dim(U ⊗ V) = dim(U) dim(V).

We warn the reader that the inclusion

{φ⊗ ψ : φ ∈ U , ψ ∈ V} ⊂ U ⊗ V

is strict. In fact, the set on the left-hand side of this equation spans U ⊗ V , but
is itself not a linear space. To see this, note that by property (i) of the tensor
product, a general vector η ∈ U ⊗ V can uniquely be written as

η =
∑
i,j

ηije(i)⊗ f(j),

where the ηij ∈ C with i = 1, . . . , n and j = 1, . . . ,m are the coordinates of η with
respect to the basis {e(i) ⊗ f(i) : i = 1, . . . , n, j = 1, . . . ,m}. For general φ ∈ U
and ψ ∈ V , we now have

φ⊗ ψ =
(∑

i

φ1e(i)
)(∑

j

ψjf(j)
)

=
∑
ij

φiψje(i)⊗ f(j),
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which shows that the coordinates of the vector φ ⊗ ψ with respect to the basis
{e(i)⊗ f(i) : i = 1, . . . , n, j = 1, . . . ,m} are given by

(φ⊗ ψ)ij = φiψj.

Exercise 1.3.11 Assume that U and V both have dimension at least 2 and let
η ∈ U ⊗ V be given by

η := e(1)⊗ f(1) + e(1)⊗ f(2) + e(2)⊗ f(1).

Show that η 6∈ {φ ⊗ ψ : φ ∈ U , ψ ∈ V}. Hint: show that the coordinates ηij are
not of the form ηij = φiψj for any φ ∈ U and ψ ∈ V .

IfH1,H2 are inner product spaces with inner products 〈·|·〉1 and 〈·|·〉1, respectively,
then we equip the tensor product H1 ⊗H2 with the inner product

〈φ(1)⊗ φ(2)|ψ(1)⊗ ψ(2)〉 := 〈φ(1)|ψ(1)〉1〈φ(2)|ψ(2)〉2,

for any φ(1), ψ(1) ∈ H1 and φ(2), ψ(2) ∈ H2. In this case, if {e(1), . . . , e(n)} and
{f(1), . . . , f(m)} are orthonormal bases of H1 and H2, respectively, then {e(i) ⊗
f(j) : i = 1, . . . , n, j = 1, . . . ,m} is an orthonormal bases of H1 ⊗H2.

The next Proposition summarizes some useful additional properties of the tensor
product.

Proposition 1.3.12 (Properties of the tensor product) Let U ,V, and U ⊗V
be linear spaces and let (φ, ψ) 7→ φ⊗ ψ from U × V into U ⊗ V be bilinear. Then
U ⊗V, equipped with this map, is the tensor product of U and V if and only if the
following equivalent conditions hold:

(iii) There exist bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)} of U and V, respec-
tively, such that {

e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m
}

is a basis for U ⊗ V.

(iv) For any k ∈ U ′ and l ∈ V ′ there exists a unique p ∈ (U ⊗ V)′ such that
p(φ⊗ ψ) = k(φ)l(ψ) for all φ ∈ U , ψ ∈ V.

(v) For any linear space W and for any map b : U × V → W that is colinear
in each of its arguments, there exists a unique colinear map b : U ⊗ V → W
such that b(φ⊗ ψ) = b(φ, ψ) for all φ ∈ U , ψ ∈ V.
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Proof of Propositions 1.3.8 and 1.3.12 Consider the properties (i)–(v) from
Propositions 1.3.8 and 1.3.12. It is easy to see that there exists a linear space
V ⊗ W and a bilinear map (φ, ψ) 7→ φ ⊗ ψ from U × V into U ⊗ V satisfying
property (iii): choose any bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)} of U and V ,
let U ⊗ V be any linear space with dimension nm, choose a basis for U ⊗ V , and
give the nm basis vectors the names

e(i)⊗ f(j) (i = 1, . . . , n, j = 1, . . . ,m).

If we now define a bilinear map (φ, ψ) 7→ φ⊗ ψ from U × V into U ⊗ V by( n∑
i=1

aie(i)
)
⊗
( m∑
j=1

bjf(j)
)

:=
n∑
i=1

m∑
j=1

aibj e(i)⊗ f(j),

then property (iii) holds.
To complete the proof, we will show that (iii)⇒(ii)⇒(iv)⇒(i)⇒(iii) and (ii)⇔(v).
To see that (iii)⇒(ii), we define

b(e(i)⊗ f(j)) := b(e(i), f(j)) (i = 1, . . . , n, j = 1, . . . ,m).

Since the e(i)⊗f(j) are a basis of U ⊗V , this definition extends to a unique linear
map b : U ⊗ V → W . Since b is bilinear, it is easy to see that

b(φ⊗ ψ) = b(φ, ψ) ∀ φ ∈ U , ψ ∈ V .

This proves (ii).
The implication (ii)⇒(iv) is obvious, since (φ, ψ) 7→ k(φ)l(ψ) is bilinear.
To prove (iv)⇒(i), let {e(1), . . . , e(n)} and {f(1), . . . , f(m)} be bases for U and V ,
respectively. We claim that {e(i)⊗ f(j) : i = 1, . . . , n, j = 1, . . . ,m} is a basis for
U ⊗ V . We start by showing that these vectors are linearly independent. Assume
that ∑

ij

aije(i)⊗ f(j) = 0.

By our assumption, for any k ∈ V ′ and l ∈ U ′, there exists a unique linear form p
on U ⊗ V such that p(φ⊗ ψ) = k(φ)l(ψ) for all φ ∈ U , ψ ∈ V , and therefore,∑

ij

aij k(e(i))l(f(j)) = p
(∑

ij

aij e(i)⊗ f(j)
)

= p(0) = 0,

In particular, we may choose

k(e(i)) = δii′ and l(f(j)) = δjj′ .
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This shows that ai′j′ = 0 for all i′, j′, i.e., the vectors e(i) ⊗ f(j) are linearly
independent. It is easy to see that if these vectors would not span U ⊗V , then the
linear form p would not be unique, hence they must be a basis for U ⊗ V .
The implication (i)⇒(iii) is trivial.
To see that (ii)⇔(v), finally, we use a trick. If W is a linear space, then we
can always find a linear space W together with a conlinear map l : W → W
such that l is a bijection. (To see this, take W with the same dimension as W ,
choose bases {e(1), . . . , e(n)} and {f(1), . . . , f(n)} forW andW , respectively, and
set l(

∑
i aie(i)) :=

∑
i a
∗
i f(i).) We call W the complex conjugate of W . Now if

b : U × V → W is colinear in each of its arguments, then l ◦ b : U × V → W is
bilinear, and vice versa, so it is easy to see that (i) and (v) are equivalent.

1.4 Tensor calculus*

In this section, we give a short introduction to tensor calculus.
If k ∈ U ′ and l ∈ V ′ are linear forms on U and V , respectively, then we denote the
linear form p on U ⊗ V from property (iv) of Proposition 1.3.12 by k ⊗ l. I.e.,

k ⊗ l(φ⊗ ψ) := k(φ)l(φ) (φ ∈ U , ψ ∈ V).

The next lemma says that this is good notation.

Lemma 1.4.1 (Tensor product and dual spaces) The linear space (U ⊗ V)′

together with the bilinear map (k, l) 7→ k ⊗ l is a version of the tensor product
V ′1 ⊗ V ′2.

Proof Choose bases {e(1), . . . , e(n)} and {f(1), . . . , f(m)} for U and V , respec-
tively. Let {k(1, . . . , k(n)} and {l(1), . . . , l(m)} be the corresponding dual bases
for V ′1 and V ′2, i.e.,

k(i)(e(j)) := δij and l(q)(f(r)) := δqr.

Then
k(i)⊗ l(q) (e(j)⊗ f(r)) = δijδqr = δ(i,q),(j,r),

which shows that {k(i) ⊗ l(q) : i = 1, . . . , n, q = 1, . . . ,m} is the dual basis
to {e(j) ⊗ f(r) : j = 1, . . . , n, r = 1, . . . ,m}. Therefore, by property (i) from
Proposition 1.3.8, (U ⊗ V)′ together with the bilinear map (k, l) 7→ k ⊗ l is a
version of the tensor product U ′ ⊗ V ′.
Tensor products of three or more linear spaces are defined in a similar way as the
tensor product of two linear spaces.
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Exercise 1.4.2 Show that the tensor product is associative: (V1 ⊗ V2) ⊗ V3
∼=

V1 ⊗ (V2 ⊗V3). Here ∼= means that there is a natural linear bijection between the
two spaces.

If V1, . . . ,Vm are linear spaces with dimensions d1, . . . , dn and

{e1(1), . . . , e1(d1)}, . . . , {en(1), . . . , en(dn)}

are bases for V1, . . . ,Vn, respectively, then the collection of all vectors{
e1(i1)⊗ · · · ⊗ en(in) : i1 = 1, . . . , d1, . . . in = 1, . . . , dn

}
is a basis for V1 ⊗ · · · ⊗ Vn. A vector T ∈ V1 ⊗ · · · ⊗ Vn is called a tensor. It can
be expressed in the basis just mentioned as

T =

d1∑
i1=1

· · ·
dn∑
in=1

Ti1...ine
1(i1)⊗ · · · en(in).

If T ∈ V1 ⊗ · · · ⊗ Vm and S ∈ Vm+1 ⊗ · · · ⊗ Vn then

T ⊗ S =

d1∑
i1=1

· · ·
dn∑
in=1

Ti1...imSim+1...ine
1(i1)⊗ · · · en(in),

so
(T ⊗ S)i1...in = Ti1...imSim+1...in .

Tensor spaces V1⊗· · ·⊗Vn get only really interesting if a linear space and its dual
both occur somewhere in the product. For example, if our tensor space has the
formW⊗V ′⊗V , then we define the contraction of the 2nd and the 3rd coordinate
by

c23(ψ ⊗ l ⊗ φ) := l(φ)ψ.

Note that this formula is linear in each component (i.e., ‘trilinear’), so by the
analogue of property (i) of Proposition 1.3.8, c23 extends to a unique linear map

c23 :W ⊗V ′ ⊗ V → W .

If {e(1), . . . , e(n)} is a basis for V , {l(1), . . . , l(n)} is the corresponding dual basis
for V ′, and {f(1), . . . , f(m)} is a basis for W , then

c23

(∑
ijk

Tijkf(i)⊗ l(j)⊗ e(k)
)

=
∑
ijk

Tijkl(j)
(
(e(k)

)
f(i) =

∑
ij

Tijjf(i),
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so with respect to these bases (
c23(T )

)
i

=
∑
j

Tijj.

Without knowing it, we have already seen a number of contractions.

Lemma 1.4.3 (Examples of contractions) For any linear spaces V ,W there
exists a natural linear isomorphism

L(V ,W) ∼=W ⊗V ′.

If {e(1), . . . , e(n)} and {f(1), . . . , f(m)} are bases for V and W, respectively, and
{l(1), . . . , l(n)} is the dual basis of {e(1), . . . , e(n)}, then in this isomorphism,

A =
∑
ij

Aij fi ⊗ lj,

where Aij is the matrix of A written with respect to the bases {e(1), . . . , e(n)} and
{f(1), . . . , f(m)}. Moreover,

(i) tr(A) = c12(A) (A ∈ V ⊗ V ′),
(ii) Aφ = c23(A⊗ φ) (A ∈ W ⊗ V ′, φ ∈ V),
(iii) A′l = c12(l ⊗ A) (A ∈ W ⊗ V ′, l ∈ W ′),
(iv) AB = c23(A⊗B) (A ∈ W ⊗ V ′, B ∈ V ⊗ U ′).

Here, in (i), c12 : V⊗V ′ → C is defined as c12(φ⊗l) := l(φ). In (iii), A′ ∈ L(W ′,V ′)
denotes the adjoint of A (see page 17).

Proof of Lemma 1.4.3 Every A ∈ W⊗V ′ defines a linear operator Ã ∈ L(V ,W)
by

Ãφ := c23(A⊗ φ)

Conversely, we will show that for every Ã ∈ L(V ,W) there exists an A ∈ W ⊗ V ′
such that this formula holds. Indeed, if Ãij denotes the matrix of Ã, then define
A ∈ W ⊗ V ′ by

A =
∑
ij

Ãij ei ⊗ lj.

Consistent with our notation for tensors, write a vector φ ∈ V as φ =
∑

i φie(i).
Then

c23(A⊗ φ)i =
∑
j

Ãijφj = (Ãφ)i,
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which shows that Ãφ := c23(A⊗ φ) and therefore L(V ,W) ∼=W ⊗V ′. Written in
coordinates, formulas (i)–(iv) say that

(i) tr(A) =
∑

iAii (A ∈ V ⊗ V ′),
(ii) (Aφ)i =

∑
j Aijφj (A ∈ W ⊗ V ′, φ ∈ V),

(iii) (A′l)j =
∑

i liAij (A ∈ W ⊗ V ′, l ∈ W ′),
(iv) (AB)ij =

∑
k AikBkj (A ∈ W ⊗ V ′, B ∈ V ⊗ U ′),

which are all well-known facts.



Chapter 2

Two kinds of probability

2.1 Q-algebras

By definition, an algebra is a linear space A 6= {0} over K = C or R, that is
equipped with a multiplication (A,B) 7→ AB from A×A into A that is associative,
bilinear, and has a unit element 1 ∈ A, i.e.,1

(i) (AB)C = A(BC) (A,B,C ∈ A),
(ii) A(bB + cC) = bAB + cAC (A,B,C ∈ A, b, c ∈ K),
(iii) (aA+ bB)C = aAC + bBC (A,B,C ∈ A, a, b ∈ K)
(iv) 1A = A = A1 (A ∈ A).

Another word for the unit element is identity. We say that an algebra A is abelian
if the multiplication is commutative, i.e.,

AB = BA (A,B ∈ A) .

By definition, an adjoint operation (also called involution) on A is a map A 7→ A∗

from A into A that has the following properties:

(v) (A∗)∗ = A (A ∈ A),
(vi) (aA+ bB)∗ = a∗A∗ + b∗B∗ (A,B ∈ A, a, b ∈ C),

(vii) (AB)∗ = B∗A∗ (A,B ∈ A).

Here a∗ denotes the complex conjugate of a complex number a. Let us say that
an adjoint operation is positive if

(viii) A∗A = 0 ⇒ A = 0 (A ∈ A).

1The existence of a unit element is not always included in the definition of an algebra. Actually,
depending on the mathematical context, the word algebra can mean many things.

27
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By definition, a ∗-algebra (pronounce: star-algebra) is an algebra A that is equip-
ped with an adjoint operation. Let us say that A is a Q-algebra if A is a finite-
dimensional ∗-algebra over the complex numbers and the adjoint operation is pos-
itive. The term Q-algebra (Q stands for Quantum) is not standard. In fact,
Q-algebras, as we have just defined them, are finite dimensional C∗-algebras; see
Section 3.4.

Exercise 2.1.1 Let H be an inner product space over K = R or C and let L(H)
be the space of linear operators on H, equipped with operator multiplication and
adjugation. Then, obviously, L(H) is a ∗-algebra. Show that the adjoint operation
is positive, i.e., L(H) satisfies property (viii).

Exercise 2.1.2 Let A be a ∗-algebra. Show that the space of self-adjoint elements
Ar := {A ∈ A : A∗ = A} is a real linear subspace of A. Show that each A ∈ A
can in a unique way be written as A = Re(A) + iIm(A) with Re(A), Im(A) ∈ Ar.

Exercise 2.1.3 Let H be an inner product space over C and let A ∈ L(H). Show
that A∗A = Re(A)2 + Im(A)2 if and only if A is normal.

Let A,B be algebras. We say that that a map l : A → B is an algebra homomor-
phism if

(a) l(aA+ bB) = al(A) + bl(B) (A,B ∈ A, a, b ∈ C),
(b) l(AB) = l(A)l(B) (A,B ∈ A),
(c) l(1) = 1.

If A,B are ∗-algebras, then l is called a ∗-algebra homomorphism if moreover

(d) l(A∗) = l(A)∗ (A ∈ A).

If an algebra homomorphism (resp. ∗-algebra homomorphism) l is a bijection then
one can check that also l−1 is also an algebra homomorphism (resp. ∗-algebra
homomorphism). In this case we call l an algebra isomorphism (resp. ∗-algebra
isomorphism) and we say that A and B are isomorphic as algebras (resp. as ∗-al-
gebras).

By definition, a subalgebra of an algebra A is a linear subspace A′ ⊂ A such that
1 ∈ A′ and A′ is closed under multiplication. If A is a ∗-algebra then we call A′
a sub-∗-algebra if moreover A′ is closed under adjugation. If A′ is a subalgebra
(resp. sub-∗-algebra) of A, then A′, equipped with the multiplication and adjoint
operation from A, is itself an algebra (resp. ∗-algebra).
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Exercise 2.1.4 Let A,B be ∗-algebras and let l : A → B be a ∗-algebra homo-
morphism. Show that the range Ran(l) := {l(A) : A ∈ A} of l is a sub-∗-algebra
of B.

A representation of an algebra A over K = C or R is a linear space H over K
together with an algebra homomorphism l : A → L(H). If A is a ∗-algebra, then
we also require that H is equipped with an inner product such that l : A → L(H)
is a ∗-algebra homomorphism. (Otherwise, we speak of a representation of A as an
algebra.) A representation is faithful if l is one-to-one. Note that in this case, l is an
algebra isomorphism (resp. ∗-algebra isomorphism) between A and the subalgebra
(resp. sub-∗-algebra) Ran(l) ⊂ L(H).

A basic result about Q-algebras is:

Theorem 2.1.5 (Representation of positive ∗-algebras) Every Q-algebra
has a faithful representation.

Unfortunately, the proof of Theorem 2.1.5 is mildly complicated. For a proof, we
refer the reader to [GHJ89, Appendix II.a] or [Swa04]. A rough sketch of the proof
will be given in Section 5.8. Those who are not satisfied with this may find some
consolation in hearing that, actually, we will not use Theorem 2.1.5 at all. Replace
‘Q-algebra’ by ‘representable Q-algebra’ in what follows, and all proofs remain
valid. While it is certainly nice to know that these notions coincide, we will never
really need this.

Theorem 2.1.5 says that every Q-algebra A is isomorphic to some sub-∗-algebra
A′ ⊂ L(H), for a suitable inner product space H. Thus, we may think of the
elements ofA as linear operators on an inner product spaceH. We must be careful,
however, since some properties of these operators may depend on the (faithful)
representation. A lot, however, turns out to be representation independent.

We start by noting that being a normal operator is, obviously, representation
independent. The same is true for being a hermitian operator, being a projection,
or being a partition of the identity. (Note that {P1, . . . , Pn} is a partition of the
identity iff Pi = P ∗i , PiPj = δijPi and

∑
i Pi = 1.) In fact, the whole spectral

decomposition of normal operators is representation independent:

Lemma 2.1.6 (Spectral decomposition is representation independent)
Let H be a complex inner product space and let A be a sub-algebra of L(H). As-
sume that A ∈ A is normal. Then A can uniquely be written as

A =
∑

λ∈σ(A)

λPλ



30 CHAPTER 2. TWO KINDS OF PROBABILITY

where σ(A) is a finite subset of C and {Pλ : λ ∈ σ(A)} is a partition of the identity.
Moreover, Pλ ∈ A for all λ ∈ σ(A).

Proof By Theorem 1.2.10, the operator A can uniquely be written as A =∑
λ∈σ(A) λPλ, where σ(A) is a finite subset of C and {Pλ : λ ∈ σ(A)} is a par-

tition of the identity. Fix λ ∈ σ(A). We claim that Pλ ∈ A. To prove this,
choose a polynomial p such that p(λ) = 1 and p(λ′) = 0 for all λ′ ∈ σ(A), λ′ 6= λ.
Then Pλ = p(A), where p(A) is defined using the functional calculus for normal
operators. By Excercise 1.2.11, p(A) ∈ A.

By Lemma 2.1.6, the spectrum of a normal operator is representation indepen-
dent. It follows that being a unitary operator, or a positive operator, is also
representation independent. The functional calculus for normal operators is also
representation independent.

Lemma 2.1.7 (Functional calculus is representation independent) Let A
and Ã be Q-algebras, let A ∈ A be normal, let f : C → C be a function, and let
l : A → Ã be an algebra homomorphism. Then f(A) ∈ A and f(l(A)) = l(f(A)).

Proof Immediate from Lemma 2.1.6

Just when we start to believe that almost everything we can think of is represen-
tation independent, a little warning is in place:

Exercise 2.1.8 Show that the trace of an operator is not a representation inde-
pendent quantity. Hint: observe that the Q-algebra consisting of all operators of
the form 

a b 0 0
c d 0 0
0 0 a b
0 0 c d

 (a, b, c, d ∈ C)

is isomorphic with L(C2).

Exercise 2.1.9 Let A be the space of all matrices of the form a −c −b
b a −c
c b a

 with a, b, c ∈ C.

Equip A with the usual matrix multiplication and define an adjoint operation on
A by  a −c −b

b a −c
c b a

∗ :=

 a∗ −c∗ −b∗
b∗ a∗ −c∗
c∗ b∗ a∗

 .
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Show that A is a ∗-algebra. Is A abelian? Is the adjoint operation positive? (Hint:
consider the operator

X :=

 0 0 −1
1 0 0
0 1 0

 .

Show that a general element of A is of the form a1 + bX + cX2.)

2.2 Probability spaces

For any set Ω, we write P(Ω) := {A : A ⊂ Ω} to denote the set of all subsets of
Ω. On P(Ω) are defined set operations such as A ∩B, A ∪B, and

A\B := {ω ∈ A : ω 6∈ B},
Ac := Ω\A.

By definition, a finite probability space is a triple (Ω,P(Ω), µ), where Ω is a finite
set, P(Ω) is the set of all subsets of Ω, and µ : P(Ω) → [0, 1] is a function with
the following properties:

(a) µ(Ω) = 1,
(b) A,B ⊂ Ω, A ∩B = ∅ ⇒ µ(A ∪B) = µ(A) + µ(B).

We call Ω the state space, P(Ω) the space of events and µ a probability law.

Exercise 2.2.1 Show that every probability law on a finite set Ω is of the form

µ(A) =
∑
ω∈A

m(ω),

where m : Ω→ [0, 1] is a function satisfying
∑

ω∈Ωm(ω) = 1.

We interpret a finite probability space (Ω,P(Ω), µ) as follows.

1◦ A finite probability space (Ω,P(Ω), µ) describes incomplete knowledge about
a system in the physical reality.

2◦ The state space Ω contains elements ω, called states. Each state gives an
exhausting description of all properties of the physical system that are of
interest to us.
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3◦ A subset A ⊂ Ω is interpreted as the event that the actual state of the
physical system lies in A. In this interpretation, Ac is the event ‘not A’,
A ∩ B is the event ‘A and B’, A ∪ B is the event ‘A and/or B’, A\B is the
event ‘A and not B’, and so on.

4◦ The probability law µ assigns to each event A ∈ P(Ω) a number µ(A) ∈ [0, 1],
called the probability of A. The probability law µ(A) measures how likely
we judge the event A to be true on the basis of our incomplete knowledge.
The larger µ(A) is, the more likely is A. If µ(A) = 1 then A is sure.

5◦ If we observe that an event B is true, then our knowledge about the physical
system changes. We express our changed knowledge with a new probability
law µ̃ on P(Ω), defined as µ̃(A) := µ(A ∩ B)/µ(B). This formula is not
defined if µ(B) = 0 but in that case we were sure that the event B was
not true before we performed our observation, so in this situation there
was something wrong with the way we described our knowledge before the
observation.

In point 5◦, we call µ̃(A) := µ(A ∩ B)/µ(B) the conditional probability of the
event A given B, and we call µ̃ the conditioned probability law. We also use the
notation

µ(A|B) := µ(A ∩B)/µ(B) (A,B ∈ P(Ω), µ(B) > 0).

The interpretation of finite probability spaces we have just given is not undisputed.
Many authors insist that an interpretation of probability spaces must link proba-
bilities in some way to relative frequencies, either by saying that the probability
of an event is likely to be the relative frequency of that event in a long sequence
of independent trials, or by saying that the probability of an event is the relative
frequency of that event in an infinite sequence of independent trials. The appeal of
these interpretations lies in the fact that they refer directly to the way probabilities
are experimentally measured.

The difficulty with the first definition is that ‘likely to be’ seems to involve the
concept of probability again, while the difficulty with the second definition is that
infinite sequences of independent trials do not occur in reality. Both definitions
have the difficulty that they lean heavily on the concept of independence, the
definition of which also seems to involve probabilities. The disadvantage of the
interpretation we have just given is that the additive property (b) of probability
laws has no justification, but the point of view taken here is that nature is as it is
and does not need justification.
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By definition, a real-valued random variable, defined on a finite probability space
(Ω,P(Ω), µ), is a function X : Ω→ R. We interpret the event

{X = x} := {ω ∈ Ω : X(ω) = x}

as the event that the random variable X takes on the value x. Similarly, we
write {X < x} := {ω ∈ Ω : X(ω) < x} to denote the event that X takes
on a value smaller than x, and so on. Note that since Ω is finite, the range
R(X) = {X(ω) : ω ∈ Ω} is finite. We call∫

X dµ :=
∑
ω∈Ω

X(ω)µ(ω) =
∑

x∈R(X)

xµ({X = x})

the expected value of X.

Example Consider a shuffled deck of cards from which the jacks, queens, kings,
and aces have been removed. Let V := {2, 3, 4, 5, 6, 7, 8, 9, 10} be the set of values
and C := {heart,spade,diamond,clover} the set of colors. Then C × V = {(c, v) :
c ∈ C, v ∈ V } is the set of all cards in our deck and

Ω :=
{(

(c1, v1), . . . , (c36, v36)
)

: (ci, vi) 6= (cj, vj) ∀i 6= j, (ci, vi) ∈ C ×D ∀i
}

is the set of all permutations of C × V . We choose Ω as our state space. A state
ω =

(
(c1, v1) . . . , (c36, v36)

)
∈ Ω describes the cards in our reduced deck, ordered

from top to bottom. Since we believe that every order of the cards has the same
probability, we choose as our probability law

µ(A) :=
|A|
|Ω|

(A ∈ P(Ω)),

where |A| denotes the number of elements in a set A. For example, the set

A := {
(
(c1, v1) . . . , (c36, v36)

)
∈ Ω : c1 = c2}

describes the event that the first two cards have the same color. The probability
of this event is

µ(A) =
|A|
|Ω|

=
36 · 8 · 34!

36!
=

8

35
.

The random variable
X
(
(c1, v1) . . . , (c36, v36)

)
:= v1

describes the value of the first card. The expected value of X is∫
X dµ =

10∑
x=2

xµ({X = x}) =
1

9

10∑
x=2

x =
55

9
= 61

9
.
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2.3 Quantum probability spaces

By definition, a (finite dimensional) quantum probability space is a pair (A, ρ)
where A is a Q-algebra and ρ : A → C is a function with the following properties:

(a) ρ(aA+ bB) = aρ(A) + bρ(B) (A,B ∈ A, a, b ∈ C),
(b) ρ(A∗) = ρ(A)∗ (A ∈ A),
(c) ρ(A∗A) ≥ 0 (A ∈ A),
(d) ρ(1) = 1.

We call ρ a probability law on A. Note that by property (b), ρ(A∗A) is a real
number for all A ∈ A. By Exercise 1.2.16, property (c) is equivalent to saying that
ρ(A) ≥ 0 whenever A is a positive operator. Note that by linearity this implies
that ρ(A) ≤ ρ(B) whenever A ≤ B.

We interpret a quantum probability space (A, ρ) as follows.

1◦ A quantum probability space (A, ρ) describes incomplete knowledge about
a system in the physical reality.

2◦ We interpret a projection P ∈ A as a possible observation on the system. We
interpret a partition of the identity {P1, . . . , Pn} as an ideal measurement on
the system, that can yield the observations P1, . . . , Pn.

3◦ The probability law ρ assigns to each observation P ∈ A a probability ρ(P ).
The probability ρ(P ) measures how likely we judge it to be that an ideal
measurement {P1, P2, . . . , Pn} with P = Pi for some i, will yield the observa-
tion P , if we perform the measurement. The larger ρ(P ) is, the more likely
is P . If ρ(P ) = 1, then any measurement that can yield P will surely yield
it, if we perform the measurement.

4◦ If someone performs the ideal measurement {P1, . . . , Pn} on the system, then
this in general influences the system, with the result that we must describe
our knowledge about the system with a new probability law ρ′ on A, defined
as ρ′(A) :=

∑n
i=1 ρ(PiAPi).

5◦ If an ideal measurement is performed on the system and we learn that this
measurement has yielded the observation P , then our knowledge about the
system changes. We must describe our changed knowledge with a new prob-
ability law ρ̃ on A, defined as ρ̃(A) := ρ(PAP )/ρ(P ). This formula is not
defined if ρ(P ) = 0 but in that case we were sure that the ideal measurement
would not yield P , so that in this situation there was something wrong with
the way we described our knowledge before the observation.
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Exercise 2.3.1 If ρ is a probability law on A and {P1, . . . , Pn} is a partition of the
identity, then show that ρ(P1), . . . , ρ(Pn) are nonnegative real numbers, summing
up to one. Show that the functions ρ′ and ρ̃ defined in point 4◦ and 5◦, respectively,
are probability laws on A.

A characteristic property of the interpretation of quantum probability we have
just given is the central role played by ideal measurements. While not every
measurement is ‘ideal’, for the interpretation given above it is essential that we
have a collection of measurements at our disposal that for all practical purposes
may be regarded as ideal. Typically, observations in our everyday macroscopic
world that do not disturb the subject we are measuring are ideal. For example,
seeing a subject with our eyes of hearing it make a sound may typically be regarded
as an ideal observation on that subject.

Although the rules of quantum mechanics presumably govern everything around
us, the typical quantum mechanical effects can usually only be observed on par-
ticles that are extremely small, like electrons, protons, or photons. Therefore, we
typically need some delicate measuring equipment to observe these objects. While
the observations we perform on the measuring equipment (e.g. reading off a dis-
play) may for all practical purposes be regarded as an ideal measurement on the
equipment, it is not always true that the resulting effect on our objects of interests
(such as electrons, protons, or photons) is that of an ideal measurement. In order
to determine this, we need to study the complex physical (quantum mechanical)
laws governing the interaction of the measuring equipment with our objects of
interest. Since this falls outside the scope of the present lecture notes, we will
usually take the possibility of performing ideal measurements for granted.

Apart from the central role played by ideal measurements, two awkward differences
between quantum probability and classical probability strike us immediately. First
of all, the states ω that play such an important role in classical probability have
completely disappeared from the picture. Second, the bare fact that someone
performs a measurement on a system, even when we don’t know the outcome,
changes the system in such a way that we must describe our knowledge with a
new probability law ρ′. In the next section we will see that if the algebra A is
abelian, then these differences are only seemingly there, and in fact we are back at
classical probability. On the other hand, if A is not abelian, quantum probabilities
are really different, and pose a serious challenge to our imagination.

The interpretation of quantum mechanics is notoriously difficult, and the interpre-
tation we have just given is not undisputed. There is an extensive literature on the
subject in which innumerably many different interpretations have been suggested,
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with the result that almost everything one can say on this subject has at some
point been fiercely denied by someone. As an introduction to some of the different
points of view, the book by Redhead [Red87] is very readable.

Not only the interpretation of quantum mechanics, but also the presentation of
the mathematical formalism shows a broad variation in the literature. Apart from
the approach taken here, one finds introductions to quantum mechanics based on
wave functions, Hilbert spaces, or projection lattices. To add to the confusion, it is
tradition to call the probability law ρ a ‘mixed state’, even though it is conceptually
something very different from the states ω of classical probability.

In quantum probability, hermitian operators are called observables. They corre-
spond to real-valued physical quantities and may be regarded as the equivalent of
the real random variables from classical probability. Let

A =
∑

λ∈σ(A)

λPλ

be the spectral decomposition of a hermitian operator A in some Q-algebra. We
interpret

{Pλ : λ ∈ σ(A)}

as an ideal measurement of the observable A. We interpret Pλ as the observation
that A takes on the value λ. We call

ρ(A) =
∑

λ∈σ(A)

λρ(Pλ)

the expected value of A.

Example (Polarization) It is well-known that light can be decomposed into
two polarization directions, perpendicular to the direction in which it travels. For
example, polaroid sunglasses usually filter the vertically polarized component of
light away, leaving only the horizontally polarized component. Using prismas, it
is possible to split a light beam into two orthogonally polarized beams. Apart
from the well-known linear polarization, there is also the often-neglected circular
polarization, which has recently come into the limelight because of its use in 3D
cinemas. The most general form of polarization is elliptic polarization, which
interpolates between linear and circular polarization.

On the level of the individual photons (light particles), our knowledge of the po-
larization of a single photon can be described by a probability law on a Q-algebra
of the form L(H), where H is a two-dimensional inner product space. An ideal
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measurement of the polarization is described by a partition of the identity {P,Q},
where P and Q project on orthogonal one-dimensional subspaces of H. Each one-
dimensional subspace of H corresponds to a certain way in which the photon can
be polarized.
For concreteness, let us assume that the photon moves horizontally and in the di-
rection of the observer. We may choose an orthonormal basis {e(1), e(2)} ofH such
that the linear subspaces spanned by e(1) and e(2) correspond to horizontal and
vertical linear polarization, respectively. Let F ⊂ H be a general one-dimensional
subspace of H. To determine what kind of polarization F corresponds to, we
choose a vector φ ∈ F with norm ‖φ‖ = 1, and consider the function φ(t) := eitφ
(t ∈ R). With respect to the basis {e(1), e(2)}, we can write φ and more generally
φ(t) in coordinates as

φ = φ1e(1) + φ2e(2) and φ(t) = φ1(t)e(1) + φ2(t)e(2).

Now let us look at the function

t 7→
(
Re(φ1(t)),Re(φ2(t))

)
. (2.1)

This function is obviously periodic, with period 2π. If we had chosen another
vector φ′ ∈ F of norm one, then φ′ = eisφ for some s ∈ [0, 2π), so except for a
time-shift, we would have obtained the same function. In general, the function in
(2.1) moves in an ellips around the origin.
In the special case that φ = e(1), this ellips reduces to a horizontal line, in line with
the fact that the subspace spanned by e(1) corresponds to a horizontally polarized
photon. Likewise, if φ = e(2), then the function in (2.1) moves in a vertical line,
which corresponds to vertical polarization. More generally, if φ is of the form

φ = cos(α)e(1) + sin(α)e(2) =: η(α), (2.2)

with α ∈ [0, 2π), then the function in (2.1) becomes

t 7→
(

cos(α), sin(α)
)
Re(eit),

which moves in a line that makes an angle α with the horizontal line. This corre-
sponds to linearly polarized light in the direction α. Note that η(α) = −η(α+ π),
so η(α) and η(α + π) span the same subspace of H.
If we take

φ = 1√
2

(
e(1)± ie(2)

)
,

then the function in (2.1) becomes

t 7→ 1√
2

(
Re(eit),Re(ei(t±π/2))

)
= 1√

2

(
cos(t),∓ sin(t)

)
,
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which moves in a circle of radius 1√
2

around the origin. Depending on whether the
function moves in a clockwise or anticlockwise direction, this corresponds to the
two possible forms of circular polarization.
Polarization of photons can be measured. The easiest way is to place a filter in
a beam of photons that lets pass only photons of a certain polarization (linear
in a given direction or circular with a given orientation). For a good filter, if P
denotes the projection on the subspace of the give type of polarization, and ρ is
a probability law describing our knowledge about the polarization of the photon
before it reaches the filter, then the probability that the photon passes the filter
is ρ(P ), and all photons that pass the filter have to be described by the new
probability law ρ̃(A) := ρ(PAP )/ρ(P ). Thus, this is like performing the ideal
measurement {P, 1 − P} on all incoming photons, and then throwing away those
that did not yield the desired outcome of the measurement.
For linear polarization, there is a better way of measuring polarization, that does
not destroy any photons. Using a prisma, we can split an incoming beam of photons
into two beams, going in different directions, of which one beam is polarized in a
direction α and the other in the perpendicular direction α + π/2. On each beam,
we can then perform further experiments; in particular, we can split each outgoing
beam into a part that is polarized in a direction α′ and a direction α′ + π/2. If
the original beam has polarization α, then, as we will see in Excercise 2.3.2 below,
the fraction of photons that will be found to have polarization direction α′ in this
second experiment is cos(α′ − α)2. Although this comes closer to being an ideal
measurement, in practice, we do not know when a photon passes through a certain
beam. In the end, we still have to detect the photon. Although it is possible to
detect a single photon, this usually means destroying it.

Exercise 2.3.2 Let η(α) be defined as in (2.2). For each α ∈ R, let Pα denote
the projection operator Pα := |η(α)〉〈η(α)|. Let ρ be any probability law on L(H)
such that ρ(Pα) > 0, and define ρα(A) := ρ(PαAPα)/ρ(Pα). Prove that

ρα(A) = 〈η(α)|A|η(α)〉.

Prove in particular that

ρα(Pα′) = cos(α′ − α)2.

Show that the projections Pα and Pβ in different directions α and β in general do
not commute.

Example (Spin) Electrons have a property called spin, which is a form of angular
momentum. Let H be a two-dimensional inner product space with orthonormal
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basis {e(1), e(2)}. Define hermitian operators Sx, Sy, Sz ∈ L(H) by their matrices
with respect to {e(1), e(2)} as:

Sx :=

(
0 1
1 0

)
,

Sy :=

(
0 −i
i 0

)
,

Sz :=

(
1 0
0 −1

)
.

Chosing an appropriate basis, we can describe the three-dimensional space that we
live in by R3. Let θ = (θx, θy, θz) ∈ R3 be a vector such that ‖θ‖ = θ2

x +θ2
y +θ2

z = 1.
Then the spin of an electron in the direction θ is a physical quantity, described by
the observable

Sθ := θxSx + θySy + θzSz.

One can check that its spectrum is

σ(Sθ) = {−1,+1}.

Thus, no matter in which direction θ we measure the spin of an electron, we can
always find only two values: −1 (‘spin down’) or +1 (‘spin up’). Ideal measure-
ments of the spin of an electron are possible, using magnetic fields that deflect
electrons in a beam in different directions depending on their spin.

2.4 (Non)commutative probability

Although the quantum probability spaces and their interpretation from Section 2.3
seem rather different from the ‘classical’ probability spaces from Section 2.2, we
will see here that the latter are actually a special case of the former. More precisely,
we will show that a quantum probability space (A, ρ) is equivalent to a ‘classical’
probability space (Ω,P(Ω), µ) if and only if the algebra A is abelian.

If Ω is a finite set, we write

CΩ := {f : Ω→ C}

to denote the space of all functions from Ω into C. We equip CΩ with the structure
of a ∗-algebra in the obvious way, i.e.,

(af + bg)(ω) := af(ω) + bg(ω) (f, g ∈ CΩ, a, b ∈ C, ω ∈ Ω),
(fg)(ω) := f(ω)g(ω) (f, g ∈ CΩ, ω ∈ Ω),
f ∗(ω) := f(ω)∗ (f ∈ CΩ, ω ∈ Ω).
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It is clear from the second relation that CΩ is abelian. Note that CΩ satisfies prop-
erty (viii) from the Section 2.1, i.e., CΩ is a Q-algebra. The next theorem shows
that there is a one-to-one correspondence between abelian quantum probability
spaces and classical probability spaces.

Theorem 2.4.1 (Abelian Q-algebras) Let A be a Q-algebra. Then A is abelian
if and only if A is isomorphic to a Q-algebra of the form CΩ, where Ω is a finite
set. If µ : P(Ω)→ R is a probability law, then

ρ(f) :=

∫
f dµ (2.3)

defines a probability law on CΩ, and conversely, every probability law ρ on CΩ

arises in this way.

We defer the proof of Theorem 2.4.1 to Section 5.7.

Remark We may represent the algebra CΩ as an algebra of linear operators on
an inner product space H as follows. Enumerate the elements of Ω in some way,
say Ω = {1, . . . , n}, and let A be the algebra of all diagonal n× n matrices of the
form

Aij = δijf(i) (i = 1, . . . , n),

where f ∈ CΩ. Then obviously A ∼= CΩ.

It is not hard to see that an element f of the abelian Q-algebra CΩ is a projection
if and only if f = 1A for some A ⊂ Ω, where for any subset A ⊂ Ω the indicator
function 1A ∈ CΩ is defined as

1A(ω) :=

{
1 if ω ∈ A,
0 if ω 6∈ A.

An ideal measurement on CΩ is a collection of indicator functions {1A1 , . . . , 1An}
where {A1, . . . , An} is a partition of Ω, i.e., Ai ∩ Aj = ∅ for all i 6= j and A1 ∪
· · · ∪ An = Ω. Thus, ideal measurements on CΩ determine which of the mutually
exclusive events A1, . . . , An takes place. We can list the corresponding notions in
classical and quantum probability in the following table:

Classical probability Quantum probability
Event A Observation P

Partition {A1, . . . , An} of Ω Ideal measurement {P1, . . . , Pn}
Probability law µ Probability law ρ

Conditioned probability law µ̃ Conditioned probability law ρ̃
Real random variable X Hermitian operator A
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In the abelian case, there is a one-to-one correspondence between the objects on
the left-hand and right-hand side. In general, the objects on the right-hand side
may be seen as a sort of generalization of those on the left-hand side.

The law ρ′ from point 4◦ of our interpretation of quantum probability spaces does
not have a classical counterpart. Indeed, ifA is abelian and {P1, . . . , Pn} is an ideal
measurement, then ρ′(A) :=

∑n
i=1 ρ(PiAPi) = ρ(A). Thus, in classical probability,

ideal measurements do not perturb the system they are measuring.

The states ω ∈ Ω from classical probability do not have a quantum mechanical
counterpart. Let us say that a probability law ρ on a Q-algebra A is a precise
state if

ρ(P ) ∈ {0, 1} ∀P ∈ A such that P is a projection.

On an abelian Q-algebra CΩ, it is easy to see that the precise states are exactly
the probability laws of the form ρ = δω, where

δω(f) := f(ω) (ω ∈ Ω),

and that every probability law on CΩ can in a unique way be written as a convex
combination of these precise states. Thus, ‘precise states’ on an abelian Q-al-
gebra correspond to the states ω from classical probability. We will later see
that on a nonabelian Q-algebra, not every probability can be written as a convex
combination of precise states. In fact, if A = L(H) with dim(H) ≥ 2, then there
do not exist any precise states on A at all.
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Chapter 3

Infinite dimensional spaces*

3.1 Measure theory*

In measure theory, it is custom to extend the real numbers by adding the points
∞ and −∞, with which one calculates according to the rules

a · ∞ :=


−∞ if a < 0,
0 if a = 0,
∞ if a > 0,

while a+∞ :=∞ if a 6= −∞, and ∞−∞ is not defined.

By definition, measure space is a triple (Ω,F , µ) with the following properties. 1◦

Ω is a set (possibly infinite). 2◦ F ⊂ P(Ω) is a subset of the set of all subsets of
Ω with the following properties:

(a) A1, A2, . . . ∈ F ⇒
⋃∞
i=1Ai ∈ F ,

(b) A ∈ F ⇒ Ac ∈ F ,
(c) Ω ∈ F .

Such a F is called a σ-algebra or σ-field. 3◦ µ : F → [0,∞] is a function such that

(a) A1, A2, . . . ∈ F , Ai ∩ Aj = ∅ ∀i 6= j ⇒ µ
(⋃∞

i=1 Ai
)

=
∑∞

i=1 µ(Ai).

Such a function is called a measure. If

(b) µ(Ω) = 1,

then µ is called a probability measure. In this case (Ω,F , µ) is called a probability
space. It is not hard to see that if Ω is a finite set and F = P(Ω), then we are
back at our previous definition of a probability space.

43
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Let (Ω,F , µ) be a measure space. By definition, a function X : Ω → [−∞,∞] is
measurable if

{ω : X(ω) ≤ a} ∈ F ∀a ∈ R.

If X is nonnegative, then this is equivalent to the fact that X can be written as

X =
∞∑
i=1

ai1Ai (ai ≥ 0, Ai ∈ F).

For such functions, one defines the integral as∫
Xdµ :=

∞∑
i=1

aiµ(Ai).

One can show that this definition is unambiguous, i.e., does not depend on the
choice of the ai and Ai. If X is not nonnegative, then one puts X = X++X− where
X+, X− are nonnegative measurable functions and defines

∫
Xdµ :=

∫
X+dµ −∫

X−dµ. The integral of X is not defined if
∫
X+dµ −

∫
X−dµ happens to be

∞−∞.

3.2 Metric and normed spaces*

Let E be a set. By definition, a metric on E is a function d : E×E → [0,∞) such
that

(a) d(x, y) = d(y, x) (x, y ∈ E),
(b) d(x, z) ≤ d(x, y) + d(y, z) (x, y, z ∈ E),
(c) d(x, y) = 0 if and only if x = y (x, y ∈ E).

A metric space is a pair (E, d) where E is a set and d is a metric on E.

We say that sequence xn ∈ E converges to a limit x in the metric d, and write
xn → x, if

∀ε > 0 ∃n s.t. ∀m ≥ n : d(xn, x) ≤ ε.

For any D ⊂ E, we call

D := {x ∈ E : ∃xn ∈ D s.t. xn → x}

the closure of D. A subset D ⊂ E is closed if D = D. A subset D ⊂ E is open if
its complement Dc is closed. A subset D ⊂ E is dense if D = E. A metrix space
is separable if there exists a countable dense set D ⊂ E. If E,F are metric spaces,
then a function f : E → F is continuous if f(xn)→ f(x) whenever xn → x.
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A Cauchy sequence is a sequence xn such that

∀ε > 0 ∃n s.t. d(xk, xm) ≤ ε ∀k,m ≥ n.

A metric space is complete if every Cauchy sequence has a limit.

A metric space is compact if every sequence xn ∈ E has a convergent subsequence,
i.e., there exist m(n)→∞ and x ∈ E such that xm(n) → x.

Let V be a linear space (possibly infinite dimensional) over K = R or C. By
definition, a norm on V is a function V 3 φ 7→ ‖φ‖ from V into [0,∞) such that

(a) ‖aφ‖ = |a|‖φ‖ (a ∈ K, φ ∈ V),
(b) ‖φ+ ψ‖ ≤ ‖φ‖+ ‖ψ‖ (φ, ψ ∈ V),
(c) ‖φ‖ = 0 implies φ = 0 (φ ∈ V).

A normed space is a pair (V , ‖ · ‖) where V is a linear space and ‖ · ‖ is a norm on
V . If ‖ · ‖ is a norm on V , then

d(φ, ψ) := ‖φ− ψ‖

defines a metric on V , which is called the metric associated with ‖ · ‖. Two norms
‖ · ‖ and ‖ · ‖′ are called equivalent if there exists constants 0 < c < C such that

c‖φ‖ ≤ ‖φ‖′ ≤ C‖φ‖ (φ ∈ V).

If ‖ · ‖ and ‖ · ‖′ are equivalent norms, then a sequence xn converges in ‖ · ‖, or
is a Cauchy sequence in ‖ · ‖, if and only if the corresponding property holds for
‖ · ‖′. Thus, concepts such as open, closed, complete, and compact do not depend
on the choice of an equivalent metric.

IfH is a linear space (possibly infinite dimensional) equipped with an inner product
〈·|·〉, then

‖φ‖ :=
√
〈φ|φ〉 (φ ∈ H)

defines a norm on H, called the norm associated with the inner product.

Let K = R or C. Then the space Kn equipped with the inner product

〈(φ1, . . . , φn)|(φ1, . . . , φn)〉 :=
n∑
i=1

φ∗iψi

and the associated norm and metric, is complete and separable. In fact, all norms
on Kn are equivalent and therefore Kn is complete and separable in any norm. A
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subset D of Kn is compact if and only if it is closed and bounded, i.e., supφ∈D ‖φ‖ <
∞.

In the infinite dimensional case, not all normed spaces are complete. A complete
normed space is called a Banach space. A complete inner product space is called
a Hilbert space.

Example I Let K = R or C. Let E be a compact metric space and let

C(E) := {f : E → K : f is continuous},

equipped with the supremum norm

‖f‖ := sup
x∈E
|f(x)|.

Then C(E) is a Banach space.

Example II Let K = R or C. Let (Ω,F , µ) be a measure space and

L2(µ) := {φ : Ω→ K : φ is measurable and

∫
|φ|2 dµ <∞}.

Let L2(µ) be the quotient space

L2(µ) := L2(µ)/N (µ),

where N (µ) := {φ ∈ L2(µ) :
∫
|φ|2 dµ = 0}. Then L2(µ), equipped with the inner

product

〈φ|ψ〉 :=

∫
(φ∗ψ)dµ

is a Hilbert space.

3.3 Hilbert spaces*

Recall that a Hilbert space is a complete inner product space. For any two Hilbert
spaces H1,H2, a linear operator A : H1 → H2 is continuous if and only if it is
bounded, i.e.,

‖A‖ := sup
‖φ‖≤1

‖Aφ‖ <∞.

We let L(H1,H2) denote the Banach space of all bounded linear operators A : H1 →
H2, equipped with the operator norm ‖A‖. Generalizing our earlier definition, we
call the space of all bounded linear forms H′ := L(H,K) the dual of H. The Riesz
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lemma says that the map φ 7→ 〈φ| is a colinear bijection from H to H′, which
preserves the norm. In particular

H′ = {〈φ| : φ ∈ H}.

If H1,H2 are Hilbert spaces with inner products 〈·|·〉1 and 〈·|·〉2, respectively, and
A ∈ L(H1,H2), then there exists a unique adjoint A∗ ∈ L(H1,H2) such that

〈φ|Aψ〉2 = 〈A∗φ|ψ〉1 (φ ∈ H2, ψ ∈ H1).

If F ⊂ H is a closed linear subspace of H, then each vector φ ∈ H can in a unique
way be written as

φ = φ′ + φ′′ (φ′ ∈ F , φ′′ ∈ F⊥).

We call φ′ the orthogonal projection of φ on the subspace F , and write

φ′ =: PFφ.

One can check that PF ∈ L(H) := L(H,H) satisfies P ∗F = PF = P 2
F . Conversely,

every P ∈ L(H) := L(H,H) such that P ∗ = P = P 2 is of the form P = PF for
some closed subspace F ⊂ H.

The spectrum of a bounded linear operator A ∈ L(H) is defined as

σ(A) := {λ ∈ K : (λ− A) is not invertible}.

(Compare Exercise 1.1.2.) Warning: the spectrum is in general larger than the set
of eigenvalues of A! One can show that σ(A) is a compact1 subset of K. If K = C,
then σ(A) is nonempty.

There is also an analogue of Theorem 1.2.10. Indeed, if A ∈ L(H) is normal,
i.e., AA∗ = A∗A, then one can define a spectral measure P that assigns to each
measurable subset D ⊂ C a projection operator P(D) ∈ L(H). One can define
integration with respect to the spectral measure, and give sense to the formula

A =

∫
σ(A)

λP(dλ).

In fact, P is concentrated on σ(A), so it makes no difference whether we integrate
over σ(A) or over C. If f : C → C is a continuous function and A ∈ L(H) is a
normal operator, then one defines a normal operator f(A) by

f(A) :=

∫
σ(A)

f(λ)P(dλ).

1There also exists mathematical theory for self-adjoint operators with a non-compact spec-
trum, but such operators are unbounded and only defined on a dense subset of H. Many im-
portant observables in quantum mechanics, such as those for the position and momentum of a
particle, are described by unbounded self-adjoint operators.
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3.4 C∗-algebras*

By definition, a C∗-algebra is a (possibly infinite dimensional) complex ∗-algebra
A equipped with a norm ‖ ·‖ such that, in addition to the properties (i)–(vii) from
Section 2.1,2

(viii)′ A is complete in the norm ‖ · ‖
(ix)′ ‖AB‖ ≤ ‖A‖‖B‖ (A,B ∈ A)
(x)′ ‖A∗A‖ = ‖A‖2

Note that property (x)’ implies property (viii) from Section 2.1, so finite dimen-
sional C∗-algebras are Q-algebras. Conversely, every Q-algebra can in a unique
way be equipped with a norm ‖ · ‖ such that (viii)’–(x)’ hold.3

If H is a Hilbert space, then the space L(H) of bounded linear operators on
H, equipped with the operator product, adjoint, and norm, is a C∗-algebra. In
analogy with Theorem 2.1.5 one has the following theorem about representations
of C∗-algebras.

Theorem 3.4.1 (Gelfand-Naimark) Let A be a C∗-algebra. Then there exists
a Hilbert space H and a sub-∗-algebra A′ of L(H) such that A is isomorphic to
A′. If A is separable then we may take H separable.

Probability laws on C∗-algebras are defined exactly as in the finite dimensional
case. We can therefore define an infinite dimensional quantum probability space
as a pair (A, ρ) where A is a C∗-algebra and ρ is a probability on A.

Let E be a compact metric space and let C(E) := {f : E → C continuous},
equipped with the supremum norm. We equip C(E) with the structure of a ∗-al-
gebra by putting fg(x) := f(x)g(x) and f ∗(x) := f(x)∗. Then C(E) is a separable
abelian C∗-algebra. The following infinite dimensional analogue of Theorem 2.4.1
says that conversely, every separable abelian C∗-algebra arises in this way.

Theorem 3.4.2 (Abelian C∗-algebras) Let A be a separable abelian C∗-alge-
bra. Then there exists a compact metric space E such that A is isomorphic to
C(E).

2Here, we only consider C∗-algebras which contain a unit element.
3This can be proved using Theorem 2.1.5. I do not know of any way to prove the statement

without making use of Theorem 2.1.5. If one could find such a proof, then Theorem 2.1.5 would
follow from Theorem 3.4.1 by specializing to the finite-dimensional case. The only proof of
Theorem 2.1.5 known to me is quite different from the proof of Theorem 3.4.1.
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It can moreover be proved that if µ is a probability measure on E, equipped with
the σ-field generated by the open sets, then

ρ(f) :=

∫
f dµ

defines a probability law ρ on the C∗-algebra C(E), and conversely, every proba-
bility law on C(E) arises in this way. Thus, abelian quantum probability spaces
correspond to classical probability spaces. (The facts that A is separable and E is
a compact metric space are not really restrictions. In fact, in quantum probabil-
ity, it is standard to assume that the C∗-algebra is separable, while all interesting
models of classical probability can be constructed with probabilities defined on
compact metric spaces.)
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Chapter 4

Some quantum mechanics

4.1 States

So far, probability laws on Q-algebras have been defined abstractly, as functions
ρ : A → C having certain properties. In practice, we usually work with a concrete
representation of A as a sub-∗-algebra of the algebra L(H) of all linear operators
on some (complex) inner product spaceH. We need a practical way of constructing
probability laws on such a Q-algebra. To prepare for this, we need some definitions.

Let A be any (abstract) Q-algebra. By definition, a positive linear form is a map
ρ : A → C that is (a) linear, (b) real, and (c) positive, i.e.,

(a) ρ(aA+ bB) = aρ(A) + bρ(B) (a, b ∈ C, A,B ∈ A),

(b) ρ(A∗) = ρ(A)∗ (A ∈ A),

(c) ρ(A∗A) ≥ 0 (A ∈ A).

Note that probability laws are normalized positive linear forms. A positive linear
form is called faithful if in addition

(d) ρ(A∗A) = 0 implies A = 0.

If ρ is a faithful positive linear form on A, then

〈A|B〉ρ := ρ(A∗B) (A,B ∈ A) (4.1)

defines an inner product on A. A positive linear form τ is called a pseudotrace if

τ(AB) = τ(BA) (A,B ∈ A).

51
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If L(H) is the algebra of all linear operators on some (complex) inner product
space H, and A is a sub-∗-algebra of L(H), then the usual trace tr(A) is a faithful
pseudotrace on A. Thus, by Theorem 2.1.5, on each Q-algebra there exists at least
one faithful pseudotrace.1 In Exercise 5.5.3 below, we will see that on algebras of
the form L(H), all pseudotraces are constant multiples of the usual trace.

The next proposition says that if A is a Q-algebra with a concrete representation
on an inner product space H, then every probability law ρ has a density (or density
operator) R with respect to the trace.2

Proposition 4.1.1 (Density operator) Let L(H) be the algebra of all linear
operators on an inner product space H and let A be a sub-∗-algebra of L(H). Let
R ∈ A be positive hermitian such that tr(R) = 1. Then the formula

ρ(A) := tr(RA) (A ∈ A)

defines a probability law on A. Conversely, every probability law on A arises in
this way and R is uniquely determined by ρ.

Proof It is easy to check that the formula ρ(A) := tr(RA) defines a probability
law.3 To prove that every probability law arises in this way, we use that 〈A|B〉 :=
tr(A∗B) defines an inner product on A. Therefore, since a probability law ρ is a
linear form on A, there exists a unique R ∈ A such that

ρ(A) = 〈R|A〉 = tr(R∗A) (A ∈ A).

Since ρ is real,

tr(R∗A∗) = ρ(A∗) = ρ(A)∗ = tr(R∗A)∗ = tr(A∗R) = tr(RA∗).

Since this holds for all A ∈ A, we must have R∗ = R, i.e., R is hermitian. By
Lemma 2.1.6 we can write R =

∑n
i=1 λiPi where {P1, . . . , Pn} is a partition of

the identity with Pi ∈ A for each i; assume that one of the eigenvalues λi is

1In fact, it can be proved that property (viii) in the definition of a Q-algebra is equivalent to
the existence of a faithful pseudotrace.

2More generally, if A is an abstract Q-algebra and τ is a faithful pseudotrace on A, then
every probability law ρ on A has a density R with respect to τ . Since there exists, in general,
more than one pseudotrace on a given Q-algebra, the density R will depend on the choice of the
pseudotrace.

3To check property (c), we use the functional calculus for normal operators to define
√
R and

write ρ(A∗A) = tr(RA∗A) = tr(
√
RA∗A

√
R) = tr((A

√
R)∗A

√
R) ≥ 0.
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strictly negative. Then ρ(Pi) = tr((
∑

j λjPj)Pi) = λjtr(P
2
i ) < 0), which gives a

contradiction. Thus R must be positive.

Let A be a Q-algebra. In quantum mechanics, it is a (bad) tradition to call a
probability law ρ on A a state. Note that the set of all probabilities is a convex
subset of the space of all real linear forms, i.e., if ρ1, . . . , ρn are probabilities and
p1, . . . , pn ≥ 0 with

∑
i pi = 1, then

ρ :=
∑
i

piρi

is a probability law on A. By definition, a pure state is a probability law ρ that is
not a nontrivial convex combination of other states, i.e., it is not possible to write
ρ = pρ1 + (1 − p)ρ2 with 0 < p < 1 and ρ1 6= ρ2. A probability law that is not a
pure state is called a mixed state.

By definition, a minimal projection in some Q-algebra A is a projection P ∈ A
such that P 6= 0 and the only projections Q with Q ≤ P are Q = 0 and Q = P . By
definition, a maximally fine partition of the identity is a partition of the identity
that consists of minimal projections.

The following proposition identifies minimal projections with pure states and says,
among other things, that every state can be written as a convex combination of
pure states. This decomposition is in general not unique!

Proposition 4.1.2 (Pure states and minimal projections) If P is a minimal
projection in a Q-algebra A then there exists a pure state ρP on A such that

PAP = ρP (A)P (A ∈ A).

Conversely, every pure state is of this form. Every state ρ on A can be written as

ρ(A) =
n∑
j=1

pjρPj

where {P1, . . . , Pn} is a maximally fine partition of the identity and the pj are
nonnegative numbers, summing up to one.

To prepare for the proof of Proposition 4.1.2, we need one preparatory lemma.

Lemma 4.1.3 (Existence of nontrivial projections) Let H be an inner prod-
uct space and let A ⊂ L(H) be a sub-∗-algebra of L(H). Assume that 1 and 0 are
the only projections in A. Then A = {λ1 : λ ∈ C}.
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Proof Imagine that A contains some element A that is not a constant multiple of
the identity operator. By Exercise 2.1.2, we may write A = Re(A)+iIm(A), where
Re(A) and Im(A) are hermitian operators. Since A is not a constant multiple of
the identity operator, either Re(A) or Im(A) must be not a constant multiple
of the identity operator, so A contains some hermitian operator, say B, that is
not a constant multiple of the identity operator. By Lemma 2.1.6, we can write
B =

∑
λ∈σ(B) λPλ where {Pλ : λ ∈ σ(B)} is a partition of the identity and Pλ ∈ A

for each λ ∈ σ(B). Since B is not a constant multiple of the identity operator,
σ(B) must have more than one element, so A must contain a projection that is
different from 1 or 0.

Proof of Proposition 4.1.2 By Theorem 2.1.5, we may without loss of generality
assume that there exists an inner product space H such that A is a sub-∗-algebra
of L(H). Let P ∈ A be a minimal projection and let F ⊂ H be the space that P
projects on. Consider the space

B := {PAP : A ∈ A}.

An element PAP of B maps the space F into itself, so we may view such an
operator as an element of L(F). If we do this, then we claim that B is a sub-∗-alge-
bra of L(F). Indeed, (PAP )(PBP ) = P (APB)P ∈ B and (PAP )∗ = PA∗P ∈ B
for all PAP, PBP ∈ B, and P1P = P is the identity operator in L(F). We
claim that each element of B is a constant multiple of P . Indeed, if this is not
the case, then by Lemma 4.1.3, there exists a projection in B that is neither 0
nor the identity on L(F), which is P . Thus, there exists some A ∈ A such that
Q ∈ PAP is a projection operator in L(F) with Q 6= 0, P . But then Q is a
projection operator in A with Q ≤ P , contradicting the minimality of P .

It follows that for each minimal projection P ∈ A, there exists a function ρP :
A → C such that

PAP = ρP (A)P (A ∈ A).

We claim that ρP is a state. The facts that ρP is linear, real, and normalized
such that ρP (1) = 1 are straightforward. To see that ρP is positive, we write
(AP )∗(AP ) = P (A∗A)P = ρP (A∗A)P . By Exercise 1.2.16, (AP )∗(AP ) is a posi-
tive operator, so we must have ρP (A∗A) ≥ 0.

We now claim that each state ρ on A can be written as a convex combination of
states of the form ρP . Let R be the density operator of ρ. By Lemma 2.1.6, we
can write R =

∑
λ∈σ(R) λPλ where {Pλ : λ ∈ σ(R)} is a partition of the identity

and Pλ ∈ A for each λ ∈ σ(R). If some of the projections Pλ is not minimal, then
we can find some projection Q 6= 0, Pλ with Q ≤ Pλ. Then also Pλ −Q ≤ Pλ is a
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projection and we can refine our partition of the identity replacing Pλ by Q and
Pλ−Q. Continuing in this way, we can find a partition of the identity {P1, . . . , Pn}
such that each Pi is a minimal projection in A and R can be written as

R =
n∑
i=1

qiPi,

where the qi are nonnegative real numbers (since R is a positive operator) of which
some may occur more than once. Then

ρ(A) = tr(RA) =
n∑
i=1

qitr(PiA) =
n∑
i=1

qitr(PiAPi)

=
n∑
i=1

qitr(Pi)ρPi(A) =
n∑
i=1

piρPi(A) (A ∈ A),

where we have defined pi := qitr(Pi), which are nonnegative constants that must
obviously sum up to one in order to have ρ(1) = 1.

To complete the proof, we must show that states of the form ρP are extremal. We
have already shown that each state on A can be written as a convex combination of
states of the form ρP . In view of this, it suffices to prove the following statement.
Let P and P1, . . . , Pn be minimal projections and p1, . . . , pn be strictly positive
constants such that

ρP =
n∑
i=1

piρPi .

Then Pi = P for each i = 1, . . . , n. Since

0 = P (1− P )P = ρP (1− P )P =
n∑
i=1

piρPi(1− P )P,

we see that the nonnegative numbers ρPi(1−P ) must all be zero and hence Pi(1−
P )Pi = 0 for each i = 1, . . . , n. Since Pi(1 − P )Pi = ((1 − P )Pi)

∗((1 − P )Pi),
it follows that (1 − P )Pi = 0 and hence by Exercise 1.2.17 Pi ≤ P . Since P is
minimal, we conclude that Pi = P .

Remark Let H be an inner product space, let {e(1), . . . , e(n)} be an orthonormal
basis for H, and let A ⊂ L(H) be the abelian sub-∗-algebra of L(H) consisting of
all operators that are diagonal with respect to the basis {e(1), . . . , e(n)}. Then the
minimal projections are the operators of the form Pij = 1{i=j=k} with k = 1, . . . , n.
If we identify A ∼= CΩ where Ω = {1, . . . , n}, then the pure states on A correspond
to the delta-measures on Ω.
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Exercise 4.1.4 Let H be an inner product space and let A ⊂ L(H) be a sub-∗-
algebra of L(H). Let PF = P ∈ A be a mininal projection, where F ⊂ H is the
subspace that PF projects on. Show that the density opererator R of the pure
state ρPF is given by

R =
1

dim(F)
PF .

Exercise 4.1.5 Let A be a Q-algebra. Show that every real linear form ρ on A
can be written as ρ = ρ+ − ρ−, where ρ+, ρ− are positive linear forms. Show that
every linear form l on A be written as Re(l) + iIm(l), where Re(l), Im(l) are real
linear forms.

Exercise 4.1.6 Show that the pure states on a Q-algebra A span the space of all
linear forms on A.

Lemma 4.1.7 (Pure states on L(H)) Let H be an inner product space. Then
ρ is a pure state on L(H) if and only if there exists a vector ψ ∈ H with ‖ψ‖ = 1
such that

ρ(A) = ρψ(A) := 〈ψ|A|ψ〉 (A ∈ L(H)).

For any state ρ on L(H) there exists an orthonormal basis {e(1), . . . , e(n)} and
nonnegative numbers p1, . . . , pn, summing up to one, such that

ρ(A) =
∑
i

pi〈e(i)|A|e(i)〉 (A ∈ L(H)).

Proof The minimal projections on L(H) are those that project on a one-dimensio-
nal subspace, i.e., those of the form P = |ψ〉〈ψ| where ψ ∈ H has norm ‖ψ‖ = 1,
and maximally fine partitions of the identity consist of projections Pi = |e(i)〉〈e(i)|
that project on an orthonormal basis {e(1), . . . , e(n)}. Now if P = |ψ〉〈ψ|, then

ρP (A)P = PAP = |ψ〉〈ψ|A|ψ〉〈ψ| = 〈ψ|A|ψ〉|ψ〉〈ψ|,

which shows that
ρP (A) = 〈ψ|A|ψ〉.

The lemma is therefore just a special case of Proposition 4.1.2.

In the special case that our Q-algebra is of the form L(H), Lemma 4.1.7 shows
that every state vector ψ ∈ H with ‖ψ‖ = 1 defines a pure state ρψ, and every
pure state is of this form. This correspondence is almost one-to-one, except that
the state vectors

ψ and eiαψ (α ∈ [0, 2π)),
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differing only by the phase factor eiα describe the same pure state. Note that by
Exersice 4.1.8 below, two states ρ1, ρ2 are equal if and only if they give the same
probability to every observation (projection) P . Thus, there is no ‘redundant
information’ in states ρ.

State vectors were invented earlier than Q-algebras or C∗-algebras. The celebrated
Copenhagen interpretation of quantum mechanics says that the state of a quantum
mechanical system is described by a unit vector ψ in a Hilbert space H. Real
observables correspond to self-adjoint operators A. An observable A can assume
values in its spectrum σ(A). Let P be the spectral measure associated with A; in
the finite-dimensional case, this means that P(D) is the orthogonal projection on
the space spanned by all eigenvectors with eigenvalues in a set D ⊂ R. Then

‖P(D)ψ‖2 = 〈P(D)ψ|P(D)ψ〉 = 〈ψ|P(D)|ψ〉 = ρψ(P(D))

is the probability that an ideal measurement of A yields a value in D. Given that
we do such an observation, we must describe our sytem with the new state

ρ̃ψ(A) =
ρψ(P(D)AP(D))

ρψ(P(D))
=
〈P(D)ψ|A|P(D)ψ〉
‖P(D)ψ‖2

= ρψ̃(A),

where ψ̃ is the unit vector defined by

ψ̃ := 1
‖P(D)ψ‖P(D)ψ.

This recipe for conditioning a pure state is known as the projection postulate and
has been the subject of much discussion. It is worth mentioning that although
historically, the word projection postulate refers to the map ρ 7→ ρ̃ from our
interpretation of quantum probability spaces, in modern discussions of this topic,
the same term is sometimes used to refer to the map ρ 7→ ρ′ from our interpretation.

Exercise 4.1.8 Show that the projections in a Q-algebra A span the whole alge-
bra A. (Hint: Exercise 2.1.2.)

Exercise 4.1.9 Let A be a Q-algebra and let ρ1, ρ2 be states on A. Show that
ρ1(P ) = ρ2(P ) for all projections P ∈ A if and only if ρ1 = ρ2.

If A is abelian, then it is easy to see that a state ρ is pure if under ρ, each
projection P has either probability zero or one. The next exercise shows that in
the nonabelian case, the situation is quite different.

Exercise 4.1.10 (Unprecise states) If dim(H) ≥ 2, then for every state ρ there
exists a projection P ∈ L(H) such that 0 < ρ(P ) < 1.
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4.2 The Schrödinger equation

In order to present the Schrödinger equation in a historically correct way, we will
make a small detour to infinite dimensions. The Schrödinger equation describes
the time evolution of a nonrelativistic scalar massive point particle in a potential.

Here nonrelativistic means that we neglect Einstein’s theory of relativity and de-
scribe space and time with Carthesian coordinates. Thus, we specify some coordi-
nate system and we descibe a position in space with coordinates x = (x1, . . . , xd) ∈
Rd, where x1, . . . , xd are distances measured in meters (d = 3 is the physically
relevant dimension). We describe a moment in time with a coordinate t ∈ R,
measuring time in seconds before or after some specified reference time.

Scalar means that we assume that the particle has no internal degrees of freedom
(such as spin). Massive means that the particle has a mass m > 0, measured in
kilogram. A point particle means a particle that is so small that we can neglect
its spatial extensions. A potential, finally, is a function V : Rd → R which tells
you that if the particle is at the point x ∈ Rd, then its potential energy4 is V (x),
measured in Joule, where one Jou is one kg met2 sec−2.

With these assumptions, the Schrödinger equation5 describing this particle is

i~ ∂
∂t
ψt(x) = V (x)ψt(x)− ~2

2m

d∑
k=1

∂2

∂xk
2ψt(x) (t ∈ R, x ∈ Rd). (4.2)

Here ~ is Planck’s constant,6

~ = 1.0546 · 10−34 Jou sec.

The function ψ : R × Rd → C is called the wave function. Note that ~ is very
small. However, if we measure space in ångström, which is 10−10 meter (a typical
distance in atoms), mass in 1.0546 · 10−30 kilo (which is a bit more than the mass
of an electron), and time in 10−16 seconds, then ~ = 1.

To relate (4.2) to the formalism of quantum mechanics, consider the linear space{
ψ : Rd → C, ψ measurable,

∫
|ψ(x)|2dx <∞

}
,

4For example, due to the force of gravitation, the potential energy of a particle is proportional
to its mass (in kg) times its height (in met) times the gravitational accelaration (which is 9.8
met sec−2). Note that kg×met×met sec−2=Jou, the unit of energy.

5Suggested by Schrödinger in 1926 to describe the behavior of an electron in the Coulomb
potential from the nucleus of an atom.

6Introduced by Max Planck in 1900 in a formula for black body radiation. In fact, Planck
introduced the constant h = 2π~.
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and letH be the space of equivalence classes of a.e. equal functions from this space,
equipped with the inner product

〈ψ|φ〉 :=

∫
ψ(x)φ(x)dx.

Then H is a Hilbert space. The linear operators

V ψ (x) :=V (x)ψ(x),
Pkψ (x) :=−i~ ∂

∂xk
ψ(x),

Qkψ (x) :=xkψ(x),

can be interpreted as (unbounded, densely defined) self-adjoint linear operators
on H. V is interpreted as the observable corresponding to the potential energy
of the particle. (P1, . . . , Pd) is the observable corresponding to the momentum
of the particle (clasically defined as mass times velocity), and (Q1, . . . , Qd) is the
observable corresponding to the position of the particle. Now the self-adjoint
operator

H := V +
1

2m

d∑
k=1

P 2
k

corresponds to the energy of the particle. The operator H is also called the Hamil-
tonian. Note that with this notation, equation (4.2) takes the form

i~ ∂
∂t
ψt = Hψt (t ∈ R). (4.3)

One can show that for each ψ0 ∈ H equation (4.2) (suitably interpreted) has a
unique solution (ψt)t∈R in H satisfying

‖ψt‖ = ‖ψ0‖ (t ∈ R).

One usually normalizes such that ‖ψ0‖ = 0 and interprets ψt as the pure state
describing the particle at time t.

There exist also Schrödinger equations to describe the time evolution of two or more
scalar point particles. For example, if we have n particles with masses m1, . . . ,mn,
and we denote the coordinates of the j-th particle in 3-dimensional space by xj =
(xj,1, xj,2, xj,3), then the corresponding Schrödinger equation reads

i~ ∂
∂t
ψt(x) = V (x)ψt(x)−

n∑
j=1

~2

2mj

3∑
l=1

∂2

∂xj,l
2ψt(x) (t ∈ R, x ∈ (R3)n).
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Here V (x) is typically of the form

V (x) =
n∑
j=1

Vj(xj) +
∑
j 6=k

Vjk(|xj − xk|),

where V1, . . . , Vn are external fields and Vjk are two-point potentials describing the
forces between the particles j and k.

4.3 Deterministic time evolution

In this section we return to finite dimensions. We moreover choose units such that
~ = 1. Let H be a finite-dimensional inner product space and let A = L(H) be
the ∗-algebra of all linear operators on H. Let H ∈ A be any hermitian operator.
Motivated by the Schrödinger equation in its form (4.3) we look at the differential
equation

i ∂
∂t
ψt = Hψt. (4.4)

This is just a linear differential equation in finite dimensions with Lipschitz coef-
ficients, so it follows from basic theory of ordinary differential equations that for
each initial condition ψ0 ∈ H there is a unique continuously differentiable solution
t 7→ ψt. In fact, this solution is given by

ψt = e−itHψ0 (t ∈ R),

where the linear operator e−itH is defined using the functional calculus for normal
operators.

Exercise 4.3.1 Show that the operators e−itH (with t ∈ R) are unitary. Show
that ‖e−itHψ‖ = ‖ψ‖ for all ψ ∈ H and t ∈ R.

We interpret the vector ψt, normalized such that ‖ψt‖ = 1, as the pure state of the
physical system under consideration. More precisely, we interpret (4.4) as saying
that if the system at time t = 0 is described by the pure state

ρ0(A) = ρψ0(A) = 〈ψ0|Aψ0〉 (A ∈ A),

then at time t the state is

ρt(A) = 〈ψt|Aψt〉 = 〈e−itHψ0|Ae−itHψ0〉 = 〈ψ0|eitHAe−itHψ0〉 = ρ0(eitHAe−itH).

Note that the right-hand side of this formula is representation independent, and
also defined for probabilities ρ that are not pure states. This motivates us to give
the following description of deterministic time evolution in quantum mechanics:
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Let A = L(H) describe the observables of a physical system. Then deterministic
time evolution of probabilities on A is described by an hermitian operator H ∈ A,
called Hamiltonian. If ρ0 is the probability law describing our knowledge about
the system at time 0, then our knowledge about the system at time t is described
by the probability law

ρt(A) = ρ0(eitHAe−itH) (t ∈ R, A ∈ A).

Exercise 4.3.2 Show that adding a constant to the Hamiltonian does not change
the time evolution, a fact well-known in physics.

Exercise 4.3.3 Show that deterministic time evolution of the type just described
preserves pure states, i.e., if ρ0 is a pure state then ρt is a pure state.

We will later see that a deeper converse of Exercise 4.3.3 holds: any time evolution,
satisfying certain natural conditions, that maps pure states into pure states is of
the type just described.

The fact that our time evolution maps pure states, which are probabilities that give
‘maximal knowledge’ about our system, into pure states, is why we have called the
time evolution described by a Hamiltionian deterministic. A remarkable property
of this sort of time evolution is that it is reversible, in the sense that from the state
at time t we can deduce the state at all earlier times. This is true regardless of the
fact that if the Schrödinger equation (4.2) with V ≡ 0 is started in a pure state
ψ0 that is localized in a small region of space, then as time tends to infinity the
solution of (4.2) becomes more and more spread out in space.

The description of time evolution we have just given, where probabilities evolve
in time, is called the Schrödinger picture. The so-called Heisenberg picture takes
a somewhat different point of view. Here, there is just one probability law ρ,
describing our knowledge about a physical system at all times, but the observables
evolve in time, in the following way: If A0 ∈ A is a hermitian operator describing
a physical quantity at time 0, then the same physical quantity at another time t
is described by the hermitian(!) operator:

At = eitHA0e
−itH (t ∈ R).

It is not hard to see that both pictures are equivalent, i.e., if we know for every
observable the probabilities that an ideal measurement at time 0 yields a certain
outcome, and we want to calculate from that the probability that an ideal mea-
surement of an observable at some other time yields a certain outcome, then we
get the same answer in both pictures.
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Chapter 5

Algebras

5.1 Introduction

Recall that Theorem 2.1.5 says that every Q-algebra has a faithful representation
on a complex inner product space H. Assuming the validity of this theorem, in the
present chapter, we will determine the general structure of Q-algebra’s and their
representations. For the information of the reader, we outline a crude sketch of
the proof of Theorem 2.1.5 and its infinite dimensional analogue, Theorem 3.4.1,
in Section 5.8.
To give the reader a rough idea of what we are up to, recall that the simplest
example of a Q-algebra is an algebra of the form A ∼= L(H), where H is some
complex inner product space. For example, if dim(H) = 3, then, with respect to a
given orthonormal basis, the simplest possible representation of A consists of all
matrices of the form

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (a11, . . . , a33 ∈ C).

This is not the only possible representation of A. For example, on a space with
dimension 6, we may represent the same algebra as the set of all matrices of the
form

A′ =


a11 a12 a13 0 0 0
a21 a22 a23 0 0 0
a31 a32 a33 0 0 0
0 0 0 a11 a12 a13

0 0 0 a21 a22 a23

0 0 0 a31 a32 a33

 (a11, . . . , a33 ∈ C).

63
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of course, we can play the same trick on spaces with dimensions 9, 12, . . .. Now let
us consider something different. Consider a space H with dim(H) = 5, choose an
orthonormal basis, and consider matrices of the form

a11 a12 a13 0 0
a21 a22 a23 0 0
a31 a32 a33 0 0
0 0 0 b11 b12

0 0 0 b21 b22

 (a11, . . . , b22 ∈ C).

It is not hard to check that the space of all matrices of this form is a sub-∗-algebra
of L(H). Of course, this algebra is isomorphic to the algebra of all matrices of the
form

 A
B

B

 =



a11 a12 a13 0 0 0 0
a21 a22 a23 0 0 0 0
a31 a32 a33 0 0 0 0
0 0 0 b11 b12 0 0
0 0 0 b21 b22 0 0
0 0 0 0 0 b11 b12

0 0 0 0 0 b21 b22


,

where we have repeated the second block. Perhaps surprisingly, we will prove that
this is about as general as one can get. For any complex inner product space H
and sub-∗-algebra of A ⊂ L(H), we can find an orthonormal basis of H such that
with respect to this basis, a general element of A has the block-diagonal form



A1 . . .
A1

A2 . . .
A2

. . .

An . . .
An


(A1 ∈ L(H1), . . . , An ∈ L(Hn)),

where the block Ak is repeated mk times (k = 1, . . . , n). Note that such an algebra
is abelian if and only if dim(Hk) = 1 for all k, i.e., if each block is a 1× 1 matrix.
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5.2 Decomposition of algebras

If A1, . . . ,An are algebras, then we equip their direct sum A1 ⊕ · · · ⊕An with the
structure of an algebra by putting

(A1 + · · ·+ An)(B1 + · · ·+Bn) := (A1B1 + · · ·+ AnBn).

Here we view A1, . . . ,An as linear subspaces ofA1⊕· · ·⊕An with the property that
each A ∈ A1⊕ · · ·⊕An can in a unique way be written as A = A1 + · · ·+An with
A1 ∈ A1, . . . , An ∈ An. If A1, . . . ,An are ∗-algebras, then we make A1 ⊕ · · · ⊕ An
into a ∗-algebra by putting

(A1 + · · ·+ An)∗ := (A∗1 + · · ·+ A∗n).

Note that if H1,H2 are complex inner product spaces and A1,A2 are sub-∗-alge-
bras of L(H1),L(H2), respectively, then the ∗-algebra A1 ⊕ A2 is isomorphic to
the algebra of all operators on H1 ⊕H2 of the whose matrices (with respect to an
obvious basis) have the block-diagonal form(

A1

A2

)
(A1 ∈ A1, A2 ∈ A2).

By definition, a left ideal (resp. right ideal) of an algebra A is a linear subspace
I ⊂ A such that AB ∈ I (resp. BA ∈ I) for all A ∈ A, B ∈ I. An ideal is a
subspace that is both a left and right ideal. If A is a ∗-algebra, then a ∗-ideal is
an ideal I with the property that A∗ ∈ I for all A ∈ I.

Note that if an algebra A is the direct sum of two other algebras, A = A1 ⊕ A2,
then A1 is an ideal of A. It is not a subalgebra, however, since the identity in
A1 is not the identity in A. If A1 and A2 are ∗-algebras and A is their direct
sum (equipped with the standard adjoint operation), then A1 is a ∗-ideal of A.
By definition, an algebra is a factor algebra if it has no proper ideals, i.e., its only
ideals are {0} and A.

Proposition 5.2.1 (Decomposition into factor algebras) Every ideal of a
Q-algebra is also a ∗-ideal. Every Q-algebra A can be written as a direct sum of
factor algebras

A ∼= A1 ⊕ · · · ⊕ An.

Proof Imagine that A has a proper ideal I. By Theorem 2.1.5, we can choose
a faithful pseudotrace τ on A (in particular, we may take for τ the trace in any
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faithful representation of A). Let I be the orthogonal complement of I with
respect to the inner product 〈·|·〉τ defined in (4.1), i.e.,

I⊥ := {C ∈ A : τ(C∗B) = 0 ∀B ∈ I}.

We claim that I⊥ is another ideal ofA. Indeed, for each A ∈ A, B ∈ I and C ∈ I⊥,
we have τ((AC)∗B) = τ(C∗(A∗B)) = 0 and τ((CA)∗B) = τ(C∗(BA∗)) = 0, from
which we see that AC ∈ I⊥ and CA ∈ I⊥. Since I⊥ is the orthogonal complement
of I in the inner product 〈·|·〉τ , every element A ∈ A can in a unique way be written
as A = A1 + A2 with A1 ∈ I and A2 ∈ I⊥. We observe that

(A1 + A2)(B1 +B2) = (A1B1 + A2B2) (A1, B1 ∈ I, A2, B2 ∈ I⊥) (5.1)

where we have used that A1B2, A2B1 ∈ I ∩ I⊥ = {0}. Write 1 = 11 + 12, where
11 ∈ I and 12 ∈ I⊥. It is easy to see that 11 is a unit element in I and 12 is a
unit element in I⊥, and that I and I⊥ (equipped with these unit elements) are
algebras. This shows that A is the direct sum of A1 := I and A2 := I⊥ in the
sense of algebras.
To complete the proof, we must show that I and I⊥ are ∗-ideals; then it will
follow that A1 = I and A2 = I⊥ are Q-algebras and that A is the direct sum of
A1 and A2 in the sense of ∗-algebras. If either A1 or A2 has a proper ideal, then
we can continue the process until we have only factor algebras left. By symmetry,
it suffices to show that I is a ∗-ideal.
We claim that for any A ∈ A,

A ∈ I if and only if 〈B|AC〉τ = 0 for all B,C ∈ I⊥. (5.2)

To prove this, write A = A1 + A2 with A1 ∈ I and A2 ∈ I⊥. Then, for any
B,C ∈ I⊥, one has 〈B|AC〉τ = 〈B|A2C〉τ by (5.1), which is zero if A2 = 0, and
nonzero if C = 12 and B = A2. Now, if A ∈ I, then by (5.2), 0 = 〈B|AC〉τ =
τ(B∗AC) = τ((A∗B)∗C) = 〈A∗B|C〉τ = 〈C|A∗B〉∗τ for all B,C ∈ I⊥, which shows
that A∗ ∈ I.

5.3 Decomposition of representations

Recall that a representation of an algebra (resp. ∗-algebra) A is a pair (H, l) where
H is a linear space (resp. inner product space) and l : A → L(H) is an algebra
homomorphism (resp. ∗-algebra homomorphism). A somewhat different way of
looking at representations is as follows. Let A be an algebra and let H be a linear
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space. Imagine that we are given a map (A, φ)→ Aφ from A×H to H with the
following properties:

(a) A(aφ+ bψ) = aAφ+ bAψ (a, b ∈ K, A ∈ A, φ, ψ ∈ H),
(b) (aA+ bB)φ= aAφ+ bBφ (a, b ∈ K, A,B ∈ A, φ ∈ H),
(c) (AB)φ=A(Bφ) (A,B ∈ A, φ ∈ H),
(d) 1φ=φ (φ ∈ H).

Then the map l : A → L(H) defined by l(A)φ := Aφ is an algebra homomorphism.
If moreover, H is equipped with an inner product such that

(e) 〈φ|Aψ〉= 〈A∗φ|ψ〉 (A ∈ A, φ, ψ ∈ H),

then l is a ∗-algebra homomorphism. Conversely, if l : A → L(H) is an algebra
homomorphism (resp. ∗-algebra homomorphism), then setting Aφ := l(A)φ defines
a map from A×H to H with the properties (a)–(d) (resp. (a)–(e)). We call such
a map an action of the algebra A on H. Thus, we can view representations of an
algebra (resp. ∗-algebra) A as linear spaces (resp. inner product spaces) on which
there is defined an action of A. Which is a long way of saying that from now on,
we will often drop the map l from our notation, write Aφ instead of l(A)φ, and
write phrases like: ‘let H be a representation of A’.

Exercise 5.3.1 Let A be an algebra. Show that A, equipped with the action
(A,B) 7→ AB, becomes a representation of itself. If A is a ∗-algebra and τ is
a faithful pseudotrace on A, then show that A equipped with the inner product
〈·|·〉τ is a faithful representation of itself as a ∗-algebra.

If H1, . . . ,Hn are representations of an algebra (resp. ∗-algebra) A, then we equip
the direct sum H1⊕· · ·⊕Hn with the structure of a representation of A by putting

A(φ(1) + · · ·+ φ(n)) := Aφ(1) + · · ·+ Aφ(n),

where φ(1) ∈ H1, . . . , φ(n) ∈ Hn. It is not hard to see that this action of A on
H1⊕ . . .⊕Hn has the properties (a)–(d) (resp. (a)–(e)). By definition, an invariant
subspace of a representation H of some algebra A is a linear subspace F ⊂ H such
that

φ ∈ F implies Aφ ∈ F (A ∈ A).

Note that F , equipped with the obvious action, is itself a representation of A.
We say that a representation H of an algebra A is irreducible if it has no proper
invariant subspaces, i.e., invariant subspaces that are not {0} or H.
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Lemma 5.3.2 (Decomposition of representations) Every representation of
a Q-algebra can be written as a direct sum of irreducible representations.

Proof If H is a representation of a ∗-algebra and F is an invariant subspace,
then we claim that F⊥ is also an invariant subspace. Indeed, ψ ∈ F⊥ implies
〈Aψ|φ〉 = 〈ψ|A∗φ〉 = 0 for all φ ∈ F , which implies Aψ ∈ F⊥. It follows that
H ∼= F ⊕ F⊥. We can continue this process until we arrive at a decomposition of
H into invariant subspaces that have no further proper invariant subspaces.

5.4 Von Neumann’s bicommutant theorem

In the next section, we will study the structure of factor algebras and irreducible
representations. To prepare for this, we need a result that is known as Von Neu-
mann’s bicommutant theorem.
Let H be an (as usual finite dimensional) inner product space over K = C or R.
For any set A ⊂ H, we let

Ac := {B ∈ L(H) : [A,B] = 0 ∀A ∈ A}

denote the commutant of A.

Exercise 5.4.1 Show that for any set A ⊂ L(H), the commutant Ac is a sub-al-
gebra of L(H). Show that if A is closed under taking of adjoints, then the same
is true for Ac. In particular, if A is a sub-∗-algebra of L(H), then so is Ac.

We call (Ac)c the bicommutant of A. The following result is known as Von Neu-
mann’s bicommutant theorem.

Theorem 5.4.2 (Bicommutant theorem) Let H be an inner product space
over K = C or R and let A be a sub-∗-algebra of L(H). Then (Ac)c = A.

We start with two preparatory lemmas. By definition, we say that a linear subspace
F ⊂ H is invariant under an operator A ∈ L(H) if ψ ∈ F implies Aψ ∈ F .

Lemma 5.4.3 Let A ∈ L(H) be an operator, let F ⊂ H be a linear subspace, and
let PF denote the orthogonal projection on F . Then one has [A,PF ] = 0 if and
only if F and F⊥ are invariant under A.

Proof We observe that for any ψ ∈ H:

ψ ∈ F ⇔ PFψ = ψ. (5.3)
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Moreover
F = {PFψ : ψ ∈ H}. (5.4)

Now if [A,PF ] = 0 and ψ ∈ F then by (5.3) Aψ = APFψ = PFAψ ∈ F which
shows that F is invariant under A. Moreover, since

PF⊥ = 1− PF ,

we have [A,PF⊥ ] = [A, 1 − PF ] = [A, 1] − [A,PF ] = 0, so the same argument
as before shows that also F⊥ is invariant. Conversely, assume that F and F⊥
are invariant under A. We can uniquely decompose a general element ψ ∈ H as
ψ = φ + η with φ ∈ F and η ∈ F⊥. Then APFψ = Aφ. On the other hand,
Aψ = Aφ + Aη where by the assumption that F and F⊥ are invariant under A,
we have Aφ ∈ F and Aη ∈ F⊥. It follows that PF(Aψ) = Aφ = APFψ, showing
that A and PF commute.

Exercise 5.4.4 Let A ∈ L(H) be an operator, let F ⊂ H be a linear subspace,
and let PF denote the orthogonal projection on F . Assume that F is invariant
under A. Show by counterexample that this does not imply that A and PF com-
mute.

The next lemma is not as trivial as the previous one.

Lemma 5.4.5 Let H be an inner product space over K = C or R and let A be a
sub-∗-algebra of L(H). Then, for all ψ ∈ H and B ∈ (Ac)c, there exists an A ∈ A
such that Aψ = Bψ.

Proof Fix ψ ∈ H, and consider the linear subspace F := {Aψ : A ∈ A}. We
claim that the algebra A leaves the spaces F and F⊥ invariant, i.e., φ ∈ F implies
Aφ ∈ F and φ ∈ F⊥ implies Aφ ∈ F⊥ for all A ∈ A. Indeed, if φ ∈ F then φ
is of the form φ = A′ψ for some A′ ∈ A, hence Aφ = AA′ψ ∈ F , and if φ ∈ F⊥
then 〈φ|Aψ〉 = 0 for all A′ ∈ A, hence 〈Aφ|A′ψ〉 = 〈φ|A∗A′ψ〉 = 0 for all A′ ∈ A,
hence Aφ ∈ F⊥. It follows that each element of A commutes with the orthogonal
projection PF on F , i.e., PF ∈ Ac. Hence, if B ∈ (Ac)c, then B commutes with
PF , which implies that B leaves the spaces F and F⊥ invariant. In particular,
Bψ ∈ F , which shows that Bψ = Aψ for some A ∈ A.

Proof of Theorem 5.4.2 Lemma 5.4.5 says that for each B ∈ (Ac)c and ψ ∈ H
we can find an A ∈ A such that A and B agree on ψ. In order to prove the
theorem, we must show that we can find an A ∈ A such that A and B agree on all
vectors in H. By linearity, it suffices to do this for a basis of H. Thus, we need to
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show that for any B ∈ (Ac)c and ψ(1), . . . , ψ(n) ∈ H, there exists an A ∈ A such
that Aψ(i) = Bψ(i) for all i = 1, . . . , n.

Let H1, . . . ,Hn be n identical copies of H, and consider the direct sum H1 ⊕
· · · ⊕ Hn. Let A(n) denote the sub-∗-algebra of L(H1 ⊕ · · · ⊕ Hn) consisting of all
operators of the form

A(n)(φ(1), . . . , φ(n)) := (Aφ(1), . . . , Aφ(n))

for some A ∈ A. We wish to describe the commutant (A(n))c. With respect to
an obvious orthonormal basis for H1 ⊕ · · · ⊕ Hn, each A(n) ∈ A(n) has the block-
diagonal form (for example for n = 3):

A(n) =

 A 0 0
0 A 0
0 0 A

 .

Now any C ∈ L(H1 ⊕ · · · ⊕ Hn) can be written as

C =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 ,

where the Cij are linear maps from H into H. We see that

A(n)C =

 AC11 AC12 AC13

AC21 AC22 AC23

AC31 AC32 AC33

 and CA(n) =

 C11A C12A C13A
C21A C22A C23A
C31A C32A C33A

 ,

and therefore C commutes with each A(n) in A(n) if and only if Cij ∈ Ac for each
i, j.

Now let B ∈ (Ac)c and ψ(1), . . . , ψ(n) ∈ H. By what we have just proved, it is
easy to see that B(n) ∈ ((A(n))c)c. Therefore, applying Lemma 5.4.5 to B(n) and
the vector (ψ(1), . . . , ψ(n)) ∈ H1 ⊕ · · · ⊕ Hn, we conclude that there exists an
A(n) ∈ A(n) such that

A(n)(ψ(1), . . . , ψ(n)) = B(n)(ψ(1), . . . , ψ(n))

i.e., Aψ(i) = Bψ(i) for all i = 1, . . . , n, as desired.
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5.5 Factor algebras

We have seen that any Q-algebra A can be decomposed into factor algebras and
that any representation of A can be decomposed into irreducible representations.
In the present section, we will see that there is a close connection between these
two objects.
By definition, the center of a Q-algebra is the abelian sub-∗-algebra C(A) ⊂ A
given by

C(A) := {C ∈ A : [A,C] = 0 ∀A ∈ A},

i.e., C(A) consists of those elements of A that commute with all elements of A.
We say that the center is trivial if C(A) = {a1 : a ∈ C}.

Theorem 5.5.1 (Factor algebras) Let A be a Q-algebra. Then the following
statements are equivalent.

(1) A is a factor algebra.

(2) A has a faithful irreducible representation.

(3) A ∼= L(H) for some inner product space H.

(4) A has a trivial center.

Proof (1)⇒(2): By finite dimensionality each algebra has an irreducible repres-
entation. We claim that representations of factor algebras are always faithful.
Indeed, if (H, l) is a representation of an algebra A, then it is easy to see that the
kernel Ker(l) = {A ∈ A : l(A) = 0} is an ideal of A. In particular, if A is a factor
algebra, we must have Ker(l) = A or Ker(l) = {0}. Since l(1) = 1 6= 0, the first
option can be excluded, hence (H, l) is faithful.
(2)⇒(3): It suffices to show that if H is an inner product space and A ⊂ L(H)
is a sub-∗-algebra with no proper invariant subspaces, then A = L(H). By Von
Neumann’s bicommutant theorem, it suffices to prove that Ac = {a1 : a ∈ C}. By
Lemma 4.1.3, it suffices to show that 0, 1 are the only projections in A. Imagine
that 0, 1 6= P ∈ A is a projection. Let F be the space that P projects upon. By
Lemma 5.4.3, F is invariant under each A ∈ A, so we contradict the assumption
that A has no proper invariant subspaces.
(3)⇒(4): It suffices to show that L(H) has a trivial center. By Lemma 4.1.3,
it suffices to show that 0, 1 are the only projections in the center. By the same
argument as used for the previous implication, if the center contains a nontrivial
projection, then L(H) has a proper invariant subspace. It is easy to see, however,
that L(H) has no proper invariant subspaces.
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(4)⇒(1): If A is not a factor algebra, then by Proposition 5.2.1, we can write
A ∼= A1 ⊕ A2, where A1 and A2 are Q-algebras. Now the identity 11 ∈ A1 is a
nontrivial element of the center C(A), hence the latter is not trivial.

The proof of Theorem 5.5.1 has a useful corollary.

Corollary 5.5.2 (Representations of factors) Let A be a factor algebra. Then
each representation (H, l) of A is faithful. If moreover A is a Q-algebra and (H, l)
is irreducible, then l : A → L(H) is surjective.

Proof This follows from the steps (1)⇒(2) and (2)⇒(3) of the proof of Theo-
rem 5.5.1.

Exercise 5.5.3 Show that on a factor algebra, there exists up to a multiplicative
constant a unique pseudotrace. Hint: choose an orthonormal basis {e(1), . . . , e(n)}
and a vector φ of norm one, and write |e(i)〉〈e(j)| = |e(i)〉〈φ|φ〉〈e(j)|.

5.6 Structure of Q-algebras

Let A be an algebra and let H1,H2 be representations of A. By definition, a
representation homomorphism is a linear map U : H1 → H2 such that

UAφ = AUφ (φ ∈ H1, A ∈ A).

Note that this says that U preserves the action of the algebra A. If A is a ∗-algebra
then we also require that U is unitary, i.e., U preserves the inner product. If U is a
bijection then one can check that U−1 is also a representation homomorphism. In
this case we call U a representation isomorphism and we say that H1 and H2 are
equivalent representations of A. Note that if (H1, l1) and (H2, l2) are equivalent
representations, then

l1(A) = U−1l2(A)U (A ∈ A).

Lemma 5.6.1 (Irreducible representations of factor algebras) All irre-
ducible representations of a factor algebra A are equivalent.

Proof We observe that each left ideal I 6= {0} of an algebra A becomes a repres-
entation of A if we equip it with the obvious action (A,B) 7→ AB (A ∈ A, B ∈ I).
Since a subspace I ′ ⊂ I is invariant under the action of A if and only if I ′ is a left
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ideal, we see that I is irreducible if and only if I is a minimal left ideal, i.e., the
only left ideals I ′ of A such that I ′ ⊂ I are I ′ = 0 and I ′ = I. Such a minimal
left ideal exists by finite dimensionality and the fact that A is a left ideal of itself.

Now let A be a factor algebra and let H be an irreducible representation of A. By
the previous remarks, A has a minimal left ideal, and each minimal left ideal I is an
irreducible representation of A. We will show that H and I are equivalent. Since
H is arbitrary, this proves that all irreducible representations of A are equivalent.

Fix 0 6= C ∈ I. By Corollary 5.5.2, H is faithful, so we can choose φ ∈ H such
that Cφ 6= 0. Define U : I → H by

UB := Bφ (B ∈ I).

Then U is a representation homomorphism. It follows that Ran(U) is an invariant
subspace of H and Ker(U) is an invariant subspace of I. Since Cφ 6= 0, we see
that Ran(U) 6= {0} and Ker(U) 6= I. Since H and I are irreducible, it follows
that Ran(U) = H and Ker(U) = {0}, hence U is a linear bijection.

This completes the proof in case A is an algebra. In case A is a Q-algebra, we must
additionaly show that U is unitary. Indeed, if (H1, l1) and (H2, l2) are irreducible
representations of a Q-algebra A, then by what we have just shown, there exists a
linear bijection U : H1 → H2 such that

l2(A) = Ul1(A)U−1 (A ∈ A).

By Corollary 5.5.2, l1 and l2 are surjective, so the composition l = l2 ◦ l−1
1 is a

∗-algebra isomorphism from L(H1) to L(H2), and

l(A) = UAU−1 (A ∈ L(H1)).

Let {e(1), . . . , e(n)} be an orthonormal basis of H1. Then

l(|e(i)〉〈e(i)|) = U |e(i)〉〈e(i)|U−1 = |Ue(i)〉〈(U−1)∗e(i)|.

Since l is a ∗-algebra isomorphism, l(|e(i)〉〈e(i)|) is a projection, which is only
possible if

Ue(i) = (U−1)∗e(i).

Since this holds for each i, U∗ = U−1, i.e., U is unitary.

The following theorem describes the general structure of Q-algebras and their
representations.
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Theorem 5.6.2 (Structure theorem for Q-algebras) Let A be a Q-algebra.
Then A has finitely many nonequivalent irreducible representations (H1, l1), . . . ,
(Hn, ln), and the map

A 7→ (l1(A), . . . , ln(A))

defines a ∗-algebra isomorphism

A ∼= L(H1)⊕ · · · ⊕ L(Hn).

Every representation of A is equivalent to a representation of the form

H = (H1 ⊕ · · · ⊕ H1︸ ︷︷ ︸
m1 times

)⊕ · · · ⊕ (Hn ⊕ · · · ⊕ Hn︸ ︷︷ ︸
mn times

),

with mi ≥ 0 (i = 1, . . . , n). H is faithful if and only if mi ≥ 1 for all i = 1, . . . , n.

The numbers m1, . . . ,mn are called the multiplicities of the irreducible represen-
tations H1, . . . ,Hn.

Proof of Theorem 5.6.2 By Proposition 5.2.1, A is isomorphic to a direct sum
of factor algebras A1⊕· · ·⊕An. Let (H, l) be a representation of A. Let 11, . . . , 1n
denote the identities in A1, . . . ,An, respectively. Then {l(11), . . . , l(1n)} is a parti-
tion of the identity on H. Let Fi be the space that l(1i) projects on (which may be
zero-dimensional for some i). Then H = F1⊕· · ·⊕Fn, where Fi is a representation
of Ai. By Lemma 5.3.2, we can split Fi into irreducible representations of Ai, say
Fi = Fi1 ⊕ · · · ⊕ Fim(i), where possibly m(i) = 0. Let lij : Ai → L(Fij) denote
the corresponding ∗-algebra homomorphism. By Corollary 5.5.2, the representa-
tions (Fi1, li1), . . . , (Fim(i), lim(i)) are faithful and li1, . . . , lim(i) are surjective. By
Lemma 5.6.1, the (Fi1, li1), . . . , (Fim(i), lim(i)) are equivalent. It is not hard to see
that (Fij, lij) and (Fi′j′ , li′j′) are not equivalent if i 6= i′. From these observations
the statements of the theorem follow readily.

5.7 Abelian algebras

In this section, we look at abelian algebras. In particular, we will prove Theo-
rem 2.4.1.

Theorem 5.7.1 (Abelian algebras) Let H be an inner product space over C
and let A be an abelian sub-∗-algebra of L(H). Then there exists a partition of the
identity {P1, . . . , Pn} such that

A =
{ n∑

i=1

aiPi : ai ∈ C ∀i = 1, . . . , n
}
. (5.5)
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Proof Immediate from Theorem 5.6.2.

Theorem 5.7.1 has a useful corollary.

Theorem 5.7.2 (Simultaneous diagonalization of normal operators) Let
H be an inner product space over C and let A(1), . . . , A(k) be a collection of
mutually commuting normal operators. Then there exists an orthonormal ba-
sis {e(1), . . . , e(n)} such that for each j = 1, . . . , k there exist complex numbers
λ1(j), . . . , λn(j) with

A(k) =
n∑
i=1

λi(k)|e(i)〉〈e(i)|.

Proof Let A be the ∗-algebra generated by A(1), . . . , A(k), i.e., A consists of all
linear combinations of finite products of the operators A(1), . . . , A(k) and their
adjoints. We claim that A is abelian. This is not quite as obvious as it may seem,
since we have assumed that A(j) commutes with A(j′) for each j, j′, but not that
A(j) commutes with A(j′)∗. For general operators A,B, it is not always true that
A∗ commutes with B if A commutes with B. For normal operators this is true,
however. To see this, choose an orthonormal basis such that A is diagonal. Then
AB = BA implies AiiBij = BijAjj for all i, j, hence, for each i, j we have either
Bij = 0 or Aii = Ajj. It follows that A∗iiBij = BijA

∗
jj for all i, j, hence A∗B = BA∗.

Once this little complication is out of the way, the proof is easy. Since A is
abelian, there exists a partition of the identity {P1, . . . , Pn} such that each element
of A, in particular each operator A(j), is a linear combination of the P1, . . . , Pn.
Let F1, . . .Fn be the orthogonal subspaces upon which the P1, . . . , Pn project.
Choosing an orthonormal basis of H that is a union of orthonormal bases of the
F1, . . .Fn, we arrive at the desired result.

We can now also easily give the:

Proof of Theorem 2.4.1 By Theorem 5.7.1, there exists a partition of the identity
{P1, . . . , Pn} such that A consists of all linear combinations of the P1, . . . , Pn. Set
Ω = {1, . . . , n} and define a map l : CΩ → A by

l(f) :=
n∑
i=1

f(i)Pi.

It is easy to see that l is an isomorhism for ∗-algebras.

Exercise 5.7.3 Let A be the real ∗-algebra consisting of all matrices of the form(
a −b
b a

)
(a, b ∈ R).
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Show that A is abelian, but not isomorphic to RΩ for some finite set Ω. Does A
remind you of some algebra you know?

5.8 Proof of the representation theorems*

In this section, we give a brief sketch of the proofs of Theorems 2.1.5 and 3.4.1.
The proof of Theorem 3.4.1 is standard and can be found in any book on C∗-al-
gebras (e.g. [Con90, Dav96]). Theorem 2.1.5 is rather obscure; I am indebted to
Roberto Conti for pointing out its proof in [GHJ89, Appendix IIa].

By definition, an algebra A is semisimple if it is the direct sum of factor algebras.
Not every algebra is semisimple; a counterexample is the algebra of all matrices of
the form (

a b
0 c

)
(a, b, c ∈ K).

Proposition 5.2.1 says that every Q-algebra is semisimple. Unfortunately, our proof
of Proposition 5.2.1 leans heavily on the fact that every Q-algebra has a faithful
representation. The crucial step in the proof of Theorem 2.1.5 is to show that
Q-algebras are semisimple using only the properties (i)–(viii) from Section 2.1.
By definition, the Jacobson radical J of an algebra A is the intersection of all
maximal (proper) ideals in A. It is known that A is semi-simple if and only if
J = {0}. Thus, we need to show that the Jacobson radical J of a Q-algebra is
trivial.
It is easy to see that if I is a left ideal in A, then I∗ := {A∗ : A ∈ I} is a right
ideal. Thus, if I is an ideal, then I∗ is also an ideal. If I is maximal, then I∗ is
also maximal. Hence

J ∗ =
⋂
{I∗ : I maximal ideal} =

⋂
{I : I maximal ideal} = J .

Now imagine that 0 6= A ∈ J . By what we have just proved A∗ ∈ J and there-
fore A∗A ∈ J . By the positivity condition (viii) from Section 2.1, A∗A 6= 0,
(A∗A)∗(A∗A) = (A∗A)2 6= 0, and by induction, (A∗A)2n 6= 0 for all n ≥ 1. How-
ever, it is known (see e.g. [Lan71]) that the Jacobson radical of a finite-dimensional
algebra is nilpotent, i.e., J n = {0} for some n. We arrive at a contradiction.
Using again the positivity condition (viii) from Section 2.1, one can show that the
adjoint operation on a Q-algebra A must respect the factors in the decomposition
A ∼= A1 ⊕ · · · ⊕ An, i.e., A ∈ Ai implies A∗ ∈ Ai. It follows from general theory
of algebras that each Ai is of the form L(Vi), where Vi is a complex linear space.
To complete the proof, it then suffices to show that the adjoint operation on L(Vi)
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arises from an inner product on Vi. To show this, choose any inner product 〈·, ·〉
on Vi and let A 7→ A† denote the adjoint operation with respect to this inner
product. Then A 7→ (A∗)† is an algebra isomorphism from L(Vi) into itself. It
follows from Lemma 5.6.1 that every algebra isomorphism from L(Vi) into itself is
an inner isomorphism, i.e., (A∗)† = UAU−1 for some linear bijection U : Vi → Vi.
Setting 〈x, y〉′ := 〈Ux, Uy〉 then yields an inner product on Vi such that A 7→ A∗

is the adjoint operation with respect to this inner product.

The proof of Theorem 3.4.1 follows a completely different strategy. Let A be a
C∗-algebra and let ρ be a probability law (state) on A. We claim that then there
exists a representation H of A and a vector φ ∈ H such that

ρ(A) = 〈φ|Aφ〉 (A ∈ A).

To prove this, put
N := {A ∈ A : ρ(A∗A) = 0}.

One can check that N is a closed linear subspace of A, and a left ideal. Moreover,

〈A+N , B +N〉 := ρ(A∗B) (5.6)

defines an inner product on the quotient space

A/N := {A+N : A ∈ A}

Let H be the completion of A/N in this inner product. Then one checks that

A(B +N ) := AB +N (A,B ∈ A) (5.7)

defines an action of A on H. Setting φ = 1 + N now yields the claims. This
construction is known as the GNS-construction.
The strategy of the proof of Theorem 3.4.1 is now to show that there exist enough
states ρ on A so that the direct sum of their corresponding representations, ob-
tained with the GNS-construction, is faithful. The proof is not easy; one more
or less has to derive the whole spectral theory of normal elements of A without
knowing that A has a faithful representation, before one can prove Theorem 3.4.1.
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Chapter 6

Subsystems and independence

6.1 Subsystems

As we have seen in Section 2.3, we use a Q-algebra to describe all properties of a
physical system that are of interest to us. Often, a physical system is made up of
several smaller systems. And, of course, since we rarely consider the universe as a
whole, any system we look at will be a subsystem of something larger. In quantum
probability, we describe such subsystems with sub-∗-algebras. Such sub-∗-algebras
may describe all aspects of our system that can be measured in a certain part of
space, or that refer to one particular particle, or physical quantity, etc.

Thus, if A is a Q-algebra and B ⊂ A is a sub-∗-algebra, then we may interpret B
as a subsystem of A. A partition of the identity {P1, . . . , Pn} such that Pi ∈ B1

for all i is interpreted as an ideal measurement on the subsystem B. If ρ is a state
(probability law) on A, then the restriction of ρ to B describes our knowledge
about B.

If A is a Q-algebra and D ⊂ A is some set, then we let α(D) denote the smallest
sub-∗-algebra of A containing D. It is not hard to see that

α(D) := span({1} ∪ {D1 · · ·Dn : n ≥ 1, Di ∈ D or D∗i ∈ D ∀i = 1, . . . , n}),

i.e., α(D) is the linear span of all finite products of elements of D and their adjoints.
We call α(D) the sub-∗-algebra generated by D. For example, if B1,B2 are sub-∗-
algebras of some larger Q-algebra A, then α(B1∪B2) is the smallest sub-∗-algebra
containing both B1 and B2.

In this section, we will in particular be interested in the case when subsystems that
are independent, i.e., when measurements on one subsystem give no information
about the other.

79
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Recall from Section 2.3 that if we perform an ideal measurement {P1, . . . , Pn}
on a system described by a quantum probability space (A, ρ), then in general
we perturb our system, which we describe by replacing the state ρ by the state
ρ′(A) :=

∑
i ρ(PiAPi). We ask ourselves under which conditions performing a

measurement on one subsystem does not perturb another subsystem.

Lemma 6.1.1 (Commuting subalgebras) Let A be a Q-algebra and let B1,B2

be sub-∗-algebras of A. Then the following are equivalent:

(i)
∑n

i=1 ρ(P2,iP1P2,i) = ρ(P1) ∀P1 ∈ B1 projection, {P2,1, . . . , P2,n} ⊂ B2

partition of the identity, ρ state on A,
(ii) P1P2 = P2P1 ∀P1 ∈ B1, P2 ∈ B2, P1, P2 projections,

(iii) B1B2 = B2B1 ∀B1 ∈ B1, B2 ∈ B2.

Proof (i)⇒(ii): In particular, setting n = 2, we have for any projections P1 ∈ B1,
P2 ∈ B2 and for any probability ρ on A

ρ(P2P1P2) + ρ((1− P2)P1(1− P2)) = ρ(P1)
⇔ ρ(P2P1P2) + ρ(P1) + ρ(P2P1P2)− ρ(P1P2)− ρ(P2P1) = ρ(P1)
⇔ 2ρ(P2P1P2) = ρ(P1P2) + ρ(P2P1).

By Excersice 4.1.6, this holds for every state ρ if and only if it holds for every
linear form ρ. Hence, this holds if and only if

2P2P1P2 = P1P2 + P2P1. (6.1)

It follows that P1P2 = 2P2P1P2 − P2P1 hence P2(P1P2) = P2(2P2P1P2 − P2P1) =
2P2P1P2 − P2P1, hence P2P1P2 = P2P1, which together with (6.1) implies that
P2P1 = P1P2.

(ii)⇒(iii): This follows from Excersice 4.1.8.

(iii)⇒(i): Obvious, since

n∑
i=1

ρ(P2,iB1P2,i) =
n∑
i=1

ρ(P2,iP2,iB1) =
n∑
i=1

ρ(P2,iB1) = ρ(1B1) = ρ(B1)

for any B1 ∈ B1 and any partition of the identity {P2,1, . . . , P2,n} ⊂ B2.

If B1 and B2 are sub-∗-algebras that commute with each other, then performing
a measurement on B1 does not disturb B2, and vice versa. Thus, it should be
possible to do simultaneous measurements on B1 and B2. Indeed, if {P1, . . . , Pn}
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and {Q1, . . . , Qm} are ideal measurements such that Pi ∈ B1 and Qj ∈ B2 for each
i, j, then since B1 and B2 commute with each other, it is easy to see that

{PiQj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is an ideal measurement (partition of the identity). We interpret this as a mea-
surement that carries out {P1, . . . , Pn} and {Q1, . . . , Qm} simultaneously, i.e., at
some point in time we perform {P1, . . . , Pn} and at some point in time we perform
{Q1, . . . , Qm}; the order doesn’t matter. If P,Q are projections that commute
with each other, then we interpret PQ as the simultaneous observation of both P
and Q. Note that for any state ρ, one has

ρ(PQ) =
ρ(QPQ)

ρ(Q)
ρ(Q) = ρ(P |Q)ρ(Q),

which is a well-known formula from classical probability. If P and Q do not
commute, then PQ is not a projection, so we say that simultaneous measurements
with noncommuting observations are not possible. In this case, ρ(P |Q)ρ(Q) is still
well-defined and can be interpreted as the probability of first doing the observation
Q and then P , which may be different from ρ(Q|P )ρ(P ) (first P , then Q).

6.2 Joint measurement

We recall from Section 2.3 that in quantum mechanics, a (real-valued) observable
is described by a hermitian operator A. The spectrum σ(A) of such a hermitian
operator is a finite1 subset of the real line. The spectrum, and in fact the whole
spectral decomposition

A =
∑

λ∈σ(A)

Pλ

of such a hermitian operator are representation-independent. We interpret the
partition of the identity {Pλ : λ ∈ σ(A)} as an ideal measurement of the observable
A, where Pλ corresponds to the observation that the observable A assumes the
value λ. In view of this, and to stay close to classical probabilistic notation, we
will sometimes use the notation

{A = λ} := Pλ

to denote the observation (projection operator) that A assumes the value λ. We
leave the following simple fact as an excercise to the reader.

1The fact that σ(A) is finite follows from our assumption that all spaces are finite dimensional.
If one allows infinite dimensional spaces, then the spectrum of a self-adjoint operator may be an
infinite, even uncountable subset of R.
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Exercise 6.2.1 Let A be a Q-algebra and let B,C ∈ A be hermitian operators.
Then B and C commute (i.e., BC = CB) if and only if for each b ∈ σ(B)
and c ∈ σ(C), the projection operators {B = b} and {C = c} commute (i.e.,
{B = b}{C = c} = {C = c}{B = b}).

Lemma L:commut and Excercise 6.2.1 show that if B,C are hermitian operators
in some Q-algebra A, then the following statements are equivalent:

1◦ B and C commute.

2◦ For any state ρ on A, performing an ideal measurement on B does not change
any of the probabilities ρ({C = c}).

In view of this, if (and only if) B and C are commuting observables, then it does
not matter in which order we measure them. For each b ∈ σ(B) and c ∈ σ(C), We
may interpret the projection (!) operator

{B = b}{C = c} = {C = c}{B = b} =: {(B,C) = (b, c)}

as the observation that B assumes the value b and simultaneously, C assumes the
value c. In general, it may happen that {B = b}{C = c} = 0. Let us write

σ(B,C) :=
{

(b, c) : b ∈ σ(B), c ∈ σ(C), {B = b}{C = c} 6= 0
}
.

Then we may interpret the partition of the identity{
{(B,C) = (b, c)} : (b, c) ∈ σ(B,C)

}
as a joint measurement of the observables B and C. More generally, we may inter-
pret any finite sequence (B1, . . . , Bn) of mutually commuting hermitian operators
as a vector-valued observable that can assume values in σ(B1, . . . , Bn) ⊂ Rn. Such
vector-valued observables are quite common in quantum mechanics. For example,
the position and momentum of a single particle are observables taking values in
R3.
More generaly, for collections of (mutually) commuting normal operators, one can
define a generalization of the functional calculus. If A1, . . . , An are (mutually)
commuting normal operators and f : Cn → C is any function, then one defines a
normal operator f(A1, . . . , An) by

f(A1, . . . , An) :=
∑

(a1,...,an)∈σ(A1,...,An)

f(a1, . . . , an){(A1, . . . , An) = (a1, . . . , an)}

where we define {(A1, . . . , An) = (a1, . . . , an)} and σ(A1, . . . , An) in the same way
as for hermitian operators. The next excercise shows that this functional calculus
yields the ‘right’ answers if applied to linear functions or the produc function.
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Exercise 6.2.2 Fix λ1, λ2 ∈ C. Define f : C2 → C and g : C2 → C by f(a1, a2) :=
λ1a1+λ2a2 and g(a1, a2) = a1a2. Let A1, A2 be commuting normal operators. Show
that f(A1, A2) = λ1A1 + λ2A2 and g(A1, A2) = A1A2.

The following excercise demonstrates that if A,B are commuting hermitian oper-
ators, which we interpret as real-valued observables, then we may interpret AB as
an observable that assumes the value ab if A assumes the value a and B assumes
the value b.

Exercise 6.2.3 Let A,B be commuting observables. Show that AB is a hermitian
operator and that

{AB = c} =
∑

(a,b)∈σ(A,B)

ab=c

{(A,B) = (a, b)},

and hence, for any state ρ,

ρ({AB = c}) =
∑

(a,b)∈σ(A,B)

ab=c

ρ({(A,B) = (a, b)}).

Concluding, we may summarize the present section by saying that joint measure-
ment of two or more observables is well-defined if and only if these observables
commute.

6.3 Independence

By Lemma 6.1.1, performing a measurement on a sub-∗-algebras B1 does not have
any effect on a sub-∗-algebra B2 if and only if B1 and B2 commute with each other.
We now ask under which circumstances these subsystems are independent, i.e.,
doing an observation on one subsystem gives no information about the other sub-
system. Recall that if in some ideal measurement we do the observation P , we must
describe our new knowledge about the system with the conditioned probability law
ρ̃ = ρ(·|P ) defined by

ρ(A|P ) :=
ρ(PAP )

ρ(P )
(A ∈ A).
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Lemma 6.3.1 (Independent subalgebras) Let A be a Q-algebra and let B1,B2

be sub-∗-algebras of A that commute with each other. Then the following are
equivalent:

(i) ρ(P1|P2) = ρ(P1) for all projections P1 ∈ B1, P2 ∈ B2

with ρ(P2) 6= 0.

(ii) ρ(B1B2) = ρ(B1)ρ(B2) ∀B1 ∈ B1, B2 ∈ B2.

Proof Since B1 and B2 commute, ρ(P1|P2) = ρ(P2P1P2) = ρ(P1P2P2) = ρ(P1P2),
so (i) is equivalent to

ρ(P1P2) = ρ(P1)ρ(P2) (6.2)

for all projections P1 ∈ B1, P2 ∈ B2 with ρ(P2) 6= 0. In fact, (6.2) is automatically
satisfied if ρ(P2) = 0; to see this, note that since B1 and B2 commute, P1P2 is a
projection. Now P1P2 ≤ P2, hence ρ(P1P2) ≤ ρ(P) = 0. Thus, (i) holds if and only
if (6.2) holds for all projections P1 ∈ B1, P2 ∈ B2. Since the Q-algebras B1,B2 are
spanned by their projections (Excercise 4.1.8), this is equivalent to (ii).

If B1,B2 are sub-∗-algebras of some larger Q-algebra A, and B1 and B2 commute
with each other, then we observe that

α(B1 ∪ B2) = B1B2,

where for any subsets D1,D2 of a Q-algebra A we introduce the notation

D1D2 := span{D1D2 : D1 ∈ D1, D2 ∈ D2}.

Therefore, by Lemma 6.3.1 (ii), if ρ1 and ρ2 are states on B1 and B2, respectively,
then by linearity, there exists at most one state ρ on α(B1 ∪ B2) such that B1 and
B2 are independent under ρ, and the restrictions of ρ to B1 and B2 are ρ1 and ρ2,
respectively. We now ask under which conditions such a state ρ exists.

Lemma 6.3.2 (Logically independent algebras) Let B1,B2 be sub-∗-algebras
of some larger Q-algebra, which commute with each other. Then the following
statements are equivalent:

(i) P1P2 6= 0 for all projections P1 ∈ B1 and P2 ∈ B2 with P1 6= 0
and P2 6= 0.

(ii) For all states ρ1 on B1 and ρ2 on B2 there exists a unique
state ρ on α(B1 ∪ B2) such that ρ(B1B2) = ρ1(B1)ρ2(B2)
for all B1 ∈ B1, B2 ∈ B2.
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Proof (i)⇒(ii): We first prove the statement when ρ1 and ρ2 are pure states, i.e.,
ρ1 = ρP1 and ρ2 = ρP2 , where P1 and P2 are minimal projections in B1 and B2,
respectively. Using the fact that B1 and B2 commute, it is easy to see that P1P2

is a projection in α(B1 ∪ B2). Now

(P1P2)(B1B2)(P1P2) = P1B1P1P2B2P2 = ρ1(B1)ρ2(B2)P1P2 (B1 ∈ B1, B2 ∈ B2).

Since P1P2 6= 0, and since α(B1 ∪ B2) is spanned by elements of the form B1B2,
there exists a function ρ : α(B1 ∪ B2)→ C such that

(P1P2)A(P1P2) = P1B1P1P2B2P2 = ρ(A)P1P2 (A ∈ α(B1 ∪ B2)).

From this it is easy to see that P1P2 is a minimal projection in α(B1 ∪ B2), and
ρ = ρP1P2 is the pure state asociated with P1P2.

In the general case, when ρ1 and ρ2 are not pure states, we write

ρ1 =

n1∑
i=1

piρ1,i and ρ2 =

n2∑
j=1

qjρ2,j

where the ρ1,i and ρ2,j are pure states. By what we have just proved, there exist
pure states ρij on α(B1 ∪ B2) such that ρij(B1B2) = ρ1,i(B1)ρ2,j(B2) for all B1 ∈
B1, B2 ∈ B2. Putting

ρ :=

n1∑
i=1

n2∑
j=1

piqjρij

now defines a state with the required property.

To see that (i) is also necessary for (ii), imagine that P1P2 = 0 for some nonzero
projections P1 ∈ B1 and P2 ∈ B2. Then we can find states ρ1, ρ2 on B1,B2 such
that ρ1(P1) = 1 and ρ2(P2) = 1. However, any state ρ on α(B1 ∪ B2) satisfies
0 = ρ(0) = ρ(P1P2) 6= ρ(P1)ρ2(P2).

Let us say that two sub-∗-algebras B1,B2 of some larger Q-algebra A are logically
independent if B1 and B2 commute with each other and satisfy the equivalent prop-
erties (i)–(ii) from Lemma 6.3.2. In classical probability, property (i) is sometimes
called ‘qualitative independence’ [Ren70]. Note that this says that if no probabil-
ity ρ on A is specified, then by doing an observation on system B1 we can never
rule out an observation on system B2. If B1,B2 are logically independent sub-∗-
algebras of some larger Q-algebra A, then we can give a nice description of the
algebra α(B1 ∪ B2) in terms of B1 and B2.
Recall from Section 1.3 that the tensor product of two linear spaces V ,W is a linear
space V⊗W , equipped with a bilinear map (φ, ψ) 7→ φ⊗ψ from V×W into V⊗W
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satisfying the equivalent conditions of Proposition 1.3.8. Such a tensor product
is unique up to equivalence. Now let A1,A2 be Q-algebras and let A1 ⊗ A2 be
their tensor product (in the sense of linear spaces). We equip A1 ⊗ A2 with the
structure of a Q-algebra by putting

(A1 ⊗ A2)(B1 ⊗B2) := (A1B1)⊗ (A2B2) (A1, B1 ∈ A1, A2, B2 ∈ A2)

and
(A1 ⊗ A2)∗ := (A∗1)⊗ (A∗2).

By the properties of the tensor product, these definitions extend linearly to all of
A1 ⊗A2, making it into a Q-algebra. If H1 and H2 are representations of A1 and
A2, respectively, then setting

(A1⊗A2)(φ1⊗φ2) := (A1φ1)⊗(A2φ2) (A1 ∈ A1, A2 ∈ A2, φ1 ∈ H1, φ2 ∈ H2)
(6.3)

makes H1 ⊗ H2 into a representation of A1 ⊗ A2. This leads to the natural iso-
morphism

L(H1)⊗ L(H2) ∼= L(H1 ⊗H2).

Note that if {e(1), . . . , e(n)} and {f(1), . . . , f(m)} are orthonormal bases of H1

and H2, respectively, then a basis for L(H1)⊗L(H2) is formed by all elements of
the form (|e(i)〉〈e(j)|)⊗ (|f(k)〉〈f(l)|), while a basis for L(H1 ⊗H2) is formed by
all elements of the form |e(i) ⊗ f(k)〉〈e(j) ⊗ f(l)|. The dimension of both spaces
is dim(H1)2dim(H2)2.

Lemma 6.3.3 (Logical independence and tensor product) If B1,B2 are log-
ically independent sub-∗-algebras of some larger Q-algebra A, then the map

B1B2 7→ B1 ⊗B2

is a ∗-algebra isomorphism from α(B1 ∪B2) to the tensor product algebra B1⊗B2.

Proof By Lemma 6.3.2 and Excercise 4.1.6, if l1, l2 are linear forms on B1,B2,
respectively, then there exists a unique linear form l on α(B1 ∪ B2) such that
l(B1B2) = l1(B1)l2(B2) for all B1 ∈ B1, B2 ∈ B2. Therefore, by Proposi-
tion 1.3.12 (iv) and Lemma 1.3.9, α(B1 ∪ B2) ∼= B1 ⊗ B2.

If ρ1, ρ2 are states (probability laws) on Q-algebras A1,A2, respectively, then we
define a unique product state (product law) on A1 ⊗A2 by

(ρ1 ⊗ ρ2)(A1 ⊗ A2) := ρ1(A1)ρ2(A2) (A1 ∈ A1, A2 ∈ A2).

(This is good notation, since we can interpret ρ1 ⊗ ρ2 as an element of the tensor
product A′1⊗A′2, where A′1 and A′2 are the dual spaces of A1 and A2, respectively.)
Products of three and more Q-algebras and states are defined analoguously.



Chapter 7

Quantum paradoxes

7.1 Hidden variables

As we have already seen, the ‘states’ of quantum probability are something quite
different from the states of classical probability. Rather, what is called a state
in quantum probability corresponds to a probability law in classical probability.
Pure states are probability laws that cannot be written as a mixture of other
probability laws, hence a pure state ρ on a Q-algebra A corresponds, in a way, to
maximal knowledge. If A is abelian, then pure states have the property that they
assign probability one or zero to every observation (projection operator P ∈ A).
Hence, in the classical case, it is, at least theoretically, possible to know everything
we want to know about a system. In Excercise 4.1.10, we have seen that in the
quantum case this is not so.

Of course, in practice, even for classical systems, our knowledge is often not per-
fect. Especially when systems get large (e.g. contain 1022 molecules), it becomes
impossible to know the exact value of every observable that could be of interest
of us. Also, continuous observables can be measured only with limited precision.
Nevertheless, it is intuitively very helpful to imagine that all observables have a
value -we just don’t know which one. This intuition is very much behind classical
probability theory. In quantum probability, it can easily lead us astray.

Many physicists have felt uncomfortable with this aspect of quantum mechanics.
Most prominently, Einstein had a deep feeling that on the grounds mentioned
above, quantum theory must be incomplete. While his attempts to show that
quantum mechanics is inconsistent failed, the ‘Einstein-Podolsky-Rosen paradox’
put forward in [EPR35] has led to a better understanding of quantum probability,
and the invention of the Bell inequalities.

The absence of ‘perfect knowledge’ in quantum probability has prompted many

87
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attempts to replace quantum mechanics by some more fundamental theory, in
which, at least theoretically, it is possible to have extra information that allows us
to predict the outcome of any experiment with certainty. Such an extended theory
would be called a hidden variable theory, since it would involve adding some extra
variables that give more information than the pure states of quantum mechanics.
These extra variables can presumably never be measured so they are called hidden
variables. It is possible to construct such hidden variable theories (the hidden
variable theory of Bohm enjoys some popularity), but we will see that any hidden
variable theory must have strange properties, making it rather unattractive.

7.2 The Kochen-Specker paradox

The Kochen-Specker paradox [KS67] shows that we run into trouble if we assume
that every observable has a well-defined value. In other words, the next theo-
rem shows that we cannot think about the observations (projection operators)
from quantum probability in the same way as we think about events in classical
probability.

Theorem 7.2.1 (Kochen-Specker paradox) Let H be an inner product space
of dimension at least 3. Then there exists a finite set P whose elements are pro-
jections P ∈ L(H), such that it is not possible to assign to every element P ∈ P a
value ‘true’ or ‘false’, in such a way that in every ideal measurement {P1, . . . , Pn}
consisting of elements of P, exactly one projection has the value ‘true’ and all
others have the value ‘false’.

Remark I The essential assumption is that the value (‘true’ or ‘false’) of a pro-
jection P does not depend on the ideal measurement that it occurs in. Thus, if
{P1, . . . , Pn} and {Q1, . . . , Qm} are ideal measurements and Pi = Qj, then Pi and
Qj should either both be ‘true’ or both ‘false’. If one drops this assumption there
is no paradox.

Remark II The fact that we run into trouble even for a finite set P shows that the
paradox is not the result of some (perhaps unnatural) continuity or set-theoretic
assumption.

Remark III The assumption that dim(H) ≥ 3 is necessary. In the next section,
when we discuss the Bell inequality, we will even need spaces of dimension at least
4. It seems that for spaces of dimension 2, there are no serious quantum paradoxes.

Proof of Theorem 7.2.1 As will be obvious from our proof, it suffices to prove the
statement for the case dim(H) = 3. Choose an orthonormal basis {e(1), e(2), e(3)}
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of H and consider projections of the form

P := |ψ〉〈ψ| with ψ = x1e(1) + x2e(2) + x3e(3),

where x = (x1, x2, x3) lies on the surface of the three dimensional real unit sphere:

(x1, x2, x3) ∈ S2 := {x ∈ R3 : ‖x‖ = 1}.

Note that x and −x correspond to the same projection. If three points x, y, z ∈ S2

are orthogonal, then the corresponding projections form an ideal measurement.
Therefore, we need to assign the values ‘true’ or ‘false’ to the points x ∈ S2 in
such a way that x and −x always get the same value, and if three points x, y, z
are orthogonal, then one of them gets the value ‘true’ and the other two get the
value ‘false’. We will show that there exists a finite set P ⊂ S2 such that it is not
possible to assign the values ‘true’ or ‘false’ to the points in P in this way.

Note that if two points x, y are orthogonal, then by adding a third point z that is
orthogonal to x and y, we see that x and y cannot both be ‘true’. Therefore, it
suffices to show that there exists a finite set P ′ ⊂ S2 such that we cannot assign
values to the points in P ′ according to the following rules:

(i) Two orthogonal points are never both ‘true’,
(ii) Of three orthogonal points, exactly one has the value ‘true’.

If we cannot assign values to P ′ according to these rules then by adding finitely
many points we get a set P that cannot be assigned values to according to our
earlier rules.

Since we are only interested in orthogonality relations between finite subsets of
S2, let us represent such subsets by a graph, where the vertices are points in
S2 and there is a bond between two vertices if the corresponding points in S2

are orthogonal. We claim that if x(1), x(2) ∈ S2 are close enough together, in
particular, when the angle α1,2 between x(1) and x(2) satisfies

0 ≤ sin(α1,2) ≤ 1
3
,

then we can find points x(3), . . . , x(10) such that the orthogonality relations in
Figure 7.1 hold.



90 CHAPTER 7. QUANTUM PARADOXES

s
s

s s
s s

s s
s

s
Q
Q
QQ�

�
��

�
��

�
�
��QQ

QQ
@
@@

@
@@

�
��

��
�
��

�
��

�
��

�
��

��
��

��
��

��
��

��

PPPPPPPPPPPPPP

x(2)

x(1)

x(3)
x(8) x(9)

x(4)

x(5)

x(6) x(7)

x(10)

Figure 7.1: Kochen-Specker diagram

To prove this formally, take

x(4) = (1, 0, 0)
x(5) = (0, 0, 1)
x(6) = (0, 1, λ)(1 + λ2)−1/2

x(7) = (1, λ, 0)(1 + λ2)−1/2

x(8) = (0, λ,−1)(1 + λ2)−1/2

x(9) = (λ,−1, 0)(1 + λ2)−1/2

x(1) = (λ2,−λ, 1)(1 + λ2 + λ4)−1/2

x(3) = (1, λ, λ2)(1 + λ2 + λ4)−1/2,

where λ ≥ 0 is a parameter to be determined later. It is easy to check that
orthogonality relations as in Figure 7.1 hold between these points. Since x(10) is
orthogonal to x(1), x(2), and x(3), we need to take x(2) in the plane spanned by
x(1) and x(3). Denote the angle between x(1) and x(3) by α1,3. Then the inner
product of x(1) and x(3) is

〈x(1)|x(3)〉 = cos(α1,3).

We calculate

〈x(1)|x(3)〉 =
λ2

1 + λ2 + λ4
,

which is zero for λ = 0 and 1
3

for λ = 1. It is not hard to see that for λ = 1
the angle between x(1) and x(3) is sharp so by varying λ, we can construct the
diagram in Figure 7.1 for any sharp angle α1,3 with 0 ≤ cos(α1,3) ≤ 1

3
. Since x(2)
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and x(3) are orthogonal, it follows that we can choose x(2) for any sharp angle
α1,2 between x(1) and x(2) with 0 ≤ sin(α1,2) ≤ 1

3
, as claimed.

We now claim that if orthogonality relations as in Figure 7.1 hold between points
x(1), . . . , x(10), and x(1) has the value ‘true’, then x(2) must also have the value
‘true’.

To prove this, assume that x(1) is ‘true’ and x(2) is ‘false’. Then x(6), x(7), and
x(10) must be ‘false’ since they are orthogonal to x(1). But then x(3) must be
‘true’ since x(2) and x(10) are already ‘false’. Then x(8) and x(9) must be ‘false’
since they are orthogonal to x(3). Now x(4) must be ‘true’ since x(8) and x(6) are
already ‘false’ and x(5) must be ‘true’ since x(9) and x(7) are already false. But
x(4) and x(5) are orthogonal, so they are not allowed to be both ‘true’. We arrive
at a contradiction.

We see that if two points are close enough together, then using only finitely many
other points we can argue that if one is ‘true’ then the other one must also be
‘true’. Now choose three points x, y, z that are orthogonal to each other. Then we
can choose x(1), x(2), . . . , x(n) close enough together, such that x is ‘true’ ⇒ x(1)
is ‘true’ ⇒ · · · ⇒ x(n) is ‘true’ ⇒ y is ‘true’. (In fact, it turns out that n = 4
points suffice.) In the same way, using finitely many points, we can argue that y is
‘true’ ⇒ z is ‘true’ and z is ‘true’ ⇒ x is ‘true’. Since x, y, and z are orthogonal,
exactly one of them must be true, so we arrive at a contradiction. (In fact, it turns
out that a set P ′ with 117 points suffices. For our original set P we need even
more points, but still finitely many.)

7.3 The Bell inequality

The Kochen-Specker paradox shows that the ideal measurements of quantum me-
chanics cannot be interpreted as classical ideal measurements. The attribute ‘ideal’
is essential here: if we assume that our measurements perturb our system, i.e., if
the system can react differently on different measurements, there is no paradox. In
this section we discuss a ‘paradox’ that is more compelling, since in this case, if we
want to keep our classical intuition upright, we would have to assume that a sys-
tem can react on a measurement that is performed in another system -potentially
very far away.
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Entanglement

LetA1 andA2 be Q-algebras and letA1⊗A2 be their tensor product. We have seen
that such product algebras are used to model two logically independent subsystems
of a larger physical system. The systems A1 and A2 are independent under a state
(probability law) ρ if and only if ρ is of product form, ρ = ρ1⊗ ρ2 where ρ1, ρ2 are
states on A1,A2, respectively. By definition, a state ρ is entangled if ρ can not be
written as a convex combination of product states, i.e., if ρ is not of the form

ρ =
n∑
k=1

pkρ1,k ⊗ ρ2,k,

where ρ1,k, ρ2,k are states on A1,A2, respectively, and the pk are nonnegative num-
bers summing up to one. In classical probability, entangled states do not exist:

Exercise 7.3.1 Let A1 and A2 be Q-algebras and assume that A1 is abelian.
Show that there exist no entangled states on A1 ⊗A2.

On the other hand, if A1 and A2 are both nonabelian, then entangled states do
exist. To see this, it suffices to consider the case that A1 = L(H1) and A2 = L(H2)
where H1,H2 are inner product spaces of dimension at least two. Recall that
L(H1) ⊗ L(H2) ∼= L(H1 ⊗H2). Let {e, e′} be orthonormal vectors in H1 and let
{f, f ′} be orthonormal vectors in H2. Define a unit vector ψ ∈ H1 ⊗H2 by

ψ := 1√
2
e⊗ f + 1√

2
e′ ⊗ f ′, (7.1)

and let ρ = ρψ(A) = 〈ψ|A|ψ〉 be the pure state associated with ψ. We claim that
ρ cannot be written as a convex combination of product states. Since ρ is pure, it
suffices to show that ρ is not a product state itself. If it were, it would have to be
the product of its marginals ρ1, ρ2. Here ρ1 is the state on A1 defined by

ρ1(A1) = 〈ψ|A1 ⊗ 1|ψ〉
= 1

2
〈e⊗ f |A1 ⊗ 1|e⊗ f〉+ 1

2
〈e′ ⊗ f ′|A1 ⊗ 1|e′ ⊗ f ′〉

+1
2
〈e⊗ f |A1 ⊗ 1|e′ ⊗ f ′〉+ 1

2
〈e′ ⊗ f ′|A1 ⊗ 1|e⊗ f〉

= 1
2
〈e|A1|e〉〈f |f〉+ 1

2
〈e′|A1|e′〉〈f ′|f ′〉+ 0 + 0

= 1
2
〈e|A1|e〉+ 1

2
〈e′|A1|e′〉 (A1 ∈ L(H1)),

i.e., ρ1 = 1
2
ρe + 1

2
ρe′ . In the same way we see that ρ2 = 1

2
ρf + 1

2
ρf ′ . In particular,

ρ1 and ρ2 are not pure states! It is not hard to see that

ρ1 ⊗ ρ2 = 1
4

(
ρe⊗f + ρe′⊗f + ρe⊗f ′ + ρe′⊗f ′

)
is not a pure state, hence ρ1 ⊗ ρ2 6= ρ, so ρ is entangled.
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The Bell inequality

The Bell inequality is a test on entanglement. If (A, ρ) is a quantum probability
space and P,Q ∈ A are projections that commute with each other, then we define
their correlation coefficient cρ(P,Q) by

cρ(P,Q) := ρ(PQ) + ρ((1− P )(1−Q))− ρ(P (1−Q))− ρ((1− P )Q).

Note that since P and Q commute, we can interpret PQ as the simultaneous
observation of P and Q. The next result is due to Bell [Bel64].

Theorem 7.3.2 (Bell inequality) Let B1,B2 be logically independent sub-∗-al-
gebras of some larger Q-algebra and let ρ be a state on α(B1 ∪ B2). If ρ is not
entangled, then for any projections P1, P

′
1 ∈ B1 and P2, P

′
2 ∈ B2, one has

|cρ(P1, P2) + cρ(P
′
1, P2) + cρ(P1, P

′
2)− cρ(P ′1, P ′2)| ≤ 2. (7.2)

Proof We first prove the inequality for product states. Set

S1 := 2P1 − 1

and define S ′1, S2, S
′
2 similarly. Note that S1 = P1 − (1− P1), so S1 is a hermitian

operator with spectrum σ(S1) = {−1,+1}, i.e., S1 is an observable that can take
on the values ±1, such that P1 (resp. 1− P1) corresponds to the observation that
S1 = +1 (resp. S1 = −1). Then

cρ(P1, P2) = ρ(S1S2),

etc., so if ρ is a product measure, then

cρ(P1, P2) + cρ(P
′
1, P2) + cρ(P1, P

′
2)− cρ(P ′1, P ′2)

= ρ(S1S2) + ρ(S ′1S2) + ρ(S1S
′
2)− ρ(S ′1S

′
2)

= ρ(S1)ρ(S2) + ρ(S ′1)ρ(S2) + ρ(S1)ρ(S ′2)− ρ(S ′1)ρ(S ′2)

= ρ(S1)(ρ(S2) + ρ(S ′2)) + ρ(S ′2)(ρ(S2)− ρ(S ′2)),

so the quantity in (7.2) can be estimated by

|ρ(S2) + ρ(S ′2)|+ |ρ(S2)− ρ(S ′2)|.

If ρ(S2) + ρ(S ′2) and ρ(S2)− ρ(S ′2) have the same sign, then we get 2|ρ(S2)|, while
otherwise we get 2|ρ(S ′2)|. At any rate, our estimate shows that the quantity in
(7.2) is less or equal than 2.
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More generally, if ρ is a convex combination of product states, ρ =
∑

k pkρk, say,
then

|cρ(P1, P2) + cρ(P
′
1, P2) + cρ(P1, P

′
2)− cρ(P ′1, P ′2)|

≤
∑
k

pk
∣∣cρk(P1, P2) + cρk(P

′
1, P2) + cρk(P1, P

′
2)− cρk(P ′1, P ′2)

∣∣ ≤ 2

by what we have just proved.

We next show that entangled states can violate the Bell inequality. We will ba-
sically use the same entangled state as in (7.1), which we interpret in terms of
two polarized photons. Let H1 and H2 be two-dimensional inner product spaces
with orthonormal bases {e(1), e(2)} and {f(1), f(2)}, respectively. For γ ∈ [0, π),
define ηγ ∈ H1 and ζγ ∈ H2 by

ηγ := cos(γ)e(1) + sin(γ)e(2) and ζγ := cos(γ)f(1) + sin(β)f(2).

Set Pγ := |ηγ〉〈ηγ| and Qβ := |ζβ〉〈ηβ|. For each γ, γ̃ we may interpret {Pγ, Pγ+π/2}
and {Qγ, Qγ̃+π/2} as an ideal measurements of the polarization of our first photon
and second photon, respectively, in the directions γ and γ̃ (see Section 2.3). We
prepare our system in the entangled state

ψ := 1√
2
e(1)⊗ f(1) + 1√

2
e(2)⊗ f(2).

We claim that for any γ,

ψ = 1√
2
ηγ ⊗ ζγ + 1√

2
ηγ+π/2 ⊗ ζγ+π/2. (7.3)

Note that this says that if we measure the polarization of both photons along the
same direction, we will always find that both photons are polarized in the same
way! To see this, we observe that

ηγ ⊗ ζγ = (cos(γ)e(1) + sin(γ)e(2))⊗ (cos(γ)f(1) + sin(γ)f(2))

= cos(γ)2 e(1)⊗ f(1) + sin(γ)2 e(2)⊗ f(2)

+ cos(γ) sin(γ)e(1)⊗ f(2) + sin(γ) cos(γ)e(2)⊗ f(1)

and

ηγ+π/2 ⊗ ζγ+π/2 = (− sin(γ)e(1) + cos(γ)e(2))⊗ (− sin(γ)f(1) + cos(γ)f(2))

= sin(γ)2 e(1)⊗ f(1) + cos(γ)2 e(2)⊗ f(2)

− sin(γ) cos(γ)e(1)⊗ f(2)− cos(γ) sin(γ)e(2)⊗ f(1).
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Adding both expressions and dividing by
√

2 we arrive at (7.3).
The probability of finding one photon polarized in the direction γ and the other
photon in the direction γ̃ is given by

ρψ(Pγ ⊗Qγ̃) = ρψ(P0 ⊗Qγ̃−γ)

= 1
2
〈e(1)⊗ f(1)|P0 ⊗Qγ̃−γ|e(1)⊗ f(1)〉

+1
2
〈e(2)⊗ f(2)|P0 ⊗Qγ̃−γ|e(2)⊗ f(2)〉

= 1
2
〈e(1)|e(1)〉〈f(1)|ζγ̃−γ〉〈ζγ̃−γ|f(1)〉

= 1
2

cos(γ̃ − γ)2.

(Compare Excercise 2.3.2.) Hence

cρψ(Pγ⊗ 1, 1⊗Qγ̃) = cos(γ̃−γ)2− sin(γ̃−γ)2 = 2 cos(γ̃−γ)2− 1 = cos(2(γ̃−γ)).

We now check that for an appropriate choice of the angles, these correlation coef-
ficients violate the Bell inequality (7.2). We take

P1 = P0 ⊗ 1, P ′1 = Pα+β ⊗ 1,
P2 = 1⊗Qα, P ′2 = 1⊗Q−β.

The expression in (7.2) then becomes∣∣ cos(2α) + 2 cos(2β)− cos(4β + 2α)
∣∣.

We want to maximize the expression inside the brackets. Setting the derivatives
with respect to α and β equal to zero yields the equations

−2 sin(2α) + 2 sin(4β + 2α) = 0,
−4 sin(2β) + 4 sin(4β + 2α) = 0.

It follows that sin(2β) = sin(4β + 2α) = sin(2α). We choose

β = α.

The expression to be maximized then becomes

3 cos(2α)− cos(6α).

Differentiating and setting equal to zero yields

−6 sin(2α) + 6 sin(6α) = 0 ⇒ sin(2α) = sin(6α).
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Setting z = ei2α, we need to solve

1
2i

(
ei2α − e−i2α

)
= 1

2i

(
ei6α − e−i6α

)
⇔ z − z−1 = z3 − z−3

⇔ z6 − z4 + z2 − 1 = 0.

Setting y = z2 = ei4α, we obtain the cubic equation

y3 − y2 + y − 1 = 0.

We know that y = ei20 = 1 is a trivial solution, so factorising this out we get

(y − 1)(y2 + 1) = 0,

which has nontrivial solutions y = ±i = e±iπ/2. Therefore, the maximum we are
interested in occurs at α = 1

8
π. The expression in (7.2) then becomes

3 cos(1
4
π)− cos(3

4
π) = 3 1√

2
−− 1√

2
= 2
√

2 ≈ 2.82847,

which is indeed larger than 2, the bound from the Bell inequality. Correlations be-
tween single photons passing through prismas can be measured, and this violation
of the Bell inequality has been verified experimentally [Red87, CS78].

7.4 The GHZ paradox

In classical probability theory, every probability law can be written as the convex
combination of ‘precise’ states, where the values of all observables are known. In
particular, on a product space, such precise states are product states, so there
can be no entanglement. The Bell inequality is a test on entanglement, but it is
only a statistical test, which requires us to measure certain probabilities that lie
strictly between zero and one. The appeal of the Kochen-Specker paradox is that
it talks about events that have probability zero or one only. The Greenberger-
Horne-Zeilinger paradox [G–Z90] gives us a test on entanglement that involves
only events that have probability zero or one. In fact, things are happening with
certainty here that in classical probability can at most have probability 3/4. A
slight complication that we have to deal with to achieve this is that we need three
subsystems, rather than two.

Theorem 7.4.1 (GHZ paradox) Let B1,B2,B3 be logically independent sub-
∗-algebras of some larger Q-algebra and let ρ be a state on B1B2B3. For each
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i = 1, 2, 3, let Si, S
′
i ∈ Bi be hermitian operators with spectrum σ(Si) = σ(S ′i) =

{−1, 1}. If ρ is not entangled, then

ρ({S1S
′
2S
′
3 = 1}) + ρ({S ′1S2S

′
3 = 1})

+ρ({S ′1S ′2S3 = 1}) + ρ({S1S2S3 = −1}) ≤ 3.
(7.4)

On the other hand, if each Bi is of the form Bi ∼= L(H) where H is a 2-dimensional
inner product space, then there exists a state ρ on B1B2B3 such that

ρ({S1S
′
2S
′
3 = 1}) + ρ({S ′1S2S

′
3 = 1})

+ρ({S ′1S ′2S3 = 1}) + ρ({S1S2S3 = −1}) = 4.
(7.5)

Remark 1 Since the algebras B1,B2,B3 are logically independent, the operators
S1, S

′
2, S

′
3 all commute with each other. It follows that their product S1S

′
2S
′
3 is also

a hermitian operator. If S1, S
′
2, S

′
3 assume values s1, s

′
2, s
′
3, then the observable

S1S
′
2S
′
3 assumes the value s1s

′
2s
′
3. In fact, by Excercise 6.2.3, we have that

{S1S
′
2S
′
3 = 1} = {S1 = 1}{S ′2 = 1}{S ′3 = 1}+ {S1 = 1}{S ′2 = −1}{S ′3 = −1}

+{S1 = −1}{S ′2 = 1}{S ′3 = −1}+ {S1 = −1}{S ′2 = −1}{S ′3 = 1}.

The same applies to the operators S ′1S2S
′
3, S ′1S

′
2S3, and S1S2S3, so in this way,

we can write the left-hand side of (7.4) as the sum of 16 observations of the form
P1P2P3, where Pi ∈ Bi is a projection. Note that by our assumption that the
algebras B1,B2,B3 are logically independent, all of these projections are nonzero.

Remark 2 Since (even in quantum probability) probabilities can never be larger
than one, formula (7.5) simply says that each of the four observations there
has probability one. If we think classically, and presume that the observables
S1, S2, S3, S

′
1, S

′
2, S

′
3 have some hidden ‘true’ values s1, s2, s2, s

′
1, s
′
2, s
′
3 in {−1, 1},

then this is clearly nonsense, since it implies that with probability one

(s1s
′
2s
′
3)(s′1s2s

′
3)(s′1s

′
2s3) = 1 6= −1 = (s1s2s3).

Remark 3 The GHZ paradox has been experimentally tested [B–Z99].

Proof of Theorem 7.4.1 We start by constructing a state ρ for which (7.5)
holds. Let H be a two-dimensional inner product space with orthonormal basis
{e(1), e(2)}. Let ρ = ρψ be the pure state desccribed by the state vector

ψ := 1√
2

(
e(1)⊗ e(1)⊗ e(1) + e(2)⊗ e(2)⊗ e(2)

)
. (7.6)
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Let S, S ′ ∈ L(H) be the hermitian operators given with respect to the basis
{e(1), e(2)} by the matrices

S :=

(
0 −1
−1 0

)
and S ′ :=

(
0 i
−i 0

)
.

It is easy to check that S2 = 1 = S ′2, so σ(S) and σ(S) are subsets of {−1, 1}.
Since S and S ′ are clearly not equal to the operators ±1, we conclude that σ(S) =
{−1, 1} = σ(S). It is easy to check that

SS ′ = −S ′S,

i.e., the operators S and S ′ anticommutate. We now represent the product algebra
L(H)⊗ L(H)⊗ L(H) in the standard way on the product space H⊗H⊗H and
set

S1 := S ⊗ 1⊗ 1, S2 := 1⊗ S ⊗ 1, and S3 := 1⊗ 1⊗ S,
and similarly

S ′1 := S ′ ⊗ 1⊗ 1, S ′2 := 1⊗ S ′ ⊗ 1, and S ′3 := 1⊗ 1⊗ S ′.

Then ρψ(S1S
′
2S
′
3) = 〈ψ|S1S

′
2S
′
3|ψ〉 is given by

1
2
〈e(1)⊗ e(1)⊗ e(1) + e(2)⊗ e(2)⊗ e(2)|
· S ⊗ S ′ ⊗ S ′|e(1)⊗ e(1)⊗ e(1) + e(2)⊗ e(2)⊗ e(2)〉

= 1
2
〈e(1)⊗ e(1)⊗ e(1) + e(2)⊗ e(2)⊗ e(2)|
· |(Se(1))⊗ (S ′e(1))⊗ (S ′e(1)) + (Se(2))⊗ (S ′e(2))⊗ (S ′e(2))〉

= 1
2
〈e(1)|Se(1)〉〈e(1)|S ′e(1)〉〈e(1)|S ′e(1)〉

+ 1
2
〈e(1)|Se(2)〉〈e(1)|S ′e(2)〉〈e(1)|S ′e(2)〉

+ 1
2
〈e(2)|Se(1)〉〈e(2)|S ′e(1)〉〈e(2)|S ′e(1)〉

+ 1
2
〈e(2)|Se(2)〉〈e(2)|S ′e(2)〉〈e(2)|S ′e(2)〉.

Here

〈e(1)|Se(1)〉 =

〈(
1
0

) ∣∣∣( 0 −1
−1 0

)(
1
0

)〉
=

〈(
1
0

) ∣∣∣( 0
−1

)〉
= 0,

〈e(1)|Se(2)〉 =

〈(
1
0

) ∣∣∣( 0 −1
−1 0

)(
0
1

)〉
=

〈(
1
0

) ∣∣∣( −1
0

)〉
= −1,

〈e(2)|Se(2)〉 =

〈(
0
1

) ∣∣∣( 0 −1
−1 0

)(
0
1

)〉
=

〈(
0
1

) ∣∣∣( −1
0

)〉
= 0,
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and

〈e(1)|S ′e(1)〉 =

〈(
1
0

) ∣∣∣( 0 i
−i 0

)(
1
0

)〉
=

〈(
1
0

) ∣∣∣( 0
−i

)〉
= 0,

〈e(1)|S ′e(2)〉 =

〈(
1
0

) ∣∣∣( 0 i
−i 0

)(
0
1

)〉
=

〈(
1
0

) ∣∣∣( i
0

)〉
= i,

〈e(2)|S ′e(2)〉 =

〈(
0
1

) ∣∣∣( 0 i
−i 0

)(
0
1

)〉
=

〈(
0
1

) ∣∣∣( i
0

)〉
= 0.

Since S and S ′ are hermitian, 〈e(2)|S|e(1)〉 = 〈e(1)|S|e(2)〉∗ = (−1)∗ = −1 and
〈e(2)|S ′|e(1)〉 = 〈e(1)|S ′|e(2)〉∗ = i∗ = −i, so we conclude that our earlier expres-
sion for ρψ(S1S

′
2S
′
3) is given by

ρψ(S1S
′
2S
′
3) = 0 + 1

2
(−1) · i · i+ 1

2
(−1) · (−i) · (−i) + 0 = 1.

By the symmetry of the state ψ, it is now clear that

ρψ(S1S
′
2S
′
3) = ρψ(S ′1S2S

′
3) = ρψ(S ′1S

′
2S3) = 1.

On the other hand, the same calculations as above give for S1S2S3

ρψ(S1S2S
′
3) = 0 + 1

2
(−1)3 + 1

2
(−1)3 + 0 = −1.

Since S1S
′
2S
′
3 is an {−1, 1}-valued observable, the fact that the expected value

ρψ(S1S
′
2S
′
3) = ρ({S1S

′
2S
′
3 = 1})− ρ({S1S

′
2S
′
3 = −1})

equals one implies that S1S
′
2S
′
3 assumes the value 1 with probability one. The

same arguments apply to S ′1, S2, S
′
3, S ′1, S

′
2, S3, and S1, S2, S3, so we conclude that

(7.5) holds.
Because the explcit calculations above are rather involved, we now give some alge-
braic arguments (inspired by [Gil06]) why (7.5) should perhaps have been expected.
We start by observing that the hermitian operators

(S1S
′
2S
′
3), (S ′1S2S

′
3), (S ′1S

′
2S3), and (S1S2S3)

all commute with each other. Indeed, by the anticommutation relation between S
and S ′

(S1S
′
2S
′
3)(S ′1S2S

′
3) = (S1S

′
1)(S ′2S2)(S ′3)2

= (−1)2(S ′1S1)(S2S
′
2)(S ′3)2 = (S ′1S2S

′
3)(S1S

′
2S
′
3).
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Since we always have to permute the order of two primed and unprimed oper-
ators, we see in this way that (S ′1, S2, S

′
3), (S ′1, S

′
2, S3), and (S1, S2, S3) mutually

commute. It follows that we can find an orthonormal basis that diagonalizes these
operators simultaneously. In particular, we can find some vector ψ and constants
s011, s101, s110, s000 such that

(S1S
′
2S
′
3)ψ = s011ψ, (S ′1S2S

′
3)ψ = s101ψ,

(S ′1S
′
2S3)ψ = s110ψ, and (S1S2S3)ψ = s000ψ.

But, again using the anticommutation relation between S and S ′ as well as the
fact that S2 = S ′2 = 1, we see that

(S1S
′
2S
′
3)(S ′1S2S

′
3)(S ′1S

′
2S3) = (S1S

′
1S
′
1)(S ′2S2S

′
2)(S ′3S

′
3S3)

= −(S1S
′
1S
′
1)(S2S

′
2S
′
2)(S3S

′
3S
′
3) = −(S1S2S3),

which implies that
s011s101s110 = −s000.

Our earlier, explicit calculations show that in fact it is possible to choose s011 =
s101 = s110 = 1 and s000 = −1, and moreover tell us that this is realized for the
nice entangled state in (7.6).

We still have to show that states that are not entangled must satisfy (7.4). By
linearity, it suffices to show that product states satisfy (7.4). Define probability
laws µi, µ

′
i (i = 1, 2, 3) on {−1, 1} by

µi(s) := ρ({Si = s}) and µ′i(s) := ρ({S ′i = s}) (s ∈ {−1, 1}).

As explained in Remark 1, the left-hand side of (7.4) is really the sum of 16
probabilities of the form

ρ({(S1, S
′
2, S

′
3) = (1,−1,−1)}),

etc., where there is always an even number of primed variables and an even or
odd number of +1’s and −1’s depending on which observation we are considering.
Since ρ is a product state

ρ({(S1, S
′
2, S

′
3) = (s1, s2, s3)}) = µ1(s1)µ′2(s2)µ′3(s3).

Let T1, T2, T3, T
′
1, T

′
2, T

′
3 be random variables on a classical probability space, all

independent of each other, with laws µ1, µ2, µ3, µ
′
1, µ

′
2, µ

′
3, respectively. Then

ρ({(S1, S
′
2, S

′
3) = (s1, s2, s3)}) = P[(T1, T

′
2, T

′
3) = (s1, s2, s3)],
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etc. So it suffices to show that in classical probability,

P[T1T
′
2T
′
3 = 1] + P[T ′1T2T

′
3 = 1] + P[T ′1T

′
2T3 = 1] + P[T1T2T3 = −1] ≤ 3.

Since the first three events imply that

(T1T2T3) = (T1T
′
2T
′
3)(T ′1T2T

′
3)(T ′1T

′
2T3) = 1 · 1 · 1 = 1,

at most three of the events {T1T
′
2T
′
3 = 1}, {T ′1T2T

′
3 = 1}, {T ′1T ′2T3 = 1}, and

{T1T2T3 = −1} can be true at the same time, so

E
[
1{T1T ′

2T
′
3=1} + 1{T ′

1T2T
′
3=1} + 1{T ′

1T
′
2T3=1} + 1{T1T2T3=−1}] ≤ 3.

Exercise 7.4.2 For the entangled state ρ = ρψ from Theorem 7.4.1, calculate the
marginal ρ12(A1 ⊗ A2) := ρ(A1 ⊗ A2 ⊗ 1) (A1 ∈ B1, A2 ∈ B2). Is this marginal
entangled?

Exercise 7.4.3 For the entangled state ρ = ρψ from Theorem 7.4.1, calculate
ρ({S ′1S2S3 = 1}) and ρ({S ′1S ′2S ′3 = 1}).

Exercise 7.4.4 Three astronauts, who are good friends, are separating for many
years to explore different parts of space. To stay at least symbolically in contact,
they have bought three equal-looking boxes, one for each of them, on which there
are two buttons, a blue and a red one, and also two lights in these colors. One
day, when they are far from each other, each will push one of the buttons, either
the blue or the red one. The boxes are constructed so that they react only to the
first button that is pushed on each box. Once a button is pushed, either the blue
or red light, or both, or none, light up. Things work in such way that after all
friends have chosen their buttons, if all three have pushed their red buttons, then
on the three boxes in total an odd number of red lights will be lit, while if exactly
one of the friends has chosen the red button, an even number of red lights will be
lit. For blue buttons and blue lights, the rules are the same. Can such boxes be
constructed in such a way that no signal needs to pass from one box to the other
boxes once the buttons are pushed, and if yes, how?

Bell versus Tsirelson

We have seen that in classical probability theory, the quantity in (7.2) is less or
equal than 2, while in quantum probability, it can be 2

√
2. Note that a priori,



102 CHAPTER 7. QUANTUM PARADOXES

this is just a sum of four correlations, each of which could take values between −1
and 1, so it is conceivable that this quantity could be as high as 4. Nevertheless,
the violation of Bell’s inequality that we have found is maximal, as was proved by
B. Tsirelson [Cir80]. Similarly, we have seen that in classical probability theory,
and more generally for nonentangled states, the quantity in (7.4) is less or equal
than 3, while in quantum probability, it can be 4.
Another way of looking at these inequalities is as follows. Imagine that we have s
physical systems (separated in space), such on each system, m different ideal mea-
surements are possible, each of which yields one of n different possible outcomes.
The Bell inequality (7.2) considers the case s = m = n = 2, while the GHZ para-
dox is concerned with s = 3, m = n = 2. Numbering the systems, measurements,
and outcomes in some arbitrary way, we are interested in the (mn)s conditional
probabilities, say

p(a1, . . . , as|b1 . . . , bs),

that experiments b1, . . . , bs ∈ {1, . . . ,m} yield outcomes a1, . . . , as ∈ {1, . . . , n}.
We are interested in the case that chosing which measurement to perform on one
system does not influence probabilities on another system. For example, in the
case s = m = n = 2, this yields the ‘no signalling’ requirement

p(1, 1|1, 1) + p(1, 2|1, 1) = p(1, 1|1, 2) + p(1, 2|1, 2),

which says that the conditional probability of outcome 1 given that on system 1 we
perform measurement 1, does not depend on the choice of the measurement at the
second system. There are other requirements coming from the fact that probabili-
ties must be nonnegative and sum up to one. Together, these requirements define
a convex set Pnosignal of functions p that assign probabilities p(a1, . . . , as|b1 . . . , bs)
to the outcomes of different measurements.
It turns out that not all these probability functions p can arise from classical
probability. More precisely, classically, we imagine that there are certain ‘hidden
variables’ that deterministically predict the outcome of each measurement. Thus,
we imagine that

p(a1, . . . , as|b1 . . . , bs) =
∑
h

P (h)ph(a1, . . . , as|b1 . . . , bs) (7.7)

where h represents the ‘hidden’ variables, P (h) is the probability that these hidden
variables take the value h, and ph is a function satisfying the ‘no signalling’ and
other requirements mentioned above, such that in addition, ph(a1, . . . , as|b1 . . . , bs)
is either 0 or 1 for each choice of a1, . . . , as, b1 . . . , bs. Since there are only finitely
many such functions, the collection of functions p of the form (7.7) is a convex set
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Pclassical with finitely many extreme points, which are the functions ph. It turns
out that Pclassical is strictly smaller than Pnosignal. Here, an essential assumption
is that the functions ph also satisfy our ‘no signalling’ requirements. If we allow
hidden variables to communicate at a distance (possibly with a speed larger than
the speed of light), then there is no problem.
‘Interesting’ faces of Pclassical correspond to inequalities that are not satisfied by
general elements of Pnosignal. In fact, the Tsirelson inequalities show that Pquantum,
the quantum analogue of Pclassical, is also not equal to Pnosignal. The geometric
structure of these convex sets is still very much a topic of research, see [Gil06].
Another interesting question (that I do not know the answer to) is whether there
exist good, consistent probability theories that violate the Tsirelson inequalities.
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Chapter 8

Operations

8.1 Completely positive maps

Let A be a Q-algebra and let A′prob denote the space of all states on A. As we
know, a state ρ ∈ A′prob describes incomplete knowledge about the physical system
A. We will be interested in operations on A′prob, i.e., we want to know how ρ
can change due to the effects of our physical interference with the system A. In
general, such an operation will be described by a map f : A′prob → A′prob that
has the following interpretation: If our knowledge about the system before we
performed the operation was described by the state ρ, then our knowledge after
we have performed the operation is described by f(ρ). A natural requirement on
f is that it be linear, in the sense that

f(pρ1 + (1− p)ρ2) = pf(ρ1) + (1− p)f(ρ2) (ρ1, ρ2 ∈ A′prob, 0 ≤ p ≤ 1). (8.1)

This says that if before we performed our operation f , our knowledge about the
system is with probability p described by ρ1 and with probability 1 − p by ρ2,
then after we have performed the operation f , the system is with probability p
described by f(ρ1) and with probability 1− p by f(ρ2).

At first, it might seem that nothing more can be said about f and that any map
f : A′prob → A′prob that is linear in the sense of (8.1) describes a legal operation on
the system A. However, it turns out that this is not the case. Assume that B is
some other system, logically independent of A. (Since our algebra A will typically
not describe the whole universe, there will typically be lots of such systems!) Then
we must be able to say what happens with a probability ρ on A ⊗ B when we
perform our operation on A and do nothing with B. For product probabilities, it
is natural to require that the effect of our operation on A, doing nothing with B,

105
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is to map ρ1 ⊗ ρ2 to
F (ρ1 ⊗ ρ2) := f(ρ1)⊗ ρ2.

Now we need that F can be extended to a map F : (A ⊗ B)′prob → (A ⊗ B)′prob

that is linear in the sense of (8.1). It turns out that such a linear extension does
not always exist, and this leads to a nontrivial requirement on f ! As one might
guess, problems occur for entangled states.

Slightly generalizing our set-up, let us consider two Q-algebras A and B and maps
f : A′prob → B′prob that are linear in the sense of (8.1).

Lemma 8.1.1 (Linear maps acting on states) Let A and B be Q-algebras and
let T : B → A be a linear map satisfying

(i) T (B∗) = T (B)∗,
(ii) B ≥ 0 ⇒ T (B) ≥ 0,

(iii) T (1) = 1.
(8.2)

Let T ′ : A′ → B′ be the dual of T , i.e.,

T ′(l)(B) = l(T (B))) (l ∈ A′, B ∈ B).

Then T ′ maps A′prob into B′prob, and conversely, every map from A′prob into B′prob

that is linear in the sense of (8.1) arises in this way.

Proof Assume that f : A′prob → B′prob is linear in the sense of (8.1). Since A′prob

spans A′, the map f can uniquely be extended to a linear map f̂ : A′ → B′. It is
not hard to see that f̂ satisfies

(i) l real ⇒ f̂(l) real,

(ii) l positive ⇒ f̂(l) positive,

(iii) f̂(l)(1) = l(1),

(8.3)

and conversely, if a linear map f̂ : A′ → B′ satisfies (8.3), then f̂ maps A′prob into

B′prob. Let T denote the dual of f̂ , i.e., the unique linear map T : B → A such that

f̂(l)(B) = l(T (B)) (l ∈ A′, B ∈ B).

Then it is not hard to see that the conditions (8.2) (i)–(iii) are equivalent to the
conditions (8.3) (i)–(iii).

Exercise 8.1.2 Check that (8.2) is equivalent to (8.3) if f̂ = T ′, the dual of T .
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A linear map T : B → A satisfying (8.2) (i) and (ii) (but not necessarily (iii)) is
called positive.

Coming back to our earlier discussion, let A,B, C be Q-algebras, let T : B → A
be a positive linear map, and let T ′ be its dual. In view of Lemma 8.1.1, we want
to know if there exists a positive linear map S : B ⊗ C → A ⊗ C whose dual S ′

satisfies

S ′(ρ1 ⊗ ρ2) := T ′(ρ1)⊗ ρ2 (ρ1 ∈ A′prob, ρ2 ∈ C ′prob).

Since A′prob ⊗ C ′prob is dense in (A′ ⊗ C ′) ∼= (A⊗ C)′, we need that S ′ = (T ′ ⊗ 1) =
(T ⊗ 1)′, which is equivalent to S = T ⊗ 1. This leads to the following definition:
We say that a linear map T : B → A is completely positive if the map

T ⊗ 1 : B ⊗ L(K)→ A⊗L(K)

is positive for every inner product space K. Surprisingly, we will see below that
positivity does not imply complete positivity. We note that if T is completely
positive and C is some sub-∗-algebra of L(K), then T ⊗ 1 : B ⊗ C → A ⊗ C is
positive. Thus, since every Q-algebra can be embedded in some L(K), it suffices
to consider only factor algebras L(K).

8.2 A counterexample

We set out to show that positivity does not imply complete positivity and to
characterise all completely positive maps. Before we show this, we first give a
slightly different formulation of complete positivity, that is often useful. Let A be
a positive ∗-algebra and let K be an inner product space. Let {e(1), . . . , e(m)} be
an orthonormal basis for K. Then the linear operators

|e(i)〉〈e(j)| (i, j = 1, . . . ,m)

form a basis for L(K), and we can decompose A⊗ L(K) as a linear space as

A⊗ L(K) ∼=
⊕

i,j=1,...,m

A⊗ |e(i)〉〈e(j)|.

Thus, every A ∈ A⊗ L(K) has a unique decomposition

A =
m∑

i,j=1

Aij ⊗ |e(i)〉〈e(j)|,
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with Aij ∈ A. Now(∑
ij

Aij ⊗ |e(i)〉〈e(j)|
)(∑

kl

Bkl ⊗ |e(k)〉〈e(l)|
)

=
∑
il

(∑
j

AijBjl

)
|e(i)〉〈e(l)|,

which shows that
(AB)ij =

∑
k

AikBkj.

Moreover, (∑
ij

Aij ⊗ |e(i)〉〈e(j)|
)∗

=
∑
ij

A∗ij ⊗ |e(j)〉〈e(i)|,

which shows that
(A∗)ij = (Aji)

∗.

Thus, we see that, with respect to an orthonormal basis for K, there is a natural
isomorphism between the positive ∗-algebra A ⊗ L(K) and the space of m × m
matrices with entries from A. Now if T : B → A is a linear map, then the linear
map (T ⊗ 1) : B ⊗ L(K)→ A⊗L(K) satisfies

(T ⊗ 1)
(∑

ij

Bij ⊗ |e(i)〉〈e(j)|
)

=
(∑

ij

T (Bij)⊗ |e(i)〉〈e(j)|
)
,

which shows that (
(T ⊗ 1)(B)

)
ij

= T (Bij). (8.4)

If A is a positive ∗-algebra then we let Mm(A) denote the space of m × m ma-
trices with entries from A, equipped with the structure of a ∗-algebra by putting
(AB)ij :=

∑
k AikBkj and (A∗)ij := (Aji)

∗.

Lemma 8.2.1 (Different formulation of complete positivity) Let A,B be
Q-algebras and let T : B → A be a linear map. Then T is completely positive if
and only if the map from Mm(B) to Mm(A) given by B11 · · · B1m

...
...

Bm1 · · · Bmm

 7→
 T (B11) · · · T (B1m)

...
...

T (Bm1) · · · T (Bmm)


is positive for each m.

Counterexample 8.2.2 (A positive map that is not completely positive)
Let H be an inner product space of dimension 2 and let {e(1), e(2)} be an or-
thonormal basis. Then the linear map T : L(H) → L(H) given, with respect
to this basis, by T (A)ij := Aji, is positive and satisfies T (1) = 1, but T is not
completely positive.
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Proof If A is positive then∑
ij

x∗iAijxj ≥ 0 ∀x ∈ C2.

This implies (take yi := x∗i )∑
ij

y∗i T (A)ijyj =
∑
ij

yiAijy
∗
j ≥ 0 ∀y ∈ H,

which shows that T (A) is positive. However, the map(
A11 A12

A21 A22

)
7→
(
T (A11) T (A12)
T (A21) T (A22)

)
is not positive, since under this map

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 7→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The matrix on the left is ∣∣∣∣∣∣∣∣


1
0
0
1


〉〈

1
0
0
1


∣∣∣∣∣∣∣∣ ,

which is clearly a positive operator. On the other hand, the matrix on the right
has an eigenvalue −1:

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0
1
−1

0

 = −


0
1
−1

0


and is therefore not positive.

Remark An operator T : B → A is called n-positive if the map from Mn(A) to
Mn(B) in Lemma 8.2.1 is positive. One can show that (n+1)-positive⇒ n-positive
but n-positive 6⇒ (n+ 1)-positive.
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8.3 Characterization of complete positivity

Our aim in this section is to describe the form of a general completely positive
map on a given Q-algebra A. For simplicity, we restrict ourselves to the case when
A is a factor algebra.

The next theorem, which describes completely positive maps between factor alge-
bras, is due to Stinespring [Sti55]; see also [Tak79, Thm IV.3.6].

Theorem 8.3.1 (Stinespring) Let H and F be inner product spaces and let
V (1), . . . , V (n) be linear maps in L(H,F). Then

T (A) :=
n∑

m=1

V (m)AV (m)∗ (A ∈ L(H))

defines a completely positive linear map T : L(H) → L(F) and conversely, every
completely positive linear map from L(H) to L(F) is of this form.

Proof This proof is best done with tensor calculus. By Lemma 1.4.3, we have
L(H) ∼= H ⊗ H′ and L(F) ∼= F ⊗ F ′. A linear map T from L(H) to L(F) is
therefore an element of

L(H⊗H′,F ⊗ F) ∼= F ⊗ F ′ ⊗ (H⊗H′)′ ∼= F ⊗ F ′ ⊗H′ ⊗H.

Thus, there is a tensor
T̃ ∈ F ⊗ F ′ ⊗H′ ⊗H

such that with respect to bases for F ,H and the corresponding dual bases for
F ′,H′, one has

(T (A))ij =
∑
kl

T̃ijklAkl.

Note that A ∈ L(H) ∼= H ⊗ H′. We have contracted the third coordinate of T̃
with the first coordinate of A, which corresponds to contracting H′ with H, and
the fourth coordinate of T̃ with the second coordinate of A, which corresponds to
contracting H with H′. In view of what follows, it will be convenient to order the
the spaces in the tensor product F ⊗ F ′ ⊗H′ ⊗H in a different way. Let

T ∈ F ⊗H′ ⊗H⊗F ′

be the tensor defined by Tijkl = T̃iljk. Then

(T (A))ij =
∑
kl

TikljAkl. (8.5)
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Now T is of the form T (A) =
∑

m V (m)AV (m)∗ if and only if∑
kl

TikljAkl = (T (A))ij =
(∑

m

V (m)AV (m)∗
)
ij

=
∑
m

∑
kl

Vik(m)AklV jl(m),

which is equivalent to

Tiklj =
∑
m

Vik(m)V jl(m). (8.6)

We must now formulate complete positivity in the language of tensor calculus. If
K is another inner product space then L(H)⊗ L(K) ∼= L(H⊗K) and

L(H⊗K) ∼= (H⊗K)⊗ (H⊗K)′ ∼= H⊗K ⊗K′ ⊗H′.

If we order the spaces H,K,K′,H′ in the tensor product in this way, then the map
(T ⊗ 1) : L(H⊗K)→ L(F ⊗K) takes the form(

(T ⊗ 1)A
)
ijkl

=
∑
mn

TimnlAmjkn, (8.7)

i.e., T ⊗ 1 acts only on the coordinates corresponding to H⊗H′ (compare formula
(8.4)). By definition, T is completely positive if for each K, T ⊗ 1 maps positive
operators into positive operators. We need the following simple fact, which we
leave as an exercise.

Exercise 8.3.2 Show that an operator A ∈ L(H) ∼= H⊗H′ is positive if and only
if there exist x(n) ∈ H such that A =

∑
n |x(n)〉〈x(n)|. Show that in coordinates

this says that Aij =
∑

n xi(n)x∗j(n). Show that the x(n) can be chosen orthogonal.

For the space L(H⊗K) ∼= H⊗K ⊗ K′ ⊗H′ this means that A is positive if and
only if A is of the form

Aijkl =
∑
n

Bij(n)Blk(n) (8.8)

for some B(n) ∈ H ⊗K.

So far we have only translated all definitions into the language of tensor calculus.
Now, we must show that the map T ⊗ 1 defined in (8.7) maps A of the form (8.8)
into operators of the form (8.8) again if and only if T is of the form (8.6).

If T is of the form (8.6) and A is of the form (8.8) then(
(T ⊗ 1)A

)
ijkl

=
∑
n

∑
m

∑
pq

Vip(m)Bpj(n)V lq(m)Bqk(n)

=
∑
nm

(V (m)B(n))ij(V (m)B(n))lk,
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which is again something of the form (8.8).

To prove that conversely every completely positive T is of the form (8.6) we use
a trick. For the space K we may in particular choose K = H′. Let 1 denote the
identity in L(H) ∼= H⊗H′ = H⊗K. Then

Aijkl := 1ij1kl

defines an operator of the form (8.8). Here 1ij = 1ij = δij. Since T is completely
positive, T ⊗ 1 maps A into an operator of the form (8.8), and therefore

Tijkl =
∑
mn

Timnl1mj1kn =
(
(T ⊗ 1)A

)
ijkl

=
∑
p

Vij(p)V kl(p)

for some V (p) ∈ F ⊗K = F ⊗H′. This shows that T is of the form (8.6).

Exercise 8.3.3 Show that it is possible to choose the V (n) in Theorem 8.3.1
orthogonal with respect to a suitable inner product on L(H,F).

8.4 Operations

We now return to our original aim of studying completely positive maps. Let
A,B be Q-algebras. By definition, an operation from A to B is a map of the
form T ′ : A′ → B′, where T : B → A is a completely positive linear map satisfying
T (1) = 1. Operations correspond to things that one can do with a physical system,
changing its state, and possibly even the algebra needed to describe the system.

Proposition 8.4.1 (Operations on factor algebras) Let A be a Q-algebra and
let V (1), . . . , V (n) ∈ A satisfy

∑n
m=1 V (m)V (m)∗ = 1. Let T : A → A be given by

TA :=
n∑

m=1

V (m)AV (m)∗

and let T ′ : A′ → A′ be given by

(T ′ρ)(A) := ρ
( n∑
m=1

V (m)AV (m)∗
)

(A ∈ L(H)). (8.9)

Then T ′ is an operation from A to A. If A is a factor algebra, then every operation
from A to A is of this form.
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Proof It is not hard to check that T is completely positive and T (1) = 1. The fact
that every operation has this form if A is a factor algebra follows from Stinespring’s
theorem.

Remark 1 Ideal measurements are operations, where in this case V (1), . . . , V (n)
are projections which form a partition of the identity.

Remark 2 The composition of two ideal measurements, performed one after the
other, is an operation. However, unless the measurements commute, this compo-
sition is in general not itself an ideal measurement.

Remark 3 If A is not a factor algebra, then not all operations are of the form
(8.9). Indeed, if A is abelian and dim(A) ≥ 2, then the only operation of the form
(8.9) is the identity map ρ 7→ ρ, while by Proposition 8.4.2 below there are many
nontrivial operations on A.

Proposition 8.4.2 (Operations on abelian algebras) Consider the abelian
Q-algebras Cn and Cm. Let (πij)i=1,...,n, j=1,...,m be nonnegative numbers such that∑

j πij = 1 for each i. Define T : Cm → Cn by

T (b1, . . . , bm) :=
(∑

j

π1jbj, . . . ,
∑
j

πnjbj

)
.

Then T ′ : (Cn)′ → (Cm)′ is an operation from Cn to Cm such that

T ′δi =
∑
j

πijδj (i = 1, . . . , n), (8.10)

and every operation from Cn to Cm is of this form.

Proof It is easy to see that every operation from Cn to Cm must be of the form
(8.10). Conversely, it is straightforward to check that (8.10) defines an operation.
Note that (8.10) says that if the state before we perform our operation is the
delta measure in i, then after we perform our operation we are in state j with
probability πij.

The next lemma is almost a direct consequence of the way complete positivity has
been defined, so we skip the proof.

Lemma 8.4.3 (Operations on logically independent algebras) Let A,B
and C be Q-algebras and let T ′ : A′ → B′ be an operation. Then there exists
a unique operation S ′ : (A⊗ C)′ → (B ⊗ C)′ such that

S ′(ρ1 ⊗ ρ2) = (T ′ρ1)⊗ ρ2 (ρ1 ∈ A′prob, ρ2 ∈ C ′prob).
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This operation is given by S ′ = (T ⊗ 1)′. If ρ is any probability on A⊗ C, then(
(T ⊗ 1)′ρ

)
(1⊗ C) = ρ(1⊗ C) (C ∈ C).

Note that the second formula says that if A and C are logically independent, then
performing an operation T on A does not change our knowledge about C.
We next take a look at deterministic operations. Let A,B be Q-algebras and let
T ′ : A′ → B′ be an operation. We will say T ′ is deterministic if for each inner
product space K, the operation

(T ′ ⊗ 1) : (A⊗ L(K))′ → (B ⊗ L(K))′

maps pure states into pure states. Since pure states are probabilities describing
maximal information about a physical system, deterministic operations are oper-
ations without loss of information.

Proposition 8.4.4 (Deterministic operations on factor algebras) Let A ∼=
L(H)) and B ∼= L(F) be factor algebras and assume that H and F have the same
dimension. Then, for each unitary operator U : H → F , the formula

T (B) := UBU−1 (B ∈ B)

defines a completely positive map T : B → A such that the dual map T ′ : A′ → B′
is a deterministic operation. Conversely, every deterministic operation arises in
this way.

Proof There is a one-to-one correspondence between linear forms l ∈ A′ and their
densities L ∈ A with respect to the trace on H, given by

l(A) = tr(L∗A) (A ∈ A), (8.11)

so the linear map T ′ : A′ → B′ gives rise to a linear map (also denoted by T ′) from
A to B, such that

(T ′l)(A) = tr((T ′L)∗A) (A ∈ A).

The fact that (T ′ ⊗ 1) : (A ⊗ L(K))′ → (B ⊗ L(K))′ maps pure states into pure
states now means that the corresponding map from (A ⊗ L(K)) to (B ⊗ L(K))
maps densities of the form |ψ〉〈ψ| with ψ ∈ H⊗K into densities of the form |φ〉〈φ|
with φ ∈ F ⊗K. (Recall Lemma 4.1.7.) Taking K = H′ and mimicking the proof
of Stinespring’s theorem, we see that must be of the form

T ′(L) = U∗LU
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for some U ∈ L(H,F). Thus, the linear form l in (8.11) is mapped under T ′ to

(T ′l)(B) = tr
(
(U∗LU)∗B

)
= l(UBU∗) (B ∈ B),

which shows that
T (B) = UBU∗ (B ∈ B).

Since T (1) = 1 we have U = U−1 so U is unitary. Conversely, it is easy to check
that any operation of this form maps pure states into pure states.
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Chapter 9

Quantum peculiarities

9.1 Cloning, coding, and teleportation

In this section we will meet two surprising quantum impossibilities, and one pos-
sibility. The first theorem that we will prove says that it is not possibly to copy a
quantum system. This result goes under the fancy name ‘no cloning’.

Theorem 9.1.1 (No cloning) Let A be a Q-algebra and let T ′ : A′ → (A⊗A)′

be an operation such that

(T ′ρ)(A⊗ 1) = (T ′ρ)(1⊗ A) = ρ(A) (A ∈ A, ρ ∈ A′prob). (9.1)

Then A is abelian.

Note that (9.1) says that the operation T ′ takes a single system in the state ρ and
produces two logically independent (but not necessarily independent) systems,
both in the state ρ. The claim is that if the algebra is not abelian, then there
is no operation that does this for any state ρ. On the other hand, in classical
probability, copying is always possible:

Exercise 9.1.2 Show that if A is abelian, there exists an operation T ′ such that
(9.1) holds. Show that T ′ can be chosen in such a way that

(T ′ρ)(P ⊗ 1) = (T ′ρ)(P ⊗ P ) = (T ′ρ)(1⊗ P )

for every projection P ∈ A and ρ ∈ A′prob. If T ′ is chosen in this way, then are the
two subsystems in general independent under T ′ρ?

117
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We postpone the proof of Theorem 9.1.1 and first state another, similar theorem.
This theorem says that it is not possible to extract all information from a non-
abelian algebra, and ‘write it down’ in an abelian algebra, such that with this
information the original nonablian system can later be reconstructed. This result
goes under the name ‘no coding’.

Theorem 9.1.3 (No coding) Let A,B be a Q-algebras and let T ′ : A′ → B′ and
S ′ : B′ → A′ be operations such that

S ′T ′ρ = ρ (ρ ∈ A′prob). (9.2)

Then if B is abelian, so is A.

Remark As in the previous theorem, it is important that S ′ and T ′ work for any
ρ ∈ A′prob.

Again we postpone the proof, and first state another theorem. This theorem says
that it is possible to extract information from a quantum system, ‘write it down’
in an abelian algebra, and then send it to someone else, so that he can reconstruct
the original system. This seems to contradict our previous theorem, but the trick is
that the two people who want to send information to each other have prepared two
entangled particles, and each of them keeps one particle with them. By making use
of these entangled particles, they can send the quantum system. This result goes
under the science fiction-like name ‘teleportation’ [B–W93]. For simplicity, we will
only teleport states on an algebra of the form L(H) where H is two-dimensional.
As is standard in this sort of communication problems, the sender will be called
Alice and the recipient will be called Bob. (Which explains why I wrote that ‘he
can reconstruct the original system’.)

Theorem 9.1.4 (Quantum teleportation) Let A and C be Q-algebras of the
form L(H), where H is two-dimensional, and let B be a four-dimensional abelian
Q-algebra. Then there exists a state η ∈ (C⊗C)′prob and operations T ′ : (A⊗C)′ →
B′ and S ′ : (B ⊗ C)′ → A′, such that

S ′ ◦ (T ′ ⊗ 1) ρ⊗ η = ρ (ρ ∈ A′prob). (9.3)

Remark 1 In (9.3), (T ′ ⊗ 1) is map from (A⊗ C ⊗ C)′prob to (B ⊗ C)′prob, so that
the composition of operations S ′ ◦ (T ′⊗ 1) is a map from (A⊗C ⊗C)′prob to A′prob.
The abelian algebra B contains all information that is sent from Alice to Bob.
Therefore, the operation T ′⊗ 1 acts only on objects that are under Alice’s control
and S ′ acts only on objects that are under the control of Bob.
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Remark 2 It follows from Lemma 8.4.3 that entangled states cannot be used to
send information from Alice to Bob, in spite of their seemingly nonlocal behavior
in relation with the Bell inequality. Nevertheless, quantum teleportation shows
that entangled states can be used to upgrade ‘classical information’ to ‘quantum
information’.

We now set out to prove Theorems 9.1.1–9.1.4. We start with a preparatory result.
Recall the partial order for hermitian operators defined on page 14.

Theorem 9.1.5 (Cauchy-Schwarz for operations) Let A,B be Q-algebras and
let T ′ : A′ → B′ be an operation. Then

T (B∗B) ≥ T (B)∗T (B) (B ∈ B).

If equality holds for some B1 ∈ B, then

T (B∗1B2) = T (B1)∗T (B2) and T (B∗2B1) = T (B2)∗T (B1).

Remark 1 The inequality is called ‘Cauchy-Schwarz’ since we can view (B1, B2) 7→
T (B∗1B2) as a sort ofA-valued (!) ‘inner product’ on B. Then we can rewrite the in-
equality above as T (B∗B)T (1∗1) ≥ T (1∗B)∗T (1∗B) which looks like 〈φ|φ〉〈ψ|ψ〉 ≥
|〈ψ|φ〉|2.

Remark 2 Note that if a Cauchy-Schwarz equality holds for all B ∈ B, then T is
a ∗-algebra homomorphism.

Proof The operator(
B∗B −B∗
−B 1

)
=

(
B −1
0 0

)∗(
B −1
0 0

)
in M2(A) is positive. Therefore, since T is completely positive, also(

T (B∗B) −T (B)∗

−T (B) 1

)
is positive. If H is a representation for A then H⊕H is a representation for M2(A)
and therefore, for each ψ ∈ H,〈(

ψ
T (B)ψ

) ∣∣∣∣( T (B∗B) −T (B)∗

−T (B) 1

) (
ψ

T (B)ψ

)〉
≥ 0.

This means that〈(
ψ

T (B)ψ

) ∣∣∣∣( T (B∗B)ψ − T (B)∗T (B)ψ
0

)〉
≥ 0,
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and therefore

〈ψ|T (B∗B)− T (B)∗T (B)|ψ〉 ≥ 0 (ψ ∈ H),

so T (B∗B)− T (B)∗T (B) is a positive operator, i.e., T (B∗B) ≥ T (B)∗T (B).

Now assume that T (B∗1B1) = T (B1)∗T (B1) for some B1 ∈ B. Then, for all B2 ∈ B
and λ1, λ2 ∈ C,

|λ1|2T (B∗1B1) + λ1λ2T (B∗1B2) + λ2λ1T (B∗2B1) + |λ2|2T (B∗2B2)

= T
(
(λ1B1 + λ2B2)∗(λ1B1 + λ2B2)

)
)

≥ |λ1|2T (B1)∗T (B1) + λ1λ2T (B1)∗T (B2)

+ λ2λ1T (B2)∗T (B1) + |λ2|2T (B2)∗T (B2).

Using our assumption that T (B∗1B1) = T (B1)∗T (B1) this implies that

λ1λ2T (B∗1B2) + λ2λ1T (B∗2B1) + |λ2|2T (B∗2B2)

≥ λ1λ2T (B1)∗T (B2) + λ2λ1T (B2)∗T (B1) + |λ2|2T (B2)∗T (B2).

In particular, setting λ1 = 1 and λ2 = λ where λ is real, we get

λ
(
T (B∗1B2) + T (B∗2B1)

)
+ λ2T (B∗2B2)

≥ λ
(
T (B1)∗T (B2) + T (B2)∗T (B1)

)
+ λ2T (B2)∗T (B2).

This can only be true for all λ ∈ R (in particular, for λ very small), if

T (B∗1B2) + T (B∗2B1) ≥ T (B1)∗T (B2) + T (B2)∗T (B1).

In the same way, setting λ1 = −i and λ2 = iλ, where λ is real, we get

−λ
(
T (B∗1B2) + T (B∗2B1)

)
+ λ2T (B∗2B2)

≥ −λ
(
T (B1)∗T (B2) + T (B2)∗T (B1)

)
+ λ2T (B2)∗T (B2)

which together with our previous inequality yields

T (B∗1B2) + T (B∗2B1) = T (B1)∗T (B2) + T (B2)∗T (B1).

In the same way, setting λ1 = 1 and λ2 = ±iλ gives

T (B∗1B2)− T (B∗2B1) = T (B1)∗T (B2)− T (B2)∗T (B1).
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Therefore

T (B∗1B2) = T (B1)∗T (B2) and T (B∗2B1) = T (B2)∗T (B1).

Note that these two equalities are actually equivalent, since one can be obtained
from the other by taking adjoints.

Proof of Theorem 9.1.1 If T ′ satisfies (9.1) then T : A⊗A → A satisfies

T (A⊗ 1) = T (1⊗ A) = A (A ∈ A).

It follows that for any A ∈ A

T ((1⊗ A)∗(1⊗ A)) = T (1⊗ A∗A) = A∗A = T (1⊗ A)∗T (1⊗ A),

i.e., a Cauchy-Schwarz equality holds for operators of the form 1⊗ A. Therefore,
Theorem 9.1.5 tells us that for any A,B ∈ A

AB = T (A⊗ 1)T (1⊗B) = T
(
(A⊗ 1)(1⊗B)

)
= T

(
(1⊗B)(A⊗ 1)

)
= T (1⊗B)T (A⊗ 1) = BA,

which shows that A is abelian.

Proof of Theorem 9.1.3 Since cloning is possible for states on abelian algebras,
one can show that if states on nonabelian algebras could be completely ‘written
down’ in abelian algebras, then they could also be cloned. In this way, it is
possible to derive Theorem 9.1.3 from Theorem 9.1.1. However, we will give a
shorter, independent proof.

If T ′ and S ′ satisfy (9.2) then

T ◦ S(A) = A (A ∈ A).

Cauchy-Schwarz gives

A∗A = T ◦ S(A∗A) ≥ T
(
S(A)∗S(A)) ≥ T (S(A)

)∗
T (S(A)) = A∗A (A ∈ A),

so we must have two times equality here. In particular, by Theorem 9.1.5, the
second equality tells us that T (S(A)S(B)) = T (S(A))T (S(B)) for all A,B ∈ A.
Therefore, since B is abelian,

AB = T (S(A))T (S(B)) = T
(
S(A)S(B)

)
= T

(
S(B)S(A)

)
= BA (A,B ∈ A),
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which shows that A is abelian.

Proof of Theorem 9.1.4 We take A = C = L(H), where H is a two-dimensional
inner product space with orthonormal basis {e1, e2}. For η, we take the entangled
pure state described by the state vector χ ∈ H ⊗H given by

χ := 1√
2
e1 ⊗ e1 + 1√

2
e2 ⊗ e2.

It suffices to prove the theorem for the case that ρ is a pure state. (The general
case then follows by linearity.) In that case, the initial state ρ⊗η ∈ (A⊗C⊗C)′prob

is described by a state vector in H⊗H⊗H of the form

y ⊗ χ = (y1e1 + y2e2)⊗ χ,

where y1, y2 are complex numbers (unknown to Alice and Bob) such that |y1|2 +
|y2|2 = 1. Now Alice performs an ideal measurement on the joint system consisting
of the state she wants to send and her particle from the entangled pair. This ideal
measurement is described by the partition of the identity {P1, . . . , P4}, where

Pi = |ψi〉〈ψi| (i = 1, . . . , 4),

and
ψ1 := 1√

2
e1 ⊗ e1 + 1√

2
e2 ⊗ e2,

ψ2 := 1√
2
e1 ⊗ e1 − 1√

2
e2 ⊗ e2,

ψ3 := 1√
2
e1 ⊗ e2 + 1√

2
e2 ⊗ e1,

ψ4 := 1√
2
e1 ⊗ e2 − 1√

2
e2 ⊗ e1.

We rewrite the state y ⊗ χ as

y ⊗ χ= (y1e1 + y2e2)⊗
(

1√
2
e1 ⊗ e1 + 1√

2
e2 ⊗ e2

)
= 1√

2
y1e1 ⊗ e1 ⊗ e1 + 1√

2
y1e1 ⊗ e2 ⊗ e2

+ 1√
2
y2e2 ⊗ e1 ⊗ e1 + 1√

2
y2e2 ⊗ e2 ⊗ e2

= y1
1
2

(
1√
2
e1 ⊗ e1 + 1√

2
e2 ⊗ e2

)
⊗ e1 + y1

1
2

(
1√
2
e1 ⊗ e1 − 1√

2
e2 ⊗ e2

)
⊗ e1

+y1
1
2

(
1√
2
e1 ⊗ e2 + 1√

2
e2 ⊗ e1

)
⊗ e2 + y1

1
2

(
1√
2
e1 ⊗ e2 − 1√

2
e2 ⊗ e1

)
⊗ e2

+y2
1
2

(
1√
2
e1 ⊗ e2 + 1√

2
e2 ⊗ e1

)
⊗ e1 − y2

1
2

(
1√
2
e1 ⊗ e2 − 1√

2
e2 ⊗ e1

)
⊗ e1

+y2
1
2

(
1√
2
e1 ⊗ e1 + 1√

2
e2 ⊗ e2

)
⊗ e2 − y2

1
2

(
1√
2
e1 ⊗ e1 − 1√

2
e2 ⊗ e2

)
⊗ e2

= 1
2
ψ1 ⊗

(
y1e1 + y2e2

)
+ 1

2
ψ2 ⊗

(
y1e1 − y2e2

)
+1

2
ψ3 ⊗

(
y1e2 + y2e1

)
+ 1

2
ψ4 ⊗

(
y1e2 − y2e1

)
.
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The measurement of Alice produces with equal probabilities any of the outcomes
1, . . . , 4. If the outcome is 1, then Bob’s particle of the entangled pair is in the
state y1e1 + y2e2. If the outcome of Alice’s measurement is 2, then Bob’s particle
is in the state y1e1 − y2e2, and so on.

If Bob learns about the outcome of Alice’s experiment, then he perform a de-
terministic operation on his particle from the entangled pair, so that after this
operation, this particle is in the state y that Alice wanted to send. (Note that y
is still unknown to Alice and Bob!) If the outcome of Alice’s experiment is i, then
Bob performs the deterministic operation described by the unitary map Ui, where
the matrices of U1, . . . , U4 ∈ L(H) with respect to the basis {e1, e2} are given by

U1 :=

(
1 0
0 1

)
, U2 :=

(
1 0
0 −1

)
, U3 :=

(
0 1
1 0

)
, U4 :=

(
0 1
−1 0

)
.

For example, if i = 4, then Bob’s particle is in the state (y1e2− y2e1), which under
the unitary transformation U4 becomes(

0 1
−1 0

)(
−y2

y1

)
=

(
y1

y2

)
.

It is easy to see that in any of the four cases, Bob ends up with a particle in the
pure state y1e1 + y2e2, which is the state Alice wanted to send.

More formally, the operations of Alice and Bob can be described as follows.

Alice’s operation is a map T ′ : L(H ⊗ H)′ → B′. Here B is of the form B ∼=
C⊕C⊕C⊕C = {b = (b1, . . . , b4) : bi ∈ C} and A⊗C ∼= L(H)⊗L(H) ∼= L(H⊗H).
Let πi denote the pure state on B defined as πi(b) := bi. Then T ′ : L(H⊗H)′ → B′
maps the pure state described by the state vector ψi to the pure state πi. It is not
hard to see that this is achieved by the operator T : B → L(H⊗H) given by

T (b1, . . . , b4) =
4∑
i=1

VibiV
∗
i ,

where Vi : C→ (H⊗H) is defined as

Vi := |ψi〉 (i = 1, . . . , 4).

It follows from Stinespring’s theorem (Theorem 8.3.1) that T is completely positive.
Moreover, T (1) =

∑
i |ψi〉〈ψi| = 1.
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Bob’s operation is a map S ′ : (B ⊗ C)′ → C ′. Here C ∼= L(H) and B ⊗ C ∼=(
C ⊕ C ⊕ C ⊕ C

)
⊗ L(H) ∼= L(H) ⊗ L(H) ⊗ L(H) ⊗ L(H). It is not hard to see

that Bob’s operation is achieved by the operator S : C → (B ⊗ C) given by

S(A) =
(
U∗1AU1, . . . , U

∗
4AU4

)
(A ∈ L(H)),

where U1, . . . , Un are the unitary operators defined above. Comparing this with
Proposition 8.4.4 we see that S ′ is a deterministic operation.

Define (1⊗ η) : A⊗ C ⊗ C → A by

η(A⊗B) := η(B)A (A ∈ A, B ∈ C ⊗ C).

Then the operations T ′ and S ′ and the state η satisfy (9.3) for all ρ ∈ A′prob if and
only if

ρ ◦ (1⊗ η) ◦ (T ⊗ 1) ◦ S(A) = ρ(A) (A ∈ A, ρ ∈ A′prob),

which is equivalent to

(1⊗ η) ◦ (T ⊗ 1) ◦ S(A) = ρ(A) (A ∈ A).

This formula can be checked by straightforward calculation. In fact, we have al-
ready seen all the essential ingredients of this calculation in our informal discussion
of Alice’s and Bob’s operations, so we do not go into details.

9.2 Quantum cryptography

In the previous section, we saw that quantum probability leads to some surprising
impossibilities: ‘no cloning’ and ‘no coding’. In view of these impossibilities, the
possibility of ‘quantum teleportation’ is surprising, but from the classical point of
view, where copying is possible, this is nothing new. In this section, we will see
that the peculiarities of quantum probability also open some new possibilities that
are not present in classical probability.

Suppose that Alice wants to send a (classical) message to Bob, say, a sequence
(x1, . . . , xn) of zeros and ones, while making sure that a third party, called Eve,
is not eavesdropping. Alice can do this if she has another, random sequence
(y1, . . . , yn) of zeros and ones, that is known to her and Bob, but to no one else.
With such a sequence, she simply sends Bob the sequence (z1, . . . , zn) given by

zi = xi + yi mod 1.
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To anyone who does not know the code (y1, . . . , yn), the message (z1, . . . , zn) is just
a random sequence of zeros and ones, but Bob, who knows the code, calculates

xi = zi + yi mod 1

to get Alice’s message (x1, . . . , xn).

Now Alice and Bob may have prepared their code before, when they were together,
but since each code may be used only once1 they may run out of code after a
while. This leads to the following question: can Alice send Bob a secret code of
independent zeros and ones, while being sure that Eve is not listening somewhere
on the telephone line?

In classical probability, this is not possible, since Eve can perform a nonperturbing
measurement on the signal passing through the telephone line. But in quantum
probability, the situation is quite different. In [J–Z00], a team around professor
Zeilinger from Vienna shows how Alice can send a code to Bob while making sure
that Eve is not eavesdropping. What is more, they report on an experiment that
shows that this form of communication is possible in practice. On April 27, 2004,
the Süddeutsche Zeitung reported how in Vienna, 3000 euro were transferred from
the town hall to the bank account of the university, using this form of quantum
cryptography.

This is how it works. Alice prepares pairs entangled photons, of which she keeps one
for herself, and sends the other one to Bob through a glass fiber cable. On the pho-
tons that Alice keeps for herself, she performs at random, with equal probabilities,
either the ideal measurement {P0, Pπ/2} or the ideal measurement {Pγ, Pγ+π/2},
where Pγ is the projection defined on page 94 and γ is an angle that we will choose
later. Likewise, Bob performs on his photons with equal probabilities either the
measurement {P0, Pπ/2} or {P−γ, P−γ+π/2}. After sending as many photons as she
needs, Alice tells Bob over a regular telephone line which measurements she used
for her photons. Bob then tells Alice which measurements he used, and he tells the
outcomes of all his measurements in those cases where they did not both perform
the measurement {P0, Pπ/2}. As we will see in a moment, Alice can see from this
information whether Eve was eavesdropping or not. If she sees that Eve was not
tapping the phone, Alice sends Bob the message that she wanted to send, using
as a code the outcome of those measurements where she and Bob both performed
the measurement {P0, Pπ/2}.

1If the same code is use repeatedly, then the coded messages are no longer sequences of
independent random variables, and this dependence may be used to crack the code.
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Let ψ be the entangled state from page 94 and let

πα,β(+,+) := ρψ(Pα ⊗ Pβ)

denote the probability that Alice and Bob do the observations Pα and Pβ, if they
perform the ideal measurements {Pα, Pα+π/2} and {Pβ, Pβ+π/2}, respectively. Like-
wise, let

πα,β(+,−) := ρψ(Pα ⊗ Pβ+π/2),
πα,β(−,+) := ρψ(Pα+π/2 ⊗ Pβ),
πα,β(−,−) := ρψ(Pα+π/2 ⊗ Pβ+π/2),

denote the probabilities that one of them, or both, perform the complementary
observation. We calculated on page 95 that

πα,β(+,+) = πα,β(−,−) = 1
2

cos(β − α)2,

πα,β(+,−) = πα,β(−,+) = 1
2

sin(β − α)2.

In particular, π0,0(+,+) = π0,0(−,−) = 1
2

and π0,0(+,−) = π0,0(−,+) = 0, so
the pairs of photons on which Alice and Bob both performed the measurement
{P0, Pπ/2} can be used as a secret code.

If Eve wants to find out this secret code, she has no other choice than to perform a
measurement on all photons that pass through the glass fiber cable on their way to
Bob, since she cannot know in advance which photons are going to be used for the
secret code. We claim that if Eve fiddles with these photons in any way such that
she gets to know the secret code, then she cannot avoid changing the probabilities
in such a way that

πγ,0(+,−) + π0,−γ(+,−)− πγ,−γ(+,−) ≥ 0. (9.4)

This is called Wigner’s inequality. It follows from the assumptions of anticorrela-
tions and nonentanglement:

Lemma 9.2.1 (Wigner’s inequality). Assume that probabilities πα,β(±,±) sat-
isfy π0,0(+,−) = π0,0(−,+) = 0 and

πα,β(σ, τ) =
∑
k

pk π
1,k
α (σ)π2,k

β (τ) (σ, τ = +,−),

where the πi,kα (±) are nonnegative numbers such that πi,kα (+) +πi,kα (−) = 1 and the
pk are positive numbers summing up to one. Then (9.4) holds.
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Proof Write
πα,β(σ, τ) =

∑
k

pk π
k
α,β(σ, τ),

where πkα,β(σ, τ) = π1,k
α (σ)π2,k

β (τ). Since π0,0(+,−) = π0,0(−,+) = 0 we must have

that for each k, either π1,k
0 (+) = π2,k

0 (+) = 1 or π1,k
0 (−) = π2,k

0 (−) = 1. In the first
case,

πkγ,0(+,−) + πk0,−γ(+,−)− πkγ,−γ(+,−)

= π1,k
γ (+) · 0 + 1 · π2,k

−γ(−)− π1,k
γ (+)π2,k

−γ(−)

=
(
1− π1,k

γ (+)
)
π2,k
−γ(−) ≥ 0,

while in the second case

πkγ,0(+,−) + πk0,−γ(+,−)− πkγ,−γ(+,−) = π1,k
γ (+)

(
1− π2,k

−γ(−)
)
≥ 0.

Summing up over k we arrive at (9.4).

We claim that Eve’s measurement of the secret code necessarily destroys the en-
tanglement of the two photons. Indeed, if Eve wants to be sure that she gets the
same code as Alice, she has no other option than to perform the ideal measurement
{P0, Pπ/2} on the photon that is on its way to Bob. If she also wants Bob to recieve
the secret code, she must send the photon on to Bob after she has performed her
measurement, or she must send another photon that is polarized in the direction
that she measured. In any case, in doing so, she will have changed the system
from the pure state ρψ with

ψ = 1√
2
φ1 ⊗ φ1 + 1√

2
φ2 ⊗ φ2

to the mixed state
1
2
ρφ1⊗φ1 + 1

2
ρφ2⊗φ2 ,

which is not entangled, and therefore satisfies Wigner’s inequality.

We now know how Alice can find out from the information that Bob sends her
whether Eve has been eavesdropping. If Eve has not interfered with the signal,
the quantity in Wigner’s inequality is

1
2

sin(γ)2 + 1
2

sin(γ)2 − 1
2

sin(2γ)2,

which reaches a minimal value of −1
8

at γ = 1
6
π. From the relative frequencies

of outcomes in those measurements where she and Bob did not both perform the
measurement {P0, Pπ/2}, Alice can check whether Wigner’s inequality is violated.
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Indeed, Wigner’s inequality holds also with + and − reversed, so for greater sta-
tistical precision, Alice checks whether the quantity

πγ,0(+,−) + π0,−γ(+,−)− πγ,−γ(+,−)
+πγ,0(−,+) + π0,−γ(−,+)− πγ,−γ(−,+)

is close enough to −1
4
. If she is satisfied with the answer, she knows that the

outcomes of the experiments where she and Bob both performed the measurement
{P0, Pπ/2} are not known to Eve, and she uses these as a secret code to send her
message to Bob.

Exercise 9.2.2 Eve decides to use the following tactic: She cuts the glass fiber
between Alice and Bob, blocking all direct communication between them. Instead,
Eve communicates now with both Alice and Bob, pretending to be Bob when she
communicates with Alice, and pretending to be Alice when she communicates with
Bob. In this way, she builds up a secret code with Alice and another secret code
with Bob. When Alice sends the coded signal, Eve decodes it using the code she
shares with Alice and then codes it with the code she shares with Bob, before
passing it on to Bob. Can Alice and Bob do anything to detect this kind of
eavesdropping?



Chapter 10

Solutions of chosen exercises

Solution of Exercise 1.2.15 By definition, an operator A is hermitian if and
only if A∗ = A. By the definition of A∗, this is equivalent to

〈φ|Aψ〉 = 〈φ|A∗ψ〉 ∀φ, ψ ∈ H
⇔ 〈φ|Aψ〉 = 〈Aφ|ψ〉 ∀φ, ψ ∈ H
⇔ 〈φ|A|ψ〉 = 〈ψ|A|φ〉∗ ∀φ, ψ ∈ H.

In particular, putting ψ = φ, this implies that

〈φ|A|φ〉 = 〈φ|A|φ〉∗ ∀φ ∈ H,

which shows that 〈φ|A|φ〉 ∈ R for all φ ∈ H.
Conversely, if A is a normal operator, then by Theorem 1.2.5 there exists an
orthonormal basis {e(1), . . . , e(n)} of H that diagonalizes A. Now 〈φ|A|φ〉 ∈ R for
all φ ∈ H implies that

Aii = 〈e(i)|A|e(i)〉 ∈ R

for each i = 1, . . . , n, which by the fact that A is diagonal w.r.t. {e(1), . . . , e(n)}
implies that Aji = (Aij)

∗ for each i, j and hence A is hermitian.
Unfortunately, we do not know a priori that A is normal, so we have to find a
different proof. For general φ, ψ ∈ H and λ ∈ C, we observe that

〈φ+ λψ|A|φ+ λψ〉︸ ︷︷ ︸
∈ R

= 〈φ|A|φ〉+ 〈λψ|A|λψ〉︸ ︷︷ ︸
∈ R

+〈φ|A|λψ〉+ 〈λψ|A|φ〉,

so we obtain that

λ〈φ|A|ψ〉+ λ∗〈ψ|A|φ〉 ∈ R ∀φ, ψ ∈ H, λ ∈ C.
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We rewrite this expression as

λ
[
〈φ|A|ψ〉 − 〈ψ|A|φ〉∗

]
+ λ〈ψ|A|φ〉∗ + λ∗〈ψ|A|φ〉︸ ︷︷ ︸

∈ R

,

where we have used that for any two complex numbers λ, µ, one has

λµ∗ + λ∗µ = λµ∗ + (λµ∗)∗ ∈ R.

It follows that

λ
[
〈φ|A|ψ〉 − 〈ψ|A|φ〉∗

]
∈ R ∀φ, ψ ∈ H, λ ∈ C.

It is easy to see that this implies

〈φ|A|ψ〉 = 〈ψ|A|φ〉∗ ∀φ, ψ ∈ H,

which by our initial remarks is equivalent to A = A∗.

Solution of Exercise 2.1.8 It is straightforward to check that

X2 =

 0 −1 0
0 0 −1
1 0 0

 and X3 =

 −1 0 0
0 −1 0
0 0 −1

 .

It follows that  a −c −b
b a −c
c b a

 = a1 + bX + cX2.

In other words,

A = {a1 + bX + cX2 : a, b, c ∈ C} ⊂ L(C3).

Since 1 ∈ A and

(a11 + b1X + c1X
2)(a21 + b2X + c2X

2)

= (a1a2 − b1c2 − c1b2)1 + (a1b2 + b1a2 − c1c2)X + (a1c2 + b1b2 + c1a2)X2,

we see that A is a sub-algebra of L(C3). In particular, this proves that A is an
algebra. Since 1, X, and X2 all commute with each other, it is easy to see that A
is in fact abelian. By definition

(a1 + bX + cX2)∗ := a∗1 + b∗X + c∗X2.
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This clearly satisfies axioms (vi) and (vii) of an adjoint operation. Let

A1 := a11 + b1X + c1X
2 and A2 := a21 + b2X + c2X

2.

Then

(A1A2)∗=
(
a1a2 − b1c2 − c1b2

)∗
1 +

(
a1b2 + b1a2 − c1c2

)∗
X

+
(
a1c2 + b1b2 + c1a2

)∗
X2

=
(
a∗1a

∗
2 − b∗1c∗2 − c∗1b∗2

)
1 +

(
a∗1b
∗
2 + b∗1a

∗
2 − c∗1c∗2

)
X

+
(
a∗1c
∗
2 + b∗1b

∗
2 + c∗1a

∗
2

)
X2

= (a∗11 + b∗1X + c∗1X
2)(a∗21 + b∗2X + c∗2X

2) = A∗1A
∗
2 = A∗2A

∗
1,

which shows that our adjoint operation also satisfies (vii). (Alternatively, one can
check (vii) first for the case that A,B are the basis elements 1, X,X2 and then use
property (vi) (colinearity) to conclude that (vii) holds generally.)

We observe that the representation of the elements of our algebra as matrices is a
(faithful) representation of A as an algebra. However, this is not a representation
of A as a ∗-algebra, since the definition of the adjoint does not coincide with the
usual definition of the adjoint of a matrix. In view of this, we start to suspect that
perhaps, A does not have a faithful representation as a ∗-algebra, and hence, by
Theorem 2.1.5, the adjoint operation does not satisfy property (viii) (positivity).
This is not a proof, however, since the fact that our representation of A is not a
representation of A as a ∗-algebra does not prove that there cannot exist other
representations of A that have this property.

Nevertheless, we are on the right track. We observe that X = X∗ and X3 =
−1. Imagine that A has a faithful representation as a ∗-algebra. Then in this
representation, X must be a hermitian operator with the property that X3 = −1.
Since X is a hermitian operator, it can be diagonalized w.r.t. an orthonormal basis,
and all its eigenvalues are real. But X3 = −1 means that every eigenvalue λ of X
must satisfy λ3 = −1. The only real solution of this equation is λ = −1, so we
find that X = −1. But this contradicts the assumption that our reprentation is
faithful. This proves that A does not have a faithful representation as a ∗-algebra,
and hence, by Theorem 2.1.5, the adjoint operation cannot satisfy property (viii).

It is not so easy to find an explicit example of an element A ∈ A for which
property (viii) does not hold. Nevertheless, a bit of trial and error yields the
following. Let λ := ei2π/6 and set

A := λ1 +X + λ∗X2.
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Then, using the facts that λ∗λ = 1, λ2 = −λ∗, and (λ∗)2 = −λ, we find that

A∗A = (λ∗1 +X + λX2)(λ1 +X + λ∗X2)

= (1− λ∗ − λ)1 + (λ∗ + λ− 1)X + (1− λ− λ∗)X2 = 0.

We have seen thatA is an abelian ∗-algebra whose adjoint operation is not positive,
and that A does not have a faithful representation as a ∗-algebra.
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English-Czech glossary

abelian abelovský
ace eso

addition operace sč́ıtáńı
adjoint adjoint / hermitovský združeńı

angular momentum moment hybnosti
block-diagonal form

bounded omezený
closure uzávěr
clover kř́ıže

complete úplný
completion zúplněńı

complex conjugate
composition skladáńı

conditional probability . . . given podmı́něná pravděpodobnost . . . za podmı́nky
conditioning podmı́ňováńı

coordinate souřadnice
density hustota

diagonalizable diagonalizovatelný
diamonds káry

direct sum direktńı suma, př́ıma suma
division ring okruh dělitelnosti

eigenvector vlastńı vektor
eigenvalue vlastńı č́ıslo

entanglement entanglement, propleteńı
entry (of a matrix) prvek

event jev, událost
expectation středńı hodnota, očekáváńı

faithful representation věrná representace
field (in algebra) těleso

functional calculus funkcionálńı počet, funkcionálńı kalkulus
hermitian hermitovský

identity identita, jednotkový operátor, jednotkový prvek
indicator function indikátor

inner automorphism vnitřńı isomorphismus
inner product skalárńı součin, vnitřńı součin

intersection pr̊unik
jack svršek

kernel jádro
matrix matice

measure mı́ra
measurement měřeńı
metric space metrický prostor
mixed state smı́̌sený stav
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momentum hybnost
multiplication with scalars násobeńı skaláry

multiplicity násobnost
normed space normovaný prostor

observable pozorovatelná
observation pozorováńı

origin počátek, nulový vektor
orthogonal complement ortogonálńı doplňek

partition rozklad
physical quantity fyzikálńı veličina

probability law pravděpodobnostńı rozděleńı
probability space pravděpodobnostńı prostor

projection operator projektor
proper subspace vlastńı podprostor

pure state čistý stav
quantum mechanics kvantová mechanika

quotient space kvocientńı prostor, zlomkový prostor
random variable náhodná proměnná

range obor hodnot, dosah, obraz
reducible reducibilńı

relative frequencies relativńı četnosti
reversible reversibilńı, vratný

root kořen
self-adjoint samozdružený
semisimple poloprostý

separable separovatelný
set of all subsets of Ω potence množiny Ω

set operation množinová operace
simple algebra prostá algebra

simultaneous measurement simultáńı měřeńı
spades piky

span / to span lineárńı obal / lineárně pokrývat
spectral decomposition spektrálńı rozklad

state stav (elementárńı jev)
state space stavový prostor

super selection rule super vyběrové pravidlo
supremum norm supremová norma
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tensor product tensorový součin
tensor calculus tensorový počet
time evolution časový vývoj

trace stopa
uncertainty relation principa neurčitosti

union sjednoceńı
unit element jednotkový prvek

wave function vlnová funkce
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V ′, 16
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V1 ⊕ V2, 18
CΩ, 39
Im(A), 28
Ker(A), 9
Ran(A), 9
Re(A), 28

abelian, 27
Q-algebra, 40

action
of ∗-algebra on representation, 67

addition, 7
adjoint

of linear map, 11, 47
operation, 27

algebra, 27
∗-, 28

Alice, 118
angular momentum, 38
anticommutating operators, 98
associative, 27

Banach space, 46
basis, 8
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dual, 16
Bell inequality, 93
bicommutant, 68
bilinear map, 19
block-diagonal form, 64
Bob, 118
Bohm, 88
bounded

linear operator, 46
set, 46

bra, 10
bracket notation, Dirac’s, 10

C∗-algebra, 48
Cauchy sequence, 45
Cauchy-Schwarz for operations, 119
center

of Q-algebra, 71
cloning, 117
closed

set, 44
subspace, 47

closure, 44
code, 125
coding, 118
colinear, 11
commutant, 68
commutative, 27
commutator, 9
commuting

algebras, 80
linear operators, 9
operators, 27

compact
metric space, 45

complete
metric space, 45

complete positivity, 107
complex conjugate, 10

of linear space, 23
complexification of linear space, 14
conditional probability

classical, 32
quantum, 34

conditioning
classical, 32
quantum, 34

conjugate
complex, 10

of linear space, 23
continuous

function, 44
contraction, 24
coordinates, 8
Copenhagen interpretation, 57
copying, 117
correlation coefficient, 93
cryptography, 124

dense
set, 44

density, 52
density operator, 52
deterministic

operation, 114
time evolution, 60

diagonal form, 10
diagonalizable, 10
dimension, 8
Dirac

bracket notation, 10
direct sum

of inner product spaces, 19
of linear spaces, 18

dual
basis, 16
Hilbert space, 46
of linear map, 17
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dual space, 16

eigenspace, 15
eigenvector, 9
electron, 38
entanglement, 92
entry

of matrix, 8
equation

Schrödinger, 58
equivalent

norm, 45
representation, 72

Eve, 124
event, 32
evolution

deterministic, 60
expected value, 33

factor
algebra, 65

faithful
positive linear forms, 51
state, 51

faithful representation, 29
finite dimensional, 7
functional calculus

for commuting operators, 82
for normal operators, 15

generated
sub-∗-algebra, 79

GHZ paradox, 96
GNS-construction, 77

Hamiltonian, 59, 61
Heisenberg

picture, 61
hidden variable theory, 88, 102
Hilbert space, 46

homomorphism
of ∗-algebras, 28
of algebras, 28
of representations, 72

ideal, 65
left, 65
measurement, 34
minimal left, 73
right, 65

identity, 27
partition of, 15

independence, 84
logical, 85
qualitative, 85

independent algebras, 84
indicator function, 40
inner

isomorphism, 77
inner product, 10

space, 10
integral

definition, 44
interpretation

Copenhagen, 57
of probability space, 31
of quantum mechanics, 35

invariant
subspace, 67, 68

invertible
linear map, 9
linear operator, 9

involution, 27
irreducible representation, 67
isomorphism

inner, 77
of ∗-algebras, 28
of algebras, 28

Jacobson radical, 76
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joint measurement, 82

kernel, 9
ket, 10
Kolmogorov, 5

left ideal, 65
minimal, 73

linear
form, 16
map, 8
operator, 9
space, 7
subspace, 7

linear form
positive, 51
real, 51

linear map
positive, 107

completely, 107
linear operator

bounded, 46
linearly independent, 8
logical independence, 85

marginal, 92
matrix, 8
maximally fine partition of the identity,

53
measure, 43

space, 43
spectral, 47

measurement
ideal, 34
joint, 82
simultaneous, 80

metric, 44
space, 44

minimal
left ideal, 73

projection, 53
mixed state, 53
momentum, 59
multiplication, 27

with scalars, 7
multiplicity

of irreducible representation, 74

norm, 45
inner product, 10
of an operator, 46

normal
operator, 12

functional calculus for, 15
normed

space, 45

observable, 36
observation, 34
open

set, 44
operation, 105, 112

deterministic, 114
operator

linear, 9
norm, 46

order for hermitian operators, 14
origin, 7
orthogonal, 10

complement, 14
subspace, 19

orthonormal, 10

paradox
Einstein-Podolsky-Rosen, 87
Kochen-Specker, 88

partial order for hermitian operators, 14
partition

of a set, 40
partition of the identity, 15
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maximally fine, 53

photon, 36

physical

quantity, 36

subsystem, 79

system, 31

picture

Heisenberg, 61

Schrödinger, 61

polarization, 36

polaroid sunglasses, 36

positive

linear map, 107

linear form, 51

linear map

completely, 107

positive adjoint operation, 27

potential energy, 58

probability

classical, 31, 32

measure, 43

quantum, 34, 48

space, 31, 43

quantum, 34

product

law, 86

state, 86

projection, 18

minimal, 53

on subspace, 14, 47

operator, 15

orthogonal, 14, 47

postulate, 57

proper

ideal, 65

invariant subspace, 67

pseudotrace, 51

pure state, 53

Q-algebra, 28
abelian, 40

qualitative independence, 85
quantity

physical, 36
quantum

cryptography, 124
probability space, 34

quotient
map, 17
space, 17

radical
Jacobson, 76

random variable, 33
range, 9
real

linear form, 51
relative frequencies, 32
representation

of ∗-algebra, 29
of algebra, 29

reversible, 61
Riesz lemma, 47
right ideal, 65

Schrödinger
equation, 58
picture, 61

self-adjoint, 13
semisimple, 76
separable, 44
simultaneous measurement, 80
space

inner product, 10
linear, 7
of events, 31
probability, 31
quantum probability, 48
vector, 7
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span, 7
spectral decomposition, 15
spectral measure, 47
spectrum, 9
spin, 38
state

classical, 31
mixed, 36, 53
precise, 41
quantum, 36, 53
vector, 56

state space, 31
Stinespring, 110
sub-∗-algebra, 28

generated by set, 79
subalgebra, 28
subsequence, 45
subspace

invariant, 67, 68
linear, 7

subsystem
physical, 79

supremum norm, 46
system

physical, 31

tensor, 24
calculus, 23

tensor product
of linear spaces, 19
of Q-algebras, 86
of states, 86

time evolution
deterministic, 60

trace, 9
trivial

center, 71

unit element, 27
unitary

linear map, 13

variable
random, 33

vector space, 7
Von Neumann

bicommutant theorem, 68

wave function, 58
Wigner’s inequality, 126
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