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ABSTRACT. Let G be a finite group. For semi-freeG-manifolds
which are oriented in the sense of Waner [20], the homotopy classes
of G-equivariant maps into aG-sphere are described in terms of
their degrees, and the degrees occurring are characterised in terms of
congruences. This is first shown to be a stable problem, and then solved
using methods of equivariant stable homotopy theory with respect to a
semi-freeG-universe.
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INTRODUCTION

All manifolds considered will be smooth, closed, and connected. IfM is
an orientedn-manifold, any continuous map fromM to ann-dimensional
sphere has a degree, which is an integer. The Hopf theorem [11] says that
the degree characterises the homotopy class of such a map, and that every
integer occurs as the degree of such a map. Note that the degree map from
homotopy classes to the integers factors through the group{M, Sn} of sta-
ble homotopy classes of maps fromM to Sn. The Hopf theorem follows
from the facts that both the stabilisation and thestabledegree map are iso-
morphisms. It is this approach to that result which will be generalised here
to the equivariant category: it will first be shown that the problem, which at
first sight seems to be unstable, is in fact stable, and then it will be solved
using stable techniques.

The Hopf theorem has been generalised to equivariant contexts by a number
of people, motivated by the problem to describe maps between representa-
tion spheres or homotopy representations. See Section 8.4. in [4], [10],
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Section II.4 in [5], or [3], [2], [7], and the references therein for recent con-
tributions. All of these work unstably with a fairly elaborate obstruction
machinery. Furthermore, they require the top-dimensional cohomology of
the fixed point spaces to be cyclic, neglecting situations in which the fixed
point space is not connected. The point of view taken here avoids elabo-
rate notions of degree (and corresponding Lefschetz and Euler numbers) as
in [6], [19], [16], [12], and the references therein, to name just a few. For
the present purpose, the degree of a map is its stable homotopy class, and
calculations of stable homotopy groups – which are much more accessible
than their unstable relatives – process this into numerical information.

Throughout the paper, letG be a finite group. There will be occasions to
assume that its order is a prime, but only for illustrative purposes. LetW

be a realG-representation. Recall that aG-manifold M is called W -
dimensional, if for every pointx in M the tangential representationTxM

of the stabiliserGx is isomorphic to the restriction ofW from G to Gx. In
particular, the components of the fixed point space

MG =
∐
α

MG
α

are manifolds of equal dimension. In addition, aW -dimensional mani-
fold M is calledorientedif W is oriented and there is a compatible choice
of isomorphismsTxM ∼= W which are orientation preserving. In particu-
lar, the components of the fixed point space inherit an orientation. (See [20]
and the references therein for details.)

EXAMPLE 1. If M → N is a cyclic branched covering of complex mani-
folds, the representationW is a direct sum of trivial summands and a com-
plex line on which the cyclic group acts in the natural way. �

The following example has been considered and applied in [18]. Note that
contrary to the previous example, the fixed point space is not connected
here.

EXAMPLE 2. For a prime order groupG, and a complexG-represen-
tation V , let M = CP (V ) be the associated projective space. The fixed
point space is the disjoint union of the projective spaces of the isotypical
summands, hence is equidimensional ifV is a multiple of the regularG-
representation. In that case, all tangential representations are isomorphic,
as complexG-representations, to the complement of a trivial line inV . This
we may take as ourW . �
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In this writing, we will be concerned with orientedW -dimensional semi-
freeG-manifoldsM , and prove an equivariant Hopf theorem which gives
a description of the set ofG-homotopy classes ofG-maps fromM to SW

in the generic case when the dimension and codimension of the fixed point
space are at least2. (See Section 2 for free actions; trivial actions can be
dealt with as in Example 1 below.) By orientability, the codimension of the
fixed point space is always at least two if the action is non-trivial.

While the Hopf problem looks like an unstable problem, its turns out to be
stable. Equivariant stable homotopy theory is more complicated than or-
dinary stable homotopy theory, as there is a stable homotopy category for
eachG-universe, which is an infinite-dimensionalG-representation which
contains the trivial representation, and contains each of its subrepresentation
with infinite multiplicity. (Standard references for equivariant stable homo-
topy theory are [1], [15], [17], and [8].) The full-flavoured equivariant stable
homotopy category corresponds to acompleteG-universe, which contains
every irreducibleG-representation. Asemi-freeuniverse is obtained from a
completeG-universe by restriction to the semi-free subrepresentations. The
stable homotopy category depends only on theG-isomorphism class of the
universe, and we will write{X, Y }Gsf for the morphism groups fromX to Y

in an equivariant stable homotopy category corresponding to a semi-freeG-
universe. As the stable categories requires based objects, we will letM+

denote theG-space which isM with a disjointG-fixed basepoint added.
By adjunction, there is a canonical bijection between the set[M+, SW ]G of
basedG-homotopy classes and the set of (unbased)G-homotopy classes of
maps fromM to SW . The proof of the following result is in Section 1. It
justifies working stably afterwards.

THEOREM1. LetW be aG-representation, and letM be aW -dimensional
semi-freeG-manifold such that the dimension and codimension of the fixed
point space are at least2. Then the stabilisation map

[M+, SW ]G −→ {M+, SW}Gsf
is bijective.

In order to study the stable groups{M+, SW}Gsf , the standard approach is
to associate to a stableG-mapf the set of all the degrees of the fixed point
mapsfH for the various subgroupsH of G. In the semi-free case, the
only subgroups relevant are1 andG, so that the fixed point maps can be
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organised into theghost map

(1) {M+, SW}Gsf −→ {M+, SW} ⊕ {MG
+ , SW G}

which sends a stableG-mapf to the pair(f, fG). A priori, the first factor
of the ghost map lies in theG-invariants of{M+, SW}, but the present
assumptions on theG-actions onM andW ensure thatG acts trivially on
this group. Using the ordinary Hopf theorem, the image of anf under (1)
can be interpreted in terms of degrees: an integerx and a sequence(yα) of
integers, indexed by the components ofMG. (See Section 8 for details.)
One may show – using standard splitting and localisation techniques – that
the ghost map (1) is an isomorphism away from the order ofG, but this will
also be shown directly in the course of this investigation. It means that the
kernel and cokernel are finite abelian groups. The following summarises
Propositions 7 and 8 of the main part.

THEOREM 2. Let M be an orientedW -dimensionalG-manifold. The
source and the target of the ghost map(1) are free abelian. Their rank
is one larger than the number of components ofMG. The map is injective
and the cokernel is cyclic of order|G|.

In other words, stableG-maps are determined by their degrees, and the
numbers that occur satisfy a relation. The following result, which is proved
in Section 8, says which.

THEOREM 3. The image of the ghost map(1) is given by the subgroup of
integersx and sequences(yα) for which the congruence

x ≡
∑

α

yα mod |G|

is satisfied.

The chosen approach to the two theorems separates the homotopy theory
from the geometry. Let me illustrate this by explaining how the well-known
description of the Burnside rings of prime order groups can be deduced
using these methods.

EXAMPLE 3. Let G be a prime order group, and letM be a point.
ThenM+ andSW are both 0-dimensional spheres. While theG-actions
on M is trivial, of course, it will no longer be after stabilisation with a
suitable orientedG-representation. Let us assume that this has been done
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without changing the notation. The group{S0, S0}G maps via the forget-
ful map to the group{S0, S0} = Z. On the other hand, it maps to the
group{(S0)G, (S0)G} = Z via the fixed point map. The product

{S0, S0}G −→ Z⊕ Z

of the two maps is the ghost map. It is injective, and the image has index|G|.
The image is not yet determined by this. There are still|G|+ 1 choices. In
order to give a description of the image, one needs to put in some new
information. One can use the fact that the identity ofS0 is G-equivariant. It
is mapped to the pair(1, 1). This determines the image, which consists of
those pairs(x, y) in Z⊕ Z which satisfy the relationx ≡ y mod |G|. �

The homotopy theory for Theorem 2 is done in Sections 3 to 7. The
method of proof is to deal with theG-trivial spaceMG and with theG-
spaceM/MG, which is free away from the base point, separately. The latter
uses a result from Section 2 which sometimes allows for a comparison of
the group ofG-maps out of a freeG-space with the group of ordinary maps
out of the quotient in the case whenG doesnotact trivially on the target. In
the final Section 8, the geometry of the situation is used to construct some
maps whose images under the ghost map are easy to determine, leading to
Theorem 3.

ACKNOWLEDGMENT. I would like to thank a referee of an earlier version
for her or his stimulating report.

1. STABILITY

In this section, we will prove the stability of the Hopf problem, and the
proof given will also show that the semi-stable universe is the appropriate
context in which to work.

Let us recall the classical situation. IfM is an orientedn-manifold, by
Freudenthal’s suspension theorem, the stabilisation map

[M+, Sn] −→ {M+, Sn}

is bijective ifn > 2. In the equivariant situation, we may use the equivariant
extension of Freudenthal’s theorem due to H. Hauschild, see [9] (or [1] for
an exposition in English). This implies that the suspension map

[X, Y ]G −→ [ΣV X, ΣV Y ]G
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is bijective for finite basedG-CW-complexesX andY , if two conditions
are satisfied: the connectivity ofY H has to be at leastdim(XH)/2 for all
subgroupsH of G such thatV H 6= 0, and the connectivity ofY K has to be
at leastdim(XH) + 1 for all subgroupsK < H of G such thatV H 6= V K .
This will now be used to prove Theorem 1.

PROOF. The first condition corresponds to Freudenthal’s condition in the
non-equivariant case. It is therefore satisfied for allH – and for allV – in
our situationX = M+ andY = SW as long as the dimension ofMG is at
least2.

The other condition refers to a genuinely equivariant phenomenon. Suppose
first thatK = 1 andH is a non-trivial subgroup ofG. ThenMH = MG

sinceM is semi-free, and the condition is satisfied for theseK andH – and
for all V – if and only if the codimension ofMG in M is at least2.

If K andH are non-trivial subgroups ofG such thatV H 6= V K , the con-
dition dim(MG) 6 dim(WG) − 2 needs to be satisfied, which does not
seem to be the case. However, we always haveV H = V G = V K if V is
semi-free, so this does not occur, and the proof is finished. �

There is a change-of-universe natural transformation from{X, Y }Gsf to the
corresponding group with respect to a completeG-universe, see [13]. How-
ever, the preceding proof shows that one should not expect it to be bijective.
It is clearly bijective if the order ofG is a prime, since semi-free universes
are complete for suchG. In a similar vein, the proof above can easily be
adapted to show that the stabilisation map from[M+, SW ]G to the corre-
sponding group of stableG-maps with respect to a completeG-universe is
always bijective ifM satisfies a suitable gap hypothesis: The fixed point
spaceMG has to be at least2-dimensional, and the codimension ofMH in
MK has to be at least2 for all subgroupsK < H of G.

2. A COMPARISON RESULT

Let G be a finite group. A basedG-space is calledfree if the groupG acts
freely on the complement of the base point (which is fixed byG). Let F

be a finite free basedG-CW-complex. SinceG is finite, this also yields an
ordinary CW-structure onF . And it gives an ordinary CW-structure on the
quotientQ = F/G.
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If Y is a G-space, the group{F, Y }Gsf is not obviously related to{Q, Y }
since theG-action onY need not be trivial. IfY were a trivialG-space,
there would be a tautological map from{Q, Y } to {Q, Y }Gsf . One could
then use a semi-free version of (5.3) from [1], which says that in this case
the composition{Q, Y } → {Q, Y }Gsf → {F, Y }Gsf with the map induced by
the projection fromF to Q would be an isomorphism. However, since the
action onY is non-trivial, the arrow on the left is not defined. Nevertheless,
there sometimes is a way to compare{F, Y }Gsf with {Q, Y }. This will be
explained now.

By mapping the CW-filtrations intoY , one gets three spectral sequences,
which converge to{F, Y }Gsf , {F, Y } and{Q, Y }, respectively.

For an integers, let I(s) denote the (finite) set ofs-dimensionalG-cells
in F . The filtration gives rise to a spectral sequence

(2) Es,t
1 =

{∨
I(s)

G+, ΣtY
}G

sf
=⇒ {F, Σs+tY }Gsf .

In order to compute the groups on theE2-page, the differentials on theE1-
page need to be discussed. Thet-th row is obtained by applying the func-
tor {?, ΣtY }Gsf to theG-cellular complex

∗ ←−
∨
I(0)

G+ ←−
∨
I(1)

G+ ←− . . .←−
∨
I(n)

G+ ←− ∗

of F . Note that

(3)
{∨

I(s)

G+, ΣtY
}G

sf
∼=

⊕
I(s)

{
G+, ΣtY

}G

sf
,

and that the groups{G+, ΣtY }Gsf are right modules over{G+, G+}Gsf via
composition. Because of (3), the differentials can be identified with ma-
trices, and the entries are given by right multiplication with elements
of {G+, G+}Gsf . Therefore, let me pause to discuss this action in more detail.

Sending an elementg of G to the G-map G+ → G+ which sends
an elementx to xg induces an isomorphism of the group ringZG

with {G+, G+}Gsf which reverses the order of the multiplication. There-
fore,{G+, ΣtY }Gsf is a leftZG-module. As such, it is isomorphic with the
left ZG-module{S0, ΣtY }, theG-action being induced by the action onY .
(The adjunction isomorphism (5.1) in [1] isG-linear.) This finishes the
digression on theZG-module structures.
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One can now try to compare the spectral sequence (2) to the one

(4) Es,t
1 =

{∨
I(s)

S0, ΣtY
}

=⇒ {Q, Y }s+t

obtained by the induced CW-filtration ofQ. (This is of course the Atiyah-
Hirzebruch spectral sequence.) As mentioned above, there is no reason-
able map between the targets in sight, and I cannot offer a map of spec-
tral sequences. However, note that the groups on theE1-pages are always
isomorphic:{G+, ΣtY }Gsf ∼= {S0, ΣtY }, again by the adjunction isomor-
phism (5.1) in [1]. As for the differentials, the following is true.

PROPOSITION 1. If {S0, ΣtY } is a trivial ZG-module, thet-rows on
theE1-terms of the spectral sequences(2) and (4) are isomorphic as com-
plexes. In particular, the groups on thet-rows of theE2-pages are isomor-
phic.

PROOF. The differentials on theE1-page of the spectral sequence (4) are
obtained by applying the functors{?, ΣtY } to the cellular complex

∗ ←−
∨
I(0)

S0 ←−
∨
I(1)

S0 ←− . . .←−
∨
I(n)

S0 ←− ∗

of Q. As for (2), they can be thought of as matrices. This time, the entries
are obtained from the entries of those in (2) by passage to quotients, i.e. by
applying the mapε : {G+, G+}Gsf → {S0, S0}, g 7→ 1. This means that the
diagram

{
∨

I(s) G+, ΣtY }Gsf // {
∨

I(s+1) G+, ΣtY }Gsf

{
∨

I(s) S0, ΣtY } //

∼=

OO

{
∨

I(s+1) S0, ΣtY }

∼=

OO

(obtained from the isomorphisms above and the differentials) is only com-
mutative if the elements inZG which appear in the matrix of the top arrow
act viaε. While at first sight it seems that one needs to know the details
of the G-CW-structure to proceed, this is not the case: if{S0, ΣtY } is a
trivial ZG-module, the condition is fulfilled for all elements ofZG. �

In nice situations, this result implies that{F, Y }Gsf and{Q, Y } are in fact
isomorphic. One of these situations will be encountered in the following
section.
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3. FREE POINTS OF SPHERES

Let W be a orientable realG-representation which in non-trivial and semi-
free. The results of the previous section will now be applied to the freeG-
spaceF = SW /SW G

andY = SW . Let n andnG be the real dimensions
of SW andSW G

, respectively. Note that the numbern− nG is positive and
even.

PROPOSITION2. The three groups

{SW /SW G

, SW}, {(SW /SW G

)/G, SW}, and {SW /SW G

, SW}Gsf

are all free abelian on one generator.

PROOF. As for {SW /SW G
, SW}: Since theG-representationW is non-

trivial, one knows that the quotientSW /SW G
is non-equivariantly equiv-

alent to a wedgeSn ∨ SnG+1. The map from the group{SW /SW G
, SW}

to {SW , SW} = Z induced by the collapse map is an isomorphism. Note
that{SW /SW G

, SW} is isomorphic toHn(SW /SW G
; Z) via the Hurewicz

map.

As for {(SW /SW G
)/G, SW}: Also via the Hurewicz map, this group is

isomorphic to the groupHn((SW /SW G
)/G; Z). Therefore, one can use the

spectral sequence

(5) Es,t
2 = Hs(G; Ht(SW /SW G

; Z)) =⇒ Hs+t((SW /SW G

)/G; Z)

for that. From the stable homotopy type ofSW /SW G
it follows that the only

non-trivial groups on theE2-page are in two rows:t = nG + 1 andt = n.
Each of these contains the cohomology of the groupG with coefficients in
the trivialG-moduleZ.

Thus there is only one page on which non-trivial differentials may oc-
cur. Since the dimension of(SW /SW G

)/G is at mostn = dimR(W ),
all differentials between non-trivial groups must be non-trivial. This
determines theE∞-page. There are no extension problems. It fol-
lows that {(SW /SW G

)/G, SW} ∼= Z. But, notice the edge homomor-
phism of the spectral sequence, which is induced by the quotient map
from SW /SW G

to (SW /SW G
)/G. It can immediately be read off that the

generator ofHn((SW /SW G
)/G; Z) is mapped to|G| times the generator

of Hn(SW /SW G
; Z). Of course, this just reminds us that the quotient map

has degree|G|.
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As for {SW /SW G
, SW}Gsf , Proposition 1 from the previous section can be

used. The assumption on the action is satisfied forY = SW and allt since
the G-action onW preserves the orientation. We can thus deduce some
of the groups on theE2-page of the spectral sequence (2) from the previ-
ously calculated groups on theE2-page of the spectral sequence (4): the
groupsHs((SW /SW G

)/G ; πt(SW )) vanish if s > n or t > 0, and hence
the only pair(s, t) with s + t = n andEs,t

2 6= 0 is the pair(s, t) = (n, 0).
The corresponding groupHn((SW /SW G

)/G ; Z) has been shown to be iso-
morphic toZ. There are no non-trivial differentials into and out of it, so it
survives toE∞. There are no extension problems. �

Now that the structure of those three groups is known, it is desirable to know
the maps between them. The proof of the preceding proposition shows that
the map

{(SW /SW G

)/G, SW} → {SW /SW G

, SW}

is injective with cyclic cokernel of order|G|. The same holds for the for-
getful map:

PROPOSITION3. The forgetful map

{SW /SW G

, SW}Gsf −→ {SW /SW G

, SW}

is injective and has a cyclic cokernel of order|G|.

PROOF. Let us contemplate the following diagram.

{SW G
, SW}Gsf {SW , SW}Gsf

��

oo {SW /SW G
, SW}Gsf

��

oo

{SW , SW} {SW /SW G
, SW}

∼=
oo

The horizontal maps are induced by the obvious cofibre sequence. There-
fore, the top row is exact. The vertical maps are the forgetful maps and
make the diagram commute. Now if one picks a map in{SW /SW G

, SW}Gsf ,
its image in{SW , SW}Gsf has degree zero when restricted to the fixed point
spheres. It follows that the degree of the image itself is a multiple of|G| by
following proposition. �
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PROPOSITION 4. Let f : SW → SW be G-equivariant for some finite
group G. If the degree of the restriction off to the fixed sphere is zero,
then the degree off itself is divisible by the order ofG.

PROOF. We will use Borel cohomologyb∗(X) = H∗(EG+ ∧G X; Z/|G|)
with co-efficients inZ/|G|. Theb∗-modulesb∗(SW G

) andb∗(SW ) are free
of rank 1 by the suspension theorem and the Thom isomorphism, respec-
tively. The inclusionSW G ⊆ SW induces an inclusionb∗(SW ) ⊆ b∗(SW G

)

since the quotientSW /SW G
is free and therefore hasb∗-torsion Borel co-

homology. By hypothesis, the mapf induces to zero map onb∗(SW G
), and

so it has to onb∗(SW ). �

4. FREE POINTS IN GENERAL

Let W be an orientable realG-representation which is non-trivial and semi-
free, as before. The results of the previous section will now be generalised
from SW to orientedW -dimensionalG-manifoldsM .

PROPOSITION5. Source and target of the forgetful map

{M/MG, SW}Gsf −→ {M/MG, SW}

are free abelian on one generator. The map is injective with a cyclic coker-
nel of order|G|.

PROOF. Choose an orientation preservingG-embedding ofW onto a neigh-
bourhood of a fixed point. LetA be the complement of the image. The
collapse map fromM to M/A ∼= SW and the forgetful maps induce a com-
mutative diagram

{M/MG, SW}Gsf

��

{SW /SW G
, SW}Gsf

��

oo

{M/MG, SW} {SW /SW G
, SW}.oo

By Proposition 3 it is sufficient to show that the two horizontal maps are
isomorphisms. The bottom row is isomorphic to

{M+, SW} ←− {SW , SW},
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which is an isomorphism by the ordinary Hopf theorem. As for the top row,
it is easy to see that it is surjective: the fibre of the inclusion ofM/MG in
to SW /SW G

is A/AG which isG-free and cohomologically at most(n−1)-
dimensional. It follows that{A/AG, SW}Gsf is trivial. It does not follow,
however, that{Σ(A/AG), SW}Gsf is trivial, too. But injectivity of the top
arrow follows from injectivity of the right arrow, see Proposition 3, and
injectivity of the bottom arrow, which has already been proven. �

5. FIXED POINTS

Let T be a trivialG-space, and letM be an orientedW -dimensionalG-
manifold as before. There is a map from{T, SW G} to{T, SW G}Gsf , using the
fact that any map between trivialG-spaces is aG-map, and there is a map
from {T, SW G}Gsf to {T, SW}Gsf induced by the inclusion ofSW G

into SW

which is aG-map. The composition

(6) {T, SW G} −→ {T, SW}Gsf
has a retraction, namely the fixed point map. The splitting theorem implies
that a complement for the image of{T, SW G} in {T, SW}Gsf is isomorphic
to {T,EG+ ∧G SW}. (See [14], Section 2, for the version for incomplete
universes needed here.) One can use that to prove the following.

PROPOSITION6. The group{MG
+ , SW}Gsf is isomorphic to the free abelian

group{MG
+ , SW G}. The rank is the number of components ofMG.

PROOF. SinceSW is (n−1)-connected, so isEG+∧G SW . The dimension
of MG

+ is smaller thann. It follows that the group{MG
+ , EG+ ∧G SW} is

zero. Thus, the map (6) is an isomorphism in the caseT = MG
+ . This and

the ordinary Hopf theorem imply that{MG
+ , SW}Gsf ∼= {MG

+ , SW G}, which
is free abelian of the indicated rank. �

6. ALL POINTS

Let M be an orientedW -dimensionalG-manifold as before. We are now
in the position to use the information gathered on the free points and on the
fixed points in order to determine the structure of the source{M+, SW}Gsf
of the ghost map.

PROPOSITION7. The group{M+, SW}Gsf is free abelian of rank one more
than the number of components ofMG.
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PROOF. The starting point for the calculation of{M+, SW}Gsf is the cofibre
sequence

MG
+ −→M+ −→M/MG.

Mapping this intoSW , we get a long exact sequence

· · · ←− {MG
+ , SW}Gsf ←− {M+, SW}Gsf ←− {M/MG, SW}Gsf ←− · · · .

The group in the middle is to be computed. On the left side, since theG-
spaceM/MG is free and of smaller dimension thanΣSW , the next group on
the left {Σ−1(M/MG), SW}Gsf , which is isomorphic to{M/MG, ΣSW}Gsf ,
is trivial. On the right side, the diagram

{M/MG, SW}Gsf
forget

��

{ΣMG
+ , SW}Gsf

forget
��

oo

{M/MG, SW} {ΣMG
+ , SW}oo

shows that the top map from{ΣMG
+ , SW}Gsf to {M/MG, SW}Gsf is zero: the

left map is injective by Proposition 5, and the bottom right group is trivial
by the dimension and connectivity of the spaces involved.

To sum up, there is a short exact sequence

0←− {MG
+ , SW}Gsf ←− {M+, SW}Gsf ←− {M/MG, SW}Gsf ←− 0.

By Proposition 6 again,{MG
+ , SW}Gsf ∼= {MG

+ , SW G} is free abelian of the
indicated rank. Thus, the short exact sequence must be splittable. �

7. THE GHOST MAP

Let M be an orientedW -dimensionalG-manifold as before. Now that the
structure of the source and the target of the ghost map are known, it is time
to study the map itself.

PROPOSITION8. The ghost map(1) is injective with a cyclic cokernel of
order |G|.

PROOF. One may compare the short exact sequence used in the proof of
Proposition 7 to the short exact sequence

0← {MG
+ , SW G} ← {M+, SW} ⊕ {MG

+ , SW G} ← {M/MG, SW} ← 0,
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which is built by using the isomorphism between{M/MG, SW} and the
group{M+, SW} discussed before and the identity on{MG

+ , SW G}. The
two short exact sequences yield the rows in the diagram

{MG
+ , SW}Gsf

��

{M+, SW}Gsf

��

oo {M/MG, SW}Gsf

��

oo

{MG
+ , SW G} {M+, SW} ⊕ {MG

+ , SW G}oo {M/MG, SW},oo

which will now be used to compare both of them. The vertical arrow on the
right is the forgetful map. This map was shown to be injective with a cyclic
cokernel of order|G| in Proposition 3. The vertical map in the middle is the
ghost map: it sends aG-mapf to the pair(f, fG). The vertical arrow on
the left is the isomorphism which sendsf to fG as discussed above. The
diagram commutes, and the snake lemma implies the result. �

From what has already been shown, it is by now established that the image
of the group{M+, SW}Gsf under the ghost map is a subgroup of index|G| in
the direct sum{M+, SW} ⊕ {MG

+ , SW G}. This subgroup contains(|G|, 0)

and projects onto{MG
+ , SW G}. But, this does not determine the image.

Additional information from the geometric situation seems to be required.
This will be supplied for in the following final section.

8. EXAMPLES OF MAPS

Let M be an orientedW -dimensionalG-manifold as before. In this final
section, the group{M+, SW}, which is free abelian on one generator by
the ordinary Hopf theorem, has a distinguished generator, namely the one
that preserves the orientations. The elements of this group can hence be
thought of as integers. Similarly, the fixed point space ofM decomposes
into components:

MG =
∐
α

MG
α .

The dimension of any of the componentsMG
α agrees with that ofSW G

. Thus
the group{(MG

α )+, SW G} has a distinguished generator, too. Collecting
these together, the restriction of an element in{M+, SW}Gsf to the fixed point
space gives a family of integers, one for eachα. Using these identifications,
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the ghost map sends an equivariant map to a pair(x, y) consisting of an
integerx and a familyy = (yα) of integers.

With these preparations, we may now prove Theorem 3 from the introduc-
tion. The proof works as in Example 3 from the introduction.

PROOF. Let us fix anα. For any point inMG
α , a neighbourhood inM

is G-homeomorphic to theG-representationW . Collapsing the comple-
ment yields aG-mapfα from M+ to SW . Note that this map is the chosen
generator of{M+, SW}, and the restriction to(MG

α )+ is the chosen genera-
tor of the group{(MG

α )+, SW}. On the other hand, forβ 6= α, the collapse
map sends the subspace(MG

β )+ to a point. Thus, the corresponding element
in {(MG

β )+, SW} is zero. Thus if1α denotes the characteristic function ofα,
the element of{M+, SW}Gsf which is represented byfα is mapped to(1, 1α).

Now for eachα there has been produced aG-mapfα in {M+, SW}Gsf which
the ghost map sends to a pair(x, y) = (1, 1α) satisfying the relation in the
theorem. The subgroup of all pairs satisfying that relation is the unique
subgroup of index|G| which contains the pairs(1, 1α) for all α. �
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