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THETA FUNCTIONS IN HIGHER DIMENSION

For the case of the elliptic curve in Weierstrass’s notations theta functions
appear as the sigma function σ which is holomorphic and has a simple zero.
The quotients of two products of the translates of the sigma function is used
to form an elliptic function with assigned multiplicative data of poles and
zeroes. The sigma function σ is obtaind by integrating the Weierstrass p
function twice and change the sign and take the exponential so that we end
up with a simple zero. This process, of course, destroys the periodicity.
Instead we get a periodicity factor which is the exponential of a polynomial
of degree one. So in the case of theta functions on the higher dimensional
Euclidean space C

n (or a complex vector space V of complex dimension n
when we do not want to specify any coordinate system) with a lattice D we
define the theta function as an entire function F (x) which for u ∈ D satisfies
F (x + u) = F (x) exp(2π

√
−1 g(x, u)) for some polynomial g(x, u) of degree

one in x. The function g(x, u) is defined on V ×D and its value is defined only
up to an additive integer. We separate the homogeneous part and constant
part of g(x, u) and write g(x, u) = L(x, u) + J(u), where L(x, u) is C-linear
in x. A theta function will be later interpreted as a holomorphic section
of a holomorphic line bundle on the manifold V/D. In this interpretation
exp(2π

√
−1(L(x, u)+J(u))) will appear as the transition function of the line

bundle and satisfies the compatibility condition for transition functions. We
now formulate the compatibility conditions in our setting here.

F (x + u + v) = F ((x + v) + u) = F (x + v) exp(2π
√
−1(L(x + v, u) + J(u)))

= F (x) exp(2π
√
−1(L(x, v) + J(v))) exp(2π

√
−1(L(x + v, u) + J(u))).

On the other hand,

F (x + u + v) = F (x + (u + v)) = F (x) exp(2π
√
−1(L(x, u + v) + J(u + v))).

Hence

L(x, u + v) + J(u + v) ≡ L(x, v) + J(v) + L(x + v, u) + J(u) mod Z.

We separate this condition into the homogeneous part and the constant part
by setting x = 0. By setting x = 0 in the above equation we get

(1) J(u + v) ≡ J(v) + L(v, u) + J(u) mod Z
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and plucking this back into the equation we get

L(x, u + v) ≡ L(x, v) + L(x, u) mod Z.

Actually the last congruence relation is an identity because of the C-linearity
of L(x, u). The reason is as follows. Since L(x, u + v)− (L(x, v) + L(x, u)) is
always an integer, its partial derivatives

∂

∂xν

(L(x, u + v) − (L(x, v) + L(x, u)))

with respect to x must vanish. On the other hand, since L(x, u) is homoge-
neous in x of degree one, we have by Euler’s equation

L(x, u) =
n

∑

ν=1

xν

∂

∂xν

L(x, u).

It follows that

L(x, u + v) − (L(x, v) + L(x, u))

=
n

∑

ν=1

xν

∂

∂xν

(L(x, u + v) − (L(x, v) + L(x, u))) = 0

and we have the Z-linearity of L(x, u) in u for u ∈ D. We can extend the
domain of definition of L(x, u) to V × V so that L(x, u) is C-linear in x ∈ V
and R-linear in u ∈ V . All we have to do is to construct for fixed x the R-
linear function L(x, u) in u whose values in a basis of V over R consisting of
elements of D agree with the values of the original function L(x, u). After we
finish handling the homogeneous part L(x, u), we now return to the constant
part J(u) which satisfies the compatibility condition (1). The function J(u)
is not linear in u in that congruence. The obstruction is L(u, v). We can
modify it to make it linear by using the usual polarization for the quadratic
form L(u, v). First we note that from (1) we have

(2) L(u, v) ≡ L(v, u) mod Z for u, v ∈ D.

When we are dealing with congruences, we actually have a quadratic form
L(u, v). Define K(u) = J(u) − 1

2
L(u, u). Then we have K(u + v) ≡ K(u) +

K(v) mod Z. Since the value of K(u) is defined only up to an additive
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integer, we can now extend the definition of K(u) so that it is an R-linear
function on V . All we have to do again is to choose a basis of V over
R consisting of elements of D and use the values of K(u) on those basis
elements to define the R-linear function on V . We now want to get more
information about the homogeneous part L(x, u). The congruence (2) says
that L(u, v) is symmetric on D × D modulo Z. We introduce (2 times) the
skew-symmetric part E(x, y) = L(x, y) − L(y, x) of L(x, y) to measure its
failure to be symmetric. Since L(x, y) is C-linear in x ∈ V and R-linear
in y ∈ V , we know that E(x, y) is R-linear in both x and y. Moreover,
E assumes integral values on D × D. Since we can choose basis elements
of V from D, it follows that E is R-valued. We would like to investigate
the possibility of writing E as the imaginary part of a Hermitian form on
V . Forget our notation E for the time being. In general a Hermitian form
H(x, y) = S(x, y) +

√
−1E(x, y) has symmetric real part S(x, y) and skew-

symmetric part E(x, y). The C-linearity of H(x, y) in x can be expressed in
terms of relations between S(x, y) and E(x, y) as follows.

S(
√
−1x, y) +

√
−1E(

√
−1x, y) = H(

√
−1x, y)

=
√
−1H(x, y) = −E(x, y) +

√
−1S(x, y)

is equivalent to S(x, y) = E(
√
−1x, y). So in general given a skew-symmetric

form E(x, y) a necessary and sufficient condition for it be the imaginary
part of a Hermitian form is that the form S(x, y) defined as E(

√
−1x, y) is

symmetric in x and y. Now let us go back to our notation E(x, y). It is not
just any skew-symmetric form, but is the skew-symmetric part of a form C-
linear in the first argument and R-linear in the second argument. We claim
that this property insures that it is the imaginary part of a Hermitian form.
(Of course the converse is clearly true because a Hermitian form is C-linear
in its first argument and is R-linear in its second argument.) We now use the
C-linearity of L(x, y) in x to verify the symmetry of S(x, y) = E(

√
−1x, y)

in x and y.

S(x, y) − S(y, x) = E(
√
−1x, y) − E(

√
−1y, x)

= L(
√
−1x, y) − L(y,

√
−1x) − (L(

√
−1y, x) + L(x,

√
−1y))

=
√
−1L(x, y)+

√
−1L(

√
−1y,

√
−1x)−

√
−1L(y, x)−

√
−1L(

√
−1x,

√
−1y)

=
√
−1(E(x, y) − E(

√
−1x,

√
−1y))

.
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Since the left-hand side is real and the right-hand side is purely imaginary,
it follows that both sides vanish and S(x, y) is symmetric in x and y. Now
we form the Hermitian form H(x, y) = S(x, y)+

√
−1E(x, y). Two times the

skew-symmetric part of −
√
−1
2

H is its imaginary part E. So L and −
√
−1
2

H
both have the same skew-symmetric part. Or what is the same thing their
difference is symmetric. Recall that we get to this part by considering the
compatibility condition for the periodicity factor exp(2π

√
−1 g(x, u)) and we

separate into the homogeneous part and the constant part to get L and J
and then we decide that K is a better entity than J because of its R-linearity.
When we use L and K, we lose no information. However, when we consider
the skew-symmetric E part of L and then construct from it the Hermitian
form H, the entities L and H are not equivalent. We can get from L to
H, but would have trouble reconstructing L from H. The Hermitian form
H is better, because instead of C-linearity of L in its first argument and R-
linearity in its second argument we have the better condition of C-linearity
of H in its first argument and anti−C-linearity in its second argument. The
price we pay is that some information is lost. We claim that for our purpose
such a loss of information is immaterial.

We consider theta functions because we want to take the quotient of two
products of translates of such theta functions to get a meromorphic function
on V/D. When the theta function has no zero, the meromorphic function we
get on V/D would be constant and is uninteresting. So we can ignore theta
functions which have no zeroes. We consider those theta functions trivial.
One way to construct such theta functions is to look at the exponential of
polynomials of degree two. Then the periodicity factors would clearly be the
exponential of a polynomial of degree one. So we define a theta function as
trivial if it is of the form exp(2π

√
−1(b(x, x) + λ(x) + c)), where b(x, y) is

C-bilinear and λ(x) is C-linear and c ∈ C. Two theta functions are called
equivalent if their quotient is a trivial theta function.

Now let us come back to the question of information loss when we pass
from L to H. This information loss disappears modulo trivial theta functions.
Intuitively this is the case because the difference between L and −

√
−1
2

H is

symmetric and since both L and −
√
−1
2

H are C-linear in their first arguments
their difference is actually a symmetric C-bilinear form which can serve as
(2 times) b(x, y). By considering equivalence modulo trivial theta functions
we have the bonus of the choice of λ(x) + c. Note that c is useless because
it simply multiplies the trivial theta function by a constant. We will use
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this choice to make K real-valued. Consider an R-linear function ℓ(x) =
p(x) +

√
−1q(x) on V , where p(x) and q(x) are both real-valued. For ℓ(x)

to be C-linear it is necessary and sufficient that p(x) = q(
√
−1x). Now write

K(x) = p(x) +
√
−1q(x) with p(x) and q(x) both real-valued. Then we can

define λ(x) = q(
√
−1x) +

√
−1q(x) and K(x) − λ(x) = p(x) − q(

√
−1x) is

real-valued and λ(x) is C-linear. Let

L(x, u) −
(

−
√
−1

2
H(x, u)

)

= 2 b(x, u).

Define the trivial theta function F0(x) = exp(2π
√
−1(b(x, x) + λ(x)). Then

F0(x + u) = F0(x) exp
(

2π
√
−1 (2b(x, u) + b(u, u) + λ(u))

)

and
(

F

F0

)

(x + u)

=

(

F

F0

)

(x) exp
(

2π
√
−1 (L(x, u) − 2b(x, u) + J(u) − b(u, u) − λ(u))

)

=

(

F

F0

)

(x) exp

(

2π
√
−1

(

−
√
−1

2
H(x, u) + J(u) − b(u, u) − λ(u)

))

=

(

F

F0

)

(x) exp

(

2π
√
−1

(

H(x, u) + K(u) +
1

2
L(u, u) − b(u, u) − λ(u)

))

=

(

F

F0

)

(x) exp

(

2π
√
−1

(

−
√
−1

2
H(x, u) + (K(u) − λ(u)) −

√
−1

4
H(u, u)

))

.

Here K(u) − λ(u) is real-valued. We now define a theta function as nor-

malized if L(x, y) = −
√
−1
2

H(x, y) and K(x) is real-valued on V . We have
just proved that any theta function is equivalent to a normalized theta func-
tion. Moreover, any two normalized theta function in the same equivalence
class differs by a multiplicative constant. The reason is that the quotient
of two normalized theta functions in the same class must be of the form
exp(2π

√
−1(b(x, x) + λ(x) + c) and is normalized. Since the periodicity fac-

tor is exp(2π
√
−1(2b(x, u) + b(u, u) + λ(u)). So b(x, y) is at the same time

C-bilinear and Hermitian and must vanish. The function λ(x) is at the same
time C-linear and real-valued and so must also vanish. The normalized theta
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function is now just the constant exp(2π
√
−1 c). We have just seen that a

normalized theta function transforms according to

F (x + u) = F (x) exp

(

2π
√
−1

(

−
√
−1

2
H(x, u) + K(u) −

√
−1

4
H(u, u)

))

.

Since K is both real-valued and R-linear, we can define

ψ(x) = exp(2π
√
−1 K(x))

and get a character on the additive group V (which means a homomorphism
from the additive group V to the multiplicative group of all complex numbers
of absolute value 1). We call the pair (H,ψ) the Hermitian character of the
normalized theta function. It determines how the normalized theta function
transforms under translation by an element of the lattice D.

The Hermitian form of any non identically zero normalized theta function
is positive semidefinite. The reason is as follows. Let

h(x) = F (x) exp
(

−π

2
H(x, x)

)

.

Then

h(x + u, x + u) = F (x + u) exp
(

−π

2
H(x + u, x + u)

)

= F (x) exp

(

2π
√
−1

(

−
√
−1

2
H(x, u) + K(u) −

√
−1

4
H(u, u)

))

·

· exp
(

−π

2
H(x, x) − π

2
Re H(x, u) − π

2
H(u, u)

)

= h(x) exp
(

π
√
−1Im H(x, u) + 2π

√
−1 K(u)

)

.

So |h(x)| = |h(x + u)| which implies that |h(x)| is bounded on V . So

|F (x)| ≤ C exp
(π

2
H(x, x)

)

on V for some positive real number C. If H is not positive semidefinite, then
H(x, x) < 0 for some x ∈ V . Since

|F (λ x)| ≤ C exp
(π

2
|λ|2H(x, x)

)
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for all λ ∈ C, it follows that the entire function F (λx) on C as a function of λ
approaches zero as |λ| → ∞, which implies by Liouville’s theorem F (λx) ≡ 0
for all λ ∈ C. Since H(x, x) < 0, we can find an open neighborhood U of x
in V so that H(y, y) < 0 for all y ∈ U . So F (λy) ≡ 0 for λ ∈ C and y ∈ U .
Being identically zero on a nonempty open subset of V the entire function F
must be identically zero, which is a contradiction.

We are going to interprete the Hermitian form as the curvature of the
line bundle of which the theta function is a holomorphic section. The line
bundle which we call L is associated with the divisor of the normalized theta
function F . We cover the complex manifold V/D by small open balls Uν so
that each open ball Uν can be lifted homeomorphically to an open ball Uν0 in
V under the universal covering map π : V → V/D. For ℓ ∈ D we let Uνℓ be
Uν + ℓ. We consider the covering {π(Uνℓ)}. The divisor on π(Uνℓ) is defined
by the holomorphic function F |Uνℓ after the identification of Uνℓ with π(Uνℓ)
under π. The transition function for the line bundle between Uνℓ and Uµp is
given by

gνℓ,µp(π(x)) =
F (x + u)

F (x)
= exp

(

π H(x, u) +
π

2
H(u, u) + 2π

√
−1 K(u)

)

for x ∈ Uµp ∩ (Uνℓ − u), where u = uνℓ,µp is the unique element in D such
that Uµp + u intersects Uνℓ. We have to define a Hermitian metric for the
line bundle. Let hνℓ(π(x)) = exp(−π H(x, x)) for x ∈ Uνℓ. We have to verify
that hνℓ|gνℓ,µp|2 = hµp on π(Uνℓ) ∩ π(Uµp). This means that

exp(−πH(x + u, x + u))
∣

∣

∣
exp(πH(x, u) +

π

2
H(u, u) + 2π

√
−1 K(u))

∣

∣

∣

2

= exp(−π H(x, x))

for x ∈ Uµp and u = uνℓ,µp. The curvature of the line bundle is given by

√
−1

2π
∂∂̄ log |gνℓ,µp|2 = H.

Here we have made the identification of the (1,1)-form

√
−1

n
∑

j,k=1

ajkdzj ∧ dzk
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with the Hermitian form

(ξj) →
n

∑

j,k=1

ajkξjξk.

In general, the curvature of the line bundle associated to a divisor can be
written as positive (1,1)-current. In this case the curvature form is smooth
and constant because of the nature of the theta function. So it must be pos-
itive semidefinite. This is the geometric explanation of the second argument
for the positive semidefiniteness of the Hermitian form associated to an entire
normalized theta function which is not identically zero.

When we have a theta function, we have an effective divisor on the com-
pact manifold V/D. The converse is also true. We going to construct from
a complex hypersurface of V/D a theta function. Let X̄ be the complex
hypersurface in V/D and X be its inverse image in V . Let π : V → V/D be
the projection map. The idea of the construction is as follows. We consider
the line bundle L over V/D assoicated to the divisor X̄ of V/D and consider
the canonical section sL of the line bundle L so that the divisor of sL is X̄.
Consider the pullback π∗L of L to V and we will produce an isomorphism
between π∗L and the trivial line bundle of V so that the pullback π∗sL of sL
becomes an entire function on V whose divisor is X and this entire function
is the theta function we seek. We introduce Hermitian metric for L which
gives a Chern form γL. The metric of L pulls back to a metric of π∗L whose
Chern form is π∗γL. The isomorphism between π∗L and the trivial line bun-
dle is constructed by first using a change of local fiber coordinates for π∗L
so that the Chern form π∗γL becomes identically zero. Then the transition
functions become locally constant and by using the simply connectedness we
can get finally the isomorphism between π∗L and the trivial line bundle. To
make the Chern form π∗γL zero by using new local fiber coordinates we first
make γL harmonic, which is the same as the coefficients of γL being constant.

We cover V/D by small open balls Uν so that on each Uν the complex
hypersurface X̄ is defined by a holomorphic function ϕν on Uν . Let Uν0

be an open ball in V such that Uν is its image under the projection map
π : V → V/D. For ℓ ∈ D let Uνℓ = Uν0 + ℓ. We lift ϕνℓ to Uνℓ via the
projection map π. Let gµν = ϕµ

ϕν
on Uµ ∩ Uν . Then (gµν) are the transition

functions for the line bundle associated with the divisor X̄. We want to get
a (normalized) theta function whose divisor is X. We have seen that the
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Hermitian matrix associated to the theta function is the curvature of the line
bundle and so must be in the Chern class of the line bundle. The Chern class
of a holomorphic line bundle is of type (1,1). We locate the Chern class in
the following way. Let hν be a Hermitian metric of the line bundle. Then
hµ|gµν |2 = hν and

(3) d log gµν = ∂ log hν − ∂ log hµ.

This step writes the (1, 0)-form d log gµν as the coboundary of (1, 0)-forms.
Geometrically, ∂ log hν is the connection. The curvature (i.e. the Chern
form γL) is given by (up to a normalizing constant) ∂̄∂ log hν and we know
that this represents the class where the Hermitian matrix associated to the
normalized theta function must be in. The Hermitian matrix associated to
the normalized theta function has constant coefficients. So to identify it we
simply produce a (1,1)-form in the same class as the curvature that has con-
stant coefficients. (Actually this means taking the harmonic representative.)
We write

∂̄∂ log hν =
n

∑

j,k=1

fjk(z)dzj ∧ dzk.

Translation in the manifold V/D topologically preserves this class (because
translation produces clearly a homotopy). So we can average this form over
all translations and still end up with a form in the same class. We are doing
this in topology and can forget the complex structure. When we average
over all translations, it is the same as picking up the constant term in the
Fouier series expansion in V/D and the result is harmonic. Let us go back to
the equation (3). We are free to choose the metric hν . We are interested in
getting a harmonic ∂̄∂ log hν(i.e. one with constant coefficients) so that it is
(up to a normalizing constant) the same as the Hermitian matrix associated
to the normalized theta function we are trying to construct. To simply
notations we let ζν = ∂ log hν . We are going to modify ζν by replacing it
by ζν − ζ for some glocally ∂-closed (1,0)-form ζ so that dζν is harmonic.
Cohomologically, we expresses d log gµν as the coboundary of ζµ − ζ instead
of as the coundary of ζµ. Geometrically, we are replacing the connection ζµ

by the connection ζµ − ζ so that the Laplacian of the new connection ζµ − ζ
is harmonic. Clearly what we should do is to solve the equation ∆ζν = ∆ζ
for some global ζ. Here the Laplacian ∆ is applied coefficientwise. We have

∆ζν =
n

∑

j=1

∂2

∂zj∂zj

ζν =
n

∑

j=1

∂

∂zj

ηj,
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where

ηj =
∂

∂zj

ζν =
∂

∂zj

ζµ

is independent of ν because d log gµν = ζν − ζµ is holomorphic on Uµ ∩ Uν .
(Actually ηj is simply defined by ∂̄∂ log hν =

∑n

j=1 dzj ∧ ηj.) The entity
∆ζν is globally defined and is independent of ν. We can solve the equation
∆ζν = ∆ζ on V/D if and only if ∆ζν is perpendicular to all (1,0)-forms
with constant coefficients (as we can see by using Fourier series for each
coefficient). This condition is met because ∆ζν =

∑n

j=1
∂

∂zj
ηj is the sum

of partial derivatives and we can easily use integration by parts to verify
the condition. Note that we do not know at this point that ζ is ∂-closed.
However, it turns out that this does not matter much in the process we use
to construct the theta function. Let ζ ′

ν = ζν − ζ. We form now ω = dζ ′
ν .

Then ω is harmonic and can be written as

ω =
n

∑

j,k=1

ajkdzj ∧ dzk +
n

∑

j,k=1

bjkdzj ∧ dzk,

because ζ ′
ν is of type (1, 0) and the differential of any (1, 0)-form is a sum of a

(2, 0)-form and a (1, 1)-form. The purpose of having ω is to be able to write
it, in the explicit manner we want, as the differential of some 1-form on C

n.

We want to go backward to recover the theta function. The way to do
it is to sacrifice periodicity to get a function out of a form. The way to go
about it is to integrate. Let

ψ =
n

∑

j,k=1

ajkzjdzk +
n

∑

j,k=1

bjkzjdzk.

Then dψ = ω on C
n. This is the first step of the integration process. Then

d(ζ ′
ν − ψ) = 0 on Uνℓ. The setup to modify ζ ′

ν by a global (1, 0)-form is to
make the modified ζ ′

ν closed. By Poincare’s lemma, we can find a smooth
function fνℓ on Uνℓ so that dfνℓ = ζ ′

ν − ψ. Since the right-hand side is of
type (1,0), we know that fνℓ is holomorphic on Uνℓ. All the time we keep the
1-form under consideration to be of type (1, 0) so that when it is closed it is
locally the differential of a local holomorphic function. On Uνℓ ∩Uµp we have

dfνℓ − dfµp = ζ ′
ν − ζ ′

µ = d log gµν = d log(ϕµ/ϕν).
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Hence ϕν exp(fνℓ) and ϕµ exp(fµp) differ by a constant factor on Uνℓ∩Uµp. So
we can start with some fixed Uνℓ and continue analytically to a holomorphic
function F on all of V which differs from ϕµ exp(fµp) only by a constant
factor. We now want to look at the transformation property of F under
translation by an element of D. Take x ∈ Uνℓ and let u = p − ℓ. Then

F (x + u) = c1ϕν(x) exp (fνp(x + u))

on Uνp and
F (x) = c2ϕν(x) exp (fνℓ(x))

on Uνℓ for some constants c1 and c2. Thus

d log
F (x + u)

F (x)
= d fνp(x + u) − d fνℓ(x)

= (ζ ′
ν(x) − ψ(x + u)) − (ζ ′

ν(x) − ψ(x))

= ψ(x) − ψ(x + u)

= −
n

∑

j,k=1

ajkujdzk −
n

∑

j,k=1

bjkujdzk.

Integrating once again yields

F (x + u) = F (x) exp(L(x, u) + J(u)),

where

L(x, u) = −
n

∑

j,k=1

ajkxkuj −
n

∑

j,k=1

bjkxkuj

is C-linear in x and J(u) is the constant of integration. Since F differs from
ϕν exp(fνℓ) on Uνℓ only by a constant factor, we know that the divisor of F
agrees with the divisor X.

We now want to handle the question of the null space of the positive
semidefinite Hermitian form H. Let F be a normalized theta function which
is not identically zero and let H be the Hermitian form associated to F .
Let VH be the null space of H, i.e. VH is the set of all x ∈ V such that
H(x, x) = 0. From

0 ≤ H(λ x + y, λ x + y) = 2 Re (λ H(x, y)) + H(y, y)
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for all λ ∈ C, we know that H(x, y) = 0 for x ∈ VH and y ∈ V . Since H is
positive semidefinite, we know that VH is a C-vector space. First we observe
that the value of F (x) depends only on the coset of VH where x is in. In other
words, F (x + y) = F (x) for y ∈ VH . This follows from the consideration of
F (x) exp(−π

2
H(x, x)). We have seen that

∣

∣

∣
F (x + u) exp

(

−π

2
H(x + u, x + u)

)∣

∣

∣
=

∣

∣

∣
F (x) exp

(

−π

2
H(x, x)

)∣

∣

∣

for all u ∈ D and so |F (x)| ≤ C exp(−π
2
H(x, x)) for some positive number

C. For y ∈ VH we have H(x + λ y, x + λ y) = H(x, x) for x ∈ V and hence

|F (x + λy)| ≤ C exp
(

−π

2
H(x, x)

)

for all λ ∈ V . By Liouville’s theorem we know that F (x+λy) is independent
of λ and hence F (x + y) = F (x). Secondly we claim that the image of D in
V/VH under the natural projection V → V/VH is discrete. This is a result of
the fact that the imaginary part E of H assumes integral values on D × D.
The characterization of x ∈ VH is that H(y, x) = 0 for all y ∈ V . Since

H(y, x) = E(
√
−1y, x) +

√
−1E(y, x),

the characterization of x ∈ VH can be reformulated as E(y, x) = 0 for all
y ∈ V . Since E assumes integral values on D × D, we conclude that VH is
spanned by VH ∩ D over R. So we can find a basis e1, · · · , en for V such
that each ej is in D and e1, · · · , ek form a basis for VH by choosing e1, · · · , ek

first. There is a positive integer N such that N D ⊂
∑n

j=1 Z ej. Then the

projection of D in V/VH is contained in the discrete set 1
N

∑n

j=k+1 Zej, where
ej is the image of ej in V/VH . This means that the proper setting for the
normalized theta function is actually in the quotient space V/VH with the
lattice (D + VH)/VH . In this proper setting the Hermitian matrix associated
to the normalized theta function is positive definite.

Now we know that whenever we have a theta function we have a positive
definite Hermitian matrix H whose imaginary part assumes integral values
at the lattice points. Now we want to look at the converse. We start out with
the Hermitian matrix and try to construct a theta function. The Hermitian
matrix is determined by its imaginary part. A Hermitian matrix H(x, y) =
S(x, y) +

√
−1 E(x, y) is positive definite if and only its real part S(x, y)

is positive definite, simply because H(x, x) = S(x, x). We start out with
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the following definition. A Riemann form E on V with respect to D is a
real-valued R-bilinear form E : V × V → R such that E is skew-symmetric,
assumes integral values on D × D, and (x, y) → E(

√
−1x, y) is positive

symmetric. We say that the Riemann form E is nondegenerate if there exists
no nonzero x ∈ V such that E(x, y) = 0 for all y in V . (It is the same as
saying that the matrix representing E is nonsingular.) We want to construct
theta functions from a nondegenerate Riemann form. First we look at the
so-called Frobenius decomposition, which chooses a good basis of D adapted
to the nondegenerate skew-symmetric integral valued form E. We want to
find elements e1, v1, · · · , en, vn of D such that

(1) D =
∑n

j=1(Zej + Zvj),

(2) E(ej, vj) = dj > 0 with d1|d2| · · · |dn (meaning dj−1 dividing dj),

(3) Zej + Zvj is perpendicular to Zek + Zvk with respect to E for j 6= k.

The way to get the Frobenius decomposition is to first choose e1 and v1 in D so
that E(e1, v1) assumes the smallest positive value d1. Let V ′

1 = Re1+Rv1 and
V1 be the set of all x ∈ V such that E(x, y) = 0 for all y ∈ V ′

1 . We claim that
V1∩V ′

1 = 0, otherwise some nonzero element x in V1 is in V ′
1 which means that

some λe1+µ v1 with λ and µ not both zero is perpendicular to e1 and v1 with
respect to E. From E(e1, v1) = d1 6= 0 and E(e1, e1) = E(v1, v1) = 0 we know
that this is not possible. Let D1 = D ∩ V1 and D′

1 = D ∩ V ′
1 . We claim that

D = D1 + D′
1. Take u ∈ D. We want to find a, b ∈ Z such that u− ae1 − bv1

is perpendicular to D1 with respect to E. We know that d1 divides E(u, e1),
otherwise E(u, e1) = qd1 +r = q E(e1, v1)+r for some positive integer r < d1

and another integer q, leading to the contradiction that E(u+ qv1, e1) = r <
d1. Likewise we conclude that d1 divides E(u, v1). We write E(u, e1) = −bd1

and E(u, v1) = ad1. Then u − ae1 − be1 is perpendicular to V ′
1 with respect

to E. Since E is nondegenerate, we know that E|V1 is also nondegenerate.
Now we apply the previous argument to E|V1 and use induction on dimR V
to get e1, v1, · · · , en, vn. The last thing we have to verify is that dj−1 divides
dj. It suffices to verify that d1 divides d2. Suppose the contrary. Then we
have d2 = q d1 + r for some positive integer r < d1 and some other integer q,
leading to the contradiction that E(e2 − q e1, v2 + v1) = d2 − qd1 = r < d1.

We would like to remark that e1, · · · , en form a C-basis of V . Suppose the
contrary. Let W = Re1 + · · ·+ Ren. Then W ∩

√
−1W 6= 0. Take a nonzero

y ∈ W with
√
−1y ∈ W . Since any two elements of W is perpendicular
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with respect to E, we conclude that E(
√
−1y, y) = 0, contradicting the

fact that (x, y) → E(
√
−1x, y) is symmetric positive. We now work with

coordinates with respect to the C-basis e1, · · · , en of V . From E we have the
Hermitian form H(x, y) = E(

√
−1x, y) +

√
−1E(x, y) from the assumption

that (x, y) → E(
√
−1x, y) is symmetric in x and y. Since the imaginary part

E of H vanishes on Re1+ · · ·+Ren, we know that H assumes only real values
on Re1 + · · · + Ren, which means that when we express H in terms of the
basis e1, · · · , en the entries of the matrix is real symmetric. In other words,

H

(

n
∑

j=1

zjej,

n
∑

j=1

wjej

)

=
n

∑

j,k=1

hjkzjwk

with hjk = H(ej, ek) real and symmetric. Likewise, H is real symmetric on
Rv1 + · · · + Rvn.

We are going to construct a theta function by infinite series, following
the way the Jacobian theta function is constructed for the case of complex
dimension one. Recall the Jacobian theta function

∑∞
k=−∞(−1)kqk2

e2kiw,
where q = eπτi and τ is the quotient ω2

ω1

of the two periods ω1 and ω2. We
rewrite the infinite series

∞
∑

k=−∞

(−1)kqk2

e2k
√
−1 w

in the form
∞

∑

k=−∞

exp
(

k2πτ
√
−1 + 2k

√
−1 w + kπ

√
−1

)

and combine the two terms 2k
√
−1 w + kπ

√
−1 together by using s = w

π
+ 1

2

and we end up with

∞
∑

k=−∞

exp(k2πτ
√
−1 + 2kiπs).

Now in the higher dimensional case C
n/D we do something completely anal-

ogous. Instead of the integer k we use the n-tuple of integers t with compo-
nents t1, · · · , tn ∈ Z written as a column n-vector. Instead of w ∈ C we use
the n-tuple of complex numbers s with components s1, · · · , sn ∈ C written
as a column n-vector. Instead of τ in the upper half plane we use the matrix
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Z in the Siegel upper half space. So Z = X +
√
−1Y is a symmetric g × g

matrix with complex entries such that Y = Im Z > 0. Instead of

∞
∑

k=−∞

exp(k2πτ
√
−1 + 2k

√
−1 πs),

we define
Θ(s, Z) =

∑

t∈Zg

exp
(

π
√
−1 (t′Zt + 2t′s)

)

.

The condition Y = Im Z > 0 guarantees convergence of the infinite se-
ries. Now let us go back to our construction of the theta function from
the nondegenerate Riemann form. To use the method of infinite series we
need to produce this element Z of the Siegel upper half space. The lat-
tice for the function Θ(s, Z) is generated by e1, · · · , en, Ze1, · · · , Zen, where
e1, · · · , en is the standard C-basis for C

n. An obvious thing to do is to
equate e1, · · · , en, Ze1, · · · , Zen with e1, · · · , en, v1, · · · , vn and to define Z by
Z = (zjk) with vj =

∑n

k=1 zjkek. It is almost right, but not yet completely
right. The elements e1, · · · , en, v1, · · · , vn are obtained from the Frobenius
decomposition of E. To keep track of what is going on, we want to see what
the skew-symmetric form E for Z is. So we have to consider the transforma-
tion law for Θ(s, Z) under translation by an element of

Ze1 + · · · + Zen + Z(Ze1) + · · · + Z(Zen).

The transformation law is Θ(s + g) = Θ(s) and

Θ(s + Zg) = exp
(

π
√
−1 (−g′Zg − 2g′s)

)

Θ(s)

for the column vectors s ∈ C
n and g ∈ Z

n from L(s, g) = 1
2
(−g′Zg − 2g′s).

We see that the function L(x, u) is given by L(x, u) = 0 and L(x, Zu) = −u′x
for u ∈ Ze1 + · · · + Zen. We now skew-symmetrize L and get E. In the
first place, from L(u, u) = 0 and L(Zu,Zu) = −u′Zu for Ze1 + · · · + Zen

and the symmetry of Z that the skew-symmetric part E of Z vanishes on
Ze1 + · · · + Zen and also vanishes on Z(Ze1) + · · · + Z(Zen). To get E we
need only consider

E(ej, Zek) = L(ej, Zek) − L(Zek, ej) = −e′k · ej = −δjk,

where δjk is the Kronecker delta. So we get the Frobenius basis

e1, · · · , en, Ze1, · · · , Zen
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and the factors d1, · · · , dn are all 1. So when all the d′
js are equal to 1, our

guess of defining Z by vj = −∑n

k=1 zjkek is correct. However, when not all
the d′

js are equal to 1, we need some modification. In the first place our
infinite series

Θ(s, Z) =
∑

t∈Zg

exp
(

π
√
−1 (t′Zt + 2t′s)

)

can only produce the case of all the d′
js equal to 1. We need a slightly different

series. Recall that the original Jacobian theta series was produced by the
method of undetermined coefficients. To get the case we want, we simply
apply again the method of undetermined coefficients in our case, which we
are going to do later. It turns out that the correct way to define zjk is to
use vj = −dj

∑n

k=1 zjkek. The intuitive reason is that we replace vj by
vj

dj

so that the new dj becomes 1. Now we forget our motivation and just use
vj = −dj

∑n

k=1 zjkek as the definition for the matrix Z = (zjk) and start to
verify that it is symmetric and its imaginary part is positive definite. The
trick for the verification is the use of

F (x, y) = H(x, y) − H(x, ȳ) = −2
√
−1 H(x, Im y).

Here the complex conjugate ȳ of y and the imaginary part Im y of y are both
respect to the basis e1, · · · , en. So if y =

∑n

j=1 yjej, then ȳ =
∑n

j=1 ȳjej and
Im y =

∑n

j=1 (Im yj) ej. This form F (x, y) satisfies two properties. The first
one is that F (x, y) = F (y, x) for x, y ∈ Zv1 + · · · + Zvn. This is because
(i) H(x, ȳ) is C-bilinear and symmetric in both x and y for x, y in V and
(ii) the imaginary part of H(x, y) vanishes for x, y ∈ Zv1 + · · · + Zvn (from
E (vj, vk) = 0 for all 1 ≤ j, k ≤ n) and so H(x, y) = Re H(x, y) is symmetric
in x and y for x, y ∈ Zv1 + · · · + Zvn. The second property is that the form

Re F (x, y) = 2 Im H (x, Im y) = 2 H (Im x, Im y)

is positive semidefinite (the second equation coming from the fact that the
coefficients of H are real with respect to e1, · · · , en). Now since H(x, ȳ) is
symmetric in x and y, it follows that

F (eℓ, vk) = H(eℓ, vk) − H(eℓ, v̄k) = H(eℓ, vk) − H(vk, ēℓ)

= H(eℓ, vk) − H(vk, eℓ) = 2
√
−1 E(eℓ, vk)

(because by definition eℓ is real and eℓ = eℓ) and

F (vj, vk) = −dj

n
∑

ℓ=1

zjℓF (eℓ, vk)
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= −dj

n
∑

ℓ=1

zjℓ2
√
−1 E(eℓ, vk) = −djzjk2

√
−1 dk.

The symmetry of F (x, y) for x, y ∈ Zv1 + · · · + Zvn implies that symmetry
of Z = (zjk). To get the positivity of the imaginary part of Z, we use

(‡) F

(

n
∑

j=1

λjvj,

n
∑

j=1

λjvj

)

= −2
√
−1

n
∑

j,k=1

λjdjzjkλkdk.

Since by taking the real part of (‡) we have

Re F (
n

∑

j=1

λjvj,

n
∑

j=1

λjvj) = 2
n

∑

j,k=1

λjdj (Im zjk) λkdk,

it follows from
Re F (x, y) = 2 H (Im x, Im y)

that Re F
(

∑n

j=1 λjvj,
∑n

j=1 λjvj

)

> 0 if the imaginary part of
∑n

j=1 λjvj is

nonzero. We know from the R-linearly independence of e1, · · · , en, v1, · · · , vn

that
∑n

j=1 λjvj is not in Re1 + · · ·+Ren whenever λ1, · · · , λn are not all zero,
which means that the imaginary part of

∑n

j=1 λjvj is nonzero.

After all the above preparatory statements in linear algebra, we are ready
to use the method of undetermined coefficients to construct theta functions.
The result is given in the following theorem of Frobenius.

Theorem. Let V be a vector space over C and let D be a lattice in V and let
L : V × V → C be C-linear in the first variable and R-linear in the second
variable such that E(x, y) = L(x, y) − L(y, x) is a nondegenerate Riemann
form for the lattice D. Let K : V → R be R-linear. Then the set of all entire
theta functions on V with respect to D having type (L,K) form a vector
space over C with dimension equal to the Pfaffian of E with respect to D
(which is d1 · · · dn).

We now prove the theorem. Since L is symmetric in R e1 + · · · + R en

(due to the vanishing of E(ej, ek)), we can extend the restriction of L on
R e1 + · · · + R en to a C-bilinear map L1 on V × V . We extend also the
restriction of K on R e1 + · · ·+ R en to a C-linear map K1 on V . We replace
L by L−L1 and K by K−K1. This replacement is the same as multiplying the
theta function by a trivial theta function (defined by L1 and K1). So without
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loss of generality we can assume that both L and K vanish on R e1+· · ·+R en.
The space of all entire theta functions of type (L,K) is the same as the space
of all entire functions satisfying θ(z + ej) = θ(x) and

θ(z + vj) = θ(z) exp
(

2π
√
−1(zjdj + cj)

)

for some cj ∈ C. The condition θ(z + ej) = θ(z) implies that θ is periodic
with periods ej. So we can write

θ(z) =
∑

m∈Zn

a(m) exp
(

2π
√
−1 〈m, z〉

)

,

where 〈m, z〉 is the inner product of m and z. We have

θ(z + vj) =
∑

m∈Zn

a(m) exp(2π
√
−1 〈m, z + vj〉)

θ(z) exp(2π
√
−1(zjdj + cj) =

∑

m∈Zn

a(m) exp(2π
√
−1(〈m + djej, z〉 + cj).

Hence
a(m − djej) = a(m) exp(2π

√
−1(〈m, vj〉 − cj)).

To solve for a(m), we let a(m) = exp(2π
√
−1 b(m)). The value of b(m)

is defined modulo Z. In the following equations we use identity instead of
congruence modulo Z by assuming that the value of b(m) is chosen to give
us the identity instead of congruence. Then

b(m − djej) − b(m) + cj = 〈m, vj〉 = −〈m, djZej〉 .

We claim that

b(m) =

〈

m,Z

(

n
∑

k=1

mkek

)〉

+
n

∑

k=1

mkck

dk

+ h(s),

where (s1, · · · , sn) ∈ Z
n with 0 ≤ sj < dj satisfies mj ≡ sj mod dj and h(s)

is an indeterminate to be chosen arbitrarily. Let us now verify this claim.

b(m − djej) =

〈

m − djej, Z

(

n
∑

k=1

mkek

)〉

+
n

∑

k=1

mkck

dk

− cj + h(s).
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b(m − djej) − b(m) + cj = −dj

〈

ej, Z

(

n
∑

k=1

mkek

)〉

= −dj

〈

Zej,
n

∑

k=1

mkek

〉

= −dj 〈Zej,m〉 = −〈m, djZej〉 .

Note that

b(m) =
n

∑

j,k=1

mjzjkmk +
n

∑

k=1

mkck

dk

+ h(s).

The positive definiteness of the imaginary part of Z = (zjk) guarantees the
convergence of the series

θ(z) =
∑

m∈Zn

a(m) exp
(

2π
√
−1 〈m, z〉

)

.

The choice of h(s1, · · · , sn) with (s1, · · · , sn) ∈ Z
n and 0 ≤ sj < dj means

that the complex dimension of the space of such theta functions is d1 · · · dn.
This finishes the proof of the theorem.

The theta function θ that we have constructed may be the theta function
for a larger lattice. Let D′ be the set of all v ∈ V and θ(x+v)

θ(x)
is nowhere

zero holomorphic. By taking log θ(x+v)
θ(x)

and using the transformation law for

translations by elements of D′ we conclude that log θ(x+v)
θ(x)

is of quadratic

growth and hence must be a polynomial of degree at most 2. The set D′

is discrete, because the imaginary part of H (which is nonsingular) have to
assume integral values at D′×D′ and in particular assume integral values at
D × D′.

If all the theta functions we have constructed are theta functions for a
larger lattice, then the number of linearly independent functions is equal to
the volume of the fundamental domain of D′ measured by the volume form
which is the n-fold exterior power of the imaginary part of H. This number
is smaller than the number of linearly independent theta functions we have
constructed, because the number we have obtained is equal to the volume
of the fundamental domain of D measured by the volume form which is the
n-fold exterior power of the imaginary part of H. We actually claim that
we can find a theta function with the property that D′ = D. Fix a point
x ∈ V . We consider the union A of lattices D∗ such that D ⊂ D∗ and
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Im H : D∗ ×D∗ → Z. The set D∗/D is finite. Pick u1, · · · , uk ∈ D∗ forming
a complete set of representatives for D∗/D. For each uj we can find some
theta function θj such that the zero-set of θj(x+uj) is not equal to the zero-
set of θj(x). The set Zj of all theta functions is a closed proper subvariety
of the finite dimensional vector space of all theta functions. Thus we can
find a theta function θ such that the zero-set of θ(x + uj) is not equal to the
zero-set of θ(x) for 1 ≤ j ≤ k.

Projective Embedding by Theta Functions. Let D ⊂ V = C
n be a lattice and

H be a nondegenerate Riemann form and ψ be a character. From (H,ψ) we
have a line bundle L over V/D.

Theoerm. Γ(V/D, L3) embeds V/D into PN , where N = dimC Γ(V/D, L3)−
1.

Proof. Let θ be a normalized theta function of type (H,ψ). Choose three
points a, u, v of V and define

(∗) ϕ(x; a, u, v) = θ(x + u)θ(x − a + v)θ(x + a − u − v).

Though we have used three parameters a, u, v, actually we have only two,
namely, u and a − v, because u + (−a + v) + (a − u − v) = 0. We need this
equation to guarantee that ϕ(x; a, u, v) is of type (3H,ψ3). The reason is
that

θ(x + u) = θ(x) exp
(

π H(x, u) +
π

2
H(u, u) + 2π

√
−1 K(u)

)

with ψ(u) = exp(2π
√
−1 K(u)). Thus

3
∏

j=1

θ(x + aj + u)

= exp

(

π 3H

(

x +
1

3

3
∑

j=1

aj, u

)

+
π

2
3 H(u, u) + 2π

√
−1 3 K(u)

)

3
∏

j=1

θ(x+aj)

= exp
(

π 3 H(x, u) +
π

2
3 H(u, u) + 2π

√
−1 3 K(u)

)

3
∏

j=1

θ(x + aj)

when
∑3

j=1 aj = 0. We are going to use functions of the form (*) to do the
embedding. One thing is that we have to make sure that the lattice is the
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proper one for the function θ. By this we mean the following. If v ∈ V
and θ(x+v)

θ(x)
is nowhere zero holomorphic, then v ∈ D. We can also assume

that the zero-set of θ is irreducible. The reason is as follows. We decompose
the zero-set of θ into irreducible hypersurface Z1, · · · , Zk. We know that we
can construct from each irreducible surface Zk a theta function θj. We can
get embeddings by constructing ϕj1, · · · , ϕjℓj

from each θj and then we use
∏k

j=1 ϕjνj
for the embeddings by elements of Γ(V/D,L3).

To get the projective embedding, the first thing we have to do is to
make sure that given any x ∈ V there exists some theta function of type
(3H,ψ3) which is nonzero at x. We are going to get this theta function in
the form (*) by choosing a, u, v suitably. Choose a = x. Choose v such that
θ(v) 6= 0 and then choose u choose that θ(a + u)θ(2a − u − v) 6= 0. We can
do this, because both θ(a + u) and θ(2a − u − v) as functions of u are not
identically zero and so their product as a function of u is not identically zero
and we can find some u so that θ(a + u)θ(2a − u − v) 6= 0. This means that
θ(x + u)θ(x + a − u − v) 6= 0 for x = a. Since θ(x − a + v) = θ(v) 6= 0, we
know that ϕ(x; a, u, v) = θ(a + u)θ(v)θ(2a − u − v) 6= 0. We now know that
the map V/D → PN defined by Γ(V/D,L3) is a well-defined holomorphic
map.

Next we want to show that the map V/D → PN defined by Γ(V/D,L3)
distinguishes points. Fix a 6= b in V not congruent modulo D. Since θ is not
a trivial theta function we know that θ vanishes somewhere (otherwise log θ
is a well-defined holomorphic function on V and the transformation rule for
translation by an element of D implies that the growth of log θ is quadratic
and log θ must be a polynomial of degree ≤ 2). Moreover, since b − a /∈ D,

we know that either θ(x+b−a)
θ(x)

or its reciprocal is holomorphic and zero at x
for some x. Since the zero-set of θ is irreducible, by exchanging the roles of a
and b if necessary, we can assume that there exists v ∈ V such that θ(v) = 0
and θ(v − a + b) 6= 0. Choose u such that θ(b + u)θ(b + a− u− v) 6= 0. Then
at x = a we have ϕ(x; a, u, v) = θ(a + u)θ(v)θ(2a − u − v) = 0. At x = b we
have ϕ(x; a, u, v) = θ(b + u)θ(b − a + v)θ(b + a − u − v) 6= 0. Thus the map
is injective.

The last thing we have to prove is to show that the map has the rank n.
We need the following lemma which will be proved later.

Lemma. Given θ. There exist b1, · · · , bn in V such that θ(bj) = 0 and
(dθ)(b1), · · · , (dθ)(bn) (after being translated to the same point) are linearly
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independent.

From the lemma we have b1, · · · , bn in V . Fix a ∈ V . There exists b0 ∈ V
with θ(b0) 6= 0. We can find u such that

θ(a + u)
n

∏

j=0

θ(2a − u − bj) 6= 0.

Let

ϕj(x) = ϕ(x; a, u, bj) = θ(x + u)θ(x − a + bj)θ(x + a − u − bj)

for 0 ≤ j ≤ n. We claim that ϕ1

ϕ0

, · · · , ϕn

ϕ0

form a local coordinate system at

x = a. Since θ(x − a + bj) = 0 at x = a for 1 ≤ j ≤ n, when we take dϕj we
must use dθ(x− a + bj) which is equal to dθ(bj) at x = a, otherwise we have
only zero contribution. Thus ϕ1

ϕ0

, · · · , ϕn

ϕ0

form a local coordinate system at
x = a.

We now prove the lemma. Suppose the contrary. Then there exists a ∈ V
such that dθ(b; a) = 0 for b with θ(b) = 0. Look at the regular points of the
zero-set of θ. Take locally a hyperplane C

n−1 in C
n so that a is tangential

to C
n−1 and the zero-set of θ is the graph of a local holomorphic function on

C
n−1. Then the partial derivative of the local holomorphic function in the

direction of a is zero and we conclude that the zero-set of θ is invariant under
translation by a. This would contradict the assumption that, if v ∈ V and
θ(x+v)

θ(x)
is nowhere zero holomorphic, then v ∈ D, because we can choose v ∈

Ca not in D. Actually even without this assumption we have a contradiction
from the fact that H is nonsingular. The reason is as follows. For any u ∈ D,
from

θ(x + u) = θ(x) exp
(

π H(x, u) +
π

2
H(u, u) + 2π

√
−1 K(u)

)

θ(x + a + u) = θ(x + a) exp
(

π H(x + a, u) +
π

2
H(u, u) + 2π

√
−1 K(u)

)

it follows that

(∗∗) θ(x + a + u)

θ(x + u)
=

θ(x + a)

θ(x)
exp(π H(a, u)).

Since the function θ(x+a)
θ(x)

is nowhere zero holomorphic, we can take its loga-

rithm. The function log θ(x+a)
θ(x)

grows linearly according to (**) and hence is
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a polynomial λ(x) of degree at most one. From (**) we obtain π H(a, u) =
λ(u). Thus H(a, u) is C-linear in u. This is possible only if we have
∑

α aαhαβ̄ = 0 for all β in the equation H(a, u) =
∑

α,β hαβ̄aαuβ, which
contradicts the nonsingularity of H.


