
DE RHAM’S THEOREM FOR ∞-STACKS

CARLOS SIMPSON AND CONSTANTIN TELEMAN

Abstract. Someday there may be one.

1. Introduction

Simplicial constructions seem to have debuted in algebraic geometry with Deligne’s mixed
Hodge theory for singular varieties [D2]: a mixed Hodge structure arises naturally when re-
solving a singular variety (in a suitable sense) by a smooth simplicial one, with the same total
cohomology. Since, however, simplicial substitutes cannot be chosen functorially, a key step in
the construction is to check independence of the choices. In other words, the desired cohomology
functors, defined a priori on the category of simplicial schemes, must factor through a homotopy
category, obtained from the former by inverting a certain class of morphisms. In the homotopy
category, the original variety becomes isomorphic to its simplicial resolution. Convention calls
morphisms in a class to be inverted weak equivalences.

Based on work of Verdier [SGA4], Deligne chose the class of proper hypercoverings (see Sect.2)
as weak equivalences. Verdier showed that cohomology with (locally) constant coefficients factors
through the homotopy category [D2], Sect.6. This suffices for the purpose at hand (see Prop.
2.7); but, for a technical reason which homotopy theorists will appreciate1, in full generality
hypercoverings are not quite the “right” notion. Rather, the latter was proposed by Illusie [I]
and (independently) by Brown [B] (cf. Def. 2.2). Its moral core became apparent when Joyal
proved that the Illusie weak equivalences (IWEs) are part of a Quillen homotopy structure, on
simplicial objects in any Grothendieck topos [J1], [Jo]. (A special case had been established by
Brown and Gersten in [BG]). Inverting IWEs results in the homotopy category of stacks (better,
∞-stacks) over the topos in question2. The homotopical algebra of [Q] allows a calculus with
stacks that strongly mirrors ordinary homotopy theory, and is also analogous to working in the
derived category of an Abelian category. This material has recently recieved significant exposure
through the work of Morel and Voevodsky [MV], which shows convincingly how a category of
mixed motives can be constructed using these homotopical techniques.

Our reasons for looking at this theory (which date from before the appearance of [MV], cf [Si3],
[Si2], [T1]) are related to two directions of generalization of the notion of de Rham cohomology
of an algebraic variety. These two directions can be summed up by saying that we would like
to put stacks in the coefficients, and in the domain object of the de Rham cohomology functor.
The former is treated in [Si2] and more recently [Si4] and we won’t discuss it at any great length
here. The latter was suggested in 1996 by the second author of the present paper and is the
main subject of our discussion.

The idea is to look at the de Rham cohomology of a stack. This comes with the usual
associated baggage of Hodge structures and the Hodge-to-de Rham spectral sequence. They
are all features of a stack, not of a particular simplicial representative. Furthermore, K-theory
and various motivic realizations [Hu] also descend to appropriate categories of stacks (indeed,
all functors which turn hypercoverings into isomorphisms do so), but those are better left to
experts.
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The first examples which one comes across concern the case of the de Rham cohomology of
a 1-stack such as the moduli stack of G-bundles over a curve. We will look explicitly at these
examples which first arose in [T1]. Simple enough to give nice answers, these examples do
benefit from general nonsense: as they are objects of infinite type, the bare-handed treatment
is somewhat tedious.

The introduction of simplicial methods as the easiest way of dealing with 1-stacks naturally
leads to the idea of applying the same methods to all “∞-stacks” or simplicial presheaves (or,
as we call them in the present paper, just stacks). We don’t for the moment have any concrete
applications to propose here but in the expectation that such examples will arise sometime, we
develop the theory in this generality.

The material in Sect.2 greatly overlaps with [MV]; we deem it necessary to apologize for
that, but feel that a concise exposition of the topic can be beneficial. (Most importantly, it
had already been written, so there was little sense in deleting it). At any rate, we claim little
originality here, this being mostly a restatement of work of Illusie, Brown, Joyal and Jardine,
as the references make clear.

2. Illusie’s weak equivalences and the model structure

2.1. Basic definitions. In this section, C is a site, a small category with a Grothendieck
topology; SSh (C) will denote the category of sheaves of simplicial sets over C. For background
on simplicial objects, see [BK], [K] or the first two chapters of [M]; for the basics of Grothendieck
topologies, see [G]. To simplify matters, we shall assume that all representable functors on C are
sheaves (cf. [G]), and that C has enough stalks. Here, a stalk is an exact functor p∗ from Sh (C)
to the category of sets which admits a right adjoint p∗. By definition, C has enough stalks
when monomorphisms and epimorphisms of sheaves can be detected on stalks. When C is the
category of open sets in a reasonable3 topological space, we recover the usual notion of stalks,
corresponding to points in the space; and there are enough of them. The stalk of a simplicial
sheaf is a simplicial set, and a morphism of simplicial sheaves induces morphisms on all stalks.

2.2. Definition. (cf. [I], [B], [BG], [J1]) Let ϕ : X −→ Y be a morphism of simplicial sheaves.
(i) ϕ is an Illusie weak equivalence (IWE) if it induces a weak homotopy equivalence on all

stalks.
(ii) ϕ is a cofibration iff it is a monomorphism.
(iii) ϕ is a (global) fibration if it satisfies the “right lifting property” ([Q], Sect. 1.1, see also

(2.3) below) with respect to all weakly equivalent cofibrations.
(iv) ϕ is a Kan (or local) fibration if it induces Kan fibrations on all stalks.
(v) ϕ is a hypercovering if it is a Kan fibration with stalkwise contractible fibers.

2.3. Remark. Recall [K] that a map f : X → Y of simplicial sets is a (Kan) fibration if, for
any weakly equivalent inclusion S ⊆ T of finite simplicial sets, the naturally induced map
Hom (T ;X) → Hom (S;Y ) is surjective. This, incidentally, is the “right lifting property” with
respect to the inclusion S ⊆ T . In this spirit, condition (iv) can be restated as follows: regarding
S and T as constant simplicial sheaves over C, the induced morphism on sheaves Hom (T ;X) →
Hom (S;Y) must be epic (i.e. a covering, or surjective on stalks). Hom is the sheafified Hom
on sheaves of simplicial sets. For (v), we must drop the requirement that the inclusion should
be a weak equivalence, or else, equivalently, add the condition that ϕ be an IWE. There is also
a stalk-free way to define global fibrations and weak equivalences (cf. [J1]), and the sufficient
stalks restriction on C can be removed.

2.4. Theorem. (Joyal; cf. [BG], [J1], [Jo]). The category SSh (C), with cofibrations, IWEs and
global fibrations as defined, satisfies Quillen’s axioms for a closed simplicial model category.

Let Ho (C) be the homotopy category arising by inverting the weak equivalences in SSh (C).
This is our category of stacks (or ∞–stacks) over C. Hom (X;Y), in Ho (C), is denoted by [X;Y],

3See the definition of a sober space in [SGA4]. Hausdorff spaces qualify, as do schemes in the Zariski topology.
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or Ext (X;Y) (by analogy with the derived category notation). Of course, Ho := Ho (point) is the
ordinary homotopy category. We can arrange for Ho (C) to have the same objects as SSh (C),
so a stack “is”, in a sense, a simplicial sheaf. But this point of view has its limitations: just as
a topological homotopy type can be indicated in numerous ways, many natural constructions
would produce the same Ho (C). For instance, sheaves and presheaves of topological spaces are
used in [Si2]. One could also consider arbitrary small diagrams of objects in Sh (C), instead
of just simplicial diagrams; the associated stack in Ho (C) is the homotopy direct limit of the
diagram, and can be represented simplicially by a standard, functorial construction (see [BK] ,
Ch.XII). Finally, although less obviously, one may use diagrams of objects from C itself; this is
part of the “hypercovering theorem” (2.7) below.

2.5. Geometric constructions. Stalks commute with finite inverse limits and arbitrary direct
limits. Constructions in simplicial homotopy theory which involve only such limits (called geo-
metric constructions) can be performed stalkwise, and share the properties of the set-theoretic
counterparts. One example is Kan’s functor Ex∞ := limn→∞Exn, which produces a Kan ob-
ject; Ex is the right adjoint of barycentric subdivision in the category of simplicial sets, and
only involves finite limits [K]. On simplicial sheaves, Ex and Ex∞ may be defined stalkwise, or,
equivalently, using the sheaf direct and inverse limits. We thus get, for any X, a functorial, Illusie
weakly equivalent “Kanification” X −→ Ex∞X, with Ex∞X locally fibrant. More generally,
any morphism ϕ : X −→ Y factors through a locally fibrant “relative Kanification morphism”
Ex∞ϕ : Ex∞Y X −→ Y of X over Y. If ϕ was an IWE, Ex∞ϕ is a hypercovering ofY ([F], Ch.I).

Another geometric construction is the Postnikov tower X≤n of a stack X. There is a natural
tower of morphisms X −→ X≤n. However, without some assumption on the ground site, this
need not give a weak equivalence of X with the homotopy inverse limit of X≤n (rather, the
latter is a sort of completion thereof), the problem being that infinite inverse limits need not
commute with stalk formation. (This observation is implicit in [J1]; it appears explicitly in
[MV], §2.1, with a nice example). If, however, the functor of sections has finite cohomological
dimension, locally on C (meaning that, for all objects U of a generating subcategory of C , the
functor RΓ (U ;−) has finite cohomological dimension), then the sheafified homotopy groups of
holimn←X≤n do agree with those of X . This follows from the Bousfield-Kan spectral sequence for
the homotopy groups of Ext(U ;X), which converges completely, under this finiteness assumption.
(That spectral sequence is a special case of the Leray sequence in [J2]). The assumption is verified
on the Zariski and analytic sites; but the étale site requires some care.

2.6. Kan objects and hypercoverings. In the examples of interest, where C is a category of
schemes or of analytic spaces, global fibrations and globally fibrant objects are not too appealing
(they are analogous to flabby sheaves); but Kan fibrations are quite natural, as are Kan objects
(simplicial sheaves Kan fibered over a point). For instance, with a group G acting on a schemeX,
the simplicial homotopy quotient (“bar construction”) is a Kan object. In fact, for any simplicial
group sheaf G, the bar construction of BG (see e.g. [M], §21) is locally fibrant. Similarly, any
Artin stack (i.e. algebraic groupoid X1 ⇒ X0, with smooth source and target morphisms)
leads to the locally fibrant “classifying” simplicial sheaf X, represented by its nerve, in which
Xn = X1×X0 X1×...×X0X1 (n factors; a description of the simplicial maps can be found in [S]).

Let SKC ⊂ SSh (C) be the full subcategory of simplicial Kan objects that are, dimensionwise,
represented by direct sums of objects in C. For a Kan object X ∈ SSh (C), let HC (X) be
the following category. Objects are the hypercoverings α : U → X, with U in SKC. The
set of morphisms from (α : U → X) to (β : V → X) is the quotient of the set {ϕ : U → V |
β ◦ ϕ = α, up to simplicial homotopy}, modulo the relation generated by simplicial homotopies.
(Note that this equivalence relation is compatible with composition). Let Hom• (X;Y) be the
simplicial Hom, defined, as usual, by Homk (X;Y) = Hom

(
X×∆k;Y

)
.

2.7. Theorem. (“Verdier Hypercovering theorem”, [SGA4], [B]).
(i) HC (X) is left filtering, and [X;Y] = lim U∈HC(X)→ π0Hom• (U;Y).
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(ii) The natural functor from SKC to Ho (C) becomes an equivalence of categories, once the
hypercoverings in SKC are inverted.

2.8. Remark. (i) This formulation of the theorem is essentially due to Brown ([B], Thm.1).
Verdier gave a method to produce C-hypercoverings (this is also summarized in [D2], §6.2), and
proved (ii) with Y = K (A;n), for Abelian A, as the correct generalization of Čech cohomology.
When Y = K (A;n), the hypercohomology Hn (X;A) replaces [X;Y]; see [B], Prop.5.

(ii) Recall that a generating subcategory G for Sh (C) is a small, full subcategory whose objects
can be used to cover any object in C. Then, G inherits a Grothendieck topology from C, and
restriction from C to G gives an equivalence on the categories of sheaves. In that case, Ho (G)
and Ho (C) are also equivalent. Any generating subcategory could be used in the theorem,
instead of C.

2.9. Morphisms and derived morphisms of topoi.

2.10. Definition. Given two sites B and C, a morphism of topoi Φ : Sh ( B) −→ Sh (C) is
a pair of functors Φ∗ : Sh (C) −→ Sh (B), Φ∗ : Sh (B) −→ Sh (C), with Φ∗ left exact and left
adjoint to Φ∗.

Typically, such functors arise in one of two manners [G]:
(a) From a functor ϕ−1 : C −→ B which preserves coverings and fibered products (assuming

that finite fibered products exist in B and C).
(b) From a functor ϕ : B −→ C with the property that, for any b ∈ B and any covering

α : c→ ϕ (b) in C, there exist coverings β : b̃→ b in B for which ϕ (β) factors through α. (One
simply says that ϕ pulls back coverings to coverings).

2.11. Remark. (i) The criteria are explained by the fact that a functor f : B −→ C always
induces an adjoint triple (F+, F

−1, F∗) on presheaves. Part (a) ensures that F−1 preserves the
sheaves and that the sheafification of F+ is exact; the latter becomes Φ∗, while Φ∗ = F−1.
Part (b) guarantees that F∗ preserves the sheaves, in which case, it is our Φ∗; while Φ∗ is the
sheafification of F−1.

(ii) In (a), Φ∗ extends ϕ−1 to sheaves, and the direct image sheaf is Φ∗F (c) = F
(
ϕ−1c

)
; but

in (b), Φ∗ is not an extension of ϕ. Rather, ϕ sometimes extends to a left adjoint functor Φ! to
Φ∗ (see the third example below).

(iii) If we only assume in (a) that ϕ−1 preserves fibered products of the form U ×V U , for
arbitrary V of C but only a cofinal collection of coverings U → V , we still get an adjoint pair
(Φ∗,Φ∗) on sheaves; but Φ∗ need not be left exact anymore.

2.12. Example. (i) B and C are the categories of disjoint unions of open sets in topological
spaces B and C, ϕ : B −→ C a continuous map, ϕ−1 is the inverse image. Construction (a)
recovers the usual operations on sheaves.

(ii) As before, but with ϕ : B −→ C an open map: this time, (b) recovers the usual ϕ∗ and
ϕ∗.

(iii) As before, but with ϕ : B −→ C an open embedding. In this case, both (a) and (b) are
satisfied, and we get the triple (Φ!,Φ∗,Φ∗), the leftmost being extension by zero.

(iv) B = analytic spaces in the classical topology, C = complex schemes of finite type in
the Zariski (or étale) topologies; ϕ−1 is the “underlying analytic space” functor. Φ∗(X) will be
denoted Xan.

(v) B = schemes in the étale topology, C = schemes in the Zariski topology, ϕ−1 = identity.
(vi) B = schemes in the topology generated by étale coverings and by proper, surjective maps,

C = schemes in the étale topology, ϕ−1 = identity.
(vii) As in (vi), but using analytic spaces (where the étale topology is the classical one).

2.13. Proposition. In a morphism of topoi Φ : Sh (B) −→ Sh (C), Φ∗ preserves weak equiv-
alences, and thus it descends to the homotopy categories. Φ∗ preserves fibrations and IWE’s of
fibrant objects, thus it defines a right derived functor (cf. [Q], Ch.I.4) RΦ∗ : Ho (B) −→ Ho (C),
right adjoint to Φ∗.
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2.14. Remark. (i) With the “localization functors” λ : SSh (B) −→ Ho (B) understood where
necessary, the right derived functor ε : Φ∗ → RΦ∗, defined up to natural isomorphism, if it exists
at all, is an initial object among pairs (τ ,Θ) consisting of a functor Θ : Ho (B) −→ Ho (C) and
a transformation τ : Φ∗ → Θ.

(ii) RΦ∗ (X) is isomorphic to Φ∗ (X′), for any globally fibrant object X′ equivalent to X.
(iii) The proof below assumes that the sites have enough stalks, but the proposition holds

without that, with a similar proof.

Proof. Stalks of B become stalks of C after composing with Φ , so the statements about Φ∗

are clear. It follows from exactness that Φ∗ preserves cofibrations (monomorphisms), and by
adjointness it follows that Φ∗ preserves fibrations, weakly equivalent fibrations, and takes weakly
equivalent fibrant objects to weakly equivalent fibrant objects. The construction of RΦ∗, and
its adjointness to Φ∗, follows as in Thm. 4.3 of [Q], Ch. I.4.

2.15. Example. (i) Let B be any site and C the underlying category with the trivial topol-
ogy, generated by taking only isomorphisms as coverings. Sh (C) = Pre (B), the category of
presheaves (contravariant functors). The identity i : C −→ B induces a morphism of topoi
I : Sh(B) −→ Pre(B); I∗ is the sheafification functor. RI∗ is a simplicial version of sheaf coho-
mology: (RI∗X) (U) = Ext(U ;X). Note that I∗ ◦ I∗ = Id, whence, deriving, I∗ ◦ RI∗ = Id. So,
any sheaf X is “the sheafification of its cohomology functor”, U 7→ Ext(U ;X).

(ii) Let X ∈ Sh(C), B = C/X; the obvious functor p : B −→ C verifies both (a) and (b), and
we get a triple (Π+,Π∗,Π∗): the forgetful functor, the product with X, while the last sends a
sheaf F on C/X to c 7→ Hom(C × X;F). The first two derive trivially, but the third, RΠ∗, is
more interesting, giving rise to the internal mapping stack functor Ext(X,Y) := RΠ∗ ◦Π∗Y. It
satisfies the adjointness relation [Z,Ext(X,Y)] = [Z× X,Y].

2.16. Underlying topological space. The following notions and arguments are directed to-
ward an abstract approach to the definition of the “underlying topological space” of a stack.
This approach was suggested by the second author, as is pointed out at the end of the paper
[Si3] which gives a different approach. This occured before the appearance of a similar argument
in Voevodsky [?] and Morel-Voevodsky [MV]; we apologize for the overlap.

2.17. Definition. Define a sheaf X over C to be (cohomologically) contractible if it satisfies
the following three conditions:

(i) for any constant sheaf of sets Y , Hom (X;Y ) = Y ;
(ii) for all (constant) coefficient groups G, H1 (X;G) = ∗;
(iii) for all constant Abelian coefficient groups A, Hq (X;A) = 0 for q > 0.
C is locally contractible if Sh (C) contains a generating subcategory of contractible objects.

The site of complex analytic spaces in the classical topology is the main example.

2.18. Proposition. If C is locally contractible, the constant sheaf functor from SSets to SSh (C)
has, on homotopy categories, a left adjoint holim C→ : Ho (C) −→ Ho.

2.19. Remark. Let limC→ be the left adjoint of the constant sheaf functor on the simplicial
categories. (Its existence only requires C to be “locally connected”, that is, carry a generating
subcategory of sheaves verifying condition (i) above). Then, holimC→ can be shown to be its
left derived functor, in the sense of Quillen. When C is given the trivial topology (in which
coverings are generated by the isomorphisms), sheaves over C are the same as presheaves, i.e.
contravariant functors, and the two functors just defined reduce to the usual direct limit and
the Bousfield-Kan homotopy direct limit over C, respectively. In general, both functors depend
on the topology of C.

Proof. Let G ⊂ C be a generating subcategory of contractible objects. Replacing contractible ob-
jects by points defines a functor χ : SKG −→SSets, left adjoint to the “constant sheaf” functor.
From (i)–(iii), we get that Hn (χ(X);A) = Hn (X;A), where the coefficient group A (abelian,
if n > 1) may be twisted by any 1-cocycle with constant (possibly non-abelian) coefficients.
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Cohomology in SSh (C) depends only on the Illusie weak homotopy type, and Whitehead’s the-
orem for simplicial sets implies that χ turns IWE’s into (regular) weakequivalences. Therefore,
χ descends to a functor from Ho (C) to Ho. This is the desired ho limC→. To see the adjointness
property, consider hypercoverings U → X in SKG; we have the equalities, in which the Kan
complex Z doubles as a constant simplicial sheaf over C,

[χ(X);Z] = [χ(U);Z] = π0Hom• (χ(U);Z) = π0Hom• (U;Z)(2.20)

By the hypercovering theorem (2.7), the limit over U’s of the right-hand term gives [X;Z], as
desired.

2.22. Remark. Local contractibility (2.17) applies to the category of analytic spaces. In that
case, the functor χ can also be represented by the “geometric realization” [M], Ch.III of the
simplicial topological space underlying the analytic stack [Si3].

We close with the following observation. For a small category I, the product C × I has a
natural topology, pulled back from C.

2.23. Proposition. Homotopy direct limits and homotopy inverse limits in SSh (C), indexed
by a small category I, are representable in Ho (C) as the left and right adjoints of the “constant
diagram” functor (pull-back along I) Ho (C) −→ Ho (C× I).

Proof. holimI← is simply the right derived direct image for the projection along I. For the
direct limit holimI→, one can use the explicit construction of [BK], Ch. XII.2.1 (with a reversal
of arrows in I, because their diagrams are covariant). This is a geometric construction, so
it can be performed stalkwise, and preserves IWEs. Adjointness is seen as follows. Choose
(Xi)i∈I in SSh (C× I) and a fibrant Y in SSh (C); we must show that ExtC(holimI→Xi;Y) =
ExtC×I(Xi;Yi), with Yi = Y for each i. By the assumption on Y and the relation between
homotopy limits in [BK], Ch.XII.4,

ExtC
(
holimI→Xi;Y

)
= HomC

•
(

holimI→Xi;Y
)

=(2.24)

= holimI←HomC
•

(
Xi;Y

)
Because Y is fibrant in C, each HomC

• (X
i;Y) is a Kan complex, and then, by [BK], Ch.

XI, holimI← HomC
• (X

i;Y) equals RlimI←HomC
• (X

i;Y) in Ho. Now, for fixed X, the functor
Y 7→ HomC

• (X
i;Y) from SSh (C) to SSh (I) preserves fibrations and weak equivalences of fibrant

objects, if we use the Bousfield-Kan model structure on SSh (I) (in which fibrations are local
fibrations). This implies the natural isomorphisms of functors

RlimI← ◦ RHomC
•

(
Xi;−

)
= R

{
limI← ◦HomC

•
(
Xi;−

)}
=(2.25)

= RHomC×I
•

(
Xi;Yi

)
which is the desired equivalence.

2.26. Schemes of infinite type. In the sections which follow, we will use the site F of schemes
of finite type over C. The finite-type restriction is crucial to certain parts of our argument. We
can use the notion of morphism of topoi to compare this with the bigger site N of noetherian
schemes over C. The inclusion

ϕ : F → N

pulls back coverings to coverings, and, at the same time, preserves fiber products and coverings
(see the comment following 2.10). It thus defines an adjoint triple (Φ!,Φ∗,Φ∗), in which the
adjoint pairs (Φ!,Φ∗) : Sh(N) → Sh(F) and (Φ∗,Φ∗) : Sh(F) → Sh(N) are morphisms of
topoi. (Such a triple is called in [SGA4] an essential morphism of topoi, going from F to N; the
prototype is an open embedding). Φ! extends ϕ to stacks: a simplicial representative of a stack
X on F, whose components are disjoint unions of schemes of finite type, also defines a stack on
N. In the other direction, starting from a stack Y on N, the associated stack Φ∗(Y) on F is just
the restriction of Y to the subcategory of schemes of finite type.
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The composition Φ∗ ◦Φ! is the identity; however the composition in the other direction is not
the identity. Thus Sh(F) can be considered in some sense as a “direct factor” of Sh(N), but
one should think of Sh(N) as having more objects. A typical example of an extra object which
doesn’t come from Sh(F) is Spec(A) where A is a local ring such as the localization of a C-algebra
of finite type at a maximal ideal. This object doesn’t appear in Sh(F) and indeed Φ∗(Spec(A))
is the ind-scheme corresponding to the formal completion of Spec(A) at its maximal ideal.

3. De Rham’s theorem

Let A be the site of analytic spaces in the classical topology, Fét or FZar that of complex
schemes of finite type, in the étale or Zariski topologies. Both are closed under finite fiber
products. In this section, C will be used wherever either A or F would do, and objects of C will
be called spaces. It is sometimes convenient to enlarge A and F to include formal spaces, which
are locally the formal neighborhoods of a subspace within a space.

The functor Red : C −→ C associates to every space the underlying reduced subspace.

3.1. Proposition. Red induces an adjoint triple of functors (Red, dR, δ) on Sh (C).

Proof. Note that Red (U ×V U) = Red (U) ×Red(V ) Red (U) , if U ↪→ V is an open embedding
in C (or an étale morphism in F), so the functor Red satisfies the weak form of condition (a) in
(2.11.iii), and the full condition (b) in the preciding paragraph.

By definition, the sheaf dR (X) satisfies Hom (U ; dR(X)) = Hom (Red(U);X) for any space U .
Thus, the over category C/dR (X) — whose objects are, by definition, natural transformations
from representable functors to dR (X) — agrees with Grothendieck’s (big) infinitesimal site of
X of [Gr], the category of pairs (U, f) consisting of a space U and a morphism f : Red (U) → X.
The object dR (X) was called the de Rham stack of X in [Si2]; it is a zero-stack, in the sense
that its higher sheafified homotopy groups vanish.

There is a structural morphism X � dR (X), right adjoint to the natural inclusion Red → Id.
Formal smoothness of X translates into the condition that this morphism should be a covering
in C. If so, we can describe dR (X) concretely, as the quotient of X under the formal equivalence
relation whose graph is the formal neighborhood of the diagonal in X×X; this is the “classifying
stack” of the formal groupoid diag (X) ˆ ⇒ X.

Note that the definitions of infinitesimal site, infinitesimal neighborhood, and of formal
smoothness make sense for sheaves. It follows again that X is formally smooth iff the mor-
phism X → dR (X) is a covering, in which case, again, dR (X) is the quotient of diag (X) ˆ ⇒ X.

3.2. Example. Consider a strict ind-space X, the direct limit of functors represented by a family
of spaces Xn, nested by closed embeddings Xn ⊆ Xn+1. More sensible for us is the sheafification
X of X over C, which is the sheaf direct limit of the Xn. Then, X is formally smooth iff the
ind-space X is smooth in the sense of Shafarevich [?], that is, if the formal ring at any point is
isomorphic to the (completed) symmetric algebra on the cotangent space.

Embedding a more general space X into a formally smooth, relatively nilpotent sheaf Y (most
naturally, a formal space) induces an isomorphism dR (X) → dR (Y ), and dR (Y ) can then be
presented as indicated.

3.3. Proposition. The pair (dR, δ) derives to an adjoint pair (dR,Rδ) on Ho (C).

The algebraic and analytic de Rham theorems assert that H? (dR(X);O) = H? (χ(X); C) ,
for any space X; we recall here the functor χ = holimC→ of Prop.(2.18). To extend this result to
stacks, we rewrite Hn (dR(X);O) as [dR(X);K(O, n)]. The Eilenberg-MacLane object K(O, n)
is constructed from the sheaf O by the standard simplicial procedure for Abelian groups ([M],
Ch. V), and the equality of the two groups can be proved as in [Q], Ch. II.5, or else from the
hypercovering theorem (2.7). Proposition (3.3) ensures that [dR(X);K(O, n)] = [X; RδK(O, n)];
but this is not helpful until we identify Rδ. We can do so quite explicitly in the analytic category,
where we shall see that RδK(O, n) = K(C, n).
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Let the functor dis : Sh (A) −→ Sh (A) assign to any sheaf the constant sheaf of its global
sections. Calling π : A → (point) the obvious morphism of topoi, dis = π∗ ◦ π∗ . For a space,
dis is the constant sheaf of its points. There is a natural transformation dis → δ, obtained as
follows: π∗ ◦ π∗ is the right adjoint of π∗ ◦ π+, where π+ is the “connected component” functor,
left adjoint to π∗. The obvious adjunction morphism Id → π∗ ◦ π+, which assigns to every
point of a space the connected component containing it, factors through Id → dR , giving thus
a natural transformation dR → π∗ ◦ π+. (This is obvious locally: on a space, the connected
component is constant on the infinitesimal neighborhood of each point). Its right adjoint is
the desired transformation dis → δ. There is induced a transformation Rdis → Rδ of derived
functors on the homotopy category Ho (A). Of course the higher cohomology over all of A (which
admits the point as a final object) is trivial, so Rπ∗ = π∗, and then Rdis = π∗ ◦ Rπ∗ = dis; so
Rdis simply acts as dis on each simplicial component.

3.4. Proposition. (a) For a space X, Rδ(X) = dis(X).
(b) For any Lie group G, Rδ (BG) = B (dis(G)); while for an Abelian Lie group A, RδK (A,n) =

K (dis(A), n).
(c) For any stack Y whose sheafified set of components, π0, is a space, and whose sheafified

homotopy groups are Lie groups, Rδ(Y) = dis(Y).

3.5. Remark. When a stack Y as in (c) above is of simple type (meaning that all π1–sheaves are
abelian, and their action on higher sheafified homotopy is trivial), dis(Y) is the constant sheaf
whose stalk is the complex homotopy type with the discrete groups underlying the πi(Y) as
homotopy groups, and with Postnikov k -invariants kn+2 (dis(Y)) ∈ Hn+2

(
dis(Y≤n); disπn+1Y

)
equal to the images of the sheafified k-invariants of Y from Hn+2

(
Y≤n;πn+1Y

)
, under the natural

map to Hn+2
(
dR ◦ Rδ(Y≤n);πn+1Y

)
. If Y is not of simple type, dis(Y) will be a locally constant

sheaf associated, in an obvious way, to the action of π1Y on the homotopy type with the above
k-invariants.

3.6. Remark. It is not the case, in general, that dis = δ.

Proof. For a contractible Stein manifold U , cohomology computed in the over category A/U
agrees with cohomology over the small classical site of U , and

Ext (U ; RδK(A,n)) = Ext(dR(U);K(A,n) =(3.7)
= K (dis(A), n) = Ext (U ;K(dis(A), n))

from the adjointness relations and the analytic de Rham theorem on U . The sheafifications of
the two outer Ext’s (rigidified to functors) equal the inner functors, and (3.7) gives the desired
isomorphism RδK (A,n) u (dis(A), n) . The result extends to n–truncated stacks Y (stacks with
vanishing sheafified homotopy groups above dimension n), by induction on n, by virtue of Prop.
1 in [Q], Ch. I.4 ( Rδ and dis, as right derived functors of left exact functors, preserve fibre
sequences). Finally, over the small site of U , Y is the (homotopy) inverse limit of its Postnikov
tower, and both Rδ and dis commute with homotopy inverse limits, giving the general result.

3.8. Corollary. For any complex Lie group A, representing a sheaf A over A, and any analytic
stack X, de Rham’s theorem Hn (dR(X);A) = Hn (X; dis(A)) holds. (A must be abelian if
n > 1). For stacks over the Zariski or étale sites of F, Hn (dR(X); C) is the complex cohomology
of χ (X).

Proof. Follows from Prop.(3.4), parts (a) and (b), and the hypercohomology spectral sequence
for a simplicial representative of X. We get [dR(X);Y] = [X,dis(Y)], for any Y as in part (c) of
Prop.(3.4).

3.9. Corollary. De Rham’s theorem H? (X; Ω•) = H? (X; C) holds for formally smooth analytic
sheaves. Correspondingly, for algebraic ones, H∗Zar (X; Ω•) = H? (Xan; C).

Proof. X is formally smooth iff it can be covered by formally smooth (formal) spaces. We claim
that restriction to the full subcategory of formally smooth objects in the site A/X does not
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change sheaf cohomology over A/X. However, on formally smooth spaces, C → Ω• is a quasi-
isomorphism. The result on the algebraic site follows from the equality H? (X; Ω•) = H? (Xan; C),
for formally smooth formal scheme X of finite type [H].

In particular, the naive form of de Rham’s theorem holds for formally smooth ind-varieties
(misleadingly called smooth in [?]). This is not completely obvious: it can happen that X cannot
be written (not even locally) as an increasing union of smooth varieties.

3.10. Example. The ind-group G [Σ] of algebraic maps from an affine curve to a Lie group G was
shown in [BL] to be formally smooth and reduced. Using affineness of G [Σ], the theorem shows
that the Lie algebra cohomology4 H? (g [Σ] ; Γ(G[Σ];O)) agrees with the complex cohomology
of the topological space underlying G [Σ]. This proposition (with convoluted proof) was used
in [T1] to derive a van Est spectral sequence for G [Σ]. We shall seein Sect. 4 that G [Σ] is
not truly smooth, in the sense that it cannot be obtained (even locally) as increasing union of
smooth subvarieties.

4. Regular singularities and the Riemann-Hilbert correspondence

In order to treat degree one nonabelian cohomology on stacks which are made out of quasipro-
jective varieties, we need to introduce a notion of regular singularities. To illustrate the problem,
note that even if X is a smooth quasiprojective variety, and if G = GL(n), then the mapping
stack Ext(X,BG) is the moduli stack of rank n vector bundles with integrable connection on X;
this includes connections with irregular singularities at the boundary X −X, and in particular
we cannot hope to have a comparison theorem comparing this with the topological cohomology
of Xtop.

We adopt the following general definition. Suppose G is an algebraic Lie group and suppose
X is a stack. If ρ ∈ Ext(dR (X) , BG) then we say that ρ has regular singularities if for every
quasiprojective curve C (maybe we should use spec of a discrete valuation ring here ???) and
every morphism f : C → X (i.e. point in X(C)) the pullback

f∗(ρ) : dR(C) → BG,

which is a principal G-bundle with integrable connection on C, has regular singularities.
We first note that this definition coincides with the usual definition when X is a quasiprojective

variety: a differential system on X has regular singularities if and only if its restriction to every
curve has regular singularities [?].

Next we define the stack Extreg(dR (X) , BG) of regular-singular morphisms to be the full
substack of Ext(dR(X), BG) consisting of those points P : S → Hom(XdR, BG) such that for
every closed point s ∈ S, the restriction P (s) (which is a morphism dR(X) → BG) has regular
singularities in the above sense.

It is clear that this notion is compatible with pullbacks: if X → Y is a morphism of stacks
then we obtain a pullback morphism

Extreg(dR(X), BG) → Extreg(dR(Y ), BG).

In particular, if X is a stack then any regular-singular cohomology class pulls back over any
quasiprojective variety Y to a regular-singular class in the usual sense.

We should point out that the stack Extreg(dR(X), BG) does not generally have very nice
properties, for example it is not an algebraic stack (see [N]).

Our goal in this subsection is to prove the following theorem.

4.1. Theorem. If X is a smooth quasiprojective variety and G is any algebraic group, then the
Riemann-Hilbert morphism

Extreg(dR(X), BG)an → Ext(dR(X)an, BGan)

is an equivalence of stacks on A.
4The correct definition of this cohomology involves a completed Koszul complex, which is then isomorphic to

the global sections of the de Rham complex of the group of maps.
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Of course it is well-known that on Spec(C)-valued points, the above morphism is an equiva-
lence. The problem is to treat the dependence on parameters. This type of question has already
been treated e.g. in the papers of Nitsure and Sabbah [N], [NS], but to our knowledge the precise
statement we need hasn’t occured yet in the literature.

Our proof is in several stages. We start by treating G = GL(n); and here we first prove
that the functor is fully faithful (this is the less well-known part), then we explain the standard
method for seeing that it is essentially surjective. At the end, a standard tannakian argument
allows us to go to any algebraic group G. It doesn’t seem easy, on the other hand, to do the
previous steps of the proof directly for G-bundles with arbitrary G.

Until further mention, we set G := GL(n).
For full faithfulness, the first problem is to get a hold of what it means to have an S-valued

point in Extreg(dR(X), BG)an for a complex analytic space S. Recall that if S is a complex
analytic space, then a morphism S → F an comes, locally on S in its analytic topology, from a
pair of morphisms

S → P an, P → F

where P is a scheme of finite type.
We would like to show that the morphism

Extreg(dR(X), BG)an → Ext(dR(X)an, BG)

is fully faithful. Interpreting morphisms between two differential systems E,F as flat sections of
the bundle E∗⊗F , the problem of proving that the above morphism is fully faithful is the same
as the following problem. Suppose we have a scheme of finite type P and a vector bundle with
integrable connection (E,∇) on P ×X relative to P , provided with a section β over {x} × P .
Suppose that for every closed point p ∈ P the corresponding connection has regular singularities.
Suppose furthermore that S is a complex analytic space with a morphism S → P an. Suppose
that the corresponding analytic connection on Xan × S admits a section agreeing with β over
{x} × S. Then for every s ∈ S we would like to find a scheme of finite type Q mapping to P
such that over X × Q the algebraic vector bundle admits a flat section, and such that there is
a neighborhood S′ of s ∈ S such that S′ → P an lifts to a morphism S′ → Qan.

To do this, choose a smooth compactification Z of X (with a divisor D at infinity), and choose
an extension of E to a coherent sheaf (which we also denote by E) on Z × P . Choose a locally
free sheaf L and an injection of coherent sheaves E ↪→ L which is strict over X ×P . Let L→ F
be the quotient. We may assume that F is torsion-free (this corresponds to assuming that E is
saturated) and in turn we can choose an injection F ↪→ M with M locally free—and again we
can suppose that the injection is strict over X × P . Thus E is represented as the kernel of a
morphism of locally free sheaves L→M and this morphism is strict on X × P .

The connection ∇ (defined on E) has poles along the divisor D.
For any n let Qn denote the scheme such that a morphism R→ Qn corresponds to a morphism

R → P plus a section of the pullback of L(nD) over R × Z, going to zero in M(nD) and
annihilated by ∇. We have morphisms Qn → Qn+1.

The morphism Qn → P is injective on the level of points. Indeed, given two flat sections
which agree with β on {x} × P , they agree on X × P and since they are (for the purposes of
defining our functor) considered as sections of L(nD), they agree on Z × P .

The morphism Qn → P is proper. Suppose C is a quasiprojective curve with a point 0 ∈ C,
and let C ′ = C−{0}. Suppose we have a morphism C ′ → Qn such that the composed morphism
C ′ → P extends to C. Then there is an extension to C → Qn. To prove this, note that by
pulling back we have a coherent sheaf EC on C × Z, with connection ∇ regular on C ×X, and
we have a flat section (of E(nD)) defined over C ′×Z. This section agrees with the given section
β along C ′ × {x}. Analytically, the section corresponds to a fixed vector in the corresponding
representation of the fundamental group, and the subset of points where a given vector is fixed
is a closed subset of the variety of representations. This implies that the vector extends to an
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analytic flat section on C × X. Now Hartogs theorem implies that our section is an algebraic
section of L(nD) over C × Z.

A proper injective morphism is a closed immersion. Thus the Qn are closed subschemes of P .
Now let Qan

∞ denote the closed analytic subvariety of P defined by the condition that the
monodromy representation of the system of equations, should fix the vector β. Note that

Qan
n ⊂ Qan

∞ .

On the other hand, the underlying set of points of Qan
∞ is the union of the underlying set of

points of the Qn. Furthermore, locally in the analytic topology this union stabilizes, the reason
for which we now explain. We can stratify P by locally closed subvarieties Pi and over each one
of these subvarieties, choose a locally free extension Ei of E to Z × Pi such that the extension
∇i has logarithmic singularities (recall the hypothesis that over every point, ∇ had regular
singularities). On each Pi, define a real-valued function which is the maximum (or minimum
???) of 0 and of the real parts of the eigenvalues of the residue of the extension ∇i. Combine
these together into a function we denote by ϕ on P . It is continuous on each Pi.

We claim that ϕ is locally bounded at any point p of P . To see this, note that in view of its
definition (as the maximum of the real part of a finite number of multivalued algebraic functions)
it suffices to prove that for an algebraic curve C passing through p and with C − {p} contained
in a single stratum Pi, the function is bounded along C. Furthermore, the residues in question
can be measured by restricting to curves in Z which cut all of the components of the divisor D.
Therefore for this claim we can assume that Z is a curve. Now our extension Ei is a bundle over
(C − {p}) × Z, but this bundle extends to a locally free sheaf on C × Z (since with all of our
reductions, C × Z is a smooth surface). The connection ∇i is logarithmic away from {p} ×D
but Hartog’s theorem implies that it takes values in the logarithmic differentials everywhere.
Thus we have a logarithmic connection on C × Z and in the definition of the function ϕ we
obtain a function which extends continuously to C. Note that the value of this extension at the
point p can differ from the value of ϕ because, p being in a different stratum Pj , the extension
constructed in the present paragraph might differ from the extension Ej used to define ϕ(p).
However, existence of the continuous extension implies that ϕ is locally bounded.

Now a locally bounded function can be bounded above by a continuous function ψ. Add into
ψ a function bounding the degree of poles in the gauge transformations relating the extensions
Ei and E.

Now ψ gives a bound for the integer n necessary in expressing Qan
∞ as a union of the Qan

n .
Namely, for any point p ∈ Qan

∞ , we have that p ∈ Qan
n for all n ≥ ψ(n). This is because the poles

of a flat section of a vector bundle with logarithmic connection are bounded by the real parts
of the eigenvalues of the residue of the connection. In particular, we get that Qan

∞ is locally in
the analytic topology equal to an algebraic closed subset.

We have now obtained the answer to our problem for reduced complex analytic spaces S:
given a morphism S → P an such that the pullback vector bundle has an analytic flat section
(agreeing with β), this means exactly that the morphism factors through Qan

∞ . Thus, locally on
S in the analytic topology, it factors into one of the Qan

n .
The above argument concerns only the set-theoretic structure ofQan

∞ , so it doesn’t immediately
apply to non-reduced spaces S. For this, though, a deformation-theoretic argument (???) shows
that given an algebraic bundle with meromorphic connection and with a flat section, and given
a deformation of the bundle together with its meromorphic connection, if the section deforms
as a fixed vector of the monodromy representation, then it deforms as a flat section. (All of this
in the case of a deformation over an artinian ring of finite length.)

Suppose now that we have a morphism S → P with a flat section agreeing with β, and
factorization Sred → Qan

n . Locally on S, the nilpotent ideal defining Sred has finite order
of nilpotence. The deformation-theory argument of the previous paragraph shows that any
artinian scheme mapping into S,goes into Qn. This is readily seen to imply that S maps into
Qn (indeed the functions in the ideal defining Qn vanish on all artinian subschemes of S, which
implies that they vanish on S).
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All in all we have proven the following theorem. For this, note that a bundle with a flat
connection and a nonvanishing section is a principal P-bundle where P ⊂ GL(n) is the par-
abolic subgroup of matrices with zeros in the non-diagonal places of the first column. Then
Extreg(dR(X), BP) → Extreg(dR(X), BGL(n)) represents the functor of vector bundles with
regular integrable connection together with a nonvanishing flat section. Let Extreg(dR(X), BGL(n),Γ) →
Extreg(dR(X), BGL(n)) represent the functor of vector bundles with integrable connection to-
gether with a section which is allowed to vanish.

4.2. Theorem. Suppose X is a smooth quasiprojective variety. Then the following diagram is
cartesian.

Extreg(dR(X), BP)an → Ext(dR(X)an, BPan)
↓ ↓

Extreg(dR(X), BGL(n))an → Ext(dR(X)an, BGL(n)an).

This statement extends to sections which are not necessarily nonvanishing: the same diagram
but with Hom(dR(X), BP) replaced by Extreg(dR(X), BGL(n),Γ) is also cartesian.

4.3. Corollary. The morphism of 1-stacks

Extreg(dR(X), BGL(n))an → Ext(dR(X)an, BGL(n)an)

is fully faithful. Again this extends to full faithfulness of the morphism of stacks of vector bundles
with integrable connections together with all (not necessarily invertible) morphisms between them
(this latter is a 1 -stack which isn’t a 1-stack of groupoids, and for which we don’t have a notation
yet!!!????).

Proof: Given two vector bundles with integrable connection E,F , a morphism between them
may be seen as a flat section of E∗ ⊗ F ; for this we can apply the previous theorem.

We would now like to prove that the functor in the previous corollary is essentially surjective.
For this, we need to be a bit more careful about the compactification.

Suppose X is a smooth quasiprojective variety, and choose a compactification X such that
the complement D := X − X is a divisor with normal crossings. Let dR(X, logD) denote the
formal category associated to the logarithmic de Rham complex of (X,D). Recall (???) that a
principal G-bundle with logarithmic connection is a morphism dR(X, logD) → BG.

Recall that G = GL(n). We claim that if ρ : dR(X) × S → BG is an S-valued connection
with regular singularities, then there exists a principal G-bundle on X with a connection having
logarithmic singularities and restricting to ρ, after possibly localizing on the base S. In other
words, we claim that the morphism

Ext(dR(X, logD), BG) → Extreg(dR(X), BG)

is essentially surjective (i.e. surjective on π0).
In what follows we keep G = GL(n). Also, we work uniquely in the analytic site for now

(however, X is the analytic space associated to a quasiprojective variety so we still have the
normal crossings compactification). Fix a real number α. We say that a representation ρ :
dR(X, logD) → BG is α -canonical if the residues of the connexion along the components of
D have eigenvalues whose real parts a satisfy α < a < α+ 1. (Note in particular that a system
which is α-canonical, has good eigenvalues in the terminology of Nitsure and Sabbah [NS].)

We say that a representation ρ : dR(X) → BG with regular singularities, is non-α if the
arguments of the eigenvalues of the monodromy transformations around components of D are
not equal to exp(2πiα).

Caution: The above notions are not stable under very many things. For example if one
changes the normal crossings compactification then these notions change (the residue at the
blow-up of a normal crossing is the sum of the two residues, so the condition on real parts is not
in general preserved). Also, these notions are not preserved under tensor product. In particular
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it is not clear how to define similar notions for groups other than GL(n) so for now we must
restrict to G = GL(n).

Let Extα−can(dR(X, logD), BG) be the full substack of morphisms whose values (on closed
points of the parametrizing scheme S) are α-canonical. Let Extnon−α(dR(X), BG) be the full
substack of morphisms whose values are non-α.

4.4. Lemma. Recall that here we work in the analytic category. The substacks

Extnon−α(dR(X), BG) ⊂ Ext( dR(X), BG)

and

Extα−can(dR(X, logD), BG) ⊂ Ext(dR(X, logD), BG)

are open substacks. The morphism

Extα−can(dR(X, logD), BG) → Extnon−α(dR(X), BG)

is an equivalence.

Proof: ???

4.5. Lemma. Consider X as an algebraic object, use the superscript an to denote the associated
analytic space, and use subscripts to denote which site we are refering to. Recall also that
G = GL(n).

The natural morphism

ExtF(dR(X, logD), BG)an → ExtA(dR(X, logD)an, BG)

is an equivalence of stacks. In particular, there is an analytic open substack

Uα ⊂ ExtF(dR(X, logD), BG)an

such that the natural morphism

Uα → ExtA(dR(X)an, BG)

is an equivalence onto the full open substack Extnon−α
A (dR(X)an, BG).

Proof: The equivalence is a consequence, for example, of the arguments given in [Si1].

4.6. Corollary. The morphism

HomF(dR(X), BG)an → HomA(dR(X)an, BG)

is essentially surjective.

Proof: The open substacks of non-α objects cover ExtA(dR(X)an, BG). We have exhibited
open subsets Uα of the analytification of ExtF(dR(X, logD), BG) which surject on the level
of objects, onto the open substacks in this covering. These surjections factor through the
analytification of ExtF(dR(X), BG), proving the surjection in question.

We have now completed the proof of Theorem 4.1 for G = GL(n). Note also that the proof
of full faithfulness works for morphisms which are not necessarily invertible. It is clear that the
functor in Theorem 4.1 (extended to the stacks which include all not necessarily invertible mor-
phisms) is a tensor functor (the stacks in question being stacks of tensor categories). Standard
tannakian considerations now imply Theorem 4.1 for any algebraic group G. (??? more details
???).
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4.7. The Riemann-Hilbert correspondence for simplicial presheaves: Turn now to a
general stack (simplicial presheaf) X on F. If G is an algebraic group, a morphism dR(X) → BG
is regular singular if, for every smooth quasiprojective curve C and morphism C → X, the
pullback morphism dR(C) → BG is regular singular. Let Extreg(dR(X), BG) denote the stack
of regular singular morphisms. As above, this means the stack whose Y -valued points (Y ∈ F)
are the morphisms Y × dR(X) → BG such that for every closed point y ∈ Y the associated
morphism is regular singular in the above sense. We obtain the following theorem.

4.8. Theorem. In the situation of the above paragraph, the morphism

Extreg(dR(X), BG)an → Ext( dR(X)an, BGan)

is an equivalence of stacks on A.

Proof: We know this statement for smooth quasiprojective varieties X . We can resolve any
Y (for the ??? topology ???) by a simplicial ind-scheme whose components are disjoint unions
of smooth quasiprojective varieties; the statement then follows from 4.1.

??????? Generalizing the above result on de Rham’s theorem for formally smooth ind-varieties,
we have:

4.9. Lemma. If X is a formally smooth ind-variety, then a morphism dR(X) → BG is the
same thing as a G-torsor over X with integrable connection (where the notion of connection is
defined in the usual way with respect to the algebra of differential forms Ω·X).

Proof ????

5. Mixed Hodge structure on cohomology

Deligne [D2] defines a mixed Hodge structure (mHs) on the hypercohomologies Hn(X•; Z) of
a simplicial variety X•, functorial for simplicial maps. We refer to those papers (and numer-
ous other expositions, Brylinski’s article in [Br], [Hu]) for the basic definitions and simplicial
constructions.

Call M the category of Z-mixed Hodge structures (other ground rings could be used). Our
first goal is to show that the functor Hn : SF → M factors through the homotopy category Ho(F)
of stacks. This seems easy enough, in view of the following facts: first, a morphism in M that
is an isomorphism of underlying Z-modules is an isomorphism in M; second, weak equivalences
of stacks induce isomorphisms in (analytic) Z-cohomology; and finally, inverting weak equiva-
lences in SKF turns it into the homotopy category Ho(F) (2.7). However, we want no finiteness
assumptions on our Hodge structures (as in [D2]), since our simplicial varieties may have, level-
wise, infiniteley many connected components. This is the case, for instance, in any presentation
of the stack of vector bundles over a variety.

This requires a minor deviation from the standard treatment. Note, for instance, that
H?(X•; C)6= H?(X•; Z) ⊗Z C if X• has infinite type, whereas this always holds for homology.
We get to the Hodge structure on homology through the distributional de Rham complex. On a
compact 2n-dimensional manifold X, this is D−2n

X
d−→ D−2n+1

X
d−→ ...

d−→ D0
X , where Dm

X are
the distributions with values in (2n −m)-forms (thus, D0

X is dual to the smooth functions on
X). This differential graded coalgebra is covariant for C∞ maps and resolves the homology of
X. In the compact Kähler case, the Hodge bigrading and the classical collapse of the Hodge-
to-de Rham sequence allow one to define the (pure) Hodge structure on H?(X; C). For open
but compactifiable X, we consider the distributional log de Rham complex D•

X
(−logD), defined

after chosoing a smooth Kähler compactification X, with normal-crossing boundary divisor D
(call this a good compactification). Recall that the smooth log de Rham complex A

p,q

X
(logD) is

A
0,q

X
⊗O Ωp

X
(logD); then, D

p,q

X
(−logD) is the topological dual of A

n−p,n−q

X
(logD). Poincaré du-

ality ensures that this resolves the homology of X with its Deligne-Hodge structure. The inverse
limit of D

p,q

X
(−logD), over all good compactifications, is functorial in X alone, and defines a



DE RHAM’S THEOREM FOR STACKS 15

mixed homological Hodge complex. (The definition is as in [D2], §6, with the reversal of arrows,
filtrations, and abandoning the requirement that the homologies be finite Z-modules).

(b?) Beilinson’s theorem that DMHS = Deligne’s derived category of mixed Hodge complexes:
Check it for direct limits of MHS? Polarizable structures

6. Hodge-to-de Rham

Let us start with a refresher. The holomorphic (algebraic) de Rham complex X 7→ (Ω•(X), d)
is a sheaf over A (respectively over F, with either the Zariski or étale topologies). Restricted to
the small analytic site of a smooth space X, the complex resolves the constant sheaf C. The
“stupid” filtration on (Ω•, d),

F p (Ω•, d) := 0 → 0 → ...→ Ωp d−→ Ωp+1 → ...(6.1)

leads to the Hodge-to-de Rham (or Frölicher) spectral sequence, converging to H? (X; C). For
proper algebraic X, the algebraic and analytic sequences can be shown to agree (using GAGA in
the projective case, and the method of [D1] in general). The two sequences can differ in general,
although their abutments agree.

6.2. The naive Hodge-to-de Rham sequence. Over singular analytic spaces, (Ω•, d) need
not resolve the constant sheaf, and one substitute is the following. Embed X in some formally
smooth formal analytic space X, with defining ideal I. It is a classical fact (see e.g. [H]) that de
Rham’s complex of X resolves C, so the “stupid” filtration defines a spectral sequence converging
to H? (X; C). This depends on X, but we may remedy that as follows. Define the naive Hodge
filtration on Ω• (X) by

NpΩ• (X) = Ip d−→ Ip−1Ω1 (X) d−→ Ip−2Ω2 (X) d−→ ...(6.3)

convening that Ik = O if k < 0. Each Grp
NΩ• (X) is naturally a bounded complex of coherent

O-modules over X, and is quasi-isomorphic to Ωp (X) [−p], if X is smooth, or even a formally
smooth formal space. A diagonal embedding argument shows that the class of Grp

NΩ• (X) in the
derived category Db

coh (X) of coherent sheaves on X is independent of the choice of X; we shall
denote it Grp

NΩ• (X). We get a spectral sequence, depending only on X,

Ep,q
1 = Hp+q

(
X; Grp

NΩ• (X)
)

=⇒ Hp+q (X; C)(6.4)

This we can take as our extension of the Hodge-to-de Rham spectral sequence to arbitrary
analytic spaces.

6.5. Remark. Feigin and Tsygan [FT] considered this construction in relation to the cyclic ho-
mology of affine schemes; they called Np the Hodge filtration. Our qualifier “naive” under-
lines the fact (see e.g. [W], §5) that Np does not always induce Deligne’s Hodge filtration on
H? (X; C), when X is singular.

There is a more intrinsic description of the spectral sequence. If X is formally smooth, the
formal groupoid diag(X)ˆ ⇒ X representing dR(X) can be degenerated to its normal cone
about X (here, X is identified with diag(X) ⇒ X). This normal cone is the Dolbeault stack of
X [Si2]; it is the classifying stack of the formal neighborhood of the zero-section in the tangent
bundle of X, viewed as a formal abelian group scheme over X. This degeneration filters O on
dR(X), and the spectral sequence (6.4) is associated to this filtration. (If X is not smooth,
embed it first in a formally smooth X, and again degenerate diag (X) ˆ ⇒ X to the normal cone
about X ⊂ X). The resulting Dolbeault stack is independent of the choice of X (again, by a
diagonal embeding argument).

6.6. Remark. WhenX is reduced, the spectral sequence arises from the filtration of the structure
sheaf O over Grothendieck’s infinitesimal site C/dR (X) of X (see the paragraph following Prop.
3.1) by powers of the nilradical.



16 CARLOS SIMPSON AND CONSTANTIN TELEMAN

6.7. Proposition. The spectral sequence (6.4) is functorially defined on the homotopy cate-
gories of analytic, étale or Zariski stacks (it depends only on the weak equivalence class of
simplicial objects).

Proof. The NpΩ• and Grp
NΩ• can be rigidified to a sheaf of complexes over F, as follows: the

category of smooth formal thickenings X ⊆ X, with arrows f : (X ⊆ X′) → (X ⊆ X) being
the formally smooth morphisms extending the identity on X, is a left directed system. The
Grp

NΩ• (X) are contravariant, and their direct limit complexes are the desired sheaves over F (or
A).

6.8. Example. With the exception of the “fake smooth” ind-varieties in the final subsection,
the only examples we have naturally encountered are smooth. Not surprisingly, the Hodge
cohomolgies admit nice descriptions.

(a) The case of BG, for any complex Lie group G, was studied by Cathelineau , who identified
the Ep,q

1 term Hq(BG; Ωp) with the holomorphic group cohomology Hq−p
G (Sympgt). (When G is

algebraic, this is the same as algebraic group cohomology). In this light, the Hodge-to-de Rham
sequence appears as a holomorphic analogue of the Bott-Shulman [?] spectral sequence for
real Lie groups, Ep,q

1 = Hq−p
G (Sympgt) (involving continuous group cohomology). Cathelineau’s

identification involves the bar presentation of BG, and the identification of the bar complex on
Λ•gt (invariant differential forms on G) with Sym•gt. The sequence collapses for reductive G,
but not, say, for Ga, where we get the Koszul complex on the dual of ga.

(b) Carlos: Add K(V,n)?
(c) Another generalization of (a) is the stack X/G (X smooth). An argument akin to Cathe-

lineau’s identifies Ep,q
1 = Hq(X/G; Ωp) with the equivariant holomorphic hypercohomology

Hq
G(X; Grp

Hodge) of a complex Grp
Hodge =

⊕
r+s=p Symrgt ⊗ Ωs of vector bundles on X, with

differential
∑

a ξ
a⊗ ι(ξa). (Here, ξa is a basis of g and ξa the dual basis of gt; ι(ξa) is the interior

multiplication on Ω• by the vector field defined by ξa). For reductive G and compact, Kähler
X, the sequence collapses at E1: indeed, if G is reductive (and connected, for simplicity),

H•G(X; Sym•gt ⊗ Ω•) =
(
Sym•gt

)G ⊗H•(X; C),

with total degrees matching on both sides. The right-hand side is already (additively) the
equivariant complex cohomology H?

G(X; C), by a theorem of Deligne’s [D1]; so no further differ-
entials are induced by

∑
a ξ

a⊗ι(ξa), nor can there be any higher Hodge-to-de Rham differentials.
(d) In [T2], §7, the collapsing result is generalized to the substack Xss/G, where Xss is the

open set of G-semi-stable points on a (polarized) projective variety X. This is then used to
prove the collaps of the Hodge-to-de Rham sequence of the moduli stack M of G -bundles over
a smooth proper curve. Note that M is a smooth 1-stack and, while it is not proper, it satisfies
the completeness part of the valuative criterion of properness. We do not have analogous results
for bundles over higher-dimensional varieties; note that those stacks are neither smooth, nor
complete in the valuative sense, so the case of curves may be a fortunate accident.

6.9. The DuBois complex. Following a conjecture of Deligne ([D2], §9), the “correct” exten-
sion of Ω• and its Hodge filtration to singular spaces was constructed by DuBois [Du]. Over any
variety X, one gets a resolution of the constant sheaf C by a complex (Ω•, d) whose terms are
O-modules and whose arrows are first-order differential operators, as follows: choose a smooth
simplicial resolution ε : X• → X and set (Ω•, d) := Rε∗(Ω•(X•), d), with the derivation R
done in the Zariski (or étale) topology. Here, a “smooth resolution” is a hypercovering in
the topology on F generated by proper surjective maps, in which, additionally, all the Xn are
smooth. This complex carries a decreasing Hodge filtration F , inherited from the naive Hodge
filtration on Ω•(X•). DuBois shows that the triple (Ω•, d, F ) is well-defined up to filtered quasi-
isomorphisms, independent of the resolution. Consequently, the associated graded complexes
Ωp

X
:= Grp

Hodge(Ω
•, d) ' Rε∗Ωp(X•) are unique in the derive category D+

coh (X) (up to canon-
ical isomorphism). Finally, when X is proper, the spectral sequence associated to the Hodge
filtration of collapses at E1, and yields Deligne’s Hodge filtration on H? (X; C).
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6.10. Remark. (a) DuBois requires the simplicial maps in X• themselves to be proper, but this
is not truly restrictive, as these more conservative resolutions are cofinal among the liberal ones
(cf. the construction in [D2], §5).

(b) On the analytic site, one also requires that X• should be algebraic over X.
(c)The Grp

NΩ• (X) defined earlier maps naturally to Ωp(X), but does not generally agree with
it.

To talk about H?(X; Ωp) for an A-stack X, we must define (Ω•, d, F ) as a filtered complex
of sheaves over A. It is not so easy to rigidify Ω•, because the category of resolutions of X is
not left filtering (let equalizers exist only up to simplicial homotopy, cf. Thm.2.7). Instead,
we rephrase DuBois’ construction more abstractly. Let Apsc be the site of analytic spaces in
the Grothendieck topology generated by proper-surjective maps and by classical open coverings
(similarly, use étale coverings to define Fpsc); this means that a sheaf in the psc-topology is a
presheaf which satisfies the sheaf conditions (F.1), (F.2) of [G] both for proper-surjetive coverings
and for classical coverings. (By Lemma (1.3) in loc. cit., this determines the psc-topology). There
is an obvious morphism of topoi Φ : Apsc −→ A.

6.11. Proposition. (Ω•, d, F ) is filtered quasi-isomorphic to the restriction of RΦ∗(Ω•, d, F )
to the small site of X.

Proof. A natural arrow (Ω•, d, F ) → RΦ∗(Ω•, d, F )|X is constructed as follows. A resolution
ε : X• → X is a psc-hypercovering, and thus induces an isomorphism RΦ∗(Ω•, d, F )(X) ' Rε∗ ◦
RΦ∗(Ω•, d, F )|X• in the derived category of filtered complexes over X. This, combined with the
natural arrow Rε∗(Ω•, d, F ) → Rε∗◦RΦ∗(Ω•, d, F )|X• , gives our arrow. The agreement of Ωp and
RΦ∗(Ωp) can now be checked on the cohomology sheaves. The result would immediately follow
from the hypercovering theorem, if smooth resolutions were cofinal among psc-hypervocerings.
This is not quite the case, but the following lemma shows that, concerning complexes bounded
below, resolutions are “sufficiently cofinal”: a large skeleton of X• suffices to compute the
cohomology in a fixed degree, and each skeleton is a successive composition of alternate classical
and proper-surjective contractible local fibrations, neither of which spoil the computation of
Hq(Ωp).

6.12. Lemma. Given a hypercovering X• → X in the psc topology and an integer k ≥ 0, there
is a sequence XN

• → XN−1
• → . . . → X1

• → X0
• of relatively contractible Kan fibrations, alter-

natively for the proper-surjective and classical topologies, in which X0
• is the constant simplicial

variety X, each Xi
j, i > 0, is smooth, and such that the k-skeleton of XN

• factors through that
of X•.

Proof. This follows form the fact that any psc covering is the composition of an alternating
sequence of proper-surjective and classical coverings, and from Verdier’s method to produce
hypercoverings, as explained e.g. in [D2], §5.

6.13. Proposition. The DuBois cohomologies H?(X; Ωp) and the DuBois spectral sequence
Ep,q

1 = Hq(X; Ωp) ⇒ Hp+q(X; C) of a stack X over F or A are well-defined. If X can be
represented by a smooth simplicial variety, H?(X; Ωp) = H?(X; Grp

NΩ•). On the other hand, if
X has a simplicial representative that is, levelwise, a disjoint union of compact Kähler varieties,
E1 = E∞ in the DuBois sequence.

The collapse of the sequence follows from the existence of a smooth proper bi-simplicial
hypercovering, and the collapse of Hodge-to-de Rham for the latter [D2].

6.14. Application: Non-smoothnes of some ind-groups. As an application, we get a
collapsing result for the Hodge-to-de Rham sequence for ind-varieties. A non-trivial (we think)
real-world consequence is indicated in Cor. (6.17) below, which arose in joint work of the second
author with S. Fishel and I. Grojnowski [FGT].



18 CARLOS SIMPSON AND CONSTANTIN TELEMAN

6.15. Proposition. Let X be a strict analytic ind-variety Xn ⊆ Xn+1 ⊆ Xn+2 ⊆ ... (cf. Sect.
3), and assume:

(a) (“Compactness”) The Xn are projective algebraic varieties;
(b) (“Smoothness”) Locally, near every point, X is equivalent to a direct limit of smooth

analytic subvarieties.
Then, the Hodge-to-de Rham spectral sequence Ep,q

1 = Hq (X; Ωp) ⇒ Hp+q (X; C) collapses
at E1 and yields the Hodge filtration on H? (X; C).

Indeed, smoothness ensures the agreement of the DuBois and naive de Rham complexes, and
Prop.6.13 applies. (Note that Ω• has an obvious meaning whenever X is formaly smooth).
There is a more general result here — unfortunately, of limited interest, as we don’t have any
convincing uses of the notions of smoothness and compactness for n-stacks, for n ≥ 1.

6.16. Proposition. Let the stack X over Fétale satisfy the conditions:
(a) In the psc-topology, X is equivalent to a simplicial space X• which is, levelwise, a disjoint

union of proper varieties;
(b) The analytified stack Xan is representable by a smooth simplicial variety Y•.

Then, Hq(X; Ωp) = Hp,q(X; C).

Proof. Condition (a) ensures the collapse of the algebraic and analytic DuBois sequences:

Hq(X; Ωp) = Hq(X•,Ωp) = Hp,q(X•; C) = Hp,q(X; C)

Part (b), on the other hand, implies that

Hq(Y•,Ωp) = Hq(Y•,Ωp) = Hq(X; Ωp)

Since Hp,q(X; C) = Hp,q(Y•; C), we get the desired collapse.

6.17. Corollary. For a simple Lie group G and an affine curve Σ , the ind-group G [Σ] of G-
valued regular maps is not smooth, in the sense that it can not be realized locally as an increasing
union of smooth complex analytic subvarieties. (Thus, it is not a complex Lie group).

One should recall that G [Σ] is formally smooth and reduced [BL], [T1]; there seems to be no
naive way to measure its failure to be “genuinely” smooth.

Proof. Let Σ = A1; G [Σ] /G is then a Zariski-open subset of the “basic flag variety” X =
G((z))/G[[z]] of the loop group of G. The latter is a union of the projective Schubert varieties,
so it verifies condition (a) in Prop.(6.15). However, as we shall see in a moment, the Hodge-to-de
Rham spectral sequence on X does not collapse at E1; so (6.15.b) cannot hold. For general Σ,
X is a principal G [Σ]-bundle, in the étale topology, over the smooth stack of G-bundles over the
natural compactification of Σ; so (6.15 .b) would hold for X, if it did hold for G [Σ].Regarding
the failure of Hodge-to-de Rham collapse for X, observe that collapse at E1 would require
H1

(
X; Ω1

)
= H2 (X; C) = C. Instead, it turns out that H1

(
X; Ω1

)
= C[[z]]. There is indeed

a natural identification (see [FGT] for details) of H1
(
X; Ω1

)
with the continuous Lie algebra

cohomology H1 (g[[z]], g; g[[z]]dz) (with the adjoint action on the coefficients). Associated to
f ∈ C[[z]], there is a Lie algebra 1-cocycle g[[z]] → g[[z]]dz , to wit, γ 7→ f · dγ; and all these
represent distinct classses in H1.
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