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1 Introduction

Homotopy type theory (HoTT) is, as the name suggests, the branch of mathematics
which studies the connection between homotopy theory and type theory. While homo-
topy theory is rooted in algebraic topology and homological algebra, type theory is an
alternative to set theory which is used in mathematical logic or theoretical computer
science.
The type theory used in HoTT is Martins-Löf’s intensional type theory (ITT) (see

e.g. [3], [4] and [5]). The idea to connect type theory and homotopy theory was strongly
inspired by Hofmann and Streicher’s groupoid interpreation of ITT in [2], and is based
on the work of Voevodsky in [8] as well as Awodey and Warren in [1].
At first both topics may look unrelated but HoTT yields many interesting results.

For example, one can use type theory to directly describe topological structures like the
circle or the interval with the tools of mathematical logic by using the so called Higher
inductive Types (HiTs).
The goal of this thesis is to give an introduction to HoTT in general and more specif-

ically to present some fundamental results within the theory of HiTs. the end we will
be able to prove that the fundamental group of the higher circle (the circle as a HiT) is
equivalent to Z. Although this result is expected, it was only recently proven in HoTT
by Licata and Shulman in [9]. The notation and base structure of this thesis is inspired
by the HoTT Book [7].
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2 Homotopy Type Theory

2.1 Martin-Löf’s Intensional Type Theory
There are several different type theories in mathematics and theoretical computer sci-
ence. In this paper we will use Martins-Löf type theory as a framework. In type theory
one uses types to classify objects. If, for example, x is of the type A × B, one already
knows that x has the form (a, b) where a is of type A and b is of type B . In other
words one knows how such an object can be constructed or decomposed. One could
say that types are ‘constructive sets’ in the sense that a type is a set that gives you a
construction rule of objects that represent that type. The key idea in HoTT, however,
is to view types as spaces one can study with homotopy theory so one has to be careful
when drawing parallels between type and set theory.
For example, to express that a term a is of type A we write:

a : A

and one may be tempted to read it like:

a ∈ A

The more appropriate interpretation in HoTT would be:

a is a point in the space A

The most interesting application of this viewpoint is that we can interpret the logical
identity a = b of two objects of the same type A as the existence of some path p : a b
connecting the points a and b in the space A. We therefore can consider a function
f : A → B between two types as a map from the space A into the space B. These
maps turn out to be (path-)continuous, since as functions they must respect identities
and therefore in our interpretation respect paths. At this point one should stress that,
while we have some notion of continuity of functions, there is no notion of open subsets
or convergence. We treat the space only homotopically and not topologically.
As mentioned before, type theory is more constructive than set theory. To get a better

understanding of that statement, we will first introduce a conception called propositions
as types. This means that one can think of a term a : A as a point in the space A and
at the same time regard a as a proof of the proposition A.

Take for example the type:

∏
n,m:N

n+m = m+ n
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We will see in chapter 2.2.4 that this notation describes the type of all functions that,
evaluated at some n,m : N, yield a path between n+m and m+ n in N. At the same
time, if you read the

∏
as a ”for all”, you get the proposition that N is commutative. So

in type theory we can identify the proposition with the type and can therefore construct
a function from N× N into the type (n+m = m+ n), to prove the proposition that N
is commutative.
In this setting, to prove A ∧ B, we simply give an element of A × B and to prove

A ⇒ B we construct an element of A → B, i.e. a function from A to B. One can
think of this function as a mapping of proofs of A to proofs of B. Proving propositions
by constructing an element of the corresponding type turns out to be an algorithmic
method. If you have, for example, a proof for the existence of an element, you already
have an algorithm to find that element. This is why type theory finds application in
computer science.

2.2 How to define types
Types are always defined by a certain pattern. When defining types, we need to give:

1. a formation rule, i.e. a rule on how to form new types of a specific kind of type.
For example, if we have to types A and B, we may form the type A×B.

2. constructors (or introduction rules) that specify how to construct elements of this
type. The introduction rule of N for example states that Elements of N are gener-
ated by the fixed 0 element and the successor function succ : N→ N.

3. eliminators or elimination rules, that explain how to use elements of that type. For
example the elemination rule of the function type is the application of functions,
i.e. we can use a function by applying it on some element of its domain.

4. a computation rule which specifies, what happens when we apply an eliminator on
a constructor of that type.

5. an optional uniqueness principle, which expresses uniqueness of maps into or out
of that type. The uniqueness principle for the function type for example states
that a function f is equivalent to the function x 7→ f(x) and therefore is uniquely
determined by its values.

2.3 Universes
In order to define types we first need to define the surrounding setting. What do we
mean when we say something is a type? The idea is to introduce a universe U∞, a type
which contains all the types, but that would mean U∞ : U∞. Similar to set theory such
a structure would be problematic. To avoid any unsound definitions we give a hierachy
to our universes, i.e. we want:

U0 : U1 : U2 ...
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While our universes are now ordered, we also want that all the elements of the ith
universe are in the (i+ 1)th universe as well.
When we talk about some type A, we mean A inhabits some univere Ui. Most of the

times we will omit the exact level i for better readability and just write A : U .

2.4 Some basic types
2.4.1 Function types
Given two types A and B, we can form the type of functions from A to B denoted by
A → B. As we mentioned above, we define types by giving rules on how to construct
elements of said type and how to use said type. This is the formation rule of the function
type.
Given a function f : A → B and element a : A, we can use the function by applying

it on a and we obtain an element of B denoted f(a) and called the value of f at a. As
mentioned before this is the elimination rule.
The more interesting question is how one can construct an element of A → B, i.e.

what the introduction rule for the function type looks like. There are two equivalent
notations one may use when constructing a function. The first possibility is to directly
define the function by giving it a name, e.g. f , and then give a defining equation for
f : A→ B,

f(x) ≡ Φ(x)

where Φ(x) is a term that may depend on the variable x. Of course one has to check
that if x : A, Φ(x) is of the type B. To compute f(a), one simply replaces the variable
x in Φ by a. For example, we can define f : N → N by f(x) :≡ x + x. While we still
have to define N, we expect that for x : N, x+ x is indeed of type N and this therefore
is a sound definition. In this case f(21) would be by definiton equal to 21 + 21.

The second possibility is to use λ-abstraction. This method is used when we don’t
want to introduce a name for the function we want to define. If we want to define the
same function as above for some term Φ(x), we write

(λ(x : A).Φ(x)) : A→ B

So if we consider the example frome above, we would write:

(λ(x : N).x+ x) : N→ N

While one of those two methods would suffice, since they only differ in notation,
both possibilities bring advantages. So in this paper we use both depending on the
circumstances.
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2.4.2 Dependent function types
In type theory one often has to use a more general kind of functions. The idea is that
the type of the value of the function may vary depending on the element of the domain
to which the function is applied.
Consider a type A : U as well as a function B from A into the universe (we call such

a function a family over A). Now we can construct the type of dependent functions
denoted by ∏

(x:A)
B(x).

Elements of that type are functions F that applied to some a : A yield an element F (a)
of the type B(a) i.e. the type of F (a) depends on a. For better readability we will write
non dependent functions in small letters while we will begin the name of dependent
functions with a capital letter. For example take the dependent function

Id :
∏

(A:U)
A→ A

which we define by Id(A) ≡ idA, where idA is the identity function on the type A. This
function Id takes a type A and yields the identity function on that type. Since the type
of idA varies over A, Id is indeed a dependent function. idA on the other hand always
takes values in A and is therefore a non dependent function. One may ask, why we do
not simply define a new type FUNC of all functions to avoid the dependency by setting
the domain of Id to be that new type FUNC. While this would be an easy task in set
theory, in type theory we lose all the information on how to use or construct an element
of such a type. Therefore the concept of dependent functions is an important and often
used method in type theory. It should be mentioned that we can consider every function
as a dependent function, since a ordinary function is simply a dependent function where
the function B in the definition above is constant.
As we will see soon, functions take a very important role when defining types, because

we can use them to discribe the inherent structure of said type.

2.4.3 Product types
For types A,B : U we want to introduce the product type A × B. The idea is that
elements of that type are pairs (a,b) : A×B. While pairs are defined as particular sets
in set theory, in type theory ordered pairs are a primitive concept. There is a natural
way how to construct an element of A × B. We need a : A and b : B to construct
(a, b) : A×B.
But how can we use elements of A×B? This is just the same as to ask: How can we

define functions on elements of A×B? For example if we want to use an element (a, b)
to extract the a, this actually a function from A× B into A. For better understanding
we will first consider a non dependent function. The idea is that a function from A×B
into some type C is equal to a function of the type A → (B → C), i.e. a function that
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takes an element of A and yields a function from B to C. Consider, for example, the
function f : N× N→ N

f((x, y)) ≡ x+ y.

This function could also be written as g : N→ (N→ N)

g(x)(y) ≡ x+ y

i.e. g(x) = λ(y : N).x + y. We know, how to construct elements of A → (B → C),
since we have already studied the function type. So we now want to define functions
f : A×B → C by defining

f((x, y)) ≡ g(x)(y)

for some g : A → (B → C). In set theory we would argue that this is possible, since
every element of A× B is indeed a pair, i.e. we would define A× B to be the smallest
set that contains these pairs. In type theory we have no notion of "subtypes" so we only
know that there are pairs in A×B, but we are not yet sure, whether there are elements
in A×B with a different structure. So we do it the other way round and postulate that
we can define functions in the way described above and will later be able to conclude
that every element of A×B is indeed a pair.

We can rephrase that principle into a function

RecA×B :
∏
C:U

(
(A→ (B → C))→ (A×B → C)

)
with the defining equation

RecA×B(C, g, (a, b)) ≡ g(a)(b).

We will call this function the recursor and the associated way of defining functions the
recursion principle for product types. This might seem a bit strange, since no recursion
is taking place. However, the idea of the recursor can be generalized and we will see
that for many types the recursor will actually be recursive. The recursion principle of a
type states that it is sufficient to define a function on the canonical elements (the pairs)
of A × B. In other words, a function that is defined on all the pairs, can be uniquely
extended on all elements of A×B

Now we also want to allow dependent functions. Given a family C : A × B → U , we
can define a dependent function F :

∏
(x:A×B)C(x) by providing a dependent function

G :
∏

(x:A)
∏

(y:B)C((x, y)) and setting

F ((x, y)) ≡ G(x)(y).

This is called the induction principle for product types. As before, we can rewrite this
principle into a function that we will call induction for product types. Given two types
A,B we have

IndA×B :
∏

C:A×B→U

 ∏
(a:A)

∏
(b:B)

C((a, b))

→ ∏
x:A×B

C(x)

 .
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Note that the recursor is just a special case of the induction function, namely if we
choose C to be constant.

The induction principle expresses that we can prove something for every element of
A×B by proving it for the canonical elements. To see this, consider C as a proposition
for elements in A×B. The induction principle now states that to prove C for all elements
of A × B (i.e. find a function of the type

∏
x:A×B C(x) ) it is sufficient to give a prove

that C holds for elements of the form (a, b) with a : A and b : B (i.e. to give a function
of the type

∏
(a:A)

∏
(b:B)C((a, b))).

This justifies the name induction since this is exactly what the proof by induction for
N says. We can prove something for all natural numbers by proving it for the canonical
elements of N, which is the 0 element together with elements of the form succ(n) where
n is in N.
As a useful example we can define the projection functions

pr1 : A×B → A

pr2 : A×B → B

with the defining equations

pr1((a, b)) ≡ a
pr2((a, b)) ≡ b.

2.4.4 Dependent pair types
Just as with functions, in type theory it is often useful to generalize the product types
such that the type of the second component of a pair may depend on the choice of the
first component. This generalized type is called dependent pair type or

∑
-type. Given

a type A and a family B : A→ U we may form the dependent pair type denoted by∑
x:A

B(x)

The introduction rule, recursion rule and induction rule are just generalisations of the
rules given for the product type and we confine ourselves to giving an example.
Consider the dependent pair type

∑
(x,y:A)(x = y). While we still have to define the

identity type (x = y) in the next section, for now it is sufficient to accept that elements of
that type can be considered as paths from x to y. Therefore elements of

∑
(x,y:A)(x = y)

look like (x, y, p) where x, y are points in A and p is a path connecting these points. The
type of p depends both on x and y, since we only consider paths with the same start
and end point to be of the same type.

2.4.5 The natural numbers
There is a strong resemblance between the way we define types and the way one defines
the natural numbers in set theory.
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Remark 2.1. Note that it is not yet clear why we are allowed to talk about THE natural
numbers, since there might be several on of them in different universes. However we will
later be able to see that all copies of the natural number are equivalent by univalence
(2.8) when using the strong recursion principle mentionend in 2.23.

To define the natural numbers in type theory one first gives the introduction rule
which states that there is

• a point 0 : N, as well as

• a function succ : N→ N.

We will adopt the usual notation: 1 ≡ succ(0), 2 ≡ succ(succ(0)) and so on.
The recursion principle for N states that we can define a function f : N → C by

"classical" recursion on knows from set theory. This means for every C : U together with

• a point c0 : C , and

• a function csucc : N→ C → C,

there is a function f : N→ C such that

• f(0) ≡ c0, and

• f(succ(n)) ≡ csucc(n, f(n)).

For example, we can define the function double : N→ N, which doubles its argument,
by recursion. For this we take C ≡ N and c0 ≡ 0. We define csucc : N → N → N by
csucc(n, y) ≡ succ(succ(y)). By recursion on N we get double : N→ N such that

• double(0) ≡ 0

• double(succ(n)) ≡ succ(succ(double(n))).

Now we consider the dependent elimination rule, i.e. the induction principle for N.
Given a type family C : N→ U with

• a point c0 : C(0), and

• a function Csucc :
∏

(n:N)
(
C(n)→ C(succ(n))

)
we can construct a function F :

∏
(n:N)C(n) with the defining equations

• F (0) ≡ c0,

• F (succ(n)) ≡ Csucc(n, (F (n)))

10



Here we see the connection between the induction principles in type theory and the
classical notion of proof by induction.
The principle of proof by induction (you know from set theory) states that, to prove

a property of the natural numbers C(n) for all n : N, it is sufficient to prove C(0) and
to prove that C(n) implies C(succ(n)) for all n : N.
Recall that in type theory, we can represent propositions by types. Therefore a prop-

erty of natural numbers is represented by a family of types C : N → U , where the
property is true for n : N if and only if C(n) is inhabited. With this representation
principle we can rewrite the principle of proof by induction into the following statement:
To construct a function F :

∏
(n:N)C(n) it is sufficient to give a point c0 : C(0) and a

function Csucc :
∏

(n:N)
(
C(n)→ C(succ(n))

)
. This is just the induction principle on N.

2.5 Identity types
So far the types we defined, all had their counterpart in set theory and therefore looked
somewhat familiar. When it comes to identities however, type theory takes a completey
new approach. To use the "propositions as types" concept mentioned in the introduction,
we need a type that corresponds to the proposition that a, b : A are equal. We will call
this kind of types identity types. If we have a type A and a, b : A, we may form the
identity type denoted by a =A b. The interesting thing is that the identity type over
two elements a, b holds more information than just stating whether a and b are equal or
not. One can regard elements of a =A b as paths between a and b in the space A. Just
as there may be several different paths connecting two points in a space, there may be
several different witnesses of a =A b.
Even though the interpretation of identities as paths is extremely useful, one has to

be careful. Consider a type A with just two elements a, b such that a = b. We regard
a and b as two different points which are connected by at least one path in A. But
what does this path look like? Since the points are isolated, it can not be a path in
the classical sense of a continuous map into A. The key observation is that homotopy
type theory provides a synthetic description of space. Synthetic geometry describes the
approach to geometry where one starts with some basic notions like points and lines and
some construction principles for example the line connecting two points. In contrast the
analytic approach (one is probably more familiar with) represents points as points in Rn
and lines as certain subsets of Rn. While we won’t investigate that topic further, it is
important to keep that difference in mind when we consider an element of (a = b) to be
a path between the points a and b.

As with the other types, we need an introduction and an elimination rule. The basic
way to introduce an element of a =A b is by simply knowing that a and b are the same.
This is exactly what the introduction rule

Refl :
∏

(a:A)
(a =A a)

states. This dependent function, called reflexivity, gives for each element a of A a path
refla from a to itself. We consider refla to be the constant path at the point a.
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The elemination rule of the identity types is called path induction and is of utmost
importance to homotopy interpretations in HoTT. The basic idea of path induction is
that, to prove a property for all points x, y and all paths p : x = y , it’s sufficient to only
prove that property in the cases where the elements are both x and the path is reflx. In
other words the family of identity types is generated by the constant paths reflx.

Formally Path induction states that:

Given a family

C :
∏

(x,y:A)
(x =A y)→ U

and a function

c :
∏

(x:A)
C(x, x, reflx)

there is a function

F :
∏

(x,y:A)

∏
(p:x=Ay)

C(x, y, p)

such that

F (x, x, reflx) ≡ c(x).

The best way to read this expression is to consider the family C as some statement
depending on x, y and on the path connecting these two points, and c as a function
that for every x : A yields a prove for C(x, x, reflx). Path induction now states that the
function c can be extended to the general case, i.e. there is a function F that for every
x, y : A and p : x =A y yields a proof for C(x, y, p).

One crucial observation is that path induction is not the elimination rule for the
identity type but rather the elemination rule for the family of identity type, in other
words, it is the

∑
-type

∑
(x,y:A)(x = y) which is inductively defined and not the identity

type (x = y). The type
∑

(x,y:A)(x = y) could be interpreted as the space of paths in
A with varying endpoints, and it makes sense that every such path can be retracted to
the constant path at x (since the endpoints are not fixed). Elements of the identity type
(x=y), however, have fixed endpoints (namely x and y) and therefore path induction
can not be used to prove things on one specific indentity type.
For example, we can not use path induction to prove that every path p : x = x is

equal (i.e. homotopic) to reflx in the space (x = x), since we can not find a suitable
C, however, we can use path induction to prove that the pair (x, p) is equal to the
pair (x,reflx) in the type

∑
(x,y:A)(x = y). This again has a topological interpretation.

Consider a closed path around a "hole" with the same start and endpoint. If we want
to keep both the start and the endpoint of that path fixed, we can not deform that
path into the constant path. If we only fixate the startpoint and let the endpoint vary,
however, this deformation becomes easy just by contracting the path back to the start
point.
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2.5.1 Equalities
In type theory there are two different kinds of equalities. First we have the judgmental
equality which is used when things are equal by definition and is denoted by ≡. If one
interprets a, b : A as a space A with points a and b, then a ≡ b means that a and b define
the same point in A.

Propositional equality, denoted by =, on the other hand is used when two things are
equal under a certain interpretation.
Consider the following two examples.
Let A : U be a type with two points a, b : A. Now imagine a path p : a =A b from

a to b. Let p−1 : b =A a be the inverse of p. Then the path p p−1, where we first go
from a to b via p and then back the same way, is homotopic to the constant path at
a. While the two paths p p−1 and refla, are different objects, different points in the
identity type a =A a, they are equal under our interpretation of paths. So we get that
p p−1 =(a=a) refla, while in general it is not true that p p−1 ≡ refla.

Let A : U be a type with a point a : A. We already have seen the identity function
idA : A → A, which maps every point to itself. We have that idA(a) ≡ a, since idA(a)
is just another name for the point a. This means we can replace idA(a) by a whenever
we want, without worrying about any consequences. Because of that, the identity type
idA(a) =A a is just another notation for the type a =A a and therefore is inhabited by
refla.

This holds in general and therefore a ≡ b is stronger than a = b. While this topic
could be explored in more detail (see literature), we will stick to this short explanation.
The important conclusion is that if things are jugmentally equal we can replace them
with each other without losing any information and without changing the meaning, but
if two elements are only propositional equal, one has to take care. For example, for a
function f : A→ B it is not clear that a =A b implies that f(a) =B f(b). To prove such
propositions, one typically uses path induction.

2.5.2 Applications of path induction
In order to characterize higher inductive types, we will prove some basic properties of
paths by path induction. Before we get started we need to formalize the inverses of
paths as well as the composite of paths.

Lemma 2.2. (inverse) Let A : U be a type. For every x, y : A there is a function

(x =A y)→ (y =A x)

denoted by p 7→ p−1. We call p−1 the inverse of p. The inverse of reflx is reflx itself.

Proof. We want to use path induction. We fix A : U and define C :
∏

(x,y:A)(x = y)→ U
by

C(x, y, p) ≡
(
(x = y)→ (y = x)

)
.
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Now we introduce our c :
∏

(x:A)C(x, x, reflx) by setting

c(x) ≡ id(x=Ax).

Note that c is well typed since C(x, x, reflx) ≡ (x =A x) → (x =A x). Now path
induction yields a function F :

∏
x,y:A

∏
p:(x=y)C(x, y, p). By definition we know that for

every x, y : A and p : x =A y F (x, y, p) is of type (x = y) → (y = x). To complete our
profe it only remains to see that

F (x, x, reflx)(reflx) ≡ c(x)(reflx) ≡ reflx.

These proofs in type theory are quite formal and often hard to follow. However there
is also an "informal" way to use path induction.

Proof. By path induction we may assume that y ≡ x and p ≡ reflx. In only remains to
show that there is a function of the type (x =A x)→ (x =A x) and we have id(x=Ax) for
that.

In this paper we will use both kinds of proofs, depending on the complexity and
importance of the proof.

Lemma 2.3. (composite) Given A : U together with x, y, z : A and two paths p : (x = y)
and q : (y = z) we have a path

p q : (x = z)

We call p q the composite of p and q. For every x : A we have reflx reflx ≡ reflx.

Proof. By double path induction we may assume z ≡ y ≡ x and p ≡ q ≡ reflx so we only
have to prove that there exists a path reflx reflx : (x = x) but we have reflx for that.

There are some properties of the inverse and the composite of paths one expects to
hold

Lemma 2.4. For A : U , with x, y, z, w : A and p : (x = y), q : (y = z) and r : (z = w)
we have

1. p = p refly and p = reflx p

2. p−1 p = refly and p p−1 = reflx

3. (p−1)−1 = p

4. p (q r) = (p q) r.

14



Proof. By path induction we may assume that x ≡ y ≡ z ≡ w and p ≡ q ≡ r ≡ reflx.
It remains to prove that

1. reflx = reflx reflx and reflx = reflx reflx, which holds by definition of the composite.

2. refl−1
x reflx = reflx and reflx refl−1

x = reflx, which holds by 1. since refl−1
x ≡ reflx.

3. (refl−1
x )−1 = reflx, which holds since refl−1

x ≡ reflx by definition of the inverse.

4. reflx (reflx reflx) = (reflx reflx) reflx, which is true since both sides are just reflx.

Note that these equalities between paths, are paths themselfs. For example that
p−1 p = refly just means that there is a path between p−1 p and refly. In other words
p−1 p and refly are homotopic to each other. We already have mentioned that, since
functions respect identities, they also must respect paths.

Lemma 2.5. (Application) Let A,B : U and f : A→ B be a function. For any a, b : A
there is an operation

apf : (x =A y)→ (f(x) =B f(y)).

Moreover, for x : A we have apf (reflx) ≡ reflf(x). (see Figure 2.1)

This function, called application of f to a path, is the formalisation of the fact that
functions respect paths, i.e. for every path between x and y in A we get a path between
f(x) and f(y) in B. Sometimes for better readability instead of apf we will simply write
f(p) if the context is clear.

Proof. We use path induction on C :
∏

(x,y:A)(x =A y)→ U defined by

C(x, y, p) ≡ (f(x) =B f(y))

By path induction it is sufficient to define a c :
∏

(x:A)C(x, x, p). This is easily done by
defining

c(x) ≡ reflf(x).

Note that reflf(x) is indeed of the the type (f(x) =B f(x)), i.e. of the type C(x, x, p).
Path induction now provides the function F : (x =A y) → (f(x) =B f(y)) such that

F (reflx) ≡ reflf(x). This function is exactly apf .

While the result is expected in this case, things get more complicated if we consider
a dependent function F :

∏
(x:A)B(x). If we now want to apply F to a path p : (x = y),

we don’t even know whether F (x) and F (y) are of the same type or not. The following
lemma shows that the path p itself gives us the information on how to relate the types
B(x) and B(y).

15



x

y

p

A

f(x)

f(y)

B

apf(p)

f

Figure 2.1: Application of a non dependent function f : A→ B

Lemma 2.6. (Transport) Suppose that B : A → U is a family over A. Then for every
path p : (x =A y) there is an associated function p∗ : B(x) → B(y). Furthermore
(reflx)∗ ≡ idB(x).

Proof. Again we use path induction. This time we set C :
∏

(x,y:A)(x =A y) → U by
defining

C(x, y, p) ≡ B(x)→ B(y).

We then consider the function c :
∏

(x:A)C(x, x, reflx) defined by

c(x) ≡ idB(x)

where idB(x) is the identity on B(x). Note that c is well typed since idB(x) is of the type
(B(x) → B(x)), i.e. of the type C(x, x, reflx). Path induction now gives us a function
F :

∏
(x,y:A)

∏
(p:x=y)(B(x) → B(y)), such that F (x, x, reflx) ≡ idB(x). If we apply F on

x, y : A and p : (x = y), we get a function from B(x) into B(y) which we name p∗ .

Sometimes we will need to keep track of the type family P . In this case we will use
on of the two alternative notations for p∗:

transportP (p,−) : P (x)→ P (y) or pP∗ : P (x)→ P (y)

Lemma 2.7. (Path lifting property) Let P be a family over A and assume we have
u : P (x) for some x : A. Then for every p : x =A y we have

lift(u, p) : (x, u) = (y, p∗(u))

in
∑

(x:A)B(x), such that appr1
(lift(u, p)) = p.

16



Proof. To use path induction we define C :
∏

(x,y:A)(x =A y)→ U by

C(x, y, p) ≡ (x, u) =∑
(x:A) B(x) (y, p∗(u)).

Now we can set c :
∏

(x:A)C(x, x, reflx) to be

c(x) ≡ refl(x,u).

This c is well typed, since refl(x,u) is of the type ((x, u) = (x, u)), which is by definition
equal to ((x, u) = (x, idB(x)(u))) and that is exactly C(x, x, reflx). Path induction now
yields a function F :

∏
(x,y:A)

∏
(p:x=y)((x, u) =∑

(x:A) B(x) (y, p∗(u))). This function ap-
plied to x, y : A and p : (x = y) yields a path between (x, u) and (y, p∗) in

∑
(x:A)B(x)

we call lift(u, p). Note that by path induction we also get that lift(u, reflx) ≡ refl(x,u).
It remains to show that appr1

(lift(u, p)) = p. For this we will use path induction a
second time. This time consider D :

∏
(x,y:A)(x =A y)→ U with

D(x, y, p) ≡ (pr1(lift(u, p)) =x=y p).

This means we set D(x, y, p) to be the identity type over the identity type (x = y). Now
we can set d :

∏
(x:A)D(x, x, reflx) to be

d(x) ≡ reflreflx .

To show that this is well typed, we have to show that the type D(x, x, reflx) is by
definition equal to the identity type (reflx =(x=x) reflx). To see this, first note that

D(x, x, reflx)

is by definition equal to

(pr1(lift(u, reflx)) =x=x reflx).

This can be simplified to

(pr1(refl(x,u))) =x=x reflx)

by applying that lift(u, reflx) ≡ refl(x,u). By the application lemma this is, however, the
same as

(reflx =x=x reflx)

and therefore our d is well typed. Now we apply path induction and get aG :
∏

(x,y:A)
∏

(p:x=y)(pr1(lift(u, p)) =x=y
p) to finish the proof.
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F (y)

p∗(F (x))

B(x)

B(y)
apdF (p)

F

F

p∗

Figure 2.2: Dependent application of a function F :
∏
x:AB(x)

With this lemma we can give the dependent version of function application:

Lemma 2.8. (Dependent application) Let F :
∏
x:AB(x) be a dependent function. Then

we have a function

apdF :
∏

p:(x=y)
(p∗(F (x)) =B(y) F (y).

(see Figure 2.2)

Proof. Consider C :
∏

(x,y:A)(x =A y)→ U to be defined by

C(x, y, p) ≡ (p∗(F (x)) =B(y) F (y).

Now we define c :
∏

(x:A)C(x, x, reflx) by

c(x) ≡ reflF (x)

which is well defined, since reflF (x) is of the type F (x) =B(x) F (x), which is exactly
C(x, x, reflx), because (reflx)∗(F (x)) is by definition equal to F (x). Path induction now
provides us with apdF :

∏
p:(x=y)(p∗(F (x)) =B(y) F (y), where apdF (reflx) ≡ reflF (x).

We already have seen that every function f : A→ B can be interpreted as a dependent
function F :

∏
(x:A)P (x) where P (x) ≡ B. In this case apf and apdF are closely related,

as seen in the following two lemmata:

Lemma 2.9. (transportconst) Let A : U and P : A → U with P (x) ≡ B for a fixed
B : U . For all b : B, x, y : A and for every path p : x =A y we have a path

transportconstBp (b) : transportP (p, b) = b.

such that transportconstBreflx
(b) ≡ reflb
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Proof. Fix b : B and define C :
∏
x,y:A(x = y)→ U by

C(x, y, p) ≡ (transportP (p, b) = b).

By definition of transport we have

C(x, x, reflx) ≡ (transportP (reflx, b) = b)
≡ (idP (x)(b) = b)
≡ (b = b)

so we can define c :
∏

(x:A)C(x, x, reflx) by

c(x) ≡ reflb.

Path induction now yields a function F :
∏

(x,y:A)
∏
p:(x=y)(transportP (p, b) = b) with

F (x, x, reflx) ≡ reflb, so we can define

transportconstBp (b) ≡ F (x, y, p).

As with transport we introduce an alternative notation. When it is not too confusing,
we can omit the typeB and the point b and simply write p∗∗ instead of transportconstBp (b).

With this result we can prove:

Lemma 2.10. For A,B : U , f : A→ B and p : x =A y, we have

apdf (p) = transportconstBp (f(x)) apf (p).

(see Figure 2.3)

Proof. By path induction we can assume y ≡ x and p ≡ reflx so we only have to prove

apdf (reflx) = transportconstBreflx
(f(x)) apf (reflx)

By definition we have

• apdf (reflx) ≡ reflf(x)

• transportconstBreflx
(f(x)) ≡ reflf(x)

• apf (reflx) ≡ reflf(x)

so we only have to prove

reflf(x) = reflf(x) reflf(x)

but we have reflreflf(x) for that.
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Figure 2.3: The connection between ap and apd

In the next lemmata we will take a closer look at the transport function and give some
identities in special cases.

Lemma 2.11. Given f, g : A→ B, paths p : a1 =A a2 and q : f(a1) =B g(a1), we have

transportλx.(f(x)=Bg(x))(p, q) =f(a2)=g(a2) (apf (p))−1 q apg(p)

Proof. We fix f, g and then use path induction on C :
∏

(a1,a2:A)(a1 = a2)→ U with

C(a1, a2, p) ≡
(
transportλx.(f(x)=Bg(x))(p, q) =f(a2)=g(a2) (apf (p))−1 q apg(p)

)
By path induction we may assume a1 ≡ a2 and that p is refla1 . So we only have to prove(

transportλx.(f(x)=Bg(x))(refla1 , q) =f(a1)=g(a1) (apf (refla1))−1 q apg(refla1)
)
.

Since we know that

• transportλx.(f(x)=Bg(x))(refla1 ,−) is the identity function on (f(a1) =B g(a1))

• apf (refla1) ≡ reflf(a1)

• apg(refla1) ≡ reflg(a1)

it is sufficient to prove that

q =f(a1)=g(a1) (reflf(a1))−1 q reflg(a1).

There are some important special cases of lemma 2.11:
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Lemma 2.12. Let A : U be a type with a point a : A and a path p : x =A y. Then we
have

transportλx.(a=x)(p, q) = q p for q : a = x

transportλx.(x=a)(p, q) = p−1 q for q : x = a

transportλx.(x=x)(p, q) = p−1 q p for q : x = x.

Proof. We use lemma 2.11 with f, g as the identity function or a constant function λx.a.
It only remains to see that apλx.a(l) = refla for all l : x =A y. That, however, is easily
proven by using path induction on l since for all x : A apλx.a(reflx) = refla.

Lemma 2.13. Let A : U and P,Q : A→ U be two type families over A. Then

p
λz.(P (z)→Q(z))
∗ (f) = pQ∗ ◦ f ◦ (p−1)P∗

holds for all x, y : A and p : x = y and f : P (x)→ Q(x).

Proof. First note that this is well typed. (p−1)P∗ takes an element from P (y) and yields
an element in P (x). Therefore we can apply f and get a point in Q(x). Now we can carry
out the transport p∗ with respect to Q and get a point in Q(y). So on the right, we have
a function from P (y) into Q(y). By definiton pλz.(P (z)→Q(z))

∗ (f) is of type P (y)→ Q(y)
so the statement above is indeed well typed.
Now we use path induction and define C :

∏
x,y:A(x = y)→ U by

C(x, y, p) ≡
∏

f :P (x)→Q(x)
p
λz.(P (z)→Q(z))
∗ (f) = pQ∗ ◦ f ◦ (p−1)P∗ .

By path induction it is sufficient to prove C(x, x, reflx).

C(x, x, reflx) ≡
∏

f :P (x)→Q(x))

(
(reflx)λx.(P (x)→Q(x))

∗ (f) = (reflx)Q∗ ◦ f ◦ (refl−1
x )P∗

)

=
∏

f :P (x)→Q(x)

(
idP (x)→Q(x)(f) = idQ ◦ f ◦ idP

)
=

∏
f :P (x)→Q(x)

(f = f).

But we have λf.reflf :
∏
f :P (x)→Q(x) f = f thereby completing the proof.

Lemma 2.14. Given A : U , P : A→ U together with p : x =A y, q : y =A z and a term
u : P (x), we have

q∗(p∗(u)) = (p q)∗(u).
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Proof. We define C :
∏
x,y:A(x = y)

∏
z:A(y = z)→ U by

C(x, y, p, z, q) ≡
(
q∗(p∗(u)) = (p q)∗(u)

)
.

We prove C(x, y, p, z, q) for all x, y, z : A and p : x =A y, q : y =A z. By path induction
we can assume that y ≡ x and that p ≡ reflx so we only have to prove C(x, x, reflx, z, q)
which by definition is

q∗((reflx)∗(u)) = (reflx q)∗(u).

Now we want to prove C(x, x, reflx, z, q) for all x, z : A and q : x = z. Again we can
use path induction and assume that z ≡ x and q ≡ reflx. With this assumption we only
have to prove that for all x : A we have

(reflx)∗((reflx)∗(u)) = (reflx reflx)∗(u).

Since by definition we have (reflx reflx) ≡ reflx as well as (reflx)∗ ≡ idP (x), to prove the
equation above, is just to prove

idP (x)(idP (x)(u)) = idP (x)(u)

which by definition is just u = u, which trivially holds.

Lemma 2.15. Consider A,B : U with a function f : A→ B together with a type family
P : B → U . Then for any p : x =A y and u : P (f(x)) we have

transportP◦f (p, u) = transportP (apf (p), u).

Proof. First see that the equality above is well typed. transportP◦f (p,−) is a function
from P (f(x)) into P (f(y)). And since apf (p) is a path from f(x) to f(y),
transportP (apf (p),−) is of type P (f(x))→ P (f(y)) as well.
By path induction we may assume that y ≡ x and p ≡ reflx. So we only need to prove

transportP◦f (reflx, u) = transportP (apf (reflx), u).

Since by definition apf (reflx) ≡ reflf(x) and transport(reflx, u) ≡ u, it suffices to prove

u = u.
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2.6 Equivalences and identities between functions and types
2.6.1 Equivalences
We first need to define what we mean by saying two functions f and g are inverse to
each other.
We call two functions f : A→ B and g : B → A quasi-inverse if we know that:

• g(f(a)) = a for all a : A

• f(g(b)) = b for all b : B.

In this case we call g a quasi-inverse of f , call f and g equivalences and say that A and
B are equivalent, denoted by A ' B.

Note that we use the propositional equality instead of the stronger judgmental equality
here. If one interprets A and B as spaces, this means that the applicaton of g ◦ f to a
point a : A will not necessarily yield the same point a, but rather some other point ã
which is connected to the point a via some path.

2.6.2 Identites between functions
We expect that two function are equal if and only if they are equal at every point. In
type theory this means that we expect, that for functions f, g : A → B there is an
equivalence

(f =A→B g) '
(∏
x:A

f(x) =B g(x)
)
.

Lemma 2.16. There is a function (f =A→B g)→
(∏

x:A f(x) =B g(x)
)
.

Proof. Given a f, g : A → B and a p : f = g we need to give a function of type∏
x:A f(x) =B g(x). By path induction we may assume f ≡ g and p ≡ reflf . So we only

need to give a function
(∏

x:A f(x) =B f(x)
)
, which is easily done by

(λ(x : A).reflf(x)).

We will be able to prove that there is also a function(∏
x:A

f(x) =B g(x)
)
→ (f =A→B g)

called function extensionality once we have defined the higher interval.
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2.6.3 Identities between types
Given A,B : U we can form the identity type A =U B. We also have a notion for the
type of equivalences from A to B denoted by (A ' B). It feels natural that those two
types are equivalent in a way i.e. that there is an equivalence (A =U B) ' (A ' B).

Lemma 2.17. (idtoeqv) For A,B : U , there is a function,

idtoeqv : (A =U B)→ (A ' B),

defined by idtoeqv ≡ transportidU .

Proof. We can consider the type family P : U → U which is induced by the identity
function on U . This means we define P (X) ≡ X. Now we can take the transport function
transportP . This function maps every path p : A = B to a function p∗ : A → B. We
claim that p∗ is an equivalence. By path induction it suffices to prove that (reflA)∗ is
an equivalence for all A : U . By definition of transport we have (reflA)∗ ≡ idA, and the
identity function is obviously an equivalence.

We expect that there is a quasi-inverse to idtoeqv, but type theory can not guarantee
this. We will come back to this topic in chapter 2.8.

2.6.4 Applications to the transport function
With these definitions and lemmata we can prove some more interesting properties for
transport.

Lemma 2.18. Let A : U be a type. For p : a =A ã, q : a =A a and r : ã =A ã, we have(
transportx 7→(x=x)(p, q) = r

)
' (q p = p r).

Proof. By path induction on p it suffices to prove that(
q = r

)
'
(
q refla = refla r

)
.

Since this is our first proof of the existence of an equivalence, we will do it in detail.
First note that there are two paths

k : q refla = q

j : r = refla r.

Now we can define f :
(
q = r

)
→
(
q refla = refla r

)
by

f(l) ≡ k l j.

as well as g :
(
q refla = refla r

)
→
(
q = r

)
by

g(l) ≡ k−1 l j−1.
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We claim that f and g are quasi-inverse. First we prove that for every l :
(
q = r

)
we

have g(f(l)) = l. Since

g(f(l)) ≡ k−1 k l j j−1

and k−1 k = reflq as well as j j−1 = reflr this is just proving

reflq l reflr = l

which obviously holds. Now consider some l :
(
q refla = refla r

)
. We prove that

f(g(l)) = l. By definition we have

f(g(l)) ≡ k k−1 l j−1 j.

Since k k−1 = reflq refla and j−1 j = reflrefla r we only need to see that

reflq refla l reflrefla r = l.

We also can prove that the transport functions for p and p−1 are quasi-inverse.

Lemma 2.19. Given A : U together with P : A→ U p : x =A y, we have

(p−1)P∗ = (pP∗ )−1.

Proof. By path induction we can assume that x ≡ y and p ≡ reflx, so we only need to
prove that for every x : A, (refl−1

x )P∗ and (reflx)P∗ are quasi-inverse. Since refl−1
x ≡ reflx

and (reflx)P∗ ≡ idP (x) this is just proving that idP (x) is a quasi-inverse to itself, which is
of course true.

Lemma 2.20. Given A : U and B : A → U together with x, y : A, a path p : x =A y
and a point u : B(x), we have

transportB(p, u) = idtoeqv(apg(p))(u).

Proof. First we rewrite B into idU B. Now lemma 2.15 yields

transportidU B(p, u) = transportidU (apB(p), u).

By definition we have transportidU (apB(p), u) ≡ idtoeqv(apg(p))(u), so we are done.
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2.7 Some more types
With our new knowledge of paths and equivalences we can define some more types.

2.7.1 The empty type
Like the empty set in set-theory, there is an empty type, denoted by 0 : U , in type
theory.
While there is no way to construct elements of 0, it is easy to construct functions from

the empty type into other sets. Indeed we have a function from 0 into every other type.
Therefore the recursor for 0 is

rec0 :
∏
C:U

0→ C.

The induction principle on 0 states that any property is true for all terms in the type 0.
Thus the induction function for 0 is given by

ind0 :
∏

C:0→U

∏
z:0
C(z).

The empty type gives us the oportunity to define the negation of an property A.
If we want to prove that "not A" is true, we give a function f : A→ 0.

2.7.2 The unit type
After defining the empty type, we now will define the unit type 1 : U with just one
element. The introduction rule is just that there is an term ? : 1.
The recursor for the unit type states for every C : U with a term c : C there is a

function rec1(C, c,−) : 1→ C such that rec1(C, c, ?) ≡ c.
The induction principle for 1 is given by the function

ind1 :
∏

C:1→U

(
C(?)→

∏
x:1
C(x)

)
.

In words this means that to prove a property for every element in 1 it is sufficient to
prove it only for ?. With the induction principle we can now prove the uniqueness
principle for 1, namely that every element of 1 is equal to ?.

Lemma 2.21.
∏
x:1 x = ?.

Proof. We define our C : 1→ U by

C(x) ≡ (x = ?)

Now by induction we only need to prove C(?). But C(?) ≡ (? = ?) which holds trivially
since we have refl? for that.
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2.7.3 The type of booleans
The type of booleans 2 is intended to have exactly two elements. Therefore the intro-
duction rule states that there are two elements 02, 12 : 2. For a type C : U with two
terms c0, c1 : C we can define a function f : 2→ C by setting

f(02) ≡ c0

f(12) ≡ c1.

This fact can again be rephrased into the recursor function for 2:

rec2 :
∏
C:U

(
C → C → 2→ C

)
with defining equations

rec2(C, c0, c1, 02) ≡ c0

rec2(C, c0, c1, 12) ≡ c1.

The induction principle for the type of booleans states that given a C : 2→ U and terms
c0 : C(02), c1 : C(12) we can define a dependet function F :

∏
x:2C(x) by setting

F (02) ≡ c0

F (12) ≡ c1.

Again we can rewrite this into a function:

ind2 :
∏
C:U

(
C(02)→ C(12)→

∏
x:2
C(x)

)
with defining equations

ind2(C, c0, c1, 02) ≡ c0

ind2(C, c0, c1, 12) ≡ c1.

In other words to prove a property for all elements of 2, it suffices to prove it for 02 and
12. We expect that 02 and 12 are not equal. Indeed the following lemma holds:

Lemma 2.22. There is a function f : (02 =2 12)→ 0.

Proof. By recursion on 2 we can define a function g : 2→ U such that

g(02) ≡ 0
g(12) ≡ 1.

This means we can use apg : (02 = 12) → (0 = 1) to get an identity between 1 and 0.
But now we can use idtoeqv to get an equivalence (0 ' 1). This equivalence "contains"
a function h : 1→ 0. Now we define a function H :

∏
x,y:2(x =2 y)→ 1 by

H(x, x, reflx) ≡ ?.
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This means H(02, 12) : (02 = 12)→ 1. So in conclusion we have

(02 = 12) H(02,12)−−−−−→ 1 h−−−−−→ 0.

Remark 2.23. One has to be careful when using recursion on 2 in the beginning to
define g. A priori we only can define a function from 2 : U into U ′ by recursion, if U ′ : U .
First of all this means that the recursion principle of 2 : U , and therefore the type itself,
depends on the U we fixed when we defined 2. And it also means that our proof does
not work since U is not a term in itself.

One solution is to use a stronger recursion principle for all our inductive types. This
means that for any inductive type A : U we can use recursion to define a function from
A into any other type B : U ′, where U ′ can be any universe. In the case of 2 this would
mean that we can define a function f from 2 : U into any other type B : U ′ with two
points b0, b1 : B, where U ′ can be any universe, such that

f(02) ≡ b0
f(12) ≡ b1.

This fixes our proof from above.
However, one can use a weaker assumption as well. First we introduce a new notation

for the different types of booleans. We will write 2i for the type of booleans associated
with the universe Ui. We will also apply this notation to all the other types we have
defined so far if it is necessary. Now we postulate a new recursion principle. For a
inductive type Ai : Ui we can use recursion to define a function into any other type
B : Ui as well as to define a function into the type Ai+1 : Ui+1. Now we will give a
second proof for the lemma with this notation.

Lemma 2.24. For every i there is a function fi : (02i =2i 12i)→ 0i.

Proof. We fix i and use our assumption do define a function g̃ : 2i → 2i+1 such that

g̃(02i) ≡ 02i+1

g̃(12i) ≡ 12i+1 .

Now we can use the "standard" recursion on 2i+1 to define a g : 2i+1 → Ui such that

g(02i+1) ≡ 0i
g(12i+1) ≡ 1i.

Therefore we can use the function apg : (02i+1 = 12i+1) → (0i = 1i), to get an identity
between 0i and 1i. Now we can use idtoeqvUi

to get an equivalence (0i ' 1i). This
equivalence contains a function h : 1i → 0i.
Now we define a function H :

∏
x,y:2i+1(x =2i+1 y)→ 1i by

H(x, x, reflx) ≡ ?i.
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This means H(02i+1 , 12i+1) : (0i+1 = 1i+1)→ 1i. So in conclusion we have

(0i = 1i)
apg̃−−−−−−−→ (0i+1 = 1i+1)

H(02i+1 ,12i+1 )
−−−−−−−−−−→ 1i

h−−−−−→ 0i.

As one can see this notation can be quite confusing. Therefore we will simply assume
that we can use recursion on an inductive type A to define a function into any other
type B.

2.7.4 The integers
The introduction rule on Z says that there is

• a point 0 : Z

• a function pos : N→ Z

• a function neg : N→ Z

The recursion principle for Z is that for every C : U with

• c0 : C

• cpos : N→ C

• cneg : N→ C

we get a function f : Z→ C, such that f(0Z) ≡ c0, f(pos(n)) ≡ cpos(n) and f(neg(n)) ≡
cneg(n).
In the more general case where C : Z → U is a type family we get the the induction

principle for Z. If we have

• c0 : C(0)

• cpos :
∏

(n:N)C(pos(n))

• cneg :
∏

(n:N)C(neg(n))

there is a function F :
∏

(z:Z)C(z), such that F (0Z) ≡ c0, F (pos(n)) ≡ cpos(n) and
F (neg(n)) ≡ cneg(n).
Note that in this definition of Z one should think of pos(0) as 1 and of neg(0) as -1.
One expects that there is a successor function on Z and that furthermore this function

is an equivalence.

Lemma 2.25. There is an equivalence succZ : Z ' Z.

Proof. We use induction for Z and define:

• succZ(0Z) ≡ pos(0N)
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• succZ(pos(n)) ≡ pos(succN(n))

• succZ(neg(n)) ≡ u(n).

Where u : N→ Z is defined by recursion N by

• u(0N) ≡ 0Z

• u(succN(n)) ≡ neg(n)

Similary we define succ−1
Z by

• succ−1
Z (0Z) ≡ neg(0N)

• succ−1
Z (pos(n))) ≡ v(n)

• succ−1
Z (neg(n)) ≡ neg(succN(n)).

Where v : N→ Z is defined by recursion N by

• v(0N) ≡ 0Z

• v(succN(n)) ≡ pos(n)

We now prove (succZ succ−1
Z )(z) = z for all z : Z

By induction on Z we can take cases:

1. If z ≡ 0Z, we have

succZ succ−1
Z (0Z) ≡ succZ(neg(0N)) ≡ u(0N) ≡ 0Z

2. If z ≡ pos(n) for some n : N, we prove succ succ−1
Z (posZ(n)) = pos(n) by induction

on N.
If n ≡ 0N, we get:

succZ succ−1
Z (pos(0)) ≡ succZ(v(0)) ≡ succZ(0Z) ≡ pos(0).

If n ≡ succN(m) for some m : N, we have:

succZ succ−1
Z (pos(succN(m))) ≡ succZ(v(succN(m)))

≡ succZ(pos(m)) ≡ pos(succN(m))

3. If z ≡ neg(n) for some n : N, we again use induction on N to prove
succZ succ−1

Z (neg(n)) = pos(n).
If n ≡ 0N, we get:

succZ succ−1
Z (neg(0N)) ≡ succZ(neg(succN(0N))) ≡ u(succN(0N)) ≡ neg(0N)

If n ≡ succN(m) for some m : N, we have:

succZ succ−1
Z (neg(succN(m))) ≡ succZ(neg(succN(succN(m))))

≡ u(succN(succN(m))) ≡ neg(succN(m))
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The prove that (succ−1
Z succZ)(z) = z for all z : Z works similar and is therefore

omitted.

Next we are going to prove that, when working with the integers, propositional equality
and judgmental equality are equivalent. This means that if and only if x ≡ y we have
x = y and even further that all the paths x = y are equal as elements in the identity
type.
To see this, we will use the so called encode-decode method. First we define a type

code : Z → Z → U and then we will show that for every x, y : Z we have (x =Z y) '
code(x, y).

Definition 2.26. We define code : Z→ Z→ U by

code(0Z, 0Z) ≡ 1
code(pos(0N), pos(0)N) ≡ 1

code(pos(succN(n), pos(succN(m)) ≡ code(pos(n),pos(m))
code(neg(0N),neg(0)N) ≡ 1

code(neg(succN(n),neg(succN(m)) ≡ code(neg(n), neg(m))
code(pos(n), 0Z) ≡ 0 ≡ code(0Z, pos(m))
code(neg(n), 0Z) ≡ 0 ≡ code(0Z, neg(m))

code(pos(succ(n)), pos(0Z)) ≡ 0 ≡ code(pos(0Z),pos(succ(m)))
code(neg(succ(n)),neg(0Z)) ≡ 0 ≡ code(neg(0Z), neg(succ(m)))

code(pos(n),neg(m)) ≡ 0 ≡ code(pos(n),pos(m)).

Remark 2.27. Here we need the "strong" recursion mentioned in remark 2.23.

Lemma 2.28. For all x, y : Z, p : x = y we have

p
z 7→code(x,z)
∗ (−) = p

z 7→code(succZ(x),succZ(z))
∗ (−).

Proof. By path induction it is sufficient to prove that for all x : Z

(reflx)z 7→code(x,z)
∗ (−) = (reflx)z 7→code(succZ(x),succZ(z))

∗ (−)

holds. By definition this is just to prove that

idcode(x,x) = idcode(succZ(x),succZ(x))

holds for all x : Z. Now by induction on Z we can take cases:

1. If x ≡ 0Z by definition of code, we have

code(0Z, 0Z) ≡ 1 and,
code(succZ(0Z), succZ(0Z)) ≡ code(pos(0N), pos(0N)) ≡ 1.

So we need to prove id1 = id1 which is trivially true.
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2. If x ≡ pos(n) for some n : N, we use induction on N.
If n ≡ 0N, we get

code(pos(succN(0N)), pos(succN(0N))) ≡ code(pos(0N)), pos(0N)) ≡ 1

so again we only have to prove id1 = id1 which is trivially true.

3. If n ≡ succN(m) for some m : N by definition of code, we get

code(pos(succN(n)), pos(succN(n))) ≡ code(pos(n),pos(n)).

So we only have to prove idcode(pos(n),pos(n)) = idcode(pos(n),pos(n)) which is obviously
true.

4. If z ≡ neg(n), the prove is similar to the 2. and 3. case.

Theorem 2.29. There is a function
∏
x,y:Z

(
(x =Z y) ' code(x, y)

)
.

Proof. Combining the two lemmata 2.32 and 2.33 below.

Definition 2.30. We define a function encode :
∏
x,y:Z(x =Z y)→ code(x, y) by

encode(x, y, p) ≡ transportcode(x,−)(p, k(x)),

where k :
∏
z:Z code(z, z) is defined by recursion on Z by

k(0Z) ≡ k(pos(0N)) ≡ k(neg(0N)) ≡ ?
k(pos(succN(n))) ≡ k(pos(n))
k(neg(succN(n))) ≡ k(neg(n))

Definition 2.31. We define a function decode :
∏
x,y:Z code(x, y)→ (x =Z y) by double

induction on Z. For every pair of integers x, y : Z we need to give a function code(x, y)→
(x =Z y).

1. If x ≡ y ≡ 0Z, we need to give a function 1→ (0Z = 0Z). Such a function is easily
defined by induction on 1 by decode(0Z, 0Z)(?) ≡ refl0.

2. If x ≡ y ≡ pos(0N), we define decode by decode(pos(0N),pos(0N))(?) ≡ reflpos(0).

3. If x ≡ y ≡ neg(0N), we define decode by decode(neg(0N),neg(0N))(?) ≡ reflneg(0).

4. If x ≡ pos(succN(n)), y ≡ pos(succN(m)) and we already have defined

decode(pos(n), pos(m)) : code(pos(n),pos(m))→ (pos(n) = pos(m))

we define decode by

decode(pos(succN(n)),pos(succN(m))) ≡ apsuccZ decode(pos(n), pos(m)).
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Since by definition we have

code(pos(succN(n)),pos(succN(m))) ≡ code(pos(n),pos(m)),

this is well typed.

5. If x ≡ neg(succN(n)), y ≡ neg(succN(m)) and we already have defined

decode(neg(n), neg(m)) : code(neg(n),neg(m))→ (neg(n) = neg(m))

we define decode by

decode(neg(succN(n)), neg(succN(m))) ≡ apsucc−1
Z

decode(neg(n),neg(m)).

6. In all the other cases code(x, y) ≡ 0 so we can use induction on 0 to get a function
code(x, y)→ (x = y).

Lemma 2.32. For every x, y : Z and every path p : x = y we have

decode(x, y, encode(x, y, p)) = p.

Proof. By path induction it suffices to prove

decode(x, x, encode(x, x, reflx)) = reflx.

By definition of encode and decode we get

decode(x, x, encode(x, x, reflx)) ≡ decode(x, x, transportcode(x,−)(reflx, k(x)))
≡ decode(x, x, k(x)).

So it remains to prove that decode(x, x, k(x)) = reflx for all x : Z. This is clear by
definition and induction over Z.

Lemma 2.33. For every x, y : Z and c : code(x, y) we have

encode(x, y, decode(x, y, c)) = c.

Proof. We use double induction on Z

1. If x ≡ y ≡ 0Z or x ≡ y ≡ pos(0N) or x ≡ y ≡ neg(0N) we know that by definition
code(x, x) ≡ 1 and that decode(x, x)(?) ≡ reflx. We now want to prove that for
every c : code(x, x)

encode(x, x,decode(x, x, c)) = c.

but by induction on 1 we only need to prove encode(x, x,decode(x, x, ?)) = ?. By
definition we have

encode(x, x,decode(x, x, ?)) ≡ encode(x, x, reflx)
≡ transportcode(x,−)(reflx, k(x))
≡ transportcode(x,−)(reflx, ?)
≡ ?
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2. Assume x ≡ pos(succN(n)), y ≡ pos(succN(m)) and

encode(pos(n), pos(m), decode(pos(n),pos(m), c)) = c

for all c : code(pos(n), pos(m)). We need to prove

encode
(
pos(succN(n)), pos(succN(m)),decode

(
pos(succN(n)), pos(succN(m)), c

))
is equal to c. By definition of decode and encode we have

encode
(
pos(succN(n)), pos(succN(m)), decode

(
pos(succN(n)), pos(succN(m)), c

))
≡ encode

(
pos(succN(n)),pos(succN(m)), apsuccZ(decode(pos(n), pos(m), c))

)

≡
(
apsuccZ

(
decode(pos(n),pos(m), c)

))code((pos(succN(n)),−)

∗
(k(pos(succN(n)))).

Next we use the definition of k and lemma 2.15, followed by the definition of succZ
to see that(

apsuccZ
(
decode(pos(n), pos(m), c)

))code(pos(succN(n)),−)

∗
(k(pos(n)))

=
(
decode(pos(n),pos(m), c)

)code((pos(succN(n)),succZ(−))
∗ (k(pos(n)))

= (decode(pos(n), pos(m), c))code(succZ(pos(n)),succZ(−))
∗ (k(pos(n))).

With lemma 2.28 we can rewrite this, to see that

(decode(pos(n), pos(m), c))code(succZ(pos(n)),succZ(−))
∗ (k(pos(n)))

= (decode(pos(n),pos(m), c))code(pos(n),−)
∗ (k(pos(n)))

= encode(pos(n), pos(m), decode(pos(n),pos(m), c))
= c,

where we used the induction assumption in the last step.

3. If x ≡ neg(succN(n)) and y ≡ neg(succN(m)) the proof works the same as the one
we just did.

4. In all the other cases we get that code(x, y) ≡ 0. So we need to prove something
for all c : 0 which is trivial by induction on 0.
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This means that

Lemma 2.34. For all x, y : Z and paths p, q : x = y we have p =(x=y) q.

Remark 2.35. One might try to use path induction to prove this. However, after using
path induction for p, one has to prove that for all x : Z and all paths q : x = x one
has reflx = q. At this point one can not use path induction a second time, because the
statement one wants to prove is not of the form for all x, y : Z and q : x = y we have
some proposition C(x, y, q).

Proof. For all x, y : Z we have an equivalence between x = y and code(x, y). By induction
on Z there are only two cases we have to consider:

1. code(x, y) ≡ 0: We name our quasi-inverses f : (x = y)→ code(x, y) and f−1. We
have

p = f−1(f(p)) = f−1(f(q)) = q,

where we used that f and f−1 are quasi-inverse and that for all elements a, b : 0
we have a = b.

2. code(x, y) ≡ 1: We name our functions f : (x = y)→ code(x, y) and f−1 and get

p = f−1(f(p)) = f−1(f(q)) = q,

where we used that f and f−1 are quasi-inverse and that, by lemma 2.21, for all
elements a, b : 1 we have a = b.

2.8 Univalence axiom
In chapter 2.6.3 we talked about identies between types and were able to prove that
there is a function idtoeqv : (A =U B)→ B)→ (A ' B). We expect that there is also a
function (A ' B) → (A =U B) which is quasi-inverse to idtoeqv. However type theory
is not able to guarantee the existence of such a function. Therefore we have to take this
property as an axiom:

Axiom 2.36. (Univalence axiom) For any A,B : U idtoeqv is an equivalence.

Definition 2.37. We call the quasi-inverse of idtoeqv ua : (A ' B)→ (A =U B).
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3 Higher inductive Types

3.1 The higher interval
In this chapter we study higher inductive types (for further reading see [6]). When
we say a type is inductively defined, we mean that this type is generated by some
constructors. Just like the natural numbers, which are generated by the 0 element
together with the succsessor function. In all the examples we have seen so far the
constructor only generated objects of said type and nothing more. But what, if we want
to define something like the interval I. The structure of the interval is more than just an
accumulation of points. One can define the higher interval as the type with two points
and a path connecting those points. This means our introduction rule is given by

• a point 0I : I

• a point 1I : I

• a path seg : 0I =I 1I .

In this inductive definition we generate not only two points 0I : I and 1I : I, but also
a path in the type we are defining. We will call ordinary contructors (like the one that
constructs 0I : I) point constructors, and the others (like seg) path constructors. When
the definition of a type uses one (or more) path constructors, it is considered a higher
inductive type.
Note that, regardless of the structure of a type, there are some operations like inversion

that act on paths and higher paths on that type. Therefore, if a path is generated by a
certain constructor, these operations on paths yield more paths that may not come from
the constructor itself. In the example mentioned above we would not only have seg but
also seg−1.
One could think that a higher inductive type actually defines more than one type. For

example, one could think that our definition of I not only defines I itself but also the
identity type over I. On the first look that idea makes some sense, since our definition
contains a path constructor. However, it is the higher inductive type itself which will be
equipped with some induction principle (and therefore a universal property) and not the

0I 1I
seg

Figure 3.1: The higher interval
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Figure 3.2: The recursion principle of the higher interval

identity type as one may think. In particular the identity type over a higher inductive
type still has the same properties as any other identity type (and not any more).

Note that there are some inconspicuous constructors that yield paths or even higher
paths (i.e. paths between paths). If we, for example, define a type B with a constructor
of the type A → B, every path in A generates a path in B and every higher path in
A generates a higher path in B. Therefore, with a suitable A, this simple constructor
generates higher paths in B, making this constructor a path constructor.
The recursion principle for a type A generally states that, if we have another type

with the same structure, there is a function from A into that type that respects that
structure. This idea can be extended to higher inductive types. In our example I the
recursion principle would look like this. Given any type B with two points b0, b1 : B and
a path p : b0 =B b1.,there is a function f : I → B such that f(0I) ≡ b0, f(1I) ≡ b1 and
apf (seg) = p.
These three equalities are the computation rules. Note that, while we say that f(0I)

is by definition the same as b0, we used the weaker propositional equality the last time,
i.e. we only say that there is a path between apf (seg) and p. But why do we not use
judgemental equalities both times? The problem is that the application function is no
fundamental part of type theory, but something we defined. It seems a bit weird to call
two things judgementally equal, if everything depends on how we define a certain func-
tion. Jugemental equalities are part of the deductive system and should therefore not
depend on choices that we make within that system. While these questions are part of
current research, we will not dive deeper into this topic and simply accept that the com-
putation rules for point constructors yield judgemental equalities and the computation
rules for path constructors only yield propositional equalities.
As with ordinary inductive types we now want to give an induction principle for I,

i.e. a dependent eliminator. Recall that the induction principle for a type A states that
to prove some given proposition P for all x : A we only need to consider the elements
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directly generated by the constructors over A. For a better understanding first recall
the induction principle for N. To prove a proposition P for all n : N we need to give:

• a prove of P (0), by giving an element b : P (0)

• for each n : N a prove of that P (n) implies P (succ(n)), by giving a function
P (n)→ P (succ(n)).

The second can be seen as a function P → P respecting the constructor succ : N → N
or (topologically) lying over the succesor function. Analogously to prove P for all x : I
we need to give:

• a prove of P (0I) and P (1I) by giving elements b0 : P (0I) and b1 : P (1I)

• a path from b0 to b1 respecting (or lying over) the constructor seg : 0I = 1I .

But what do we mean by a path lying over another path? And how can we even connect
two elemnts b0 and b1 with a path, if they dont even have to be of the same type?

We already have discussed that topic in Lemma 2.8 about the dependent application
function. The solution was that a path from u : P (x) to v : P (y) lying over p : (x = y)
can be interpreted as a path from p∗(u) to v in P (y). We call such paths, lying over
other paths, dependent paths and introduce a short notation for the type of dependent
paths by defining

(u =P
p v) ≡ (transportP (p, u) = v) ≡ pP∗ (u) = v

Now we can define the induction principle for I, which states that given P : I → U
together with

• a point b0 : P (0)

• a point b1 : P (1)

• a path p : b0 =P
seg b1.

there is a function F :
∏

(x:I) P (x) such that F (0I) ≡ b0, F (1I) ≡ b1 and apdF (seg) = p.

With the induction principle we can prove the recursion principle.

Lemma 3.1. (Recursion principle) Given a type B with

• a point b0 : B

• a point b1 : B

• a path p : b0 =B b1.

there is a function f : I → B such that f(0I) ≡ b0, f(1I) ≡ b1 and apf (seg) = p.
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Figure 3.3: The induction principle for the higher interval

Proof. We want to use the induction principle for I with P (x) ≡ B. We have b0 : P (0)
and b1 : P (1), so it remains to give a path l : transportP (seg, b0) = b1. Since we have
transportconstBseg(b0) : transportP (seg, b0) = b0, we get

transportconstBseg(b0) p : transportP (seg, b0) = b1

Now the induction principle yields a function F :
∏

(x:I) P (x) such that F (0I) ≡ b0,
F (1I) ≡ b1 and apdF (seg) = transportconstPseg(b0) p. Since we can interpret F as a
non dependent function f : A → B with f(0I) ≡ b0, f(1I) ≡ b1 and apdf (seg) =
transportconstBseg(b0) p it only remains to show

apf (seg) = p

To see this we use the connection between ap and apd given by lemma 2.10 namely

apdf (seg) = transportconstBseg apf (p)

so we get that

transportconstBseg apf (p) = transportconstPseg(b0) p.

By cancelling transportconstBseg we get apf (seg) = p.

Our conception of the interval is that all the points lie on the path from 0I to 1I .
Therefore all elements in I should be connected by a path.

Lemma 3.2. The type I is contractible, for example with centre of contraction 1I , i.e.
there is a function F :

∏
(x:I)(x =I 1I).

39



Proof. We use the induction principle on I and start by defining P : I → U by P (x) ≡
(x =I 1I). We already have

seg : P (0)
refl1I : P (1)

Now we must find an element of the type seg =λx.(x=I1I)
seg refl1I or in other words, we

have to prove that this equality holds. By definition this is the type

transportλx.(x=I1I)(seg, seg) = refl1I .

By lemma 2.12 we know that

transportλx.(x=I1I)(seg, seg) = seg−1 seg

So we only need to prove that

seg−1 seg = refl1I .

This, however, holds as we have seen when discussing paths.

We can use the interval to prove function extensionality.

Lemma 3.3. Given two functions f, g : A→ B such that for all x : A we have f(x) =
g(x), f , then f = g in the type A→ B

Proof. By assumption we have a function P :
∏
x:A(f(x) = g(x)) and our goal is to find

an element of f =(A→B) g. First for all x : A we define an auxiliary function px : I → B
by induction on I with the defining definitions

px(0I) ≡ f(x)
px(1I) ≡ g(x)

appx
(seg) = P (x)

Now we can define q : I → (A→ B) by

q(0I) ≡ (λx.px(0I))
q(1I) ≡ (λx.px(1I))

apq(seg) ≡ (λx.appx
(seg))

By this definition we have that q(0I) is simply f and q(1I) is g. This means q maps seg
on a path between f and g, i.e.

q(seg) : f =(A→B) g
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3.2 The higher circle
Now that we understood the basic properties of higher inductive types, we will define
the higher circle S1. Just as we consider the interval as two points connected by a path,
we can define the circle inductively, in a natural way by

• a point base : S1

• a path loop : base =S1 base.

This means we understand the circle as a basepoint called base and a path from that
basepoint to itself. This of course is a homotopical representation of the circle in the
sense that we do not care about distances and the like.
To define a type, we need to know how to construct and how to use objects of that

type. Having discussed the introduction rule for S1 we now consider the elimination
rules, i.e. the recursion and induction principle.
The induction principle for S1 states that given P : S1 → U as well as

• an element b : P (base)

• a path l : b =P
loop b

there is a function F :
∏

(x:S1) P (x) such that F (base) ≡ b and apdF (loop) = l. This
means that to prove a proposition for all elements of the circle, we need to prove it for
base and we have to prove that the proposition holds as x varies along the path loop.

As with the other types we expect the recursion principle to be provable from the
induction principle.
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Figure 3.5: The induction principle for the higher circle

Lemma 3.4. (Recursion principle) Given a B : U with a point b : B and a path l :
b=b, there is a function f : S1 → B such that f(base) ≡ b and apf (loop) = l.

Proof. We use the induction principle with P : S1 → U , where P (x) ≡ B. We have
b : P (base) and need a path b =P

loop b, which by definition is transportP (loop, b) = b.

From lemma 2.9 we know that we have transportconstBloop : transportP (loop, b) = b.
Since l : b = b we can consider the composite

transportconstBloop l : (b =P
loop b)

Now the induction principle on S1 yields a function F :
∏

(x:S1) P (x) such that F (base) ≡
b and apdF (loop) = transportconstBloop l. Note that F can also be seen as a non
dependent function f : A→ B.

It remains to show that apF (loop) = l. From lemma 2.10 we know that

apdF (loop) = transportconstBloop apF (loop)

so we get that

transportconstBloop apF (loop) = transportconstBloop l.

Now we can cancel transportconst and get apF (loop) = l.
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This induction principle has a corresponding uniqueness principle, namely

Lemma 3.5. If A is a type and f, g : S1 → A are two maps such that there are two
equalities p, q

p : f(base) =A g(base)
q : apf (loop) =λx.(x=Ax)

p apg(loop)

we have f(x) = g(x) for all x : S1.

Proof. We use the induction principle for S1 on the type family P (x) ≡ (f(x) = g(x)).
First we need to give an element in P (base), i.e. in (f(base) =A g(base)). Here we can
simply use p as it is exactly of the right type. Next we have to prove that p =P

loop p. For
this we rewrite this equality until we see that q is sufficient to prove it. For this, first
note that p =P

loop p is by definition

transportλx.f(x)=g(x)(loop, p) = p

From lemma 2.11 we know that

transportλx.f(x)=g(x)(loop, p) =
(
apf (loop)

)−1
p apg(loop)

So now it is sufficient to prove that(
apf (loop)

)−1
p apg(loop) = p

which can easily be rewritten into

apf (loop) p = p apg(loop).

43



Here we can apply lemma 2.18 to see that

apf (loop) p = p apg(loop) ' transportλx.(x=x)(p, apf (loop)) = apg(loop).

This means we have a function that maps every proof of

transportλx.(x=x)(p, apf (loop)) = apg(loop)

onto a proof of

apf (loop) p = p apg(loop).

So it only remains to prove that the type transportλx.(x=x)(p, apf (loop)) = apg(loop) is
inhabited. This type, however, is by definition apf (loop) =λx.(x=Ax)

p apg(loop) which is
proven by q.

With this lemma we can now prove the universal property of the circle:

Lemma 3.6. For any type A we have

(S1 → A) '
∑
x:A

(x =A x)

Proof. There is a natural choice for a function f : (S1 → A) →
∑
x:A(x =A x) namely

to define

f(h) ≡ (h(base), aph(loop))).

Now we need a function g :
∑
x:A(x =A x)→ (S1 → A). By recursion on the dependent

pair type we can define g(x, p) ≡ h, where h : S1 → A is defined by recursion on S1 by

h(base) ≡ x
h(loop) = p.

Next we prove that f and g are quasi-inverse.
For all u :

∑
x:A(x =A x) we have f(g(u)) = u. By induction on

∑
x:A(x =A x)

we can assume that u has the form (x, l) with x : A and l : x = x. By definition we
have f(g(u)) ≡

(
g(u)(base), g(u)(loop)

)
. But g(u)(base) ≡ x and g(u)(loop) = l so

f(g(u)) = u.
Now consider a function h : S1 → A. We show that g(f(h)) = h. By the uniqueness

principle of S1 it is sufficient to prove that there is

p : g(f(h))(base) = h(base)

q : p(x7→x=x)
∗

(
g(f(h))(loop)

)
= h(loop).

First we define p. Since by definition g(f(h))(base) ≡ h(base), we can take p to be
reflh(base). It remains to prove that g(f(h))(loop) = h(loop) but this again simply holds
by definition of f and g.
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3.3 Suspensions
The suspension of a type A

• a point N : ΣA

• a point S : ΣA

• a function merid A→ (N =ΣA S).

This notation is used to suggest a globe of sorts with a north pole N , a south pole S
and for each element of A a meridian, i.e. a path between those two.
The induction principle states that given P : ΣA→ U together with

• a point n : P (N),

• a point s : P (S) and

• for each a : A a path m(a) : n =P
merid(a) s,

we get a function F :
∏

(x:ΣA) P (x) such that F (N) ≡ n, F (S) ≡ s and for all a : A we
have apdF (merid(a)) = m(a). With the induction principle we can prove the recursion
principle for the suspension type.
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Figure 3.8: The induction principle for the suspension of the type A

Lemma 3.7. (Recursion principle) For each B with

• points n, s : B, and

• a function m : A→ (n = s)

we have a function f : ΣA → B such that f(N) ≡ n and f(S) ≡ s, as well as for all
a : A f(merid(a)) = m(a).

Proof. We use the induction principle with P : ΣA → U , where P (x) ≡ B. We have
n : P (N) and s : P (S). Now we need a path m′(a) : merid(a)P∗ (n) = s for every a : A.
To see this fix an a : A. From lemma 2.9 we know that we have

transportconstBmerid(a) : merid(a)P∗ (n) = n.

Since m(a) : n = s we can consider the composite

transportconstBmerid(a) m(a) : merid(a)P∗ (n) = s.

Now the induction principle on ΣA yields a function F :
∏

(x:ΣA) P (x) such that F (N) ≡
n, F (S) ≡ s and apdF (merid(a)) = transportconstBloop m(a) for all a : A. Note that F
can also be seen as a non dependent function f : A→ B.

It remains to show that apF (merid(a)) = m(a) for all a : A. From lemma 2.10 we
know that

apdF (merid(a)) = transportconstBmerid(a) apF (merid(a))
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Figure 3.9: The recursion principle for the suspension of the type A

so we get that

transportconstBmerid(a) apF (merid(a)) = transportconstBmerid(a) m(a).

Now we can cancel transportconst and get apF (merid(a)) = m(a).

Lemma 3.8. Σ1 ' I

Proof. Since we have 0I , 1I : I and can define a function m : 1→ (0I =I 1I) by setting
m(?) ≡ seg, by recursion on Σ1, we get a function f : Σ1→ I such that

• f(N) ≡ 0I ,

• f(S) ≡ 1I and

• f(merid(1)) = seg.

To define the inverse of f , we use recursion on I. We have N,S : Σ1 and merid(?) : N =
S so the recursion principle on I yields a function g : I → Σ1 such that

• g(0I) ≡ N

• g(1I) ≡ S

• g(seg) = merid(?)

It remains to prove that f and g are indeed quasi-inverse.
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First consider f ◦ g. We use induction on I to prove (f ◦ g)(x) = x for all x : I. Define
P : I → U by P (x) ≡ (f ◦ g)(x) = x. Since we have that

P (0I) ≡ ((f ◦ g)(0I) = 0I) ≡ (f(N) = 0I) ≡ (0I = 0I)
P (1I) ≡ ((f ◦ g)(1I) = 1I) ≡ (f(S) = 1I) ≡ (1I = 1I)

we have refl0I : P (0I) and refl1I : P (1I). Now we need to give a path refl0I =P
seg refl1I .

By definition this is just proving transportλx.(f◦g)(x)=x(seg, refl0I ) = refl1I . By lemma
2.11 we have that

transportλx.(f◦g)(x)=x(seg, refl0I ) = (apf◦g(seg))−1 refl0I seg

so, since we can simply cancel refl0I , it is sufficient to prove

(apf◦g(seg))−1 seg = refl1I .

But since

apf◦g(seg))−1 seg ≡ (apf (apg(seg)))−1 seg
≡ (apf (merid(?)))−1 seg
≡ seg−1 seg

this is just proving seg−1 seg = refl1I which is trivially true. Induction on I now yields
a function of the type

∏
x:I((f ◦ g)(x) = x) thereby proving (f ◦ g)(x) = x for all x : I.

Now we use induction on Σ1 to prove (g ◦ f)(x) = x for all x : Σ1. Define Q : Σ1→ U
by Q(x) ≡ (g ◦ f)(x) = x. Since by definition

Q(N) ≡ ((g ◦ f)(N) = N) ≡ (g(0I) = N) ≡ (N = N)
Q(S) ≡ ((g ◦ f)(S) = S) ≡ (g(1I) = S) ≡ (S = S)

we have reflN : Q(N) and reflS : Q(S). Now we need for each element a : 1 a prove of
reflN =Q

merid(a) reflS . By induction on 1 it is sufficient to prove reflN =Q
merid(1) reflS . By

definition this is the same as proving

transportλx.(g◦f)(x)=x(merid(?), reflN ) = reflS

Again by lemma 2.11 we have that

transportλx.(g◦f)(x)=x(merid(?), reflN ) = (apg◦f (merid(?))−1 reflN merid(?)

so, after cancelling reflN it is sufficient to prove that

(apg◦f (merid(?))−1 merid(?) = reflS .

To see that this equality holds, we simplify the left side:

(apg◦f (merid(?))−1 merid(?) ≡ (apg(apf (merid(?))))−1 merid(?)
≡ (apg(seg))−1 meird(?)
≡ (merid(?))−1 merid(?).
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That (merid(?))−1 merid(?) = reflS is clear, so induction on Σ1 yields a function of the
type

∏
x:Σ1((g ◦ f)(x) = x) thereby proving that g and f are really quasi-inverse.

Lemma 3.9. Σ2 ' S1

Proof. We use recursion on Σ2 to define a function f : Σ2→ S1. We need two points in
S1 so we take base for both of them. Now we need a function m : 2→ (base =S1 base).
We define this by recursion on 2 by settingm(02) ≡ loop andm(12) ≡ reflbase. Recursion
on Σ2 now yields a function f : Σ2→ S1 such that

f(N) ≡ base
f(S) ≡ base

f(merid(02)) = loop
f(merid(12)) = reflbase.

Now we use recursion on S1 to define the inverse function g : S1 → Σ2. We have a
point N : Σ2 and a path merid(02) merid(12)−1 from N to itself. By recursion we get
g : S1 → Σ2 such that

g(base) ≡ N
g(loop) = merid(02) merid(12)−1.

It remains to show that f and g are quasi-inverses. First we prove by induction on
Σ2 that for all x : Σ2 we have g(f(x)) = x. For this define P : Σ2 → U by P (x) ≡
((g(f(x)) = x). Since P (N) ≡ (N = N) and P (S) ≡ (N = S) we have

• reflN : P (N)

• merid(12) : P (S)

It remains to give for each x : 2 a term m(x) : reflN =P
merid(x) merid(12). By definition

this amounts to:

transportλx.g(f(x))=x(merid(x), reflN ) = merid(12)

By lemma 2.11 we get that

transportλx.(g◦f)(x)=x(merid(x), reflN ) = (ap(g◦f)(merid(x)))−1 reflN merid(x)

and since we can cancel reflN , it now only remains to prove that

(ap(g◦f)(merid(x)))−1 merid(x) = merid(12).

By induction on 2 we take cases:
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1. If x ≡ 02, we get

(ap(g◦f)(merid(02)))−1 merid(02) = (g(f(merid(02)))−1 merid(02)
= (g(loop))−1 merid(02)
= (merid(02) merid(12)−1)−1 merid(02)
= (merid(12)−1)−1 merid(02)−1 merid(02)
= merid(12)

2. If x ≡ 12, we get

(ap(g◦f)(merid(12)))−1 merid(12) = (g(f(merid(12)))−1 merid(12)
= (g(reflbase))−1 merid(12)
= reflN merid(12)
= merid(12)

Therefore we have (g(f(x)) = x, for all x : Σ2.
Now we use induction on S1 to prove f(g(x)) = x for all x : S1. For this we define

Q : S1 → Σ2 by Q(x) ≡ (f(g(x)) = x). Since Q(base) ≡ (base = base) we have
reflN : Q(base). It remains to give an path reflbase =Q

loop reflbase. By definition this
amounts to

transportλx.(f◦g(x)=x)(loop, reflbase) = reflbase.

Again we use lemma 2.11 and we get that

transportλx.(f◦g(x)=x)(loop, reflbase) = (ap(f◦g)(loop))−1 reflbase loop

so it only remains to show

(ap(f◦g)(loop))−1 reflbase loop = reflbase

We use lemma 2.4 to see that

(ap(f◦g)(loop))−1 reflbase loop = f(g(loop))−1 loop
= f(merid(02) merid(12)−1)−1 loop
= (f(merid(02)) f(merid(12))−1)−1 loop
= f(merid(12)) f(merid(02))−1 loop
= reflbase loop−1 loop
= reflbase

By induction on S1 we get that f(g(x)) = x for all x : S1.
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3.4 The fundamental group of the circle
In this section we will prove that the type of paths base =S1 base is equivalent to the
integers Z.

Lemma 3.10. There is a function wind : Z → (base =S1 base), that maps pos(0N) to
loop

Proof. Define wind(0) ≡ reflbase, define wind(pos(0N)) ≡ loop and define

wind(pos(succN(n))) ≡ wind(pos(n)) loop.

Define wind(neg(0N)) ≡ loop−1 and define

wind(neg(succN(n))) ≡ wind(neg(n)) loop−1.

Definition 3.11. There is a function code : S1 → U

code(base) ≡ Z
apcode(loop) = ua(succZ)

This function is defined by recursion on S1. Note that we need the strong recursion
principle we explained in remark 2.23 to do this.

Lemma 3.12. We have

(loop)code∗ = succZ
(loop−1)code∗ = succ−1

Z

Proof. By lemma 2.20 we have

loopcode∗ = idtoeqv ◦ apcode ◦ loop
= idtoeqv ◦ ua ◦ succ
= succ

where we used that idtoeqv and ua are quasi-inverse. Since transportation respects
inverses by lemma 2.19, we have

(loop−1)code∗ = (loopcode∗ )−1

= succ−1
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Lemma 3.13. For all z : Z we have

wind ◦ succ−1
Z (z) = wind(z) loop−1.

Proof. We use induction on Z.

1. If z ≡ 0Z, we have to prove wind◦ succ−1
Z (0Z) = wind(0Z) loop−1. But wind(0Z) ≡

reflbase and wind(neg(0N)) ≡ loop−1 so this is clear.

2. If z ≡ pos(n) for some n : N, we use induction on N.
If z ≡ pos(0N), we have to prove wind ◦ succ−1

Z (pos(0N)) = wind(pos(0N)) loop−1.
By definition we have wind(pos(0N) ≡ loop and we know that succ−1

Z (pos(0N)) ≡ 0Z
so this is just proving

wind(0Z) = loop loop−1.

This, however, is true since both sides are equal to reflbase.
If z ≡ pos(succN(n)) for some n : N, we calculate:

wind ◦ succ−1
Z (pos(succN(n))) = wind(pos(n))

= wind(pos(n)) loop loop−1

= wind(pos(succN(n))) loop−1,

where we used the definition of wind for the last equation.

3. If c ≡ neg(n) for some n : N, we use induction on N and the proof works similar
to the one we just did.

Definition 3.14. We define encode :
∏
x:S1

∏
p:(base=S1x) code(x) by

encode(x, p) ≡ transportcode(p, 0Z).

This is well typed since transportcode(p,−) is a function from Z into code(x).

Definition 3.15. We defne decode :
∏
x:S1

(
code(x)→ base =S1 x

)
by induction on S1,

by

decode(base,−) ≡ wind
apddecode(loop) = l,

where l is a path loopP∗ (wind) = wind, with P : S1 → U beeing defined by

P (x) ≡
(
code(x)→ base =S1 x

)
.

To see that this is well typed, first note that P (base) ≡ Z→ (base =S1 base) so we have
wind : P (base).
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Now we need to prove that loopP∗ (wind) = wind. By definition we have

loopP∗ (wind) ≡ loop
λx.
(
code(x)→base=S1x

)
∗ (wind).

We use lemma 2.13 followed by lemma 3.12,which states that, (loop−1)code∗ = succ−1
Z , to

see that

loop
λx.
(
code(x)→base=S1x

)
∗ (wind) = loopλx.(base=x)

∗ ◦ wind ◦ (loop−1)code∗

= loopλx.(base=x)
∗ ◦ wind ◦ succ−1

Z .

Next we prove that for all z : Z we have

loopλx.(base=x)
∗ ◦ wind ◦ succ−1

Z (z) = wind(z).

Function extensionality then implies that loopλx.(base=x)
∗ ◦ wind ◦ succ−1

Z = wind, com-
pleting our proof. Let z : Z be arbitrary. We can rewrite loopλx.(base=x)

∗ ◦wind◦succ−1
Z (z)

and then apply lemma 2.12 to see that

loopλx.(base=x)
∗ ◦ wind ◦ succ−1

Z (z) = loopλx.(base=x)
∗

(
wind ◦ succ−1

Z (z)
)

= (wind ◦ succ−1
Z (z)) loop

Now we can use the connection between succZ and wind, given by lemma 3.13, to see
that

(wind ◦ succ−1
Z (z)) loop = (wind(z) loop−1) loop

= wind(z) (loop−1 loop)
= wind(z) reflbase
= wind,

thereby completing the proof.

Lemma 3.16. Let x : S1, p : base =S1 x then

decode(x, encode(x, p)) = p

Proof. Since apddecode(p) : p(code(x)→base=S1x)
∗ (decode(base)) = decode(x) we have

decode(x, encode(x, p)) ≡ decode(x)(pcode∗ (0Z))

= p
x 7→(code(x)→base=x)
∗ (decode(base))(pcode∗ (0Z))

≡ px 7→(code(x)→base=x)
∗ (wind)(pcode∗ (0Z)).
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With lemma 2.13 and lemma 2.14 we can rewrite this

p
x 7→(code(x)→base=x)
∗ (wind)(pcode∗ (0Z)) = px 7→base=x

∗ ◦ wind ◦ (p−1)code∗ (pcode∗ (0Z))
= px 7→base=x

∗ ◦ wind ◦ (p p−1)code∗ (0Z)
= px 7→base=x

∗
(
wind ◦ (reflbase)code∗ (0Z))

= px 7→base=x
∗ (wind(0Z))

= px 7→base=x
∗ (reflbase)

= reflbase p

= p.

Lemma 3.17. For x : S1 and c : code(x) we have

encode(x,decode(x, c)) = c.

Proof. We define P : S1 → U by P (x) ≡
∏
c:code(x)(encode(x,decode(x, c)) = c). To

prove the lemma we have to prove ∏
x:S1

P (x).

For this we use induction on S1. If x ≡ base we have to give a proof of∏
c:code(base)

(encode(base,decode(base, c)) = c).

By definition we have that code(base) ≡ Z as well as

(encode(base, decode(base, c)) = c) ≡ (encode(base,wind(c)) = c)
≡ (transportcode(wind(c), 0Z) = c).

So we can simply use induction on Z to prove∏
c:Z

(transportcode(wind(c), 0Z) = c).

1. If c ≡ 0Z, we have to prove (transportcode(wind(0Z), 0Z) = 0Z). But wind(0Z) ≡
reflbase and by definition (transportcode(reflbase, 0Z) ≡ idZ(0Z); so this is clear.

2. If c ≡ pos(n) for some n : N, we use induction on N.
If c ≡ pos(0N), we have to prove (transportcode(wind(pos(0N)), 0Z) = pos(0N)). By
definition we have wind(pos(0N) ≡ loop and we know that

transportcode(loop, 0Z) = succ(0Z),

which again by definition is pos(0N).
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If c ≡ pos(succN(n)) for some n : N, we calculate:

transportcode(wind(pos(succN(n))), 0Z) = transportcode(wind(pos(n)) loop, 0Z)
= loopcode∗ (wind(pos(n))code∗ (0Z))

Now we use the induction assumption and get

loopcode∗ (wind(pos(n))code∗ (0Z)) = loopcode∗ (pos(n))
= succZ(pos(n))
= pos(succN(n)).

3. If c ≡ neg(n) for some n : N, we use induction on N and the proof works similar
to the one we just did.

This means we have found an element a0 : P (base). Now to complete the induction
on S1, we have to prove that loopP∗ (a0) = a0. a0 and loopP∗ (a0) are both of the type∏
c:Z(transportcode(wind(c), 0Z) = c). That means for every c : Z a0 and loopP∗ (a0) are

both proofs for transportcode(wind(c), 0Z) =Z c. By lemma 2.34 Z is a socalled set, i.e.
all the paths transportcode(wind(c), 0Z) =Z c are equal in the identity type. So the two
functions a0 and loopP∗ (a0) have the same value on every element of Z and therefore are
equal as functions by function extentionality.

Theorem 3.18.
∏
x:S1 [(base =S1 x) ' code(x)].

Proof. Just combining the two lemmata above.

Corollary 3.19. (base = base) ' Z.

Proof. Immediate from the theorem above with x ≡ base.
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