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One of the most beautiful formulas in classical algebraic number theory is the
analytic class number formula: The Dedekin d zeta function of an algebraic number
field has a simple pole at s : 1 and its residue is given in terms of the class number
and the unit regulator of that field. Remarkable about this result is the fact that
on the one hand side the zeta function, for .Re(s)
Euler product given completely in terms of the local arithmetic of the field and then
is shown to have a meromorphic continuation to the whole complex plane. On the
other hand, the ideal class group and the group of units are genuine invariants of
the global arithmetic of the field. Therefore the class number formula is some kind
of a highly nontrivial local-to-globat principle, or said difierently: The zeta function
transforms the relatively simple local information it is built out of into a rather deep
knorivledge about the global arithmetic.

Over the past decades it beca,me increasingly clear that this is not a singular
phenomenon but a manifestation of a general principle in arithmetic. The values or
better the leading coefrcientb at integral arguments of the tr-functions of atgebraic
varieties over number fields seem to be closely related to the global arithmetical geom-
etry of these varieties (e.g., the conjecture of Birch and Swinnerton-Dyer). Beilinson,
in [Bei 1], has developed a completely general conjectural formalism which connects
the "transcendental" parts of that leading coefficients to so-called regulators. These
regulators are sophisticated generalizations of the classical unit regulator defined by
purely algebraic and geometrical means.

The purpose of these Notes is twofold. First and mainly we want to present
Beilinson's extremely fascinating conjectures in a way which leads the reader to their
statement as directly as possible. So we will explain most of the necessary formalism
only up to the point which is needed for the statement of the conjectures. (The
reader will find detailed treatments in the subsequent Chapters.) The exception to
this is the theory of Chern classes. A basic ingredient in the definition of the Beilinson
regulators is the construction of Chern class maps from the higher algebraic K-theory



into the Deligne cohomology. Since this type of construction most probably will turn
out to be important in similar situations also (..g., padic .[-functions) our second
purpose is to explain the theory of Chern classes from higher K-theory into any
reasonable cohomology theory in a rather formal and detailed way. Furthermore,
a basic but for the understanding of the conjectures important result concerns the
behaviour of the Chern classes with respect to the 7-filtration on K-theory. Since
this, although well-known to the experts, seems not to be contained in the literature
we will include a proof.

It need not to be emphasized, of course, that nbthing in these Notes is orig-
inal. They are the poor result of the authorts attempt to understand these beau-
tiful conjectures. Finally I want to thank the members of the Arbeitsgemeinschaft
Heidelberg-Mannheim; in a common efiort we managed to go through Beilinson's
paper. I am also grateful to S. Kosarew for pointing out some stupidities in a first
version of these Notes.

$1 Complex "t-functions

Let us' start by briefly looking at the "simplest" example of an tr-function: The
Riemann zeta function

( ( r ) , -  I  
1

r r l - p - t

is absolutely convergent (and.nonzero) for Re(s) > 1. It has a meromorphic contin-
uation and ((t) 't(s12) . n-'/2 has a functional equation with respect to s r-+ 1 - s.
Concerning the values at integral arguments we know that

t ( , n \ _ l  Q r l f ) ' m o d e *  i f  n > L  i s e v e n ,
b \ ' e " - t  ?  i f  n > L  i s o d d

and therefore, by the functional equation, that

f  e  Q"  i f  n< . -0  i sodd ,((") 
t simple zero, if rz ( o is even.

We make the following obserrirations:

1) The zeros of ((s) in the region Re(s) ( 0 are completely determined by the l-factor
in the functional equation.

2) The nalue (Zrtft),(modQ") at an even n> Lis a quite elementary example of
a period. On the other hand, the unknown values ((") for odd n ) 1 are related in an
obvious way to the leading coefficients of ((r) at s : L-n. To compute them mod Q 

"
therefore requires probably a much more sophisticated "period"-construction (usuatly
called "regulator"). (In case of ((c) this was done by Borel in [Bor].)
3) In order to determine the multiplicity of ((r) at .e - 0 and s : 1 one need.s
additional information (in this case that we have a simple pole at s - 1).

In the following we will see that these obserriations most tikety reflect general
principles in the theory of motivic complex .[-functions. Since there is an excellent
reference ([Ser] and also [Del]) for the construction and the expected analytic prop-
erties of these .[-functions we only will give a short review here. In addition, we are



going to work always over the rational numbers e as base field. Because of the fact
that the restriction of scalars does not change the .[-functions this is not really a loss
of generality but it simplifies the notation a lot. Our main aim in this Paragraph is
to work out from the expected functional equation quite explicitly what our first ob-
servation above becomes in the general case. Although this will consist in elementary
computations it is a useful exercise for beco*iog acquainted with some basic facts
which any conjecture has to take into account; it also serves as a piece of motivation
for the introduction of the Deligne cohomology in the next Paragraph.

Let X7q be a projective smooth variety over e'. We fix an algebraic closure
a/a and put X :: X XO. We also fix an integer i between 0 and 2dimX and wea
denote by M (for motive) the farrity of att ith cohomology groups of X as there are

- the Ladrc cohomology Hi(TrQz), for each prime number l, viewed. as
car(O/e )_module,

- the de Rham cohomology Hbn(X(A)) of the complex manifold X(A), and
- the singular cohomology äi(X(A), e).

For each prime number p we choose a prime p ofQ above p and. we let Dn,_resp.
{o' dengte the corresponding decomposition, resp. inertia, subgroup in Gat(O/A ).
In the factor group DOIIO we have the arithmetic Fbobeni"r di as a distinguisnea
element so that we can consider, for each t * p, the characteristic polynomiJ

PnQ):- der( l  -  ö;rr;  Hi(T,er)tr)

of the geometric Fhobenius Ö;t on the subspace of. IV ,invariant elements in
H'(TrQr). Obviouslg this polynomial does not depend on the particular choice
of p above p. Furthermore, it is conjectured ([Ser]) that the follo*irg hypothesis
always is fulfilled.

Hypothesis:

(I) Pr(r) has coefficients in z which are independent of l.

By Deligne's proof of the Weil conjectures this is known to be true if X has good
reduction at p (which is the case for almost all p). Assuming (I) we then define the
complex .[-function of M by the Euler product

L(M,s) :: I[ro@-")-t
P

which converges absolutely for Re(s) >> 0. Here is a list of some of the expected
analytic properties of L(M,s).

Hypothesis:

(II) The above Euler product converges absolutely for Re(s) > i * 1 (and therefore
does not nanish in this region);

(m) !(M,s) has a meromorphic continuation to the whole complex plane; the only
possible pole occurs at s - i * 1 for even f;



(ry) L(M,; + r) * o;
(V) L(M,s)' L*(M,s)'(exponential factor) has a functional equation with respect
to s r+ i * 1 - s (the precise definition of the archimedean Euler factor L*(Mrs) is
given below).

If f(s) denotes the usual l-function we put

Irn(r) ,: rr-"/2 .t1s 1Z) aod fc (r) z: 2.. (2o)-" . f(r) .

The Euler factor L*(M rs) is built out of these f-factors by a rule which involves
the Hodge structure on the singular cohomology Ht(X$.), A). This Hodge structure
consists in the Hodge decomposition (compare [GH])

Ht(x$.) ,c) :  O HPq

ilil'

together with the C-linear involution.("o on.H'(X(A),C) induced by the complex
conjugation on the manifold X(A); one has

F*(H'o) : HqP .

We put

hPq :- di*C HPq and hP* :: dim6 gn'*Gr)"

where HPP - HP+ @ EP- is the decomposition into eigenspaces with respect to Foo.
Then L*(M,s) is defined to be

n rc (t - p)uoo
?< .1

p*q : i

_ r r -

i f i i s o d d ,

rn(, - i)u'* rn(, - i +r;n*- if i is e.,,en .

In the following we always assume that the above Hypotheses I-V are fulfilled. Then
it is clear that the location and multiplicity of the zeros of. L(M, s) in the region

1.(t] f ä "t. completely determinedbythe foles of the Eulerfacior L'*(M,s). Since
the l-function has (simple) poles precisely at the nonpositive integers 0, -i ,-2,...
those zero multiplicities must depend in an elementary way on the Hodge structure
of. M . In order to state the result in a convenient form we first recall that there is a
canonical isomorphism

^ar(x(a), a) - HLn(x(a))
between singular and de Rham cohomology (compare [GH]) and that the de Rham
filtration F'EfiR on the right hand side is related to in. goage decomposition on
the left hand side bv 

FoHbn(x(a)) : @ Ho,o
p')P



Proposition:

The only poles of L*(M, s) occur at integer poi,ntr .e - m I I wi,th multiplici,ty equal
to

di*c Ht6$.),  C)(-t)o- '  -  dim6 F Hbn(X(A))

where n :: i + L - rn' and the erponent (as always in the followi,ng) d,enotes the
correspondi,ng eigenspace wi,th respect to Foo

Proof: The first assertion is obvious. Now, the multiplicity at s - m 1 i Uy definition
is equal to

r
r,aSp{s

Trne(ahi,(-1)--i ) if i is odd (even)

On the other hand, because of Foo (nnt1 - Hqp, we have

and

di*c Hr(X$.), C)(-t)o-' : 
F*Urtr+hr,(-l)t--)

d i -cF'HLn(X(C)) :  t  hPq- f  hPq- t  hpq
p)i+l-tn q)i lL-n plrn-!

Since rn-L < 12 the relations p 1m-1 and p*q- i imply p 1t < q. We therefore
get

di*c F*Hbn(x(A)): f  hps
"i?o-'

If we put

ord"-- L(M,s) :: multiplicity of L(Mrs) at I : rn,

(poles are counJed negatively) then our Hypotheses allow to reformulate the Propo-
sition in the following way.

Corollary:

For any integer rn S t anil n:: i * L - m we haae

di*c .Ai(X(A), C)(-t)o- '  -  dim6 F^HLn(X(A))

: I ord"-- L(M, s) ,f m < i ,
I ord":- L(M,s) - ord"--4 1L(M, s) ,f m : t

Corollary:

For any i,nteger m S max(0,i - dim x) sueh that m I t *, haae

ord"-- L(M,s) :  di*c .Hd(X(A), C;(-t)- ;



furthermore, for odd i the right hanil si,de is equal to l.di*c Hr6$.),4) and,
therefore 'i,s euen i,ndependent of m.

Proof: By assumption we have m 1i *d Tt, t: i +L - rrr > min(a,dimX) so that

F' H'rn(X(A)) : o Hq(X g.), OP) : 0

,'*12'

The above Corollary then implies

ord."-- L(M,s) :  di*c Ht(X$.),C)(-t) ' - '
- di*c Ht6$.), C;(-tl"'

I
I
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In the next Paragraph we will see that there is a more "natural" formula for
ord"-- L(M rs) and any integer nz ( f which, like in the last Corollarn computes
this multiplicity as the dimension of a öertain cohomology group.



$2 Deligne cohomology

The de Rham cohomology Hbn6(A)), by definition, is the cohomology of the
complex of sheaves of holomorphic difierential forms

Q' z O7s1C) -+ O1 -, O2 -* ...

on X(C) and the de Rhamfiltration F'Hfin ir inducedby the naive filtration of this
complex' 

,oHLn(x(a)) - image(f/,(o;n) - ä,(o.)) ;
here the map on the right hand side is derived from the first arrow in the short exact
sequence of complexes

O>o : 0 OP --+ Qr+r -)

r r l t t l
O'  :  Oxrc)  -+  g t  -+ . .o  - -+  OP- l  Op - )  Op+r  ->

l i l i l l t  l
Oip : O xrcl -) g|t -+ --) OP-l -) 0

In addition, we conclude from the existence of the Hodge decomposition that the hy-
percohomology spectral sequence Hf(X(A),Ot) + E';A(X(A)) degenerates. Con-
sequently, the map 

Er(fr>o) _-_-+ är(o.)
is injective and we get

H, (Q..r) : Hbn(X(A )) I F'

The real Deligne cohomology Hb(X rc., lR(p)) of. X 1q is defined to be the cohomology
of the complex

lR(p), : lR(p) - O x(a) -' Or -* Qp-l --+ 0

where the first arrow simply is the inclusion of the "twisted" constants lR(p) :-
(2r"fi)on g A gOxGr. We apparently have ashort exact sequence of .o*ff.*.t

0 -----+ o:p[-l] ----+ IR(p), -* tR(p) - 0

from which we derive the long exact cohomology sequence

l"u',ffrrä;tflJi"-?:(x(aDtFn-'H:;'(xrc'rR(p))-+
Remark:

Replacing lR by any subring L g lR we get corresponding cohomotogy groups
Hb(Xrc.rA(p)).There is a long exact cohomology seguence

- HL(xrc.,A(p)) * Hb(xrc., tR(p)) - Hi(x(a), ln..IA) --+ ...

Examples:

1) Z(t)r--\?lz(1)[-1] - ,o^ t-11 ;
2) For p ) dimX we have

z(p)r:[o + OIZ(p) -'or -* sdimt]+c lz(p)t-11
and consequentby H*t (X rc., IR(p)) - Hi(X(A ), R(p - 1)).



The above long exact cohomology sequence already indicates that the real Deligne
cohomology in some sense measures how the natural real structure on the singolat
cohomology is behaved with respect to the de Rham filtration. And we have to
explore this a bit further. Let us first recall that this real structure

^Hc(x(a), R) 
R 

a : Ht6$.), a)

on the singular cohomology is given by the tR-linear involution - on the right hand
side whie.h. is induced by the complex conjugation on the coefficients. On the other
hand, by GAGA the algebraic de Rham cohomology Hbn(-I'lrn) of X/n defines a
real structure

Hbn6rrn)pc - Hba6(a))

on the analytic de Rharn cohomology. The corresponding lR-linear involution on the
right hand side which we simply catl the D.R-conjugation is induced by the obvious
complex conjugation on the pair (X(A),O'). We have
- m - H q P .

- The de Rham flltration already is defined over lR.
- Under the canonical identification Hbn(X(A)) - H|(X(C), A) (which is induced
by the obvious quasi-isomorphism of complexes C -r O') the Dl?-conjugation on the
left hand side corresponds to Foo on the right hand side ([D.l] Prop.f.a.). For the
following it is useful to define the real Deligne cohomology of X7p

Hb(X nn, lR(p)) :- Hb(Xla, lR(p;;nR-conjugation

to be the subspace of elements invariant with respect to the D,R-conjugation. We
now are prepared to analyze the above long exact cohomology sequence more closely.

Lemma:

For i 12p the natural map.gt(x(A),R(p)) - Ebn(x(aDlFo is i,njectiae.

Proof: The involuüion - acts on the left hand side by muttiplication by (-1)o. But
we have

F P n F p : ( @  H P ' q ) n ( e  H P ' q ) -  o  H P ' q-p')P 'q2p '  
p'  ,g)p

which is zero because of.2p > i.

For f
sequence

0-+ Hi-t(x(a),rR(p)) - HL-/. .(x(aDlFo - Hb(xrc., tR(p))-+ 0
Using the decomposition G - lR(p) O lR(p - 1) we can rewrite this as a short exact
sequence

0 --+ FnE;;(x(a)) * Ei-r(x(a),rR(p- 1)) -, f lb(xta.,tR(p)) --+ 0

Remark:

For i > 2p the groups Hb(X rc., lR(p)) should be considered pathological. In fact, in
[Bei 2] Beilinson defines "absolute Hodge" cohomology groups which'coincide with
t h e D e l i g n e c o h o m o l o g y i n t h e r a n g e f ( 2 p b u t v a n i s h f o r f > � � � � � � � � � � � �
Paragraph we will say something about the very interesting group, n7(Xrc.,2(p)).



i + t
2

m {

For our purposes it is convenient to change the notation a little bit. We fix once and
for all an integer

andre put n t- i +L - rn. Passing to invariants with. respect to the D8-conjugation
(: F.") in the above short exact sequence we derive our basic exact sequence

(*) 0 --r F*ELn(xrp) -' äi(x(c), tR(n - 1))(-1)"-1
--+ Ef,+r1x1*,tR(z)) --.+ o .

We i"''"ediatü realize that our first Corollary in the last paragraph can now be
reformulated in the following more ,,natural" way.

Proposition:

dimp.Ei+r(x7p,rR(z)) ={o'1"=^'-lY,'l ir- *. .i,
I ord.=- .t(M, a) - ord,=-.,-1 .t (M,s) iI ^ : i .

But we also want to predict (up to a rational number) the leading coefficient (in a
Taylor series expansion) of. L(Mrs) at s : m. Let us first look at the case where we
have a nhonest" value. For rn < i the following conditions a,re equivalent:

i. L*(M rs) has no poles at s : m and g - n ,
ä. L*(Mrs) has no pole al E = rn t
ä i .  L (M,m)10 ,
iv. .Ei+r(X7;x, tR(z)) : s .

According to Deligne suc.h an integer rn is called critical. Our sequence (*) in that
case becomes an isomorphism

F Ebn(x1il3.ar1x1C;,IR(rl 1))(-1)'-1
'I[e 

now observe that both sides carry natural rQ-structures: The left hand side by the
algebraic de R.ham cohomolory of X7q and the right hand side by the singular coho-
mology with coefrcients Q(" - f). TLerefore, the determinant of this isomorphism
calculated in lQ -rational bases defines a number

cyQn) e tR"/Q "

called the Deligue period of the twigted motive M(rn).

Coqiecüure: (Deligne in [De{)
Il m < t is critical we hate L(M,m): crw(rn) mod Q " .
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Remarks:

1) Deligne actually defines his period in a slightly difierent way. The computation
which shows that Deligne's and Beilinson's definitions lead to the same feriod is
given in a subsequent Chapter of this book.

2)If m 1f is critical withm < marc(A,i-dimX) then our second Corollary above
says that cu(m): f . Deligne's conjecture in this case amounüs to the assertion that
L(M,nz) is Q -rational.

For general nc the exact sequence (*) still provides an isomorphism

AmaxF," Hbn6l*) 
R 

Amax H:;t(Xlrn, tR(rz))

- i  tr*"*H'(x(C), lR(rz - 1))(-1)o- '

between the maximal exterior powers of the respective lR-vector spaces. Now, Beilin-
son's idea how to proceed is the following:
- Show that the Deligne cohomology H:;'(Xln,lR(n)) carries a natural Q-structure,
t o o .  

r  '  " r '

- Define the regulator t*t(*) € tRx/Q" to be the above isomorphism calculated in
Q -rationd bäses.

- Conjecture that "u(m) is theleading coefficient of L(Mrs) at I : Tn up to arational
multiple.

Furthermore' his hope is that the Chern class maps from higher algebraic K-theory
into Deligne cohomology will provide the required e -structure. In the next two
Paragraphs we will discuss in some detail the construction of these Chern classes.
In order to understand why this theory has to come in it is useful to observe the
following two facts:

L) There is no "easy" way of getting a Q-structure. In fact, our considerations which
led to the exact sequence (*) also imply that the natural map

H:;'(xlrn, Q(rr)) - HL*t(xl,n, tR(rz))

is surjective.

2) Of course' there also are Chern class maps from higher K-theory into de Rham
and singular cohomology. But a weight argument shows that "p"ti from the cycle
map on K0 they are trivial. In contrary to these two cohomology theories the Deligne
cohomology is of a transcendental nature so that we should e*pect highly interesting
Chern class maps.
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$3 Absolute cohomology

The higher algebraic K-groups of a scheme in a natural way break up into pieces
whiel behave very much like a usual cohomology theory. trbom this point of view
the theory of Chern classes then appears as a technique to construct natural trans-
formations from this "absolute" cohomology into any other reasonable cohomology
theory.

In the framework of the *-construction one can define a family of natural op-
erations {{*}*>1 called the Adams operations on the K-groups X;(,1) of any affi.ne
scheme Spec(.A). Their most important property is that they induce a decomposition

K;(A) I e : 
,90 

xli) (ü wirh

K:i)(.A) :- {r e K;(A)O e, {,k(ü) - ki  x for al e > 1} .

See [Hil] or [Kra] or the corresponding Chapter in this book.

Remark:

IfI:](Ä) - 0 for f ) L, and Ks(Ä)'"of ä0(Spec(,4),2) induces an isomorphism
r$o)(a) e Ho(Spec(,{),2).

In order to get Adams operations on the K-groups of our variety X we use the
following facts:

L) There is a torsor p ; W + X for a vector bundle on X which is an affine scheme
([Jou] p.2e7).

2) (Homotopy property) If f , Y + Z is a taithfutly flat morphism whose fibres are
affine spaces then f. , K'-(z) Z K:V) is an isomorphism (ta"i] p.120).

3) For any regular scheme Y we have K-(Y) - K'*(r) ([e"i] p.116).

We consequently have uo iso*orphism

P* :,K*(X) g K-(W)

which we use to transfer the Adams operations from the right to the left hand side.
The result is independent of the particula,r choic e of. W z Namely , if W' -> X is a
second such torsor then all morphisms in the cartesian diagram

w" =+
I
w' --+

induceisomorphismsinK-theoryandW,, isaf f ine, too.Theabsol@
groups of X now are defined by

W
I
X

Hi(x,au)) ,_ K:})_,(x)



L2

Problem: Is Ei:O for i  < 0?

Beilinson hopes that these groups form some kind of universal cohomology theory for
X. In the same spirit he expects that the projections

eh"t z K;(X) +

define an universal Chern character.

nx-'(x, au))

for the complex K-theory of a
character induces isomorphisms

o
j>0

Remarks:

1) As motirration one should have in mind that,
compact topological space Y, the classical Chern
([r"])

Kti) (v) = n'i(v,Q) and Kfil(y) = H2i-1(4a) .

2) The groups Hi(Y,a U)) can be defined for any seÄeme Y which is quasi-projective
over a regular schemel they form a cohomology theory in the sense of Bloch/Ogus
(see [Sou 2 ] or the Chapter on Riemann-Roch in this book).

As a first step towards the wanted Q -structures we will construct in the next
Paragraph natural maps

Hi(x,a0)) -, HL(x/n, rRu)) .

Bloch/Grayson (tBGl) discovered. that for certain elliptic curves X rc the map
H'o(X,a(2)) A lR * HL(Xln,lR(2)) is not injective. Therefore Beilinsöo proposes
the following modification of the absolute cohomology.
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Conjecture: (Beilinson)

If xn is a proper fl,at model of xrc $t always enists!) then

image(K,.(x)s e + K*(x) s a)

is i,ndependent of the choi,ce of X n and is compati,ble wi,th the Adarns opery,tions anil
the formation of inaerse images wi,th respect to X

Remark:

i1$e(fl(Z) * Jf.(X)) i's independent of the choice of a regular proper moilel X/,
of X (if it exi,sts).

Proof: Let Xp and X)= be two regular proper models of X. The Zariski closure
Xji of the diagonal of X 

ö 
t in X x X' again is a proper model of X; the canonical

morphisms
N  * X " ; X '

are proper. Consider now the commutative diagram

K;(x) 4 Kr(x,,) =+ Ki(x,,) L Ki@) : K;(x,)

\ 1 " / , /

K;(x)

and its counterpart where the roles of ff and X' are exchanged. (The construction
of zr* for an arbitrary proper morphism ?r is carried out in [Gil 2] $4.)
Assuming that the above Conjecture holds true we define

E|(X,Q(j))2 :- image(Kl i_;@)s e -* Kzi-;(x) s e + HiiJ, aU)))

where Xlz is any proper flat model of X. Certain conjectures about the K-theory in
characteristic ) 0 would implS via the localization sequence, the following statemänts
about the relation between Hh(X,aU))z and Hi(X,eU)).

Conjecture:

a ) n i $ ' Q ( r ) ) z : H i ( X , a U ) ) e r c e p t f o r ( i , j ) w i t h j < � � � � � � � � � �
dimX * 1;

b) Hh6,aU))/Hh(x,QU))2, for i
x/z;
c) (reformulati,on in the indices 0

!i'(x,Q ("02.- Ef'(xtQ(")) except if m ) max(o,i Jdim x); for m < ; the
di,fference only d,epends on the bad fibres of X /2.

The following picture might illustrate these statements. The large shadowed triangle
is the range where difference can occur; in the smaller one the difierence only depends
on the bad fibres.
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üi
1'

i=2j - t

. /  - './ ./

d i m X + I 2dimx 2dimx + 7

A triviat example is

r | (Spec(Q),a( t ) )z -  0Ee" 8a -  ^H|(Spec(e),a(1))  .
*

$a Chern classes

To a la"rge part this theory is completely formal and relies on some manipulations
in the context of simplicial algebra. Let }/ be the category of smooth quasi-projective
süemes over some fixed base field equipped with the Zariski topology. Aoy scheme Y
in V represents a sheaf of sets It, on }/. Let ZYdenote the sheafification of the presheaf
of free Z-modules over I. FoGny sheaf F on V we then have F(Y) - Ilomy (ZV , f1
and therefore

H* (Y, F) : Exti(ZL, F)
We need a generalization of this identity for the cohomology of any simplicial scheme
Y- in V. Similarty as before Y. represents a simplicial sheaf of sets Y. on }/. In an
obvious way we get the associated simplicial sheaf ZY. of Z-modules *nicn gives rise
to a (negative cohomologicat) complex of sheaves

NZY. | ... -i ZY_r _. 
...+ ZY_*+l * ...

|  {-r)"a"

with VY-n in degree ,b. Let D(V) (resp. D+ (y)) be the derived category of complexes
of abehä sheavel on V (which a,re bounded beiow).

/-*
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Lemma:

H*(Y. ,F ' ) :  Homply)WzY.,F[* ] )  /or  any F '  e D+(y) .

Proof: Without loss of generality we can assume that f is a complex of injective
sheaves on /. An examination of the proof of Prop .2.4 in [Fhi] then shows that the
cohomology H*(Y.,F') can be computed from the double complex

(Homy, (Z,ft))r,,

But this double complex is equal to the double complex

(Homy (ZYn,ft))r,,t

which, by Yoneda (compare [Har] I.6.4), computes the groups

Extilyy (NZY.,F') : Homply)WZL., f '[*])

We apply this to the "classifyittg" simplicial scheme

i!n

B.GL, : spec(I"::l 
(- 

GLn *L GLn x GLn' f ield 

txid

(where p denotes the multiplication map for the group scheme GL^) and get natural
identifications

H* (B .G Ln, F') - Homp <v>(NZWL,,-F' [*])
for any.F' e D+(y). Next we want to pass to the limit with respect to n in that
identity. This requires a stability result and is therefore, of course, not a formal
matter. Put B.GL:- l im B.GL^.

Proposit ion:

The natural homomorphism of compleses of sheaaes

NZB.GLn - NZ.B.GL

i,s a quasi-isomorphism in degree ) -+.

Proof: Since we can check our assertion stalkwise we have to show (use [Mil] II.2.9(d)
and 3.20(a)) that

Nz.B .G L.(A) + NvB .G L(A)

is a quasi-isomorphism in degree ) -+ for any local ring ,4.. Now we observe
that these complexes are the standard bar resolutions which compute the group
homology of GL"(A) and GL(A), respectively (compare [Mac]). What we have to
prove therefore amounts to the statement that the natural homomorphisms

H p(G L^(A) ,Z)  -  H  k (G L(A) ,Z)

are bijective for k S + and any local ring L. This stability result is established in
[Kal] Th.4.11 or [Sus 1] Cor.8.3.
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Corollary:

For any F' e D+ (V) there is a nt ) L such that

Homply)WZB.GLn, F' ) : HomD(y) (NZB.G L, f) fo, n ) n'

we now fix a complex.F' € D+(v) and we assume that, for j
there are given classer rt') e H2i(B.GL*r,r.) which are compatible with respect to
GLn-> GLn+r. We have seen that these classes induce a homomorphism

ci : NZB.GL----+ F'lzjl
in D()/). If U - Spec(,A) is an affine scheme in }/ passing to globat sections in U
then gives a homomorphism of complexes

ci z NZB.GL(A) -+ (NzreL)(u) - r'[zj](u)
(where, for a moment, we again think of. F' being a complex of injective sheaves)
which induces homomorphisms

ci, i  i  H1(GL(A),Z) *  Hzi- '  (U, F')

in cohomology (remember that NZ-B.GL(A) is the standard bar resolution for the
group G L(A)). In order to get maps on K-theory we use the Hurewic z map and the
fact that the *-construction leaves homology invariant. We put

H|(BGL(A)+,2)

il
Hi(BGL(A),2)

l l
Hi(GL(A),2)

ci,i I
,zi-;(U, F')

for f > 1.

Result:

Aoy compatible family of classes "5") , Hzi(B.GL.,F') induces natural homomor-
phisms

ei, i  2 K;(A) - H2i- '(U,f ' )

for i ) 1 and any affine scheme (J : Spec(Ä) in V.

Remarks:

1) Since we hope that, in an appropriate setting, the Chern classes on higher K-theory
provide Q -structures on cohomology it seems worth to note that the Hur ewicz map
K;(A) 8Q * H{GL(/), Q) is injective (see [MM] App.). So the above construction
does not cause any a priori loss of information about the ranks of the K-groups.

2) The above construction works in any "reasonable" topology (e.g., the etale topol-
ogy) instead of the Zariski topology. This can be seen either by examining the
arguments or (at least if the new topology is finer than the Zariski topology) by
applying the "Zariski" construction to the totat direct image on the Zariski site of
the respective complex of sheaves on the finer site.

ci,i i K;(A) : r;(BGL(A)+ ) __ -.
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In order to proceed we assume that the cohomology of our fixed complex f' has four
particular properties (which are familiar from classical or etale cohomology).

(I) (Homotopy property) The natural map A|, - Y, for any scheme Y in V,
induces a cohomology isomorphism H*(Yr,r') 3 H.(A!,,F').

This property will enable us to extend the definition of the maps c;,i to any scheme
in }/.

Lemma:

Any morphism Y -+ Z in V which (Zari,ski) locally is of the form Ai7 ---+ U tor
Eornen) 0 (u.9., i f  Y is atorsor for aaectorbundle on Z) induces a cohornology
isomorphism H*(Z,F ' )  Z H*(Y,F ' ) .

Proof: If. f : A' ---+ Spec(base field) denotes the structure morphism then the homo-
topy property (I) is equivalent to the assertion that the canonical homomorphism

1r' - Rf .(f. F')

in D+(U) is an isomorphism. But this statement obviously is of a local nature so
that it holds true for any morphism in V which locally is of the form Ai, -> U.

Let now Y be any scheme in )r. Jouanolou's lemma ([Jou] p.297) tells us that there
is atorsorp zW -> Y for avector bundleon Y whichis an affine scheme. Because
of the homotopy property we therefore can define map s ci,i for Y and i > 1 by the
commutative diagram

K;(W) 
" ' ' t  

'  H2|- ; (W,F' )
p.l = = tp.
K{Y) -", ,r* ,zi- i(Y,F')

The same argument as in the last Paragraph shows that this definition does not
depend on the particular choic e of. W .

Remark:

If one is prepared to use more complicated techniques from homotopical algebra one
can avoid to require the homotopy property (I). The idea, of course, is to "sheafify"

the above construction for affine schemes. Since the *-construction BGL(A)+ is
natural in L only up to homotopy it is first necessary to replace it by the homotopy
equivalent and truly functorial Bousfield/Kan completion V*B.GL(A). This gives
a simplicial presheaf of sets on V and the K-theory turns out to be equal to the
generalized sheaf cohomology

K; (Y ) :H - ' (Y ,Z *&GL) ,  f o r  i >L  ,

of the associated (pointed) simplicial sheaf Z*B.GL The Hurewicz map in this
context simply becomes the natural map of simplicial sheaves

Z*B.GL +VZ*B.GL
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On the other hand, by the acyclicity of the *-construction, we know that the natural
map ZB.G L + ZZ*,B,GL is a weak equivalence. We therefore get homomorphisms

K;(Y) + H-"(Y,Z.B.GL)

Finally, we observe that the generalized sheaf cohomology of a simplicial abelian
sheaf is equal to the usual hypercohomology of the corresponding complex of abelian
sheaves:

E-i(y,zEßtr!) _ u-t(y,nzpGtr) for r'> 0 .

See [Gil 1] and [BrG] .

So far our classes cj') 6 1|zi(B.GLntF ) were completely arbitrary. The properties
(ID - 0V) below wiil enable us to make a specific choice of those classes. They simply
axiomatize the usual procedure for defining chern cla"eses of vector bundles so that
we also will get maps (not homomorphisrrs!) on l(s(f).

Commentary:

The technique in the above Remark actually gives maps

tro(y) - E0 (y,z-g.etr) .---- E2i (y, F )

for any family of classes "j'). Oo the other hand, the classes "j') a.re determined by
those maps: "!') ir the image of the class of the universal rank z vector bundle on
B.GL, wdet the map Ky(B.GL") -- gzi (B.GL^,.F ). So the correct order seems
first to define the maps on Ks which then give classes c!') and therefore maps on the
higher K-groups.

(II) (Product structure) There a^re homomorphisms

u, f '&F - - - - - .F  and e :Z- - - - - -+ f , '
z

in D+(I) suc.h that U ie associative and (graded) commutative with unit e.

Explanations:

1) For principal ideal domains like Z the derived tensor product ö oirt, on D(tt)
z

and respects D+()r) (see [God] Th.I.5.5.2 and [Ha.r] II g ).
2) The homomorphism U induces cup-product pairings

Hb(Y.,F) x EL(Y.,F) -----+ f l*+t(y,F)
(x ,V)  x  U A

on the cohomology of a^ay simplicial ectreme L. in 
'lr.
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If we interprete cohomology classes as homomorphisms in D(V) then ß U y is given
by the commutative diagram

Nzy.änzv. g F'lkl &r'W

EZ I ,\/

Nz(Y. x Y.) J ,
diagonal 1

NzY. y F' lk+t l

Here E Z denotes the homotopy equivalence given by the theorem of Eilenberg-Zilber.

(m) (Cohomology of projective space) There is a homomorphism

ö z G ^ t - l ]  + J F '

in D+(}/) such that, for any scheme Y in V and any ?z > 0, the map

i  r . (  )  u  €*  ,  .ö^ s*-2k(Y,F ' )  = ,  H*(P? ,F ' )
Ic:o 

- 
rt:o

is an isomorphism where r : Pi + Y is the structure morphism and { is the
image of the canonical line bundle, i.e.,

H ' ( P ? , O * )  5  H ' ( P ? , F ' )
0 (L)  €

Like the homotopy property this property (III) is of a local nature. Therefore it
generalizes to arbitrary projective bundles.

Proposition:

Let E be a rank n aector bundle on o simplicial scheme Y. in V. Then the map

n-l

I ' . (  )  u  gb '  : * :  s*-2k(y. ,F ' )  =,  H*(p(q, r ' )
Ic=O 

Ic:O

i,s an isomorphism; here r zP(E) * Y. is the structur morphisrn ol the associ,ated
projecti,ae bundle and, €s e H2(p@)rF) is the image under ö of the canonical line
bundle on P(E).

Proof: See [Gil 1] Lemma 2.4 (for the definition of a vector bundle on a simplicial
seieme consult [Gil 3] Ex. 1.1).



20

This result, in particular, gives an identity

€ß + o*(tr(E)) u (ä-t  +. . .  *  r*(c,(E)) -  s

in HZ,(P(E), f') with uniquely determined classes

( p , t t  c o ( E ) : 1 a n d
vector bundle "8.

ei@) e Hzi (Y., F').

ci@) - 0 for j > n); they are called the Chern classes of the

Remark:

For a line bundle E viewed as an element of. Hr(Y.,0") *. have c{E) - e(E).

In order to get the usual properties for these Chern classes we need a very weak
version of the formalism of Gysin maps.

(ry) (\Meak Gysin property) Let t, : Z -> Y be a closed immersion of pure codi-
mension 1 in V and let lZ) e HL(YrO*) be the class of the divisor Z on If; for
any o e H2" (Yr.F') such that L* o :0 we have

n u ö ( [ z ] ) : 0

The behaviour of our Chern classes with respect to short exact sequences, tensor
products, and exterior powers of vector bundles can now most conveniently be de-
scribed in the following way. Those operations on vector bundles give .t(s(f.) the
structure of an augmented Ho(Y.rZ) -.\-algebra (SGA 6 exp. VI Th. 3.3). On the
other hand we put

ch(Y. ) : :  H0(Y. ,2 )  x  { (c r )  €  l I  Hz i (y . ,F ' ) ' ro  -  1 }
j >o

which obviously forms an abelian group with respect to the cup-product as addition
(it is suggestive to think of elements in the second factor as being power series in one
variable with constant coefficient 1). F\rrthermore, using certain universal polynomi-
als, Ch(Y.) in a natural way can be made into an augmented Ho(Y.rZ) -.\-algebra,
too. The interested reader should consult SGA 6 exp. 0 App. I $3 or exp. V $6 for
the details. The only fact about Ch(Y.) *. need to know in the following is that the
action of the Adams operations ük, for k > L, on it can be determined explicitly.

Lemma:

For x:  ( r ,L, (s i ) ;>t )  e Ch(Y.)  and k > 1 we haae

,hr * :  ( r ,  L , (k i  r i ) i> t )

Proof: We freely use the notations of SGA 6 exp. V. The same argument as in the
proof of loc.cit. (6.6.1) shows that we have

, l t r ( t r 1 , . . . ,  r , t t } r . . . )  -  ( t r t r . . . r k r r r , 0 , . . . )  f o r  a l l  k r l  )  L  ;
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one only has to observe that loc.cit. (6.2.1) implies

, l tr(L, 1 * T;) :( t ,  t  + kTi)

Since obviously , lrk(1,1,0,.. .)  -  ( t , t ,0,. . .)  we then also get
, , l t r (011, . . . ,  f r t t } t . . . )  -  (0,  t  , . . . r l r t * r ,0,  . . . )  for  a l l  I  > L .

But (Ch(f.))r+t is a Ä-ideal according to loc.cit. (6.6.3). Consequently

,br  (0, t ,  (u) i>r  )  = r l t r (0,  t  t  . . . t  n  r ,  0,  . . . )

:  ( 0 ,  1 , . . . ,  k L r t , 0 , . . . )

= (0, L,(ki x1)i>r) mod (Ch(y))+,

holds true for all I > l which proves the assertion.

All the important properties of Chern classes now can be expressed by the following
statement.

Proposit ion:

The map [E] * (rank E,co@)rc{E),...) induceE a natural homomorphism

c: Ks(Y.) - Ch(Y.)

of augmented Ho(Y.rZ) - \-algebrvs. Furtherrnore, the family of these homomor-
phi'sms (for all (simplici,al) schemes in V ) is uniquely characterized by the fact that

r ( [E])  -  (1 ,1,ö(E),0, . . . )  for  l ine bundles E

Proof: See [Gro 1] $3. The reader will realize that the purpose of the weak Gysin
property is to ensure the validity of the corollary on p. L42 of loc.cit.

In particular, we get natural maps

co,i z Ko(f.) --+ Hzi (Y.,F') for j > 0

I,El q@)
It remains to explain which choice of classw rj') € H2|(B.GL.,F') we are going
to make. Since those classes should be universal in the sense that their origin does
not depend on the particular cohomology theory H*(.,f') we are dealing with, the
obvious idea is to use the map

c: l im Ko(B.GLn) - lE Cn( B.GLn)

which is provided by the above Proposition. Indeed, if En, resp. 1', denotes the
universal, resp. trivial, rank n vector bundle on B.GLn (compare [Gil 1] p. 218)
then we have the element

rr, i: {lU"l - [1"]], e tgl(o (B.GL*)

Wedef ine theun iversa lCh@e, \ * ) ,gz i (B .GL. , f . )by

c(u) :  { (0,  "3*)  , " \n) , . . . ) } ,
The homomorphisms cö,i on higher K-groups constructed from these particular clas-

(n )
ses c)'"' are called Chern class maps.
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Remark:

The structure of the Ä-ring K0(B.GL") is known explicitly: Let R(G^L,") denote the
Grothendieck ring of rational linear (over the base field) representations of the group
scheme GLn.This is a,\-ring (SGA 6 exp. 0 App. I $2). Furthermore, we have the
homomorphism of Ä-rings

R(GL") -+ Ky(B.GL*)

[p z GLn + GL,n] r+ (B.p).lÜ*l

which, in fact, is anisomorphism: A vector bundle V on B.GLn (up to isomorphism)
is completely determined by the following data (compare [Gil g] p. 7lB):

- a trivial vector bundle 0^ on .B1 GLn - GLn, and
- an automorphism p of O- such that dipo döp -- dip @n B2GL-).

Obviously, p defines a homomorphism of group schemes p z GLn + GLrn such that
[7] : (B.p)"[E*|. Now, let idn: GLn + GLn be the identity representation. We
then have (SGA 6 exp. 0 App. I $2)

n(G L ") - V[\t l id,*], ..., Ä, l i d-1, ̂* [id*]-rl

We now have achieved the construction of Chern class maps

ci,i i K;(Y) - Hzi-'(Y, f ')

for i,i > 0 and any scheme Y in )r. By definition, they are homomorphisms in case
i > L The above Proposition on the other hand gives a rather complete description
of their properties in case i - 0. We therefore still have the task to determine their
behaviour with respect to the Adams operations and the product on higher K-theory
in case i > L For that purpose it is necessary to consider all maps which arise from
classes in the image of c simultaneously: We fix an affine scheme U - Spec(,A) in V.
For any a e Ks(B.GL^) and i > 1,j ) 0 let

ci, j (a) :  T;(BGL.(A)+ ) .-  - .  H;(GL*(A),Z)
.ElulewlcE

J .Er;(c; (o))

"z i_;(U, F.)

denote the homomorphism constructed from the class c;(u) e H2i(B.GL^,f�') given
by c(u)  -  ( rank 0 tco(u) ,  c r ( r ) , . . . ) .

Lemma:

For a,w e Ky(B.GLn) we halc ci, i(a + u,) : ci, j(r) + ci, i(w)

Proof: (Compare [Gil Ll 2.25) F]om the commutative diagram

Ko(B.GL.) 5 Ch(B.GL^)

l r
I unit section I
J J

Ko(H;l -z 5 ch(l: i l
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we see that, for j ) 0, the composed homomorphism

z sl NzB.GL.- "19 
r.pil

s e c ü l o r t  
: . -

is the zero map. Passing to cohomology groups this implies that we have commutative
diagrams

H;(GL^(/ )  *  GL-(A),Z)

diagonal

H i(G L*(A),21d1ry"' H r(B G L*(A)+ x B G L-(A)+, B G L*(A)+ v B G L,(A)+ ;z)

H;(c;r (o)Ucrr, (ur))

for all positive integers i,j',j" > 0 (compare [Dot] u. 12.8). we now make use of
the following two facts from topology:

- For any pointed CW-complex (T, P) there is a commutative diagram

H . ( T x T , T V T ; Z )
diagonal f 

+
H*(T,P;Z)  |

I
diagonal \

H*(T AT,P;V)

(see [Dol] V.4.4).

For any topological spa ce T and any i > 1 the composed map

"t(T)Ho#i"o H {T,z) ura^,tH ;(T A T,z)

is the zero map (since nr(S'A ,Si ,Z) :  Hr(Srr rZ) :  0).

If we combine these facts with the above diagram we end up with a commutative
diagram

r;(BGL*(A)+) *gt"o 
Hi(GL.(A),2) 

H;(c|(o)uc;rr(u)) 
HzU' +i"1-;771, F.)

o \
J ai"so,."t

I r  i (B G L.(A)+ A B G Ln(A)+,2)

which shows that

J
Hz(j,+i,,1-tqyI, F.)

H;(ci,(r) u ci,,(w)) o Hurewicz - 0 for i, j '  , j" > 0
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Consequently we have

c;,i(a * u,) - H ;(cj(, * r)) o Hurewicz

- H;( t " i,@) LJ ci,,(r)) o Hurewicz
'i,li;;;i

- H;(ci(r)) o Hurewicz * H;(ri(r)) o Hurewicz

: c; , j (a) + c; , i (w) q.e.d.

Next we will see that all the maps ci,i(u) can actually be computed in terms of
the Chern class maps ci,j. First we recall from the above Remark that we have a
canonical isomorphism

n(GL.) 3 Xr(B.GL^)

which we view from now on as an identification. In particular, we will write ci@) and
ci,i(p) for p € R(GL'). According to [Kra] Cor. 3.2 there is a natural homomorphism
of groups

R(GL") + IBGL.(A)+, BGL(A)+I

where the group structure on the right hand side comes from the I/-space structure
on BGL(/)+. The image of (the class of) a representation p: GLn -> GL* und.er
this homomorphism is the (pointed) homotopy class of the map

BGL^(A)* "9* 
BGL*(/)+ + BGL(A)+

Via this homomorphism any p e R(GL,") induces natural maps

"t(p) z r;(BGL*(A)+ ) -, K;(A) for ? > 1

on homotopy groups with the property that

n ; ( p + p ' ) - r { p ) + r ; ( p ' )

Lemma:

For p e R(GL,) we haae ci,i(p) - ci,j o nr(p).

Proof: Let p first be the class of a "true" representation p z GLn + GLrn We then
have the commutative diagram

r;(BGL*(A)+) 19 KIA)
I

I Hor"*i""
J 

vicz 
J

H i(G L*(A),z) 
Ht(dlL)) 

H {G L(A),z)

H;(";(p)) \ "/ rri("r("))

"z i_ t (U,  F. )
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f o r a n y i > L a n d j
obvious, resp. follows from the naturality of the Chern classes on K0. Since any
class in R(GL,n) can be wriüten as a difference of classes of "true' representations the
previous Lemma implies that, for arbitrary pt we still have a commutative diagram

r;(BGL,(A)+) 19 K;@)

";,i (p) \ "/ ci,i

Uzi-;(I, F.) .

Proposit ion:

For i r&  >  1  and j )0  we have c i , jo rh r : ( t i . c ; , i  where$k  denotes  thek- th  Ad,ams
operation on K -theory.

Proof: By the homotopy property it suffices to prove the assertion for an affine scheme
U - Spec(., ) in }/. According to [Kra] gb we have

,ltr on K;(A) - q ot$/r(V,a.l- tl,l))

where idn, resp. 1,", denotes the identity, resp. trivial, n -dimensional representation
of- GLn Using the last Lemma and our Lemma about the Adams operations on
Ch(.) we compute

ci,j o,hr : Btr,i (rlrr(lid,.] - t1,]))

- 
g$ H;(ci$!k{id.1- tl"l))) o Hurewicz

- 
g\ nr(kt ci(fid*l - [1,])) o Hurewicz

- ki . t1"\*)) o Hurewicz

: ki ' ci,i q.e.d.

In the afi.ne case the product in K-theory can be defined in the following way ([Lod]):
The tensor product representations idrgid", idrg1", and 1, ged" define continuous
maps

id,8 id",. . .  :  BGL,(A)+ x BGL"(/)+ -> BGL,"(A)+

and using the.[/-space structure of. BGL(A)+ we obtain the homotopy class of maps

id ,8 id"  - id ,81"  -1 ,  I  id " :  BGL, (A)*  "  BGL"( / )+  +  BGL( / )+  .

This homotopy class factorizes through a homotopy class of maps

BGL,(A)+ n BGL "(4+ I aCL(4+

and thos€ f.rr,.; are compatible with respect to varying r and s and define in the limit
a weak homotopy class of maps

BGL(A)* n BGL(4+ -g BGL@)+
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If we fix firi2
homomorphism

. 2 K;,(/) r Ki,(A) + r;(BGL@)+ ^ BGL(A)+) IE) Kr(A) .

First we have to see how this product is behaved with respect to the Hurewicz map.
Let @r," denote the composed homomorphism

8, , " ,  H ; , (GL, (A) ,2 )  I  H ; , (G L  " (A) ,2 )  -  H ; (GL, (A)  "  GL " (A) ,2 )
H;Gd'@''") 

H;(GL,"(A),2) - H;(G L(A),z)

Similarly the direct sum representation id, @ ido induces a homomorphism

(E.,"  ,  H; , (GL,(A),2)8H;, (GL"(A),V) -  H;(GL,( / )  "  GL"(A),Z)
H; ( id , ,@id " )  r t  /- " - : : ; - - " '  

H i (G L,+" (A) ,Z)  -  H ; (GL(A) ,Z)

Lemma:

The di,agrarn

n6,(BGL,(A)+) I or,(BGL"(A)+ ) -; K;(A)

HurewiczJ8Hor"*i"o JHo""ni"u

H; r (GL, (A) ,2 )  g  H ; r (GL" (A) ,2 )  
Ee ' r -? ! ' (E r 'a  

H ; (GL(A) ,2 )

is commutatiae.

Proof: [Sus 2] (4.2).

Recall that u : {[8'] - [1']], € lim Ka(B.GL.).

Lemma:

The diagro,rn

Hi , (GL,(A),2)  s  H' , (GL"(A),2)  % H{GL(A),Z)

I t,r(c;r(u))a lrrr(c;r(u)) H;(ci("))J

i r$r : iHzi t - " (u,F ' )  
s  H2iz- ;z  (u,F ' )  g uz i - ; (u,F ' )

is commutatiae.

Proof: This follows from the fact that the preimage of the universal vector bundle
E'+" under the morphism

B'GL, x B'Gl" idg" B.GL,a"

is isomorphic to the direct sum bundle WiE' @ prrD" .
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Lemma:

The di,agra,nx

r; , (B G L,(A)+ )  8 nr,  (B G L "(4)+ ) ff#""",,(G L,(A), z) @ H ;,(G L "(A),2)

'  At , ,  I

Hi(GL(A),2)

H;(ci(")) I

Hzi_;(U, F.)

H;(ciJtrr l  E'@priE"))

Uzi-;(U, F.)

D('"-

.  E  .H2 i ' - t r (U, f ' )  S  H2iz- i r ( (1 , f . )  g
i t * iz :  j

is commutatiae.

Proof: The preimage of the universal vector bundle .8"" under the morphism

B.GL,  x  B-Gl , idg"  B.GL,"

is isomorphic to the tensor product bundle prLE, g priE". Therefore we have the
commutative diagram

H;(GL,(/) " GL,(A),2) 
H;(id' '@id") 

H;(GL,"(A),2) ------+ H1(GL(A),Z)

H;(c i (pr ia 'gpräE' ) )  \  /  H; (c ; (u) )

,zi- t(U, F.)

By the theory of the Chern ring C h(.) the Chern classes of a tensor product bundle
can be expressed as a polynomial in the Chern classes of the two factors. This leads
to a commutative diagram

H ; , (G L  " (A) ,  Z )  g  H ; , (G L  " (A) ,2 ) ---+ H;(GL,(/) r GL"(A),2)

)1",r,y, oci1,jz

oJ

O H2i r - r ' ( [J , f ' )  S  Hz iz- ;z (U, f . )  i *
jt* jz:i

where the homomorphism g is of the form

q -  
t  a ,H i , (M, (cr ( r r ) ,  . . . tc i ( " ) ) )  I  H; , (N, ( " r ( r r ) , .  . . tc j ( " ) ) )

with certain rroi*rruf monomi als Mr(Xr,...,X) and N,(Ytr...rYj) and certain uni-
versal integers a, both depending only on r, s, and j. But we already know that

l -

I/*,+r (M(rt(r),..., ci@D) o Hurewicz - 0
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for any monomi al M of degree > 1. On the other hand an explicit calculation in the
Chern ring (SGA 6 exp. 0 App. I $3) shows that the monomial XirYi, occurs in the
above expression with the coefficient

r 8 -
( j  -  1)!

( h - 1 ) ! ( r r - 1 ) !

Proposit ion:

For i t , iz ) L, i  z- ü * iz, j  > 0,

q,i(a 'y) :  t
it*iz:i

and s E KhrU e K;, we haae
-( j  -  1) !

(r,  -  1)l(r,  -1;1 c*' i t( t)  u ci2' iz(Y)

Proof: Again by the homotopy property it suffices to treat the affine case. But here
one only has to combine the three Lemmata above. (For different proofs compare
[Sou 1] p. 262-265 and [Gil 1] Prop. 2.35.)

In order to bring these results in a particularly nice form we now assume that the
cohomology groups H*(.rF') of our complex F' arc Q-vector spaces. We then define
the Chern character

ch:  K; ( . )  -+ H2 
j - i ( . ,  

F ' )o
j > 0

by

c h : :

where

and

(compare SGA 6 exp.

Corollary:

i. For i, j  > 0 we haae
i,i. for h,iz ) 0 and u

( - 1 ) j - 1
4 / 4 . .

( i - 1 ) !  v t t J

s \  ( - 1 ) i - 1  -

/a.ff ic0,1

i f  i > L  ,

i f  i  - 0

D
j > 1

cho,o *

cho ,o :  Ko ( . ) ' g  Ho ( . , 2 )  3  Ho ( . , 7 , ' )

j > t

H2i_ i ( . ,  f . ) ;
we haae

- ch(u) u ch(y)

Hi

Döo,iti - log(1 + I co,iti)
i > r

v $6.3).

ch@lj)(.)) q
E K; t rA e  Kb

ch (x  . y )

Taking into account that Adams operations and product on K-theory are compatibte
( [Hil] or [Kra]) *r get a "natural transformation"

R :  H)( . ,  Q (*) )  -  H*( ,  F ' )

which respects products and which satisfies the relation

ch - Ro cha

In particular, this justifies Beilinson's point of view that
of universal objects.

and cha are some kind
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Remark:

In the applications F'often is a graded complex f' -- 
ig_of'U). 

The product

structure then should be given by homomorphisms

e:v + F ' (0)  and u :  F ' ( j l tg,  Ui)  *  F ' ( j  + j ' )  ;

furthermore, the homomorphism ö should be of the form ö z G*[-1] + F'(L). The
universal Chern classes then lie in H2i(B.GL.,F'(il) and the Chern class maps
consequently are of the form

ci, i  i  K{) - H2i-t( ' ,  70)

Here is a list of the most important examples of complexes F' which have the prop-
erties (I)-(ry) and therefore give rise to corresponding Chern class maps:

- F' :- Or the algebraic de Rham complex (in the Zariski topology); here the
base field has characteristic 0; - [Hart].

- F'(i) ,: p?j the j-th tensor power of the sheaf of rn-th roots of unity in the
etale topology; her m is prime to the characteristic of the base field; - [MiU.

- F'U) '- W.n'",,"g[-iJ the "logarithmic part" (in the etale topology) of the de
Rham- Witt complex; here the base field is perfect of characteristic ) 0; - [Gros].
The homotopy property does not hold! Similafly, F' :- W.dli, gives rise to the
crystalline Chern class maps.

- F'(i) :_ Kil-i) the sheafification (ir the Zariski topology) of Quillen's K-
groups; - lcil 1], [She], [Sch].

- F'(j)t- zi[-2j] the complex (in the Zariski topology) which computes Bloch's
higher Chow groups (it is expected but not known, at present, to be bounded be-
low); - [Blo 3]. Bloch proves the very remarkable fact that the "natural transfor-
mation" B in this case induces isomorphisms Hi(., a (j)) 

= , H*(., zil-Zjl)SQ.

The example of a complex .F' we &re especially interested in in this paper is the
Deligne complex 

j\.Z(i)D. 
Ilere, V is the category of smooth quasi-projective

schemes over the field C equipped with the analytic topology. In $2 we defined
the complexes Z(j)o on projective schemes in 7. If we take the same definition on
any scheme V then these complexes seem to have the properties (II)-(ry) (not the
homotopy property) which would suffce for the construction of Chern class maps.
But we do not pursue this here since there is a second and much. more important
way to extend the definition of the complexes Z(j)" to all schemes in }/. It involves
the theory of smooth compactifications by divisors with normal crossings and the
theory of holomorphic forms with logarithmic singularities and is explained in [Bei 1]
$1 or in the Chapter on Deligne cohomology in this book. In this case the properties
(I)-(ry) are established in [Bei 1] $1. Consequently we have the Chern class maps

ci , i  2 K;( . )  -  H' ; - t ( . ,  Z( i ) )
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which induce (as described above) a *natural transformation"

R :  H \ ( . ,Q ( * ) )  -  Hb ( . ,Q ( * ) )

For any smooth projective variety X over Q we now define the regulator map to be

reg : Hi(X,a(*)) --+ H|(X/R, Q(-)) 4 Hb(Xrc., lR(,r,))DR-conjusation

t l
Hb6tn,lR(*))

$5 The conjectures

Now, let X7q be again a projective smooth variety over Q. As before we let M
denote the family of all i-th cohomology groups of X for some fixed integer i between
0 and 2dimX. We assume that the Hypotheses (I)-(V) in $1 are fulfilled so that we
have the complex .[-function L(M, s) of M with atl its expected analytic properties.
Our interest lies in the numbers

ord,-- L(M,s) :- multiplicity of L(M,s) at I : rn,

and

L*(M,m) z: leading coefficient of L(M,s) in a Taylor series expansion at s: rn

where mis an integer < *+t (in the following we exclude the central point *: *
since it is somewhat of a difierent nature - but see the last Paragraph). In $2 we have
seen that

ord"-- L(M,s) : dimp H*t(Xlrn, lR(n))(* ord": * L(M, s))

holds true i f .m < t(*- i l ;  here again we always put n,z: i+L_�Tn. Furthermore
we have constructed a canonical isomorphism

Amox F'Hbn(Xln) I A*"*I/i+t(X/,*,lR(n)) 3

Amax Hi(x(t  ) ,  lR(rz -  1))(-1)o- '

for any m I $ and have discussed already that the first and the third term carry
an obvious Q -structure. The first conjecture says that the regulator map

res: Hi(X,a(*)) - Hb(Xlrn, lR(*))

constructed in $4 leads to a Q-structure on the second term.

Conjecture I:

For m a *, the regulator rnap induees an isomorphism

HXt(x, Q ("))za lR 3 nft(x/,*, tR(rz))

We now define the regulator ,*(*) e lRx /Q 
" for m 1 t to be the above isomor-

phism calculated in Q-rational bases.
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Conjecture II:

For m < t, we harse L*(M,m) = ,*(*) mod Q *.

In case rn, : ; ttre regulator map alone is not sufficient to induce a Q -structure. It
is easy to see ittat in addition the group

If-(X) i: rn-codimensional cycles on X/e

modulo homological equivalence (over Q-)

in a natural way is contained in the corresponding Deligne cohomology group: Let

z : N*(x) - H'ffi(x/R) g H'ffi(X/a): Hr^(x(C),A)

be the cycle map into the de Rham cohomology. It is well-known that we have

z(N*(X)) _c H*, 'n n Hr*(X(A ) ,  Q (-))

(compare [Gro 2] (6.14)). Consequently

z(N*(x)) g H'*(x(C), lR(rn;;(-t)-

and

z(N*(x)) n r-+L H2ffi(x /n) : o

hold true. We therefore see from the exact sequence (*) in $2 that the composed map

2 : N^(X) 3 H'^(X(A), IR(nz;1t-l)* - H'{*'(Xlrn,lR(ra + 1))

is injective. (Warnin$ Z is not the cycle map into the Deligne cohomology.)

Conjecture III:

For m :  *  and n -  t  +!  we haae:

a. The rnap, reg and 2 together induce an i,somorphism

(Ht'(x, Q ("Dzs IR) o (n*(x) s R) 3 H:;'(xtrn, tR(rz)) ;

b. ord,-^L(M,s) : dimq Ht' (X, Q ("Dz;

c. ([Tat L]) ord":nL(M,s) : -rank If-(X);

d. if "u(*) e n*/Q" denotes the regulator defined as before by using part a. then
L*(M,m) = t*(*)  mod Q 

".
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$6 Further hints

In the last Paragraph we did not discuss the center rn - # of the functional
equation. In that case the exact sequence (*,) in $2 has to be replaced by the exact
sequence

0 ---+ F* Hbn(Xln) ----+ Ht6$), tR(nz - 1))(-.1)'o-' - H*t(X/,*, IR(m))
-, HZ^(X(A), R(rn);(-t)- fr  H*,* -> 0

Since the first two terms obviously have the same lR-dimension this sequence breaks
up into two isomorphisms of which the first one

F* Hbn(Xln) 3 nt(X(A ), lR(rn - l))(-l) ' �zr-r

can be used, as in $2, to define the Deligne period cy(rn) e lR'/Q " (: the determi-
nant calculated in the obvious Q-rational bases). And, indeed, Deligne conjectures
([Del]$t) that

L(M,m) . r* (*) - r  e Q

But, of course, L(M,s) often will vanish at s - rn : #; the functional equation
only can detect the parity of the vanishing order. In the following we will very briefly
indicate a refined conjecture which was proposed by Beilinson ([Bei 1,3]) and Bloch
([Blo 1,2]). We fix an odd i, put ffi-- +, and define

Ch*(X)o t: (na-codimensional cycles on X cohomologous to 0 (over Q)
modulo rational equivalence) SQ.

Conjecture:

a. Ch^(X)o has finite d,imension;

b. there eüsts a natural nondegenerate "height pairi,ng,,

< ,  ) m i C H * ( X ) 0  t  g p d i m x - n a * 1 ( X ) o  - +  l R  ;

c. ord"-- L(M,s) : dimq CH^(X)o and

L* (M,m) = cu(m). det < , >- mod Q 
"

If X is an abelian variety and i : rn - L then part a. of the above Conjecture is the
theorem of Mordell-Weil, part b. is the theory of the Ndron-Tate height, and part c.
is part of the conjecture of Birch and Swinnerton-Dyer. In [Tat 2] the reader may
find a discussion of this case in which the conjectural picture is even more precise
insofar as L* (M ,nz) itself (not only mod Q " ) is predicted in terms of arithmetic
invariants of X. The general conjecture certainly is modeled on this case. Beilinson
([Bei 1'3]), Bloch ([Blo 2]), and Gillet/Soul6 (tGSl) construct - all three by different
techniques - a natural height pairing for any X which has certain geometric properties
(conjecturally it always should have those). At least the archimedean component of
this pairing is defined for any X independent of additional assurnptions; we should
indicate that the reason for this lies in the fact, which we have seen above, that the
canonical map Hy(x1q,lR(m)) * H'*(x(a), IR(nz)) is injective.
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I also have to keep the promise to say something about the groups
U'f (Xta.,Z(p)) which turn out to be very important but did not play a role in
the previous Paragraphs. It is straightforward that the exact sequence (*) in $2 in
this context becomes an exact sequence

0 -+ Hzn-1(x(a),2(p)) \r/ff;t(x(aDlq, - H!(xrc.,z(p))
+ preimage of l lPQ in HIv(X(A ),2(p)) + 0

The middle term appears as an extension of the group of Hodge pcycles by the p-th
intermediate Jacobian of Griffiths. F\rrthermore, the Chern character into the middle
term combines the usual cycle map and Griffiths' Abel-Jacobi map (see [Bei 1] $1 or
the Chapter on Deligne cohomology in this book).

Finally I cannot refrain from mentioning the following extremely fascinating line
o f t h o u g h t d u e t o D e l i g n e a n d B e i l i n s o n . I n [ B e i 2 ] i t i s s h o w n t h a t , f o r f < � � �
the Deligne cohomology Hb(X nR, lR(j)) can be interpreted as the Yoneda group
Extl(lR,I/i-t(X(A), RU))) ir the category of mixed lR-Hodge structures over lR.
One may speculate whether the absolute cohomology Hi(Xraff)) has a similar
interpretation, for i
existing category of Q -linear mixed motives over Q . In this light the regulator map
should simply be induced by the functor which associates with each mixed motive
its realization as a mixed Hodge structure. The reader will find more about this in
the final Chapter by Jannsen in this book.

For additional hints the reader is advised to read Soul6's Bourbaki article [Sou 3].
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