
APPENDIX D

Stable complex and Spinc-structures

In this book, G-manifolds are often equipped with a stable complex structure
or a Spinc structure. Specifically, we use these structures to define quantization.
In this appendix we review the definitions and basic properties of these structures.
We refer the reader to [ABS, Du, Fr] and [LM, Appendix D] for alternative
introductions to Spinc-structures. The reader may also consult the early works
[ASi, BH, Bot2]. In this chapter, all G-actions are assumed to be proper.

We introduce two equivalence relations, that we call bundle equivalence and
homotopy, both for stable complex structures and for Spinc structures. In the
literature, a stable complex structure is usually taken up to bundle equivalence, and
a Spinc-structure is usually taken up to homotopy. This choice leads to problems
which we avoid by keeping track of both equivalence relations for both structures.
(See Section 3.)

Finally, we note that the notion of a Spinc structure is essentially equivalent to
the notion of a “quantum line bundle” [Ve4] and, when the underlying manifold is
symplectic, to the notion of an Mpc (“metaplecticc”) structure [RR].

1. Stable complex structures

In this section we discuss stable complex structures and their equivalences.

1.1. Definitions.

Definition D.1. A stable complex structure on a real vector bundle E is a
fiberwise complex structure on the Whitney sum E ⊕ R

k for some k, where R
k

denotes the trivial bundle with fiber Rk. A stable complex structure on a manifold
is a stable complex structure on its tangent bundle.

Suppose that a Lie group G acts on E by bundle automorphisms. For instance,
if E = TM is the tangent bundle of a G-manifold M , we take the natural in-
duced action unless stated otherwise. An equivariant stable complex structure on
E is a stable complex structure such that G acts on E ⊕ Rk by complex bundle
automorphisms. Here, Rk is equipped with the trivial G-action.

Example D.2. An almost complex structure onM is a fiberwise complex struc-
ture on the tangent bundle TM , i.e., an automorphism of real vector bundles
J : TM → TM such that J2 = identity. This is a special case of a stable complex
structure. However, not every stable complex structure arises in this way. For
instance, S5 admits a stable complex structure via TS5 ⊕R = S5 ×R6 = S5 ×C3,
whereas an almost complex manifold must be even dimensional.

Example D.3. A complex manifold is almost complex, and hence stable com-
plex. (Let us recall why: holomorphic coordinates identify each tangent space
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230 D. STABLE COMPLEX AND SPINc-STRUCTURES

with Cn; holomorphic transition functions transform these Cn’s by complex linear
transformations, by the Cauchy-Riemann equations.)

1.2. Equivalence relations. One usually works with an equivalence class of
stable complex structures. We have two notions of equivalence: bundle equiva-
lence and homotopy. For the sake of brevity, we only give the definitions in the
presence of a group action. Let E0 and E1 be G-equivariant vector bundles over a
G-manifold M . Let J0 and J1 be stable complex structures, given by G-invariant
fiberwise complex structures on E0 ⊕ Rk and E1 ⊕ Rl.

Definition D.4. The structures J0 and J1 are bundle equivalent if there exist
a and b such that E0 ⊕Rk ⊕Ca and E1 ⊕Rl ⊕Cb are isomorphic as G-equivariant
complex vector bundles, where Ca and Cb are equipped with trivial G-actions.

Bundle equivalence of stable complex structures is sufficient for most purposes
and is sometimes referred to as equivalence. (In our papers [CKT] and [GGK2], a
“stable complex structure” meant a bundle equivalence class.) For stable complex
structures on the same vector bundle we have a second notion of equivalence:

Definition D.5. Suppose that E0 = E1 = E. The structures J0 and J1 are
homotopic if there exist a and b such that k+2a = l+2b and such that the resulting
complex structures on the vector bundle E⊕Rm, wherem = k+2a = l+2b, obtained
from its identifications with (E ⊕Rk)⊕Ca and with (E ⊕Rl)⊕Cb, are homotopic
through a family of G-invariant fiberwise complex structures.

Stable complex structures that arise from geometric constructions, such as re-
stricting to a boundary or reducing with respect to a group action are usually
defined up to homotopy. See Section 1.3.

The quantization of a stable complex manifold (M,J) equipped with a complex
line bundle L is invariant under both equivalence relations: homotopy and bundle
equivalence. The fact that homotopic J ’s give the same quantization is a direct
consequence of the Fredholm homotopy invariance of the index. This fact is used
to show that the quantization of a reduced space is well defined; see Example D.13.
On the other hand, to prove that bundle-equivalent stable complex structures have
the same quantization, one must invoke the index theorem. See Section 3 of this
appendix or Section 7 of Chapter 6 for more details.

Proposition D.6. Homotopic stable complex structures are bundle equivalent.

Proof. It is enough to show that if Jt is a smooth family of invariant fiber-
wise complex structures on a G-equivariant real vector bundle E, then (E, J0) and
(E, J1) are isomorphic as G-equivariant complex vector bundles.

We view Jt as a fiberwise complex structure on the pull-back Ẽ of E to M ×
[0, 1]. This turns Ẽ into a G-equivariant complex vector bundle over M × [0, 1]
which restricts to (E, J0) and (E, J1) on the components of the boundary. Fix a

G-invariant connection on Ẽ. The vector field on Ẽ obtained as the horizontal
lift of the vector field ∂/∂t on M × [0, 1] integrates to a family of isomorphisms
(E, J0) → (E, Jt), t ∈ [0, 1].

Remark D.7. The same argument applies to reductions of the structure group
to any closed subgroup, not necessarily GL(n,C) ⊆ GL(2n,R).

Bundle equivalent stable complex structures need not be homotopic:



1. STABLE COMPLEX STRUCTURES 231

Example D.8. Consider M = C with the complex structures
√
−1 and −

√
−1.

As stable complex structures, they are bundle equivalent: the tangent bundle TC

with either of these structures is isomorphic to the trivial complex line bundle
M × C. However, these structures are not homotopic; for instance, they induce
opposite orientations. (See Section 1.4.)

Moreover, bundle equivalent stable complex structures need not be homotopic
even if they induce the same orientation. See Example D.25.

Notice that in Definition D.4 the equivalence relation is taken with the group
action. It would make no sense to first consider a (non-equivariant) bundle equiva-
lence class and then let a group act. The reason is that a group action on a manifold
(or on a vector bundle) induces a group action on the set of stable complex struc-
tures but not on the set of their bundle equivalence classes or on a particular class.
There is an analogy here with the notion of an equivariant vector bundle over a
G-manifold; a lift of a G-action to a bundle is not natural and might not exist.

Example D.9. On the manifold M = C, the stable complex structures
√
−1

and −
√
−1 are bundle equivalent. However, if we let G = S1 act by rotations, these

structures become non-equivalent. (The isotropy weight at the origin is equal to 1
for the structure

√
−1 and is equal to −1 for the structure −

√
−1. See Proposi-

tion D.17.)

Unless stated otherwise, in the presence of a G-action all stable complex struc-
tures are assumed to be invariant and all homotopies or bundle equivalences are
assumed to be equivariant.

1.3. Geometric constructions. In this section we discuss geometric con-
structions which gives rise to homotopy classes of stable complex structures: the
almost complex structure compatible with a symplectic form, the reduction of a
stable complex structure, the restriction to a boundary, and the restriction to a
fixed point set and to its normal bundle.

The first important source of homotopy classes of stable complex structures is
symplectic manifolds:

Definition D.10. An almost complex structure J : TM → TM is compatible
with a symplectic form ω if 〈u, v〉 := ω(u, Jv) defines a Riemannian metric.

Remark D.11. It is not hard to see that, if J is an almost complex structure,
a (real valued) two-form ω that satisfies any one of the following conditions satisfies
them all:

1. 〈u, v〉 := ω(u, Jv) is symmetric;
2. ω(Ju, Jv) = ω(u, v) for all u, v;
3. ω is a differential form of type (1, 1) with respect to J .

Compatibility means, in addition, that 〈u, v〉 is positive definite. It implies that ω
is non-degenerate.

Example D.12. On a symplecticG-manifold (M,ω) there exists an equivariant
almost complex structure J compatible with ω, unique up to homotopy.

See [Ste, Section 41], [Wei1, Lecture 2], or [McDSa, Sections 2.5 and 4.1].

Sketch of proof. Given an arbitrary Riemannian metric on M , define an

operator A by the condition 〈u, v〉 = ω(u,Av). Then J = A(−A2)−
1
2 is an almost
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complex structure compatible with ω. In this way, we obtain a continuous map
〈 , 〉 7→ J from the space of Riemannian metrics onto the space of almost complex
structures compatible with ω. The former is non-empty and convex, and hence
connected. As a consequence, the latter is non-empty and connected, which proves
the claim. In the presence of a G-action preserving the symplectic structure, we
use the same argument, but starting with the space of G-invariant metrics.

Stable complex structures arise when we consider reduction:

Example D.13. Let Ψ: M → g
∗ be an (abstract) moment map. An invariant

almost complex structure J on M generally does not induce an almost complex
structure on the reduced space Mred = Ψ−1(0)/G, unless Ψ is a moment map
for an genuine symplectic form ω and J is compatible with ω. (See [CKT] for
conditions under which J descends to Mred, when G = S1.) However, J does
induce a stable complex structure on Mred, unique up to homotopy. See Section 2.3
of Chapter 5 for details. Moreover, homotopic or bundle equivalent structures
on M induce, respectively, homotopic, or bundle equivalent, structures on Mred.
Finally, because quantization is defined for a homotopy class (or, more generally,
for a bundle equivalence class) of stable complex structures, the quantization of the
reduced space is well defined.

Another important reason to consider stable complex structures is that the
notion of a cobordism of such structures is particularly simple. This notion relies
on the crucial observation that a stable complex structure on a manifold induces
one on its boundary:

Proposition D.14. Let M be a G-manifold with boundary ∂M . An equivari-
ant stable complex structure on M induces one on ∂M , which is canonical up to
homotopy. Homotopic or bundle equivalent, equivariant stable complex structures
on M induce, respectively, homotopic or bundle equivalent, equivariant stable com-
plex structures on ∂M .

Proof. We have a short exact sequence of vector bundles over the boundary,

0 → T (∂M) → TM |∂M → N(∂M) → 0,(D.1)

where T (∂M) is the tangent bundle to the boundary and where

N(∂M) = (TM |∂M) /T (∂M)

is the normal bundle to the boundary.
The normal bundle to the boundary is a one-dimensional real vector bundle,

oriented by choosing the “outward” direction to be positive. This determines an iso-
morphism with the trivial vector bundle, N(∂M) ∼= ∂M ×R, and the isomorphism
is unique up to homotopy.

The sequence (D.1) splits, and the splitting is unique up to homotopy. (A
short exact sequence of equivariant vector bundles 0 → A → B → C → 0 always
splits, and any two splittings are homotopic: the space of all splittings can be (non-
canonically) identified with the space of sections of the vector bundle HomG(C,A),
and this space is connected.)

We obtain an isomorphism

TM |∂M = R ⊕ T (∂M),

which is canonical up to homotopy. The lemma follows.
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Remark D.15. One can also define cobordisms of almost complex structures
on manifolds. The structure required on a cobording (2n+1)-dimensional manifold
is then a reduction (“tangent” to the boundary) of the structure group of the
tangent bundle to GL(n,C). As usual, all manifolds are assumed to be oriented.
In the non-equivariant case, the resulting cobordism ring is in fact equal to the
cobordism ring of stable complex structures, as follows, e.g., from the results of
[Bak, Gin2, Mor]. However, stable complex cobordisms are considerably more
tracktable and for many purposes more natural objects than their almost complex
counterparts.

In this book we need to consider fixed point sets and their normal bundles.
Let an abelian Lie group G act properly on a manifoldM . Let F be a connected

component of the fixed point set MH for some closed subgroup H of G. Recall that
F is a closed submanifold of M , on which G acts (non-effectively, with H acting
trivially), and the normal bundle NF = (TM |F )/TF is a G-equivariant real vector
bundle over F .

Proposition D.16. An equivariant stable complex structure on M induces an
equivariant stable complex structure on F and a fiberwise complex structure on the
normal bundle NF such that G acts on NF by complex bundle automorphisms.

Homotopic, or bundle equivalent, structures on M induce homotopic, or bundle
equivalent, structures on F and NF .

Corollary D.17. Let G be a torus and letM be a stable complexG-manifold.
At a fixed point for the G-action, the non-zero isotropy weights are well defined,
even if the stable complex structure is defined only up to equivalence.

Proof of Corollary D.17. Let F ⊆MG be a connected component of the
fixed point set. The non-zero isotropy weights at a point p ∈ F carry exactly the
same information as the G-action on the complex vector space NpF .

Proof of Proposition D.16. Let J be a fiberwise complex structure on
TM ⊕ Rk. Then TM |F ⊕ Rk is a G-equivariant complex vector bundle over F .
The sub-bundle TF ⊕ Rk is G-invariant and complex, because it consists precisely
of those vectors that are fixed by H . The normal bundle NF = TM |F/TF is
naturally isomorphic to the quotient (TM |F ⊕ Rk)/(TF ⊕ Rk), making it into a
complex vector bundle. Because an equivariant homotopy or bundle equivalence of
complex structures must preserve the sub-bundle of H-fixed vectors, the effects of
these equivalences on the structures on F and on NF are as stated.

In particular, let
π : E → F

be a G-equivariant real vector bundle, and suppose that there exists a subgroup
H ⊆ G whose fixed point set EH is precisely the zero section F . An equivariant
stable complex structure J on the total space of E gives rise to an equivariant
stable complex structure JF on F and a fiberwise complex structure Jf on E. The
converse is also true:

Proposition D.18. An equivariant stable complex structure JF on F and an
invariant fiberwise complex structure Jf on E determine an equivariant stable com-
plex structure J on the total space E, defined up to homotopy, which, in turn, in-
duces the structures JF and Jf . If Jf and JF are defined up to homotopy, or bundle
equivalence, so is J .
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Proof. We have a short exact sequence of bundles over E,

0 → π∗E → TE → TF → 0.

We have a complex structure on π∗E coming from Jf , and a stable complex struc-
ture on TF coming from JF . A splitting of the sequence gives an isomorphism

TE ∼= π∗E ⊕ TF,

unique up to homotopy. We set J = Jf ⊕ JF .

Propositions D.16 and D.18 immediately imply the following result, which is
used to specify the right-hand side of the stable complex “Linearization Theorem”
in Chapter 4.

Proposition D.19. Let J be an equivariant stable complex structure on M and
let F be a connected component of the set MH of fixed points for some subgroup H
of G. Then there is a unique up to homotopy stable complex structure JF on the
total space NF which induces the same stable complex structure on F and fiberwise
complex structure on NF as those induced by J . Homotopic or bundle equivalent,
structures on M induce homotopic, or bundle equivalent, structures on NF .

1.4. Orientations and Chern numbers. A stable complex structure in-
duces an orientation, obtained as the “difference” of the complex orientation on
E ⊕ Rk and the standard orientation on Rk. Homotopic stable complex structures
determine the same orientation. However, bundle equivalent stable complex struc-
tures need not induce the same orientation. So, for instance, a manifold equipped
with a stable complex structure up to bundle equivalence is orientable, but is not
naturally oriented.

For instance, the complex structures
√
−1 and −

√
−1 on C induce opposite

orientations although they are bundle equivalent (cf. Example D.8). More generally,

Lemma D.20. Every stable complex structure J is bundle equivalent to a stable
complex structure J ′ which induces the opposite orientation.

Proof. Let J be a fiberwise complex structure on E⊕Rk. Let J ′ = J⊕−
√
−1

on E ⊕ Rk ⊕ C. Then J ′ is isomorphic to J ⊕
√
−1 (via conjugation of the last

factor), but J and J ′ induce opposite orientations.

An oriented bundle equivalence between stable complex structures J0 and J1

defined on E⊕Rk and on E⊕Rl is an isomorphism of G-equivariant complex vector
bundles E ⊕ Rk ⊕ Ca and E ⊕ Rl ⊕ Cb which is fiberwise orientation preserving.
(This is well defined even if E is not a priori oriented.) If J0 and J1 induce opposite
orientations on E, an oriented bundle equivalence between them does not exist. If
they induce the same orientation, an oriented bundle equivalence between them is
the same thing as a bundle equivalence. In particular, if J0 and J1 are homotopic,
there exists an oriented bundle equivalence between them.

From Lemma D.20 we conclude that an oriented bundle equivalence class car-
ries exactly the same information as a bundle equivalence class plus an auxiliary
orientation.

Bundle equivalent (equivariant) stable complex structures have the same (equi-
variant) Chern classes. To integrate these classes and obtain characteristic numbers,
one also needs an orientation of the manifold. We specialize to E = TM , so that
an orientation of M is the same thing as a fiberwise orientation of E. It is then
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convenient to fix an orientation O of M as an additional structure. This is the
approach often taken in complex cobordism theory. (See, e.g., [Sto, Rudy], and
[May].)

Example D.21. In Example 5.5 of Chapter 5 we described non-standard stable
complex structures on CPn whose Chern classes are different from those of any
almost complex structure. We deduce that these stable complex structures are not
even bundle equivalent to almost complex structures.

Let M be an oriented manifold. Let J denote the set of stable complex struc-
tures on M . Let J0 denote the set of stable complex structures that induce the
given orientation on M . Then the natural map

J0/oriented bundle equivalence → J /bundle equivalence

is a bijection, as follows from the above discussion. The natural map

J0/homotopy → J /bundle equivalence(D.2)

is well defined and onto, but is not always one-to-one. See Example D.25.
From now on we will consider oriented manifolds, equipped with compatible

stable complex structures, up to oriented bundle equivalence.

1.5. Oriented complex cobordisms. We now define cobordisms of oriented
stable complex G-manifolds. In this context, stable complex structures are taken
up to bundle equivalence.

Definition D.22 (Oriented complex cobordism). Let M0 and M1 be oriented
stable complex G-manifolds. An oriented complex cobordism between these man-
ifolds is an oriented stable complex G-manifold with boundary W and a diffeo-
morphism of ∂W with −M0

⊔

M1 which transports the stable complex structure
on ∂W to structures on M0 and M1 that are bundle equivalent to the given ones.
(The minus sign indicates that the diffeomorphism reverses the orientation of M0

and preserves the orientation of M1.)

Cobordant oriented stable complex manifolds have the same characteristic num-
bers. This follows immediately from Stokes’s theorem. The converse is also true: if
two oriented stable complex manifolds have the same characteristic numbers, then
there exists an oriented complex cobordism between them, by a theorem of Milnor
and Novikov. See [MiSt, Sto].

1.6. Relations with other definitions of a stable complex structure.

In the literature one encounters several notions of stable complex structures. For ex-
ample, weak complex structures from [BH] are bundle equivalence classes, whereas
weakly complex structures from [CF1, CF2] are homotopy classes. Stable com-
plex structures are sometimes also referred to as stable almost complex structures
[May, Rudy], weakly almost complex structures [BH], or U -structures. Cobor-
disms of stable complex structures are called complex cobordisms, or unitary cobor-
disms.

In algebraic topology, a stable complex structure is usually defined on the stable
normal bundle to M (see, e.g., [Sto] and [Rudy]). We, as, e.g., in [May], define
stable complex structures on G-manifolds to be on stable tangent bundles. In the
non-equivariant setting, the two approaches are equivalent. This is no longer true in
the equivariant case. (See [May], p. 337 for details.) An equivariant stable complex
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structure on M gives rise to an equivariant complex structure on the stable normal
bundle to M , but the converse is not true. The key feature of Definition D.1 is that
the group action on the “stabilizing” part of the stable tangent bundle is required
to be trivial. Without this requirement, the notions of equivariant stable complex
structures on the tangent and stable normal bundles would be essentially equivalent.
However, some of the properties of equivariant stable complex structures would be
lost; for instance, Proposition D.16 and Corollary D.17 would not hold for “normal”
equivariant stable complex structures, and many applications, such as in [GGK2,
Section 4], would not be true for manifolds with stable complex structures on the
normal bundle.

1.7. Stable complex structures on spheres. In conclusion we give some
examples of classification results for stable complex structures on manifolds. In
the non-equivariant case these classification questions are handled using homotopy
theory and, in particular, obstruction theory (see, e.g., [Hu]). Below we outline
the solutions in the simplest case, where the manifold is a sphere. We restrict
our attention to stable complex structures compatible with a fixed orientation, as
explained in Section 1.4.

Let us first recall some general facts and set notation to be used later on.
Let Vn be the space of complex structures on R2n compatible with a fixed

orientation. It is easy to see that Vn = SO(2n)/U(n). The stable homotopy groups
of Vn are as follows (see [Mas1]). (Here, q > 0 and n is large enough so that
2n− 1 > q.)

πq(Vn) =











Z for q ≡ 2 mod 4;

Z2 for q ≡ 0, 7 mod 8;

0 otherwise.

The natural inclusion Vn → Vn+1 induces an isomorphism of these stable homotopy
groups.

As usual, let B SO(2n) and BU(n) denote the classifying spaces for SO(2n)
and U(n). The inclusion U(n) → SO(2n) induces a map BU(n) → B SO(2n) which
is a fiber bundle with fiber Vn. The inclusion of Vn into BU(n) as a fiber induces
a map πq(Vn) → πq(BU(n)). Denote the image of this map by Γq. Here, as above,
we assume that n is large enough for a fixed q so that Γq is independent of n.

Proposition D.23. Stable complex structures on Sq compatible with a fixed
orientation are classified by the elements of πq(Vn) up to homotopy and by the
elements of Γq up to bundle equivalence. The projection πq(Vn) → Γq is the natural
map between equivalence classes (cf. Proposition D.6).

Proof. For any q, the tangent bundle TSq is stably trivial. In fact, TSq⊕R =
Sq × Rq+1. It follows that homotopy classes of stable complex complex structures
on Sq, compatible with a given orientation, are in a one-to-one correspondence with
πq(Vn), where n is large enough.

Isomorphism classes of real oriented 2n-dimensional vector bundles over M are
classified by homotopy classes of maps M → B SO(2n), [Hus]. Likewise, complex
n-dimensional vector bundles are classified by the homotopy classes of maps M →
BU(n). Forgetting the complex structure on a vector bundle corresponds to the
map BU(n) → B SO(2n). Fiber bundle equivalence classes of complex structures
on an oriented real vector bundle are described by the homotopy classes of lifts of
M → B SO(2n) to M → BU(n). Specializing this to the case of stable complex
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structures on Sq we note that the classifying map Sq → B SO(2n) is contractible.
In other words, this map represents 0 ∈ πq(B SO(2n)). As follows from the long
exact sequence

. . .→ πq(Vn) → πq(BU(n)) → πq(B SO(2n)) → . . .

of the homotopy groups, the lifts of a contractible map are classified by the image
Γq of πq(Vn).

We leave the proof of the last assertion to the reader as an exercise.

Example D.24 (Stable complex structures on S2). Stable complex structures
on S2, compatible with a fixed orientation, are classified by Z up to either homotopy
or bundle equivalence, and these two equivalence relations are identical on S2.
Indeed, for q = 2, the natural map Z = π2(Vn) → Γ2 is an isomorphism.

Example D.25 (Stable complex structures on S7 and S8). The first sphere
for which the two classifications are inequivalent is S7. Applying Proposition D.23
to this sphere, we see that up to homotopy the stable complex structures on S7 are
classified by π7(Vn) = Z2. Up to bundle equivalence, stable complex structures on
S7 are classified by Γ7 which is zero, for π7(BU(n)) = π6(U(n)) = 0. Similarly, the
two classifications are different for S8, where π8(Vn) = Z2 and Γ8 = 0. (Indeed, Γ8

is the image of Z2 in π8(BU(n)) = π7(U(n)) = Z.)

Remark D.26. Calculations similar to Examples D.24 and D.25 also show that
the two classifications are equivalent for all Sq with q ≤ 6. Combining this with
elementary obstruction theory (see, e.g., [Hu]), one can show that the two clas-
sifications of non-equivariant stable complex structures on M (compatible with a
fixed orientation) are equivalent when dimM ≤ 6.

Classification problems for stable complex structures become more subtle in
the equivariant setting.

Example D.27 (Equivariant stable complex structures on S2). Consider the
standard action of G = S1 on S2 by rotations about the z-axis. Then any two
G-equivariant stable complex structures on S2, compatible with a fixed orienta-
tion, are equivariantly homotopy equivalent and hence also bundle equivalent.

Proof. Let J be a G-equivariant complex structure on TS2 ⊕ Rk compatible
with the orientation. If p is the north or the south pole, we have an equivariant
decomposition of the stable tangent space as TpS

2 ⊕ Rk, where Rk is fixed by G,
and both components are J-complex subspaces. Since J is compatible with the
orientation, J is equivariantly homotopic to a stable complex structure which has
some standard form near the poles. Hence, without loss of generality, we can assume
that J has such a form near the poles.

Let us fix a trivialization of TS2⊕Rk along the arc C of a meridian connecting
the two poles. Then J is completely determined by its values along C. Now it is
easy to see that equivariant homotopy classes of stable complex structures on S2

are in a one-to-one correspondence with homotopy classes of the maps of C to Vn

with fixed end-points. This set is essentially π1(Vn) = 0, which implies the assertion
of Example D.27.
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2. Spinc-structures

2.1. The definition of Spinc-structures. Recall that the group Spin(n) is
the connected double covering of the group SO(n). (In fact, π1(SO(n)) = Z2, so
Spin(n) is the universal covering of SO(n), when n > 2.) Let

q : Spin(n) → SO(n)

denote the covering map, and let ǫ denote the non-trivial element in the kernel of
this map. Then

Spinc(n) = Spin(n) ×Z2
U(1)

is the quotient of Spin(n)×U(1) by the two element subgroup generated by (ǫ,−1).
In other words, elements of Spinc(n) are equivalence classes [s, c], where s ∈ Spin(n),
c ∈ U(1), and [sǫ, c] = [s,−c]. The projections to the two factors give rise to two
natural homomorphisms,

π : Spinc(n) → SO(n), [s, c] 7→ q(s),(D.3)

and

det : Spinc → U(1), [s, c] 7→ c2,(D.4)

which give rise to short exact sequences

1 → U(1) → Spinc(n)
π→ SO(n) → 1

and

1 → Spin(n) → Spinc(n)
det→ U(1) → 1.

Let E → M be a real vector bundle of rank n. On the conceptual level, a
Spinc-structure on E is an “extension” of its structural group to Spinc(n). More
precisely, let GL(E) denote the frame bundle of E, that is, the principal GL(n)-
bundle whose fiber over p ∈M is the set of bases of the vector space Ep. The group

Spinc(n) acts on GL(E) through the composition Spinc(n)
π→ SO(n) →֒ GL(n).

Definition D.28. A Spinc-structure on E is a principal Spinc(n)-bundle

P →M

together with a Spinc(n)-equivariant bundle map

p : P → GL(E).

A Spinc structure on a manifold M is a Spinc structure on its tangent bundle
E = TM .

Although a Spinc-structure is more than just a principal bundle P , we will
often refer to a Spinc-structure (P, p) as simply P .

The map p determines an isomorphism of vector bundles,

P ×π R
n ∼= E,(D.5)

and vice versa: an isomorphism (D.5) determines an equivariant map p : P →
GL(E). The standard metric and orientation on Rn transport to E through (D.5),
such that the bundle SO(E) of oriented orthogonal frames is precisely the image
of the map p : P → GL(E). In particular, a vector bundle that admits a Spinc

structure is orientable.
In the literature, a Spinc structure is commonly defined for a vector bundle

which is a priori equipped with a fiberwise metric and orientation. We will consider
this notion under a slightly different name:
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Definition D.29. Let E → M be a vector bundle. If E is equipped with a
fiberwise orientation, an oriented Spinc-structure on E is a Spinc structure which
induces the given orientation. If E is equipped with a fiberwise metric, a metric
Spinc-structure on E is a Spinc structure which induces the given metric.

Hence, Spinc structures as are usually referred to in the literature are what we
call oriented metric Spinc structures.

One may also discard the metric and orientation completely; this is achieved
through the notion of an MLc (“metalinearc”) structure, which we discuss in Section
2.6. This notion is superior to others in that it requires the least a priori structure.
Our definition of a Spinc structure is an intermediate notion, which, on one hand,
avoids an a priori choice of metric and orientation, but does give rise to these
structures. One advantage of this notion is purely psychological, in that it allows
us to keep the common name “Spinc”. In Sections 2.4, 2.5, and 2.6, we will see that
these different notions of Spinc structures are essentially equivalent. In practice,
one may work with any one of these notions.

The determinant line bundle associated with the Spinc-structure is the complex
line bundle

Ldet = P ×det C

over M , associated through the homomorphism (D.4).
We may think of P as a circle bundle over SO(E), with p : P → SO(E) being

the projection map.

Lemma D.30. The associated line bundle, P×U(1)C → SO(E), is a square root
of the pullback to SO(E) of the determinant line bundle Ldet.

We leave the proof as an exercise to the reader.
Because the subgroup U(1) is the center of Spinc(n), its right action on P

commutes with the entire principal Spinc(n) action. Therefore, P is a Spinc(n)-
equivariant circle bundle over SO(E). Conversely, a Spinc(n) equivariant circle
bundle over SO(E) is a Spinc structure on E if K := kerπ ∼= U(1) acts by the
principal action.

Proposition D.31. An oriented vector bundle E over M admits a Spinc-
structure if and only if its second Stiefel-Whitney class w2(E) is integral, i.e., lies
in the image of the homomorphism

ρ : H2(M ; Z) → H2(M ; Z2).

We refer the reader to [FF] or [Fr] for the proof. The definitions of the Stiefel-
Whitney class w2(E) and the Chern class c1(L) can be found in [MiSt].

One may attempt to define an equivalence of Spinc structures (P, p) and (P ′, p′)
to be a principal bundle map F : P → P ′ which respects the maps to GL(E).
Spinc structures that are equivalent in this sense must induce the same metric
and orientation. In fact, this will be our notion of equivalence of metric Spinc

structures in Section 2.4. We have formulated our definition of a Spinc structure
in such a way as to avoid fixing a metric and an orientation, and we will work
with notions of equivalence which allow different metrics or orientations. In the
next sections we introduce two such notions, which we call bundle equivalence and
homotopy of Spinc structures. In the literature, it is often unclear what equivalence
relation is taken, and this results in seemingly contradictory classification results
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for Spinc-structures. We outline the homotopy classification of Spinc structures in
Section 2.7.

Finally, we note that the quantization of a Spinc structure (see Section 3 of this
appendix or Section 7 of Chapter 6) is invariant under both equivalence relations:
homotopy and bundle equivalence. The fact that homotopic Spinc structures give
the same quantization is a direct consequence of the Fredholm homotopy invariance
of the index. On the other hand, to prove that bundle-equivalent Spinc structures
have the same quantization one must invoke the index theorem.

2.2. Bundle equivalence of Spinc-structures. The simplest equivalence
relation between Spinc-structures is the equivalence of principal bundles:

Definition D.32. Let (P, p) and (P ′, p′) be Spinc-structures on vector bundles
E and, respectively, E′ over M . These structures are bundle equivalent if P and
P ′ are equivalent as Spinc(n)-principal bundles.

Remark D.33. An isomorphism of principal bundles F : P → P ′ gives rise
to a unique isomorphism of principal bundles f : GL(E) → GL(E′) such that the
following diagram commutes:

P
F−−−−→ P ′

p





y
p′





y

GL(E)
f−−−−→ GL(E′).

(D.6)

Indeed, f is determined by

GL(E)
p∼= P ×Spinc(n) GL(n)

F→ P ′ ×Spinc(n) GL(n)
p′

∼= GL(E′).

Similarly, if two Spinc-structures are bundle equivalent, the underlying vector bun-
dles E and E′ are isomorphic, via

E ∼= P ×Spinc(n) R
n → P ′ ×Spinc R

n ∼= E′.

Note that we do not need E and E′ to be the same vector bundle, and that we
impose no restriction on the isomorphism f in (D.6). We will later encounter
stricter notions of equivalence, which apply to the case E = E′, and in which we
insist that f be equal to, or homotopic to, the identity map.

Remark D.34. A Spinc(n)-principal bundle can also be described in terms of
transition functions in the usual way. Fix a cover of M by contractible open sets
Ui. A Spinc-principal bundle P is given by a collection of functions ϕij : Uij =
Ui ∩ Uj → Spinc(n) such that the cocycle condition holds, i.e., ϕijϕjkϕki = 1.

Then the vector bundle E is determined by the GL+(n)-valued cocycle πϕij . Two
cocycles ϕij and ψij give rise to bundle equivalent Spinc-structures on E if and

only if these cocycles differ by a coboundary: ψij = fiϕijf
−1
j for some collection

of functions fi : Ui → Spinc(n). The determinant line bundle of P is given by the
U(1)-cocycle detϕij .

Remark D.35. Recall that every Spinc(n)-bundle over a manifold is a pullback
of the universal Spinc(n)-bundle, E Spinc(n) → B Spinc(n), through a map to the
classifying space B Spinc(n), and this map is unique up to homotopy. Two Spinc-
structures are bundle equivalent exactly if the corresponding maps to the classifying
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space are homotopic. This notion of homotopy is different (in fact, weaker) than
the notion of homotopy that will be introduced in the next section.

Remark D.36. The real (or, equivalently, rational) characteristic classes of
Spinc(n)-structures are described by the cohomology ring H∗(B Spinc(n)). For n
even, which is the case of most interest for us, this ring (over R) is the polynomial
ring with generators c1 (of degree two), e of degree n = 2m, and p1, . . . , pm with
deg pj = 4j; see, e.g., [FF]. The class c1 corresponds to the first Chern class of
Ldet, the class e corresponds to the Euler class of E, and the classes pj are the
Pontrjagin classes. As a consequence, for Spinc-structures on an even–dimensional
manifold, all characteristic classes but c1 are determined by the topology of M and
hence are independent of the Spinc-structure.

The notion of bundle equivalence is most natural in the topological context. The
characteristic classes of (P, p) are entirely determined by P and thus are invariants
of bundle equivalence.

2.3. Homotopy of Spinc-structures. For Spinc structures over a fixed vec-
tor bundle E one has the following equivalence relation, which is finer than bundle
equivalence:

Definition D.37. Spinc structures (P, p) and (P ′, p′) over a vector bundle E
are homotopic if there exists a principal bundle isomorphism

F : P → P ′

and a smooth family of Spinc-equivariant maps

pt : P → GL(E),

for t ∈ [0, 1], such that p0 = p and p1 = p′ ◦ F :

P
F−−−−→ P ′





y
p∼p′

◦F





y
p′

GL(E) GL(E).

We have the following useful characterization of homotopy:

Proposition D.38. Let E be a vector bundle. Two Spinc structures (P, p)
and (P ′, p′) over E are homotopic if and only if there exists a principal bundle
isomorphism F : P → P ′ such that the induced automorphism f : GL(E) → GL(E)
is homotopic to the identity through bundle automorphisms:

P
F−−−−→ P ′

p





y
p′





y

GL(E)
f∼identity−−−−−−−→ GL(E).

Moreover, it is enough to assume that f is homotopic to the identity through SO(n)-
equivariant maps.

Proof. Let F : P → P ′ be an isomorphism of principal bundles. Let f be the
unique automorphism of GL(E) such that f ◦ p = p′ ◦ F , as in (D.6).
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Suppose that there exists a family of Spinc-equivariant maps pt : P → GL(E)
such that p0 = p and p1 = p′ ◦ F . Let ft : GL(E) → GL(E) be the unique
automorphism such that the following diagram commutes:

P
F−−−−→ P ′

pt





y
p′





y

GL(E)
ft−−−−→ GL(E).

(D.7)

(See Remark D.33.) Then, by uniqueness, f0 = f and f1 = identity.
On the other hand, suppose that there exists a family of SO(n)-equivariant

maps ft of GL(E) such that f0 = f and f1 = identity. Let pt = f−1
t ◦ p′ ◦ F . Then

pt : P → GL(E) is Spinc(n)-equivariant, p0 = p, and p1 = p′ ◦ F .

Clearly, if two Spinc structures on E are homotopic, they are also bundle equiv-
alent.

Finally, we note that the definitions of Spinc structures and their equivalences
naturally extend to equivariant structures in the presence of a proper G-action.
Various claims that we have made regarding these objects have equivariant ana-
logues. In fact, the same proofs work, with the word “equivariant” or “invariant”
inserted wherever appropriate. Note that some of these proofs rely on the existence
of an invariant fiberwise metric on a G-equivariant vector bundle E, or the exis-
tence of an equivariant connection on a G-equivariant principal bundle. Properness
of the action is needed to guarantee that such metrics or connections do exist. See
Section 3.2 of Appendix B for how to “average” with respect to a proper group
action.

2.4. Metric Spinc structures. Let E →M be a vector bundle. Recall that
a Spinc structure on E is a principal Spinc bundle P →M together with a Spinc(n)
equivariant bundle map p : P → GL(E). If E is a priori equipped with a fiberwise
orientation or metric, recall that an oriented, resp., metric Spinc structure is one
which induces the given orientation, resp., the given metric.

Let E be a vector bundle with a fiberwise metric and let O(E) be its orthonor-
mal frame bundle. An equivalence of metric Spinc structures (P, p) and (P ′, p′)
over E is an isomorphism F : P → P ′ which lifts the identity map on O(E):

P
F−−−−→ P ′

p





y
p′





y

O(E)
identity−−−−−→ O(E)

Spinc structures up to homotopy are the same as metric Spinc structures up to
equivalence:

Proposition D.39. Let E → M be a vector bundle with a fiberwise metric.
Then:

(1) Every Spinc-structure is homotopic to a metric Spinc-structure.
(2) Two metric Spinc-structures are equivalent if and only if they are homotopic.

Because homotopy preserves orientation, and so does equivalence of metric
Spinc structures, it is enough to prove, for any pre-chosen orientation and metric
on E,
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(1’) Every oriented Spinc-structure is homotopic to an oriented metric Spinc-
structure.

(2’) Two oriented metric Spinc-structures are equivalent if and only if they are
homotopic.

Proof of (1’): Let GL+(E) denote the oriented frame bundle and SO(E) the
oriented orthogonal frame bundle of E. Let (P, p′) be an oriented Spinc structure
and SO(E′) the oriented orthonormal frame bundle for the induced metric. Metrics
on E exactly correspond to sections of GL+(E)/ SO(n). Because this bundle has
contractible fibers, there exists a smooth family of bundle maps

GL+(E)/ SO(n)
ϕ+−−−−→ GL+(E)/ SO(n)





y





y

M M

such that ϕ0=identity and ϕ1 sends the section SO(E′)/ SO(n) to the section
SO(E)/ SO(n).

Considering GL+(E) as a principal SO(n)-bundle over GL+(E)/ SO(n), the
family ϕt lifts to a family of SO(n)-equivariant maps,

GL+(E)
ft−−−−→ GL+(E)





y





y

GL+(E)/ SO(n)
ϕt−−−−→ GL+(E)/ SO(n)

such that f0 = identity and f1 sends SO(E′) to SO(E). We then have maps

P P

p′





y

p





y

SO(E′)
f1−−−−→ SO(E)

where p = f1 ◦p′. Then (P, p) is an oriented metric Spinc structure. The structures
(P, p) and (P, p′) are homotopic by Proposition D.38.

Proof of (2’): Let (P, p) and (P ′, p′) be oriented metric Spinc structures.
Suppose that there exists an isomorphism F : P → P ′ of principal bundles, inducing
an isomorphism f : GL+(E) → GL+(E), and a family ft : GL+(E) → GL+(E) of
bundle isomorphisms such that f1 = f and f0 = identity. These descend to maps

ϕt : GL+(E)/ SO(n) → GL+(E)/ SO(n)

such that ϕ0 = identity and ϕ1 sends SO(E)/ SO(n) to itself. Because the bundle
GL+(E)/ SO(n) → M has contractible fibers, the homotopy ϕt can be deformed,
through homotopies ϕt,s with the same endpoints, to a homotopy which sends
SO(E)/ SO(n) to itself for all t. The lifting of ϕt to ft extends to a family of
SO(n)-equivariant maps

GL+(E)
ft,s−−−−→ GL+(E)





y





y

GL+(E)/ SO(n)
ϕt,s−−−−→ GL+(E)/ SO(n).
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such that f0,s = identity and f1,s = f for all s. The map ft,1 sends SO(E) to itself
for all t.

Considering P and P ′ as Spinc(n)-equivariant U(1)-bundles over SO(E), the
family ft,1 lifts to a family of automorphisms,

P
Ft−−−−→ P ′

p





y
p′





y

SO(E)
ft,1−−−−→ SO(E).

such that F1 = F . The automorphism F0 : P → P ′ descends to the identity map
on SO(E). This gives the required equivalence of metric Spinc structures.

2.5. Spinc structures and Pinc structures. A Pinc structure is a “Spinc

structure without an orientation”. To define it, consider the group

Pinc(n) = Pin(n) ×Z2
U(1),

where Pin(n) is the non-trivial double covering of O(n). A Pinc-structure on a
vector bundle E is a principal Pinc(n)-bundle P together with a Pinc(n)-equivariant
map

p : P → GL(E),

where Pinc(n) acts on GL(E) through the homomorphisms Pinc(n) → O(n) →֒
GL(n).

A Pinc structure induces a fiberwise metric on E (but not a fiberwise orienta-
tion).

The group Pinc(n) contains two connected components. The connected com-
ponent that contains the identity element is Spinc(n). Let D denote the other
connected component of Pinc(n). We have the following properties:

(1) If a, b ∈ D, then ab ∈ Spinc(n).
(2) Spinc(n) acts on D by multiplication from the right, freely and transitively.
(3) Spinc(n) acts on D by multiplication from the left, freely and transitively.

These properties imply that we have an isomorphism of spaces with left and right
Spinc(n)-actions

D ×Spinc(n) D
∼=→ Spinc(n)(D.8)

given by

[a, b] 7→ ab.

Consider the map π : D → GL(n) obtained as the composition

π : D →֒ Pinc(n) → O(n) →֒ GL(n).

For each Spinc structure (P, p), we obtain another Spinc structure (P ′, p′) by
setting

P ′ = P ×Spinc(n) D

and

p′([u, a]) = p(u)π(a).

(Note that π(a) ∈ GL(n) acts on p(u) ∈ GL(E) from the right.)
This defines an orientation reversing involution

τ : (P, p) 7→ (P ′, p′)
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on the set of homotopy classes of Spinc structures. (The fact that τ is an involution
follows from (D.8).)

Let us now consider a vector bundle E equipped with a fiberwise orientation
O. Then we have a natural bijection between the three sets:

(1) Pinc structures on E;
(2) Spinc structures on E which are compatible with O;
(3) Spinc structures on E which are incompatible with O.

Indeed, given a Pinc structure (Q, q), we get Spinc structures (P, p) and (P ′, p′) by
P = π−1(GL+(E)), P ′ = π−1(GL−(E)), p = q|P , and p′ = q|P ′ , where GL−(E)
is the bundle of disoriented frames. Conversely, given a Spinc structure (P, p)
(either compatible or incompatible with O) we get a Pinc structure (Q, q) with
Q = P ×Spinc(n) Pinc(n). Finally, the involution τ interchanges oriented Spinc

structures and disoriented Spinc structures.
Therefore, on a vector bundle E (without a pre-chosen orientation), a Spinc

structure contains the same information as a Pinc structure together with an ori-
entation.

2.6. Pinc structures and MLc structures. To eliminate metrics and ori-
entations altogether, we may work with the “metalinearc” group

MLc(n) = ML(n) ×Z2
U(1),

where ML(n) is the non-trivial double covering of GL(n). The group MLc(n) con-
tains the group Pinc(n) as a maximal compact subgroup.

An MLc-structure on a vector bundle E is a principal MLc(n)-bundle P̃ , to-

gether with an MLc-equivariant map p̃ : P̃ → GL(E), where MLc(n) acts on the
principal GL(n)-bundle GL(E) through the homomorphism π : MLc(n) → GL(n).

The pair (P̃ , p̃) plays the role of a “Spinc-structure without the metric or ori-
entation”. When E = TM , and after fixing an orientation, the concept of an MLc

structure is equivalent to Duflo and Vergne’s notion of a “quantum line bundle” on
M ; see [Ve4].

To a Pinc structure (P, p) we associate an MLc structure (P̃ , p̃) by

P̃ = P ×Spinc(n) MLc(n) and p̃([u, a]) = p(u) · π(a).

Conversely, from an MLc structure (P̃ , p̃) and a metric on E we get a Pinc structure

by taking P to be the preimage of O(E) in P̃ .
Therefore, on a vector bundle E, a Pinc structure contains the same information

as an MLc structure together with a fiberwise metric.
An equivalence of MLc structures (P̃ , p̃) and (P̃ ′, p̃′) is an isomorphism F̃ : P̃ →

P̃ ′ which lifts the identity map on GL(E):

P̃
F̃−−−−→ P̃ ′

p̃





y
p̃′





y

GL(E)
identity−−−−−→ GL(E)

(D.9)

On a vector bundle with a fiberwise metric, it is easy to see that MLc struc-
tures up to equivalence are the same as metric Pinc structures up to equivalence.
Combining this with the results of the previous sections yields the following result:
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Proposition D.40. Let E → M be an oriented vector bundle. There exists a
natural one to one correspondence between the following sets of structures:

(1) Oriented Spinc structures on E, up to homotopy;
(2) Pinc structures on E, up to homotopy;
(3) MLc structures on E, up to equivalence.

Hence, the homotopy classification of oriented Spinc structures is the same as
the classification of each of the structures (1)–(3). See Proposition D.43 below.

Finally, on a symplectic vector bundle, an MLc structure is the same as a Mpc

(metaplecticc) structure, as we now explain. The metaplectic group Mp(2n) is the
non-trivial double covering of the (real) symplectic group Sp(2n). The metaplecticc

group is

Mpc(2n) = Mp(2n) ×Z2
U(1).

A metaplecticc structure on a symplectic vector bundle E of rank 2n is an extension
of its structure group from the symplectic group Sp(2n) to the metaplecticc group
Mpc(2n). A symplectic structure on a vector bundle E →M determines a reduction
of structure group of any MLc structure to an Mpc structure: Let Sp(E) denote
the bundle of symplectic frames (whose fiber over m ∈ M is the set of linear

symplectomorphisms of Em with R2n). If (P̃ , p̃) is an MLc structure, the preimage

of Sp(E) in P̃ is a principal bundle with structure group Mpc and provides us with
a metaplecticc structure on E.

2.7. Classification of Spinc-structures, and the distinguishing line

bundle. We will now classify the Spinc-structures on a vector bundle E, up to
homotopy.

Recall that Spinc(n) = Spin(n) ×Z2
U(1) and there is a natural projection

π : Spinc(n) → SO(n). We identify K = kerπ with U(1) by [1, c] 7→ c. Note that

Spinc(n) ×K U(1) = Spinc(n).

Given a complex Hermitian line bundle L over M , we can “twist” (P, p) by L

and obtain another Spinc-structure, (P ′, p′), by

P ′ = P ×K U(L),

where U(L) ⊂ L is the unit circle bundle. The projection p′ : P ′ → GL(E) and
the principal Spinc(n)-action are induced from (P, p). The fact that these are well
defined follows from the fact that K = kerπ and that K is the center of Spinc(n).
Note that (P ′, p′) induces the same metric and orientation as (P, p).

Lemma D.41. Let (P, p) be a Spinc structure. Let (P ′, p′) and (P ′′, p′′) be the
results of twisting (P, p) by line bundles L

′ and L
′′. If the line bundles L

′ and L
′′

are equivalent, then the Spinc structures (P ′, p′) and (P ′′, p′′) are homotopic.

Proof. An isomorphism L′ → L′′ naturally extends to an isomorphism P ×K

U(L′) → P ×K U(L′′) which respects the maps p′ and p′′.

Because line bundles up to equivalence are classified by H2(M ; Z), we get an
action of H2(M ; Z) on the set of homotopy classes of Spinc-structures:

Definition D.42. Let δ ∈ H2(M ; Z), We define the action of δ on (P, p) to
give the Spinc structure with P ′ = P ×K U(L), where L is a complex Hermitian
line bundle with c1(L) = δ.
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In exactly the same way we can twist a Pinc structure or an MLc structure. For
each of these structures, we replace the principal bundle P by the bundle P×K U(L)
where K ∼= U(1) is in the center of the structure group Pinc(n) or MLc(n).

Proposition D.43. Let E →M be an oriented vector bundle which admits a
Spinc-structure.

(1) The action of H2(M ; Z) on the set of homotopy classes of oriented Spinc-
structures on E is effective and transitive. In particular, this set is (non-
canonically) in one-to-one correspondence with the cohomology group
H2(M ; Z).

(2) Let (P, p) be an oriented Spinc-structure on E with determinant line bun-
dle Ldet, and let L

′
det be the determinant line bundle of the Spinc-structure

obtained by the action of u ∈ H2(M ; Z) on (P, p). Then

c1(L
′
det) = c1(Ldet) + 2u.

(3) A line bundle L is the determinant line bundle for some Spinc-structure on
E if and only if c1(L) = w2(E) mod 2.

Remark D.44. This proposition shows that the determinant line bundle Ldet

does not determine the homotopy class of a Spinc-structure on E uniquely. Namely,
Ldet determines a Spinc-structure up to elements of the kernel of the homomorphism
H2(M ; Z) → H2(M ; Z) induced by multiplication by 2.

The proof of Proposition D.43 follows from a construction which is reverse, in
a certain sense, to the H2(M ; Z) action of Definition D.42. Namely, we will give a
recipe which associates to any two oriented Spinc-structures (P, p) and (P ′, p′) on
E a “distinguishing” complex line bundle L over M , such that twisting (P, p) by L

will give (P ′, p′). The Chern class δ = c1(L) ∈ H2(M ; Z) will only depend on the
homotopy classes of the Spinc-structures.

By Proposition D.39, we may restrict our attention to oriented metric Spinc

structures, and will need to show that equivalent structures give isomorphic line
bundles.

Recall that P and P ′ can be viewed as principal K-bundles over SO(E) =
P/K = P ′/K, where K = kerπ ∼= U(1). Since K commutes with all elements
of Spinc(n), we can view P → SO(E) and P ′ → SO(E) as Spinc(n)-equivariant
K-bundles. Denote by F and F′ the associated equivariant complex line bundles.
Then Spinc(n) also acts on (F)∗⊗F′ so that the action of K is trivial. (Here we view
K as a subgroup of Spinc(n) and not as the structural group.) Thus the Spinc(n)-
action on (F)∗⊗F′ factors through an SO(n)-action. It follows that this line bundle
descends to (i.e., is a pull-back of) a line bundle Lδ over SO(E)/ SO(n) = M . We
set δ to be the first Chern class of the resulting line bundle on M .

Definition D.45. The line bundle Lδ = Lδ(P, P
′) constructed above is called

the distinguishing line bundle of the Spinc-structures (P, p) and (P ′, p′). The coho-
mology class δ(P, P ′) = c1(L) is called the distinguishing cohomology class.

.

Remark D.46. If we replace (P, p) and (P ′, p′) by metric Spinc structures that
are homotopic to them, the resulting distinguishing line bundle is isomorphic to Lδ.
By Proposition D.39, we get a line bundle Lδ, defined canonically up to equivalence
of complex line bundles, for every two Spinc structures (P, p) and (P ′, p′), which
only depends on their homotopy class.
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Remark D.47. We have Lδ(P
′, P ) ∼= Lδ(P, P

′)∗ and

Lδ(P, P
′′) ∼= Lδ(P, P

′) ⊗ Lδ(P
′, P ′′)(D.10)

for Spinc-structures P , P ′, and P ′′. Likewise, δ(P ′, P ) = −δ(P, P ′) and δ(P, P ′′) =
δ(P, P ′)+δ(P ′, P ′′). We emphasize that δ(P, P ′) and, up to isomorphism, Lδ(P, P

′)
are invariants of homotopy but not of bundle equivalence of Spinc-structures. How-
ever, 2δ(P, P ′) and Lδ(P, P

′)⊗2 are invariants of bundle equivalence.

The class δ depends only on the equivalence class of the metric Spinc structures
(P, p) and (P ′, p′).

Proof of Proposition D.43. To prove the first assertion, it is enough to
observe that the distinguishing line bundle for the Spinc-structures P and P ′ =
P ×K U(L) is Lδ = L.

The second assertion follows immediately from the fact that the composition

U(1) ∼= K →֒ Spinc(n)
det→ U(1) is the map c 7→ c2.

The third statement follows from Proposition D.31.

Remark D.48. In practice we will need to compare Spinc structures which may
induce opposite orientations: on a vector bundle without a pre-chosen orientation,
two Spinc structures are distinguished by

(1) the distinguishing line bundle Lδ;
(2) whether or not they induce the same orientation.

This follows immediately from the results of Section 2.5. Note that the distinguish-
ing line bundle can be defined even if (P, p) and (P ′, p′) induce opposite orienta-
tions. For instance, we may define it by passing to the associated Pinc structures
and noting that the above construction of the distinguishing line bundle works
word-for-word for a pair of Pinc structures, with Spinc(n) replaced by Pinc(n) and
SO(E) replaced by O(E) everywhere. Equivalently, we may replace (P, p) by τ(P, p)
(see Section 2.5) and then carry out the above construction of Lδ.

All the above remains valid in the presence of a proper G-action. In particular,
we can twist a G-equivariant Spinc structure by a G-equivariant line bundle, and,
for any two G-equivariant Spinc structures P and P ′, the distinuishing line bundle
Lδ(P, P

′) is a G-equivariant line bundle.

3. Spinc-structures and stable complex structures

In this section we associate a Spinc structure (P, p) to any stable complex
structure J , and we compare the Spinc structures coming from different stable
complex structures.

Remark D.49. In the literature, one usually takes stable complex structures
up to bundle equivalence and Spinc structures up to homotopy. With this approach,
the map J 7→ (P, p) is not well defined: if a stable complex structure is only defined
up to bundle equivalence, so is the resulting Spinc-structure, and one does not get
a well defined homotopy class. One of the reasons that we keep track of both
equivalence relations is to avoid this problem.
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3.1. The canonical Spinc-structure on a complex vector bundle. In
the context of this book, the main sources of Spinc-structures are complex and
stable complex structures.

The anti-canonical line bundle of a complex vector bundle E is the top wedge
K∗ = Λm

C
E, where m = rkCE. (The symbol K is usually reserved for the canonical

line bundle; the two are dual to each other.) Similarly, if E is equipped with a
stable complex structure, its anti-canonical line bundle is the anti-canonical line
bundle of the complex vector bundle (E⊕R

k, J) through which the stable complex
structure on E is defined. The isomorphism class of the anti-canonical line bundle
only depends on the bundle equivalence class of the stable complex structure.

Proposition D.50. A complex vector bundle E and complex line bundle L over
M determine a Spinc-structure on E uniquely up to homotopy. The determinant
line bundle of this Spinc-structure is isomorphic to K∗⊗L

⊗2 where K∗ is the anti-
canonical line bundle of E. Homotopic (resp., bundle equivalent) complex structures
on E give rise to homotopic (resp., bundle equivalent) Spinc structures.

Proof. We first construct an inclusion of U(n) into Spinc(2n). We start with
the standard inclusion U(n) →֒ SO(2n) and lift it to an inclusion U(n) →֒ Spin(2n)
for the connected double covering U(n) of U(n). Likewise, the homomorphism
det: U(n) → U(1) lifts to a homomorphism U(n) → U(1) ∼= U(1). These homo-
morphisms give rise to an inclusion U(n) → Spin(2n)×U(1) which descends to the
required inclusion U(n) →֒ Spin(2n) ×Z2

U(1) = Spinc(2n).
Set P = U(E) ×U(n) Spinc(2n) with its natural projection p to SO(E) =

U(E) ×U(n) SO(2n), where U(E) is the principal U(n)-bundle of unitary frames
in E with respect to some Hermitian metric, and where the projection p arises
from the homomorphism π : Spinc(2n) → SO(2n). Then (P, p) is a Spinc-structure
on E, and, up to homotopy, it is independent of the choice of the Hermitian metric.
We get a Spinc-structure with the required determinant line bundle by twisting P
by L as in Definition D.42.

Suppose now that we have a family Jt of complex structures on E, parametrized
by t ∈ [0, 1]. This makes the product E × [0, 1] into a complex vector bundle

over M × [0, 1]. The previous construction gives rise to a Spinc structure (P̃ , p̃)
on E × [0, 1], whose restriction to E × {t} is the Spinc structure associated with
Jt. The trivial connection on the fibration GL+(E) × [0, 1] → [0, 1] lifts to a

connection on P̃ → [0, 1] whose parallel transport provides us with a homotopy
(see Definition D.37) between the Spinc structures associated with J0 and J1.

An equivalence of complex line bundles E0 → E1 gives an equivalence of prin-
cipal U(n) bundles U(E0) → U(E1) and, further, an equivalence of the associated
Spinc bundles.

Combining Proposition D.50 with the results of Section 2.7, we get the following
result.

Lemma D.51. Any two complex structures J, J ′ on a real vector bundle E de-
termine a “distinguishing” complex line bundle

Lδ = Lδ(J, J
′)

uniquely up to isomorphism. We have

K ′ = K ⊗ L
⊗2
δ
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where K ′ and K are the anti-canonical line bundles associated to J and J ′. If J ′′

is a third complex structure,

Lδ(J, J
′) ⊗ Lδ(J

′, J ′′) = Lδ(J, J
′′).

Applying this to the bundles E⊕Rk, we get a similar result for stable complex
structures:

Lemma D.52. Any two stable complex structures J, J ′ on a real vector bundle
E determine a “distinguishing” complex line bundle

Lδ = Lδ(J, J
′)

uniquely up to isomorphism. We have

K ′ = K ⊗ L
⊗2
δ

where K ′ and K are the anti-canonical line bundles associated to J and J ′. For any
line bundle L, the Spinc structure associated to J ′ and L is homotopic to the Spinc

structure associated to J and L ⊗ Lδ. If J ′′ is a third stable complex structure,

Lδ(J, J
′) ⊗ Lδ(J

′, J ′′) = Lδ(J, J
′′).

We will work out in detail one important special case:

Example D.53. Consider Cd = Cr×Cd−r with the standard complex structure
J = Jr ⊕ Jd−r and the non-standard complex structure J# = (−Jr)⊕ Jd−r, where
Jr and Jd−r are, respectively, the standard complex structures on Cr and Cd−r.
Let (S1)d act by rotating the coordinates. Consider the spinc structures associated
to J and J#. Their (equivariant) distinguishing line bundle is the top wedge

∧r
Cr.

Note that J and J# induce the same orientation if and only if r is even but
that their distinguishing line bundle is always defined by Remark D.48.

Remark D.54. Every line bundle over Cd is trivial. The example is meaningful
when we consider all structures as G-equivariant with G = (S1)d.

Proof of Example D.53. It is enough to consider the case r = d = 1; the
general case follows by flipping the complex structure in stages, one coordinate at a
time. Because orientation is flipped, we must work with Pinc, not Spinc structures.

Groups. We identify U(1) = SO(2) and denote

eiθ =

(

cos θ − sin θ
sin θ cos θ

)

.

An element of O(2) = SO(2) ⋊ Z2 can be written uniquely as either eiθ or eiθ( 0 1
1 0 ).

In multiplying two such elements, note that

eiθ1( 0 1
1 0 )eiθ2 = ei(θ1−θ2)( 0 1

1 0 ).

We write an element of Pin(2) formally as either e
iθ
2 or e

iθ
2 ( 0 1

1 0 ) with θ ∈
R/4πZ. The homomorphism

q : Pin(2) → O(2)

sends e
iθ
2 to eiθ and e

iθ
2 ( 0 1

1 0 ) to eiθ( 0 1
1 0 ).

The inclusion map

U(1) →֒ Pinc(2) := Pin(2) ×Z2
U(1)
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is

eiθ 7→ [e
iθ
2 , e

iθ
2 ].

Frame bundles. Consider V = R2 = C with the standard circle action and with
the distinguished element e = 1. Its orthogonal frame bundle is

O(V ) = {(w, v1, v2) | w ∈ V, v1, v2 ∈ V, ‖v1‖ = ‖v2‖ = 1, v2 ⊥ v1}.
The principal O(2) action is B : (v1, v2) 7→ (v1, v2)B for B ∈ O(2). The circle action
on V lifts to the left circle action on O(V ) given by

λ · (w, v1, v2) = (λw, λv1 , λv2).

Fix a complex structure J on V . Concretely, we will consider either J1 =
√
−1

or J2 = −
√
−1. The unitary frame bundle is

U(V ) = {(w, u) | w ∈ V, u ∈ V, ‖u‖ = 1}.
The principal U(1) action is

eiθ : (w, u) 7→ (w, eJθu)

where eJθu = cos θu + sin θJu. The left circle action is

λ · (w, u) = (λw, λu).

Note that if λ = eiα, then

λu = e±Jαu(D.11)

according to whether J =
√
−1 or J = −

√
−1.

The associated Pinc(2) bundle over V is

P = {[w, u,A, a] | (w, u) ∈ U(V ), [A, a] ∈ Pinc(2)}
with

[w, eJθu,A, a] = [w, u, e
iθ
2 A, e

iθ
2 a].(D.12)

The map to O(V ) sends [w, u,A, a] to (w, v1, v2) by

(v1, v2) = (u, Ju)q(A).

The left circle action, λ · [w, u,A, a] = [λw, λu,A, a], can, by (D.11) and (D.12), be

written as λ · [w, u,A, a] = [λw, u, λ±
1
2A, λ±

1
2 a], according to whether J =

√
−1 or

J = −
√
−1.

Line bundles. We now take the associated line bundle over O(V ). An element of
L = P ×U(1) C is written as [w, u,A, a, z]. However, since {u = e} is a trivialization
of U(V ) and Pinc(2) ×U(1) C = Pin(2) ×Z2

C, we can set u = e and a = 1, and get
that

L = {[w,A, z] | w ∈ V, [A, z] ∈ Pin(2) ×Z2
C}.

The map to O(V ) sends [w,A, z] to (w, v1, v2), where

(v1, v2) = (e, Je)q(A).

The left circle action is

λ · [w,A, z] = [λw, λ±
1
2A, λ±

1
2 z],

according to whether J =
√
−1 or J = −

√
−1. Let L1 and L2 denote the bundles

obtained from J1 =
√
−1 and J2 = −

√
−1.
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We need to show that the distinguishing line bundle is V × C with the circle
action λ(w, ζ) = (λw, λζ). Let π∗Lδ denote its pullback to O(V ). We define the
required isomorphism

L2 ⊗ π∗
Lδ → L1

by

[w,A, z ⊗ ζ] 7→ [w, ( 0 1
1 0 )e

πi
4 A, zζ].

The fact that this respects the maps to O(V ) follows easily from the facts that
(e, J2e) = (e,−J1e) and

q
(

( 0 1
1 0 )e

πi
4 A

)

= ( 0 1
1 0 )e

πi
2 q(A) = 1 0

0 −1 q(A).

Equivariance with respect to the left circle action follows easily from the facts that

( 0 1
1 0 )e

πi
4 λ−

1
2A = λ

1
2 ( 0 1

1 0 )e
πi
4 A and

(

λ−
1
2 z

)

(λζ) = λ
1
2 (zζ).

3.2. Destabilization of Spinc-structures. By Proposition D.50, every al-
most complex manifold equipped with a complex line bundle has a canonical Spinc-
structure. Likewise, a stable complex structure on M and a complex line bundle
give rise to a “stable” Spinc-structure, i.e., a Spinc-structure on the stable tangent
bundle. It turns out, however, that Spinc-structures naturally destabilize: every
“stable” Spinc-structure induces a genuine Spinc-structure.

Proposition D.55 (Cannas da Silva, [CKT, Lemma 2.4]). Let E be a real n-
dimensional vector bundle. Every Spinc-structure on the Whitney sum E ⊕ Rk

canonically induces a Spinc-structure on E with the same determinant line bundle.
Homotopic Spinc-structures on E ⊕ Rk induce homotopic Spinc-structures on E.

Proof. Let P ′ be a principal Spinc(n + k) bundle for a Spinc structure on
E ⊕ Rk and let

p′ : P ′ → SO(E ⊕ R
k)

be the corresponding map of principal bundles. Recall that this map makes P ′ into a
Spinc(n+k) equivariant U(1) bundle over SO(E⊕Rk). The inclusion E →֒ E⊕Rk

induces an SO(n)-invariant inclusion SO(E) →֒ SO(E ⊕ Rk). Let P denote the
preimage of SO(E) in P ′ and let p = p′|P . Then we have a pull-back diagram

P −−−−→ P ′

p





y
p′





y

SO(E) −−−−→ SO(E ⊕ Rk)

which is equivariant with respect to the natural homomorphisms

Spinc(n) −−−−→ Spinc(n+ k)




y





y

SO(n) −−−−→ SO(n+ k).

The pair (P, p), which is a Spinc(n) equivariant principal U(1) bundle over SO(E),
provides the required Spinc structure on E.

Destabilization of MLc structures is defined in a similar way. It is easy to see
that equivalent MLc structures on E⊕Rk destabilizer to equivalent MLc structures
on E. Because MLc structures up to equivalence are the same as oriented Spinc

structures up to homotopy (see Proposition D.40), homotopic Spinc structures on
E ⊕ R

k destabilize to homotopic Spinc structures on E.
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Remark D.56. This construction gives a one-to-one correspondence between
the sets of homotopy classes of Spinc-structures on E ⊕Rk and on E. (The inverse
comes from the natural inclusion Spinc(n) → Spinc(n+ k).)

Spinc-structures are analogous, in some sense, to O(n)-structures on real vec-
tor bundles (i.e., fiberwise Euclidean metrics). Proposition D.55 is well known to
also hold for SO(n) structures or O(n) structures; the proof is similar to the one
given above. Furthermore, the determinant complex line bundle Ldet is the Spinc-
analogue of the determinant real line bundle D = O(E) ×det R. From this point of
view, the last assertion of Proposition D.43, which gives a necessary and sufficient
condition for the existence of a Spinc-structure with a given determinant bundle, is
similar to the condition w1(E) = w1(D) for E to have an O(n)-structure with real
determinant line bundle D. (In particular, E is orientable if and only if w1(E) = 0.)
Recall in this connection that w2(E) = 0 is the necessary and sufficient condition
for E to admit a Spin-structure.

3.3. Stable complex structures and Spinc-structures; the shift for-

mula. We recall some definitions from Section 1. A stable complex structure on a
vector bundle E is a complex structure on a Whitney sum E ⊕ Rk. Two notions
of equivalence for stable complex structures are of interest for us. Stable complex
structures J0 and J1 on vector bundles E0 and, respectively, E1 are said to be bun-
dle equivalent if the complex vector bundles E0 ⊕ Rk0 and E1 ⊕ Rk1 on which J0

and J1 are actually defined become isomorphic after addition of some numbers of
trivial complex vector bundles to each of them. On the other hand, stable complex
structures J0 and J1 on the same vector bundle E are said to be homotopic if the
complex structures on E ⊕ Rk0 and E ⊕ Rk1 become homotopic after addition of
some numbers of trivial complex vector bundles.

Combining Propositions D.50 and D.55, we obtain

Proposition D.57. A stable complex vector bundle E and complex line bundle
L over M determine a Spinc-structure on E uniquely up to homotopy. The deter-
minant line bundle of this Spinc-structure is isomorphic to Ldet = K∗⊗L⊗2, where
K∗ is the anti-canonical line bundle of the stable complex structure. Homotopic
stable complex structures determine homotopic Spinc-structures on E.

In particular, every stable complex structure on M and complex line bundle
over M determine a Spinc-structure on M , up to homotopy. Furthermore, we also
have the following “Spinc Shift Formula”:

Proposition D.58. Let J0 and J1 be stable complex structures on E and L0

and L1 be complex line bundles over M . Denote by Lδ the distinguishing line bundle
for the Pinc-structures determined by (J0,L0) and (J1,L1) (cf. Remark D.48). Then
the pairs (J0,L0 ⊗ Lδ) and (J1,L1) give rise to homotopic Pinc-structure on E. If
J0 and J1 induce the same orientation, we get homotopic Spinc structures on E.

Remark D.59. It follows from Propositions D.50 and D.58 that

L
⊗2
0 ⊗ K

∗
0 ⊗ L

⊗2
δ = L

⊗2
1 ⊗ K

∗
1,

where K
∗
0 and K

∗
1 are the anti-canonical bundles of J0 and J1. In particular, if

L0 = L1, we have L
⊗2
δ = K0 ⊗ K∗

1. Note also that, as is clear from the proof given
below, Lδ is completely determined by J0 and J1 when L0 = L1.

Proof of Proposition D.58. By adding, if necessary, a trivial bundle, we
may ensure that all complex structures are defined on the same vector bundle, which
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we denote again by E. Denote by Pi, i = 0, 1, the Spinc-structures determined by
(Ji,Li) and by P ′ the Spinc-structure arising from (J0,L0 ⊗ Lδ). Then

Lδ(P0, P
′) = Lδ = Lδ(P0, P1).

By the cocycle equation (D.10) of Remark D.46,

Lδ(P1, P
′) = Lδ(P0, P1)

∗ ⊗ Lδ(P0, P
′) = L

∗
δ ⊗ Lδ

is trivial. We finish the proof by the classification of Section 2.7.

3.4. Equivariant Spinc-structures and reduction. On a G-equivariant
vector bundle E → M , we define a G-equivariant Spinc-structure by requiring
P → M to be G-equivariant principal Spinc(n)-bundle and p : P → GL+(E) to be
a G × Spinc(n)-equivariant map. The definitions and results of Sections 3.1–3.3
extend immediately to the equivariant case. (In Proposition D.43, one needs to
use Theorem C.47 to identify the group of G-equivariant complex line bundles with
H2

G(M ; Z).) Since all constructions are canonical, Propositions D.50, D.55, D.57,
and D.58 hold literally for equivariant Spinc-structures. In same vein, these results
extend to Spinc-structures on orbifolds.

The reduction procedure for Spinc-structures is very similar to reduction of sta-
ble complex structures (see Section 2.3 of Chapter 5). As in Section 2 of Chapter 5,
let G be a torus, M a G-manifold, and Ψ: M → g

∗ an abstract moment map. For
a regular value α ∈ g

∗, the reduced space is the orbifold Mα = Ψ−1(α)/G.

Proposition D.60 (Reduction of Spinc-structures). A G-equivariant Spinc-
structure (P, p) on M gives rise to a Spinc-structure (Pα, pα) on the reduced space
Mα, unique up to homotopy. Homotopic Spinc-structures reduce to homotopic
Spinc-structures on Mα.

Proof. Let Z = Ψ−1(α). Recall that TZM decomposes into

TZM = π∗(TMα) ⊕ g ⊕ g
∗

as an equivariant vector bundle, where π : Z →Mα = Z/G is the natural projection,
and that this decomposition is canonical up to homotopy. (See equation (5.6).) The
quotient P/G is an (orbifold) Spinc-structure on the vector bundle TMα ⊕ g ⊕ g

∗

over Mα. Applying the destabilization procedure of Proposition D.55, we obtain
the reduced Spinc-structure on the reduced space Mα.

The second assertion follows easily from the definitions.

Now let J be a G-equivariant stable complex structure on M and P the as-
sociated Spinc-structure. Reducing J as in Section 2.3 of Chapter 5, we obtain
a stable complex structure Jα on Mα, and reducing P , we obtain the reduced
Spinc-structure Pα on Mα.

Proposition D.61. Pα is the Spinc-structure associated with Jα.

We leave the proof as an exercise to the reader.

3.5. Quantization. In this book, we use a Spinc-structure to make sense of
“quantization”. Let us recall how this is done.

A Spinc-structure (P, p) on a manifold X , together with the choice of a connec-
tion on the bundle P → X , give rise to an elliptic operator D acting on sections of
certain vector bundles over X . (See below.) We define the quantization to be the
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index (kernel minus cokernel) of this operator. We will see below that this index is
well defined.

Let us recall in greater detail how to get an elliptic operator from a Spinc-
structure (P, p) and a connection on P . (See [Bot2, LM, Du, Fr].) We assume
that the underlying manifoldX is 2n-dimensional, so that P is a principal Spinc(2n)
bundle and p gives a vector bundle isomorphism

TX ∼= P ×Spinc(2n) R
2n.

The group Spinc(2n) has two famous complex linear representations, called the
spinor representations, and denoted M+ and M−, and a Spinc(2n)-equivariant lin-
ear map

R
2n ⊗M+ →M−.(D.13)

Let S+ and S− denote the bundles associated to P with fibers M+ and M−:

S+ = P ×Spinc(2n) M+ and S− = P ×Spinc(2n) M−.

From (D.13) we get a bundle map

TX ⊗ S+ → S−.(D.14)

Choose a connection on P . This induces a connection on S+. Covariant differenti-
ation defines a map

∇ : sections of S+ → sections of T ∗X ⊗ S+.(D.15)

The metric allows us to identify T ∗X = TX . Then we can compose the maps
(D.14) and (D.15) and get the Dirac Spinc operator

D : sections of S+ → sections of S−.

The above definition of the Dirac Spinc operator depends on the choice of a
connection on the principal bundle P → X . However, the space of such connections
is connected. This implies that different choices of a connection give rise to homo-
topic Dirac operators. By the Fredholm homotopy invariance of the index, these
operators have the same index. Hence, the index associated to a Spinc structure is
well defined and does not depend on the choice of connection.

Homotopic Spinc-structures also give rise to homotopic Dirac operators. There-
fore, the index associated to a Spinc-structure only depends on the homotopy class
of the Spinc-structure. One applications of this is in showing that the quantization
of a reduced space is well defined. See Example D.13.

This argument fails to apply to Spinc structures that are merely bundle equiv-
alent. However, in this case we can invole the Atiyah–Singer index theorem, [ASi].
By this theorem, the index of the Spinc Dirac operator is determined by the char-
acteristic classes of the Spinc structure. Thus we conclude that the index is also an
invariant of bundle equivalence. Explicitly, the Atiyah Singer index theorem gives

dimQ(M) =

∫

M

ec1(Ldet)Â(TM),

where we integrate with respect to the orientation induced by the Spinc structure.
Notice that Â(TM) is independent of the Spinc structure and that ec1(Ldet) only
depends on the determinant line bundle. So Q(M) is defined for any Pinc structure
and orientation. If we keep the Pinc structure but flip the orientation, this has the
effect of flipping the sign of Q(M). Concretely, Q(M) is the index (kernel minus
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co-kernel) of an elliptic operator, and flipping the orientation has the same effect
as switching the kernel and co-kernel.

In Section 3.1 we have associated a Spinc structure to a pair (J,L) consisting
of a stable complex structure J and a line bundle L on a manifold M . We define
the quantization Q(M,J,L) to be the index associated to this Spinc structure.

By the results of Sections 3.5 and 2.6, one can also associate a Dirac operator
to a Pinc structure and orientation, or to an MLc structure and orientation. The
operator itself depends on certain auxiliary choices, but its index is independent of
these choices. This index is, by definition, the quantization of the given orientation
and Pinc, or MLc, structure.

We have also defined a distinguishing line bundle Lδ = Lδ(J2, J1) associated
to any two stable complex structures J1 and J2, such that the Spinc structure
associated to J1 and L is homotopic to the Spinc structure associated to J2 and
L ⊗ Lδ. Therefore,

Q(M,J2,L ⊗ Lδ) = ±Q(M,J1,L),

where the sign is according to whether or not J2 and J1 induce the same orientation.
When ω is a symplectic form on M , one usually defines the quantization

Q(M,ω) to be the index of the Dirac Spinc operator D associated a the pre-
quantization line bundle L → M and an almost complex structure J compatible
with ω. (See Section 3.) However, there is a slightly different definition which has
some advantages: one may take the index of D to define the quantization of (M,ω)
where ω is half the curvature of the determinant bundle associated to the Spinc

structure. (This leads to a different notion of whether (M,ω) is at all quantizable.)
In this appendix we do not work with two-forms; we refer the reader to Section 7.3
of Chapter 6 for a further discussion of this notion of Spinc-quantization.


