Introduction to the Beilinson conjectures

Peter Schneider

One of the most beautiful formulas in classical algebraic number theory is the
analytic class number formula: The Dedekind zeta function of an algebraic number
field has a simple pole at s = 1 and its residue is given in terms of the class number
and the unit regulator of that field. Remarkable about this result is the fact that
on the one hand side the zeta function, for Re(s) > 1, is defined as a convergent
Euler product given completely in terms of the local arithmetic of the field and then
is shown to have a meromorphic continuation to the whole complex plane. On the
other hand, the ideal class group and the group of units are genuine invariants of
the global arithmetic of the field. Therefore the class number formula is some kind
of a highly nontrivial local-to-global principle, or said differently: The zeta function
transforms the relatively simple local information it is built out of into a rather deep
knowledge about the global arithmetic.

Over the past decades it became increasingly clear that this is not a singular
phenomenon but a manifestation of a general principle in arithmetic. The values or
better the leading coefficients at integral arguments of the L-functions of algebraic
varieties over number fields seem to be closely related to the global arithmetical geom-
etry of these varieties (e.g., the conjecture of Birch and Swinnerton-Dyer). Beilinson,
in [Bei 1], has developed a completely general conjectural formalism which connects
the “transcendental” parts of that leading coefficients to so-called regulators. These
regulators are sophisticated generalizations of the classical unit regulator defined by
purely algebraic and geometrical means.

The purpose of these Notes is twofold. First and mainly we want to present
Beilinson’s extremely fascinating conjectures in a way which leads the reader to their
statement as directly as possible. So we will explain most of the necessary formalism
only up to the point which is needed for the statement of the conjectures. (The
reader will find detailed treatments in the subsequent Chapters.) The exception to
this is the theory of Chern classes. A basic ingredient in the definition of the Beilinson
regulators is the construction of Chern class maps from the higher algebraic K-theory



into the Deligne cohomology. Since this type of construction most probably will turn
out to be important in similar situations also (e.g., p-adic L-functions) our second
purpose is to explain the theory of Chern classes from higher K-theory into any
reasonable cohomology theory in a rather formal and detailed way. Furthermore,
a basic but for the understanding of the conjectures important result concerns the
behaviour of the Chern classes with respect to the y-filiration on K-theory. Since
this, although well-known to the experts, seems not to be contained in the literature
we will include a proof.

It need not to be emphasized, of course, that nothing in these Notes is orig-
inal. They are the poor result of the author’s attempt to understand these beau-
tiful conjectures. Finally I want to thank the members of the Arbeitsgemeinschaft
Heidelberg-Mannheim; in a common effort we managed to go through Beilinson’s
paper. I am also grateful to S. Kosarew for pointing out some stupidities in a first
version of these Notes.

§1 Complex L-functions

Let us start by briefly looking at the “simplest” example of an L-function: The
Riemann zeta function 1
(@) =1l1==

p

is absolutely convergent (and nonzero) for Re(s) > 1. It has a meromorphic contin-
uation and ¢(s) - T'(s/2) - #*/2 has a functional equation with respect to s ~» 1 — .
Concerning the values at integral arguments we know that

¢(n) = (2rv/-1)"mod Q™  if n>1 iseven,
L ? | if n>1 isodd

and therefore, by the functional equation, that

¢(n) eQ™ if n<0 isodd,
simple zero, if n <0 is even.

We make the following observations:

1) The zeros of {(s) in the region Re(s) < 0 are completely determined by the I-factor
in the functional equation. '

2) The value (2r+/~1)"(mod Q) at an even n > 1 is a quite elementary example of
a period. On the other hand, the unknown values {(n) for odd n > 1 are related in an
obvious way to the leading coefficients of ((s) at s = 1—n. To compute them mod Q>
therefore requires probably a much more sophisticated “period”-construction (usually
called “regulator”). (In case of ((s) this was done by Borel in [Bor].)

3) In order to determine the multiplicity of ((s) at s = 0 and s = 1 one needs
additional information (in this case that we have a simple pole at s = 1).

In the following we will see that these observations most likely reflect general
principles in the theory of motivic complex L-functions. Since there is an excellent
reference ([Ser| and also [Del]) for the construction and the expected analytic prop-
erties of these L-functions we only will give a short review here. In addition, we are



going to work always over the rational numbers Q as base field. Because of the fact

that the restriction of scalars does not change the L-functions this is not really a loss

of generality but it simplifies the notation a lot. Our main aim in this Paragraph is
to work out from the expected functional equation quite explicitly what our first ob-

servation above becomes in the general case. Although this will consist in elementary

computations it is a useful exercise for becoming acquainted with some basic facts
which any conjecture has to take into account; it also serves as a piece of motivation
for the introduction of the Deligne cohomology in the next Paragraph.

Let X,q be a projective smooth variety over Q. We fix an algebraic closure
Q/Q and put X := X g Q. We also fix an integer i between 0 and 2dim X and we

denote by M (for motive) the family of all ith cohomology groups of X as there are

- the f-adic cohomology H'(X,Q,), for each prime number ¢, viewed as
Gal(Q/Q)-module,

- the de Rham cohomology H}5(X(C€)) of the complex manifold X(C), and
- the singular cohomology H(X(C), Q).

For each prime number p we choose a prime 7 of @ above p and we let Dg, resp.
I3, denote the corresponding decomposition, resp. inertia, subgroup in Gal(Q/Q).
In the factor group D5/I; we have the arithmetic Frobenius ¢7 as a distinguished
element so that we can consider, for each £ # p, the characteristic polynomial

P,(T) i= det(1 - 65'T; H'(X, Q,)%)

of the geométric Frobenius ¢5 ! on the subspace of I; -invariant elements in

H*(X,Q,). Obviously, this polynomial does not depend on the particular choice
of 7 above p. Furthermore, it is conjectured ([Ser]) that the following hypothesis
always is fulfilled.

Hypothesis:
(I) Pp(T) has coefficients in Z which are independent of £.

By Deligne’s proof of the Weil conjectures this is known to be true if X has good
reduction at p (which is the case for almost all p). Assuming (I) we then define the
complex L-function of M by the Euler product '

L(M,s) =[] Pp(p™*)~"

which converges absolutely for Re(s) >> 0. Here is a list of some of the expected
analytic properties of L(M,s).
Hypothesis:

(II) The above Euler product converges absolutely for Re(s) > % +1 (and therefore
does not vanish in this region);

(IIT) L(M,s) has a meromorphic continuation to the whole complex plane; the only
possible pole occurs at s = 3 + 1 for even 3;



(IV) L(M, § +1) # 0;

(V) L(M,s) - Loo(M, 3)-(exponential factor) has a functional equation with respect
to s =1+ 1 — s (the precise definition of the archimedean Euler factor Lo (M, s) is
given below). '

If T'(s) denotes the usual I'-function we put
Tir(s) =7"*/2.T(s/2) and T'¢(s):=2- (2m)™* -T(s) .

The Euler factor Lo,(M,s) is built out of these I-factors by a rule which involves
the Hodge structure on the singular cohomology H*(X(C), C). This Hodge structure
consists in the Hodge decomposition (compare [GH])

B(X(0),0)= @ B

rtg=i
7,920

together with the C-linear involution Fi, on H*(X(C),C) induced by the complex
conjugation on the manifold X(C); one has

F(H??) = H®™ .

We put
h?? := dim¢ H?? and hPE = dimg HPE(-1)?

where HP? = HP* @ HP~ is the decomposition into eigenspaces with respect to Fi..
Then L (M, s) is defined to be

[T T¢(s—p)*™ ifiis odd,
riﬁii :

_n - Tr(s— %)h’:7+ - Tr(s—%+ 1)"%- if i is even .

In the following we always assume that the above Hypotheses I-V are fulfilled. Then
it is clear that the location and multiplicity of the zeros of L(M,s) in the region
Re(s) < % are completely determined by the poles of the Euler factor Lo, (M, s). Since
the I'-function has (simple) poles precisely at the nonpositive integers 0,—1,—2, ...
those zero multiplicities must depend in an elementary way on the Hodge structure
of M. In order to state the result in a convenient form we first recall that there is a
canonical isomorphism

H(X(C),C) = Hpp(X(C))

between singular and de Rham cohomology (compare [GH]) and that the de Rham
filtration F'H}p on the right hand side is related to the Hodge decomposition on
the left hand side by

FPHLa(X(C)) = D HP'? .

P'2p



Proposition:

The only poles of Loo(M,3) occur at integer points s = m < .f, with multiplicity equal
to
dimg HY(X(C), €)D" — dimg F*Hi5(X(C))

where n := i + 1 — m and the ezponent (a.s always in the following) denotes the
corresponding eigenspace with respect to Foo

Proof: The first assertion is obvious. Now, the multiplicity at s = m < & by definition
is equal to

Z hpq(+h%’(“1)m—%) if i is odd (even) .

m<p<g

On the other hand, because of Fo,(H??) = H9, we have

dimg Hi(X(C), €)D" = Z RPI(4hE(-DE" )
r<g

and

dimg F*Hpp(X(€))= Y h= Y w1= 3 pee .

p2it+l—-m g2i+l-m p<m-1
Sincem—1 < % the relations p <m —1and p+¢ =4 imply p < % < g. We therefore
- get
dimg F*Hpp(X(C)) = Y h* .

p<m-1
r<gq

If we put
ord,=m L(M, s) := multiplicity of L(M,s) at s =m

(poles are counted negatively) then our Hypotheses allow to reformulate the Propo-
sition in the following way.
Corollary:

For any integer m < % and n:=1i+1—m we have

dimg HY(X(C), €)D"' — dimg F*Hi4(X(C))
_ Jord,=—m L(M, 3) if m<
| ordy=m L(M, s) — orde=m+1 L(M,s) if m=

N e e
-

Corollary:

For any integer m < max(0,: — dim X) such that m # i we have

ord,=m L(M, s) = dim¢ H*(X(C),C)~V™



furthermore, for odd i the right hand side is equal to 1 - dim¢ Hi(X(C),C) and
therefore is even independent of m.

Proof: By assumption we have m < % and n :=i + 1 — m > min(4,dim X) so that

FrHpa(X(C)) = @ HUX(C),97) =0

p2n
Pt+g=1

The above Corollary then implies

ord,=m L(M, s) = dim¢ Hi(X(C), q:)(—l)""‘
= dim¢ Hi(X(C),C)(-D"
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In the next Paragraph we will see that there is a more “natural” formula for
ord,=m L(M, s) and any integer m < 3 which, like in the last Corollary, computes
this multiplicity as the dimension of a certain cohomology group.



§2 Deligne cohomology

The de Rham cohomology Hp,5(X(C)), by definition, is the cohomology of the
complex of sheaves of holomorphic differential forms
Q. OX(&Z) — 0 — 02— ..

on X(C) and the de Rham filtration F"H},p, is induced by the naive filtration of this
complex: . . _
F?Hpp(X(Q)) = image(H*(Q5,) — H'(Q)) ;

here the map on the right hand side is derived from the first arrow in the short exact
sequence of complexes

S 0 - @ - ot
! ! I |

Q : OX(C) - 0 S5 .. S ol 5o 5 Q.
! I Il I !

Q;p : OX(C) - M 5 .. - ol 5 9

In addition, we conclude from the existence of the Hodge decomposition that the hy-
percohomology spectral sequence H7(X(C), Q') = Hy (X (C)) degenerates. Con-
sequently, the map ) '
HY(QS,) — HY(Q)
is injective and we get
HY(Q,) = Hpp(X(C))/F?

The real Deligne cohomology H} (X, IR(p)) of X ¢ is defined to be the cohomology
of the complex

R(p)D : R(p) = Ox(y = Q' — ... > P71 =0

where the first arrow simply is the inclusion of the “twisted” constants IR(p) :=
(2mv/=1)PIR C € C Oyx(c). We apparently have a short exact sequence of complexes

0— ,[-1] — R(p)p — R(p) — 0
from which we derive the long exact cohomology sequence
— H'(X(C), R(p)) — Hpr(X(0))/F? — H5™(X/q,R(p)) -
— H*(X(C),IR(p)) — ...
Remark:

Replacing IR by any subring A C IR we get corresponding cohomology groups
H5L(Xc,A(p)). There is a long exact cohomology sequence

— Hy(X /¢, A(p)) — Hp(X /¢, R(p)) — H(X(C),IR/A) — ...
Examples:
1) Z(1)p—=0/Z1)[-1]-=0*[-1] ;
2) For p > dim X we have
Z(p)p—[0 = O/Z(p) = Q' — ... - QU= X =C/Z(p)[-1]
and consequently H5 (X, ¢, R(p)) = H*(X(C), R(p — 1)).



The above long exact cohomology sequence already indicates that the real Deligne
cohomology in some sense measures how the natural real structure on the singular
cohomology is behaved with respect to the de Rham filtration. And we have to
explore this a bit further. Let us first recall that this real structure

HY(X(C), R)®C = HY(X(C),C)

on the singular cohomology is given by the IR-linear involution ~on the right hand
side which is induced by the complex conjugation on the coefficients. On the other
hand, by GAGA the algebraic de Rham cohomology Hj 5(X/jg) of X/ defines a
real structure

Hha(X/r) @€ = Hpp(X(C))

on the analytic de Rham cohomology. The corresponding IR-linear involution on the
right hand side which we simply call the DR-conjugation is induced by the obvious
complex conjugation on the pair (X(C), Q). We have
- HP1 = g7 .
- The de Rham filtration already is defined over IR.
- Under the canonical identification H},5(X(C)) = H(X(C),C) (which is induced
by the obvious quasi-isomorphism of complexes € — Q) the D R-conjugation on the
left hand side corresponds to Fo on the right hand side ([Del] Prop.1.4.). For the
following it is useful to define the real Deligne cohomology of X /IR

Hy(X iR, R(p)) := Hp(X /¢, R(p))PR—eoniugstion

to be the subspace of elements invariant with respect to the DR-conjugation. We
now are prepared to analyze the above long exact cohomology sequence more closely.

Lemma:

For i < 2p the natural map H*(X(C),IR(p)) — Hba(X(C))/F? is injective.

Proof: The involution ~ acts on the left hand side by multiplication by (—1)?. But
we have
FPNFP=(@ H')n(@ HY)= @ HPI
p'2p q2p ?',92p
which is zero because of 2p > .

For ¢ < 2p our long exact cohomology sequence therefore becomes a short exact
sequence

0— H(X(C), R(p)) — Hpz(X(C))/F? - Hp(X ¢, R(p)) — 0

Using the decomposition € = IR(p) @ IR(p — 1) we can rewrite this as a short exact
sequence

0— FPHSR(X(C)) — H=Y(X(C),R(p — 1)) = E5H(X ¢, R(p)) — 0
Remark:

For i > 2p the groups Hj(X,¢,IR(p)) should be considered pathological. In fact, in
[Bei 2] Beilinson defines “absolute Hodge” cohomology groups which ‘coincide with
the Deligne cohomology in the range i < 2p but vanish for ¢ > 2p. In the last
Paragraph we will say something about the very interesting groups H2P(X /@ Z(p))-



For our purposes it is convenient to change the notation a little bit. We fix once and
for all an integer

i+1
2

and we put n := %+ 1 —m. Passing to invariants with respect to the D R-conjugation
(= Foo) in the above short exact sequence we derive our basic exact sequence
. . —1\yn-—-1
(*) 0 — F*Hpp(XR) — H'(X(C),R(n — 1))
— H (X, R(n)) = 0.

We immediately realize that our first Corollary in the last Paragraph can now be
reformulated in the following more “natural” way.

Proposition:

ord,—n, L(M, s) if m<

) i1 _
dimg Hy (X/IR’ R(n)) = { ord,—m L(M,3) — ords=pm+1 L(M,s) if m =

[ CIL NN TN
.

But we also want to predict (up to a rational number) the leading coefficient (in a
Taylor series expansion) of L(M,s) at s = m. Let us first look at the case where we
have a “honest” value. For m < 7 the following conditions are equivalent:

i. Le(M,s) has no poles at s =m and s =n ,
ii. Leo(M,s) has no pole at s =m
i, L(M,m)#0,
iv. H3'(X/r,R(n))=0.

According to Deligne such an integer m is called critical. Our sequence (*) in that
case becomes an isomorphism

F*Hpp(X/g) = H{(X(C€),R(n —1))"""
We now observe that both sides carry natural Q-structures: The left hand side by the
algebraic de Rham cohomology of X /@ and the right hand side by the singular coho-

mology with coefficients Q(n — 1). Therefore, the determinant of this isomorphism
- calculated in Q-rational bases defines a number

em(m) € R*/Q>

called the Deligne period of the twisted motive M (m).

Conjecture: (Deligne in [Del])

If m <  is critical we have L(M,m) = cpr(m)mod Q* .



Remarks:

1) Deligne actually defines his period in a slightly different way. The computation
which shows that Deligne’s and Beilinson’s definitions lead to the same period is
given in a subsequent Chapter of this book.

2) If m < £ is critical with m < max(0,% — dim X)) then our second Corollary above

says that car(m) = 1. Deligne’s conjecture in this case amounts to the assertion that
L(M,m) is Q-rational.

For general m the exact sequence (*) still provides an isomorphism
N"F" B (X ) @ A 5 (X, R(n)
=5 AR X(C), R(n — 1))~

between the maximal exterior powers of the respective IR-vector spaces. Now, Beilin-
son’s idea how to proceed is the following:

- Show that the Deligne cohomology Hy* (X /IR» IR(n)) carries a natural Q-structure,
too.

- Define the regulator cpr(m) € IR*/Q™ to be the above isomorphism calculated in
Q-rational bases.

- Conjecture that car(m) is the leading coefficient of L(M, ) at s = m up to a rational
multiple.

Furthermore, his hope is that the Chern class maps from higher algebraic K-theory
into Deligne cohomology will provide the required Q-structure. In the next two
Paragraphs we will discuss in some detail the construction of these Chern classes.
In order to understand why this theory has t6 come in it is useful to observe the
following two facts:

1) There is no “easy” way of getting a Q-structure. In fact, our considerations which
led to the exact sequence (*) also imply that the natural map

H3 (X /R, Q(n)) — HE (X /g, R())

is surjective.

2) Of course, there also are Chern class maps from higher K-theory into de Rham
and singular cohomology. But a weight argument shows that apart from the cycle
map on Ky they are trivial. In contrary to these two cohomology theories the Deligne
cohomology is of a transcendental nature so that we should expect highly interesting
Chern class maps. '

10



§3 Absolute cohomology

The higher algebraic K-groups of a scheme in a natural way break up into pieces
which behave very much like a usual cohomology theory. From this point of view
the theory of Chern classes then appears as a technique to construct natural trans-
formations from this “absolute” cohomology into any other reasonable cohomology
theory.

In the framework of the +-construction one can define a family of natural op-
erations {¥*}1>; called the Adams operations on the K-groups K;(A) of any affine
scheme Spec(A). Their most important property is that they induce a decomposition

K(4)eQ= o K9(4)  with
32
KP(4) = {z € Ki(4) ® Q : 9*(z) = kiz forall k> 1} .
See [Hil] or [Kra] or the corresponding Chapter in this book.

Remark:

K®(4) = 0 for i > 1, and Ko(4) =25 H(Spec(A), Z) induces an isomorphism
K{"(4) = H(Spec(4), Z).

In order to get Adams operations on the K-groups of our variety X we use the
following facts:

1) There is a torsor p : W — X for a vector bundle on X which is an affine scheme
([Jou] p.297). :

2) (Homotopy property) If f : Y — Z is a faithfully flat morphism whose fibres are
affine spaces then f* : K.(Z) — K.(Y) is an isomorphism ([Qui] p.120).
3) For any regular scheme Y we have K.(Y) = K,(Y) ([Qui] p.116).

We consequently have an isomorphism
P Ku(X) S5 KL(W)

which we use to transfer the Adams operations from the right to the left hand side.
The result is independent of the particular choice of W: Namely, if W — X is a
second such torsor then all morphisms in the cartesian diagram

WII N W
L !
w — X

induce isomorphisms in K-theory and W' is affine, too. The absolute cohomology
groups of X now are defined by

HY{(X,Q(j)) == K2

2j—i

(X)

11
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« 4
. \ |
' N : 1
2
Hi(X,Q(j)) = 0

Problem: Is HY = 0 for i < 0?

Beilinson hopes that these groups form some kind of universal cohomology theory for
X. In the same spirit he expects that the projections

cha: Ki(X) — jefo HY ™ (X,Q(j))

define an universal Chern character.

Remarks:

1) As motivation one should have in mind that, for the complex K-theory of a
compact topological space Y, the classical Chern character induces isomorphisms

([Kar))
| EP(Y)= H¥(Y,Q) and KD (v) = B¥-1(Y,Q) .

2) The groups H%(Y, Q(5)) can be defined for any scheme Y which is quasi-projective
over a regular scheme; they form a cohomology theory in the sense of Bloch/Ogus
(see [Sou 2 ] or the Chapter on Riemann-Roch in this book).

As a first step towards the wanted Q-structures we will construct in the next
Paragraph natural maps

H(X,Q(j)) — Hp(X iR, R(H))

Bloch/Grayson ([BG]) discovered that for certain elliptic curves X;q the map
H%(X,Q(2)) ® R — H3(X,R,IR(2)) is not injective. Therefore Beilinson proposes
the following modification of the absolute cohomology.

12



Conjecture: (Beilinson)

If X)7 is a proper flat model of X /q (it always ezists!) then
image(K,(X)® Q — K.(X)® Q)

is independent of the choice of X 7z and is compatible with the Adams operations and
the formation of inverse images with respect to X.
Remark:

image(K,(X) — K.(X)) is independent of the choice of a regular proper model X 1z
of X (if it exists).

Proof: Let X;z and X /z be two regular proper models of X. The Zariski closure
X ;'z of the diagonal of X g XinX é X' again is a proper model of X; the canonical
morphisms
X — XN —_ X,
ks '
are proper. Consider now the commutative diagram
KfX) T K(X') — EKi(x") D K(X) = K(X)
N\ ! v v
Ki(X)

and its counterpart where the roles of X and X' are exchanged. (The construction

of 7, for an arbitrary proper morphism  is carried out in [Gil 2] §4.)

Assuming that the above Conjecture holds true we define
H4(X,Q(j))z := image(Ky; (X)® Q — Ksj—i(X) ® @ — H4(X, Q(7))

where X7 is any proper flat model of X. Certain conjectures about the K-theory in
characteristic > 0 would imply, via the localization sequence, the following statements
about the relation between H%(X,Q(j))z and H% (X, Q(j5)).

Conjecture:

o) Hy(X,Q(j))z = Hi(X,Q(5)) except for (i,5) with j < i < 2j — 1 and j <
dimX +1;

b) Hi(X,Q(j))/Hi(X,Q(j))z, for i < 2j — 2, only depends on the bad fibres of
Xjz;

¢) (reformulation in the indices 0 < i < 2dimX, m < %, andn =i+1—m)
H(X,Q(n)z = HiY (X, Q(n)) ezcept if m > max(0,i — dim X); for m < % the
difference only depends on the bad fibres of Xz

The following picture might illustrate these statements. The large shadowed triangle

is the range where difference can occur; in the smaller one the difference only depends
on the bad fibres.

13



dimX+1

i - I

1 | | 1223-2 i=2§-1 i=2]

1. ]

v
He

/ 1 2 dim X + 1 2dimX  2dimX + 1

A trivial example is

H(Spec(Q),Q(1))z = 0 ¢Q * 2Q = H(Spec(Q),Q(1)) -

84 Chern classes

To a large part this theory is completely formal and relies on some manipulations
in the context of simplicial algebra. Let V be the category of smooth quasi-projective
schemes over some fixed base field equipped with the Zariski topology. Any scheme Y
in V represents a sheaf of sets Y on V. Let ZY denote the sheafification of the presheaf
of free Z-modules over Y. For any sheaf F on V we then have F(Y) = Homy(ZY,F)
and therefore N

H*(Y, F) = Ext},(ZY, F)

We need a generalization of this identity for the cohomology of any simplicial scheme
Y. in V. Similarly as before Y. represents a simplicial sheaf of sets Y. on V. In an
obvious way we get the associated simplicial sheaf ZY . of Z-modules ‘which gives rise
to a (negative cohomological) complex of sheaves

NZY.:..— zy . L Z_li_k"'1

2o (=1)vd,

vr=0

with ZY _ in degree k. Let D(V) (resp. D*(V)) be the derived category of complexes
of abelian sheaves on V (which are bounded below).

14



Lemma:
H*(Y.,F") = Homp(yy(NZY.,F'[x]) for any F* € DH(V).

Proof: Without loss of generality we can assume that " is a complex of injective
sheaves on V. An examination of the proof of Prop.2.4 in [Fri] then shows that the
cohomology H*(Y.,F") can be computed from the double complex

(Homy, (Z, F*))s,¢
But this double complex is equal to the double complex
(Homy(ZY k, F*))k e
which, by Yoneda (compare [Har] 1.6.4), computes the groups
Extp)(NZY.,F') = Hompyy(NZY., F'[%])

We apply this to the “classifying” simplicial scheme

tdx1 —
(——

base — M e

B.GL, pec( ﬁeld) GL, < GL,xGL, o
1x:id

—

(where 41 denotes the multiplication map for the group scheme GL,,) and get natural
identifications

H*(B.GLy,F') = Homp(y)(NZB.GLn, F %))

for any F* € D*(V). Next we want to pass to the limit with respect to n in that
identity. This requires a stability result and is therefore, of course, not a formal
matter. Put B.GL :=1im B.GL,,.

Proposition:

The natural homomorphism of complezes of sheaves

NZB.GL, — NZB.GL

is a quasi-isomorphism in degree > —"—;1-.

Proof: Since we can check our assertion stalkwise we have to show (use [Mil] I1.2.9(d)
and 3.20(a)) that
NZB.GL,(A) — NZB.GL(A)

is a quasi-isomorphism in degree > —27% for any local ring A. Now we observe
that these complexes are the standard bar resolutions which compute the group
homology of GL,(A) and GL(A), respectively (compare [Mac]). What we have to
prove therefore amounts to the statement that the natural homomorphisms

Hi(GLn(A), Z) — Hy(GL(4),Z)

are bijective for k < ®51 and any local ring A. This stability result is established in
[Kal] Th.4.11 or [Sus 1] Cor.8.3.
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Corollary:
For any F* € D*(V) there is a n' > 1 such that
Hompy)(NZB.GL,,F') = Homp(NZB.GL,F) for n>n' .

We now fix a complex 7' € D*(V) and we assume that, for j > 0 and n >> 0,

there are given classes cg-") € H*(B.GL,,F’) which are compatible with respect to
GL, — GL,4;. We have seen that these classes induce a homomorphism

¢;: NZB.GL — F'[2j]

in D(V). If U = Spec(A) is an affine scheme in V passing to global sections in U
then gives a homomorphism of complexes

¢j: NZB.GL(A) —» (NZB.GL)(U) — F'[25)(U)
(where, for a moment, we again think of 7" being a complex of injective sheaves)
which induces homomorphisms
¢i,j : H(GL(A), Z) — H*(U,F")

in cohomology (remember that NZB.GL(A) is the standard bar resolution for the
group GL(A)). In order to get maps on K-theory we use the Hurewicz map and the
fact that the +-construction leaves homology invariant. We put

Ci,j - K,(A) = W,(BGL(A)'!') Hu-;v)icz H,(BGL(A)+,Z)
|

Hi(BGL(A),Z)
|

Hi(GL(A), Z)
i |
HZJ“(U, F)
for: > 1.
Result:

Any compatible family of classes cgn) € H?(B.GL,,F’) induces natural homomor-
phisms .

cij: Ki(A) — HzJ_Z(U,f')
for i > 1 and any affine scheme U = Spec(4) in V.

Remarks:

1) Since we hope that, in an appropriate setting, the Chern classes on higher K-theory
provide Q-structures on cohomology it seems worth to note that the Hurewicz map
K;(4)®Q — H;(GL(A), Q) is injective (see [MM] App.). So the above construction
does not cause any a priori loss of information about the ranks of the K-groups.

2) The above construction works in any “reasonable” topology (e.g., the etale topol-
ogy) instead of the Zariski topology. This can be seen either by examining the
arguments or (at least if the new topology is finer than the Zariski topology) by
applying the “Zariski” construction to the total direct image on the Zariski site of
the respective complex of sheaves on the finer site.

16



In order to proceed we assume that the cohomology of our fixed complex F* has four
particular properties (which are familiar from classical or etale cohomology).

(I) (Homotopy property) The natural map A}, — Y, for any scheme Y in V,
induces a cohomology isomorphism H*(Y, ') — H*(A},F ).

This property will enable us to extend the definition of the maps ¢; ; to any scheme
in V.

Lemma:

Any morphism Y — Z in V which (Zariski) locally is of the form A}, — U for
somen > 0 (e.g., if Y is a torsor for a vector bundle on Z) induces a cohomology

isomorphism H*(Z,F") — H*(Y, F).

Proof: If f : A™ — Spec(base field) denotes the structure morphism then the homo-
topy property (I) is equivalent to the assertion that the canonical homomorphism

F'— Rf(f*F)

in D*(V) is an isomorphism. But this statement obviously is of a local nature so
that it holds true for any morphism in V which locally is of the form A}, — U.

Let now Y be any scheme in V. Jouanolou’s lemma ([Jou] p.297) tells us that there
is a torsor p: W — Y for a vector bundle on Y which is an affine scheme. Because
of the homotopy property we therefore can define maps ¢; ; for Y and i > 1 by the
commutative diagram

K(W) —, HYN(W,F)
p*T o o Tp*
Ki(Y) ——— HYYY,F)
Ci,j
The same argument as in the last Paragraph shows that this definition does not
depend on the particular choice of W.

Remark:

If one is prepared to use more complicated techniques from homotopical algebra one
can avoid to require the homotopy property (I). The idea, of course, is to “sheafify”
the above construction for affine schemes. Since the +-construction BGL(A)t is
natural in A only up to homotopy it is first necessary to replace it by the homotopy
equivalent and truly functorial Bousfield/Kan completion Z.,B.GL(A). This gives
a simplicial presheaf of sets on V and the K-theory turns out to be equal to the
generalized sheaf cohomology

Ki(Y)=H(Y,ZoB.GL), for i>1 ,

of the associated (pointed) simplicial sheaf Z.,B.GL. The Hurewicz map in this
context simply becomes the natural map of simplicial sheaves

ZB.GL — ZZB.GL .

17



On the other hand, by the acyclicity of the +-construction, we know that the natural
map ZB.GL — ZZ ., B.GL is a weak equivalence. We therefore get homomorphisms

K,(Y) — H™(Y,ZB.GL)

Finally, we observe that the generalized sheaf cohomology of a simplicial abelian
sheaf is equal to the usual hypercohomology of the corresponding complex of abelian
sheaves:

H™(Y,ZB.GL) = H™*(Y,NZB.GL) for i >0 .
See [Gil 1] and [BrG] .
So far our classes cgn) € H*(B.GL,,F’) were completely arbitrary. The properties
(II) - (IV) below will enable us to make a specific choice of those classes. They simply

axiomatize the usual procedure for defining Chern classes of vector bundles so that
we also will get maps (not homomorphisms!) on Ky(Y).

Commentary:

The technique in the above Remark actually gives maps

for any family of classes c( ™). On the other hand, the classes c( ™) are determined by

those maps: cg ™) is the i image of the class of the universal rank n vector bundle on

B.GL,, under the map K¢(B.GL,) —» H%(B.GL,,F’). So the correct order seems

first to define the maps on Ky which then give classes c( ™) and therefore maps on the
higher K-groups.

(II) (Product structure) There are homomorphisms
L
U:f'ézb}"' — F and e:Z — F

in D*(V) such that U is associative and (graded) commutative with unit e.

Explanations:

1) For principal ideal domains like Z the derived tensor product ® exists on D(V)
and respects D* (V) (see [God] Th.1.5.5.2 and [Har] II §4).

2) The homomorphism U induces cup-product pairings

HYY,F) x HYY,F) — HFYY.,F)
(z,9) — zUy

on the cohomology of any simplicial scheme Y. in V.

18



If we interprete cohomology classes as homomorphisms in D(V) then z Uy is given
by the commutative diagram

NZY.®NZY. *% Ft] 8 F [

EZ | ~
NZ(Y.x Y.) J u
diagonal T
NZY. 2 Flk+ 4

Here EZ denotes the homotopy equivalence given by the theorem of Eilenberg-Zilber.

(III) (Cohomology of projective space) There is a homomorphism
¢:Gp[-1] — F
in D*(V) such that, for any scheme Y in V and any n > 0, the map
S ()uek: kgBOH*“”‘(Y, F) -2 HYPL, F)
k=0 =

is an isomorphism where 7 : P} — Y is the structure morphism and ¢ is the
image of the canonical line bundle, i.e.,

HY(P},0%) 5 HYPYL,F)
o1 — ¢

Like the homotopy property this property (III) is of a local nature. Therefore it
generalizes to arbitrary projective bundles.

Proposition:

Let E be a rank n vector bundle on a simplicial scheme Y. in V. Then the map

n—1
dom()utk: :GE: H* (Y, F) = H'(P(E),F)
k=0 - k

is an isomorphism; here m : P(E) — Y. is the structure morphism of the associated
projective bundle and g € H*(P(E),F") is the image under & of the canonical line
bundle on P(E).

Proof: See [Gil 1] Lemma 2.4 (for the definition of a vector bundle on a simplicial
scheme consult [Gil 3] Ex. 1.1).
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This result, in particular, gives an identity
§5 + 7 (ca(B)) ULE™ + .o + 7 (ca(E)) = 0
in H*™(P(E), F') with uniquely determined classes
¢;(E) € H¥(Y.,F")-

(put co(E) =1 and ¢;(E) = 0 for j > n); they are called the Chern classes of the
vector bundle E.

Remark:

For a line bundle E viewed as an element of H!(Y.,0*) we have ¢;(E) = & E).

In order to get the usual properties for these Chern classes we need a very weak
version of the formalism of Gysin maps.

(IV) (Weak Gysin property) Let ¢ : Z — Y be a closed immersion of pure codi-
mension 1 in V and let [Z] € H(Y, O*) be the class of the divisor Z on Y; for
any ¢ € H2*(Y,F') such that *z = 0 we have

tUE[Z])=0

The behaviour of our Chern classes with respect to short exact sequences, tensor
products, and exterior powers of vector bundles can now most conveniently be de-
scribed in the following way. Those operations on vector bundles give Ko(Y.) the
structure of an augmented H°(Y.,Z) — )-algebra (SGA 6 exp. VI Th. 3.3). On the
other hand we put

Ch(Y.) := H)Y,Z) x {(z;) € [[ B¥(Y.,F) : 20 =1}
i>0
which obviously forms an abelian group with respect to the cup-product as addition
(it is suggestive to think of elements in the second factor as being power series in one
variable with constant coefficient 1). Furthermore, using certain universal polynomi-
als, Ch(Y.) in a natural way can be made into an augmented H(Y.,Z) — X-algebra,
too. The interested reader should consult SGA 6 exp. 0 App. I §3 or exp. V §6 for

the details. The only fact about Ch(Y.) we need to know in the following is that the
action of the Adams operations ¢*, for k£ > 1, on it can be determined explicitly.

Lemma:

For ¢ = (r,1,(z;)j>1) € Ch(Y.) and k > 1 we have

'ﬂl’kz = ("" 1, (kjwj)izl)

Proof: We freely use the notations of SGA 6 exp. V. The same argument as in the
proof of loc.cit. (6.6.1) shows that we have

58,1, ..., 2¢,0,...) = (£,1,...,k%z,,0,...) for all kL1

20
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one only has to observe that loc.cit. (6.2.1) implies
(1,14 T) = (1,1 + kT)
Since obviously ¥*(¢,1,0,...) = (£,1,0,...) we then also get
$*(0,1,...,2¢,0,...) = (0,1, ..., k2,,0,..) for all £> 1 .
But (Ch(Y.))e+1 is a A-ideal accordmg to loc.cit. (6.6.3). Consequently
¢k(0,1,(mj)j21) = $*(0,1,...,24,0,...)
=(0,1,...,k'z,,0,...)
= (0,1, (k’:cj)jzl) mod (Ch(Y.))e+1
holds true for all £ > 1 which proves the assertion.
All the important properties of Chern classes now can be expressed by the following
statement.
Proposition:
The map [E] — (rank E,co(E),c1(E),...) induces a natural homomorphism
¢: Ko(Y.) — Ch(Y.)

of augmented H°(Y.,Z) — X-algebras. Furthermore, the family of these homomor-
phisms (for all (simplicial) schemes in V) is uniquely characterized by the fact that

c([E]) = (1,1,¢(E),0,...) for line bundles E .

Proof: See [Gro 1] §3. The reader will realize that the purpose of the weak Gysin
property is to ensure the validity of the corollary on p. 142 of loc.cit.

In particular, we get natural maps
c,; : Ko(Y.) — HY(Y.,F) for §>0
[E]  —  ci(E)
It remains to explain which choice of classes c( NeH 2(B.GL,,F’) we are going
to make. Since those classes should be umversal in the sense that their origin does

not depend on the particular cohomology theory H*(.,F’) we are dealing with, the
obvious idea is to use the map

¢:lim K¢(B.GL,) — lim Ch(B.GL,)

which is provided by the above Proposition. Indeed, if E™, resp. 1", denotes the
universal, resp. trivial, rank n vector bundle on B.GL, (compare [Gil 1] p. 218)
then we have the element

w 1= {[E"] — [L"}n € lim Ko(B.GL,) .
We define the universal Chern classes c(-"') € H*(B.GL,,F’) by

e(w) = {0, &, - )}n -
The homomorphisms ¢;,; on higher K-groups constructed from these particular clas-
(n) are called Chern class maps.

s€s C




Remark:

The structure of the A-ring Ko(B.GL,) is known explicitly: Let R(GL,) denote the
Grothendieck ring of rational linear (over the base field) representations of the group
scheme GL,. This is a A-ring (SGA 6 exp. 0 App. I §2). Furthermore, we have the
homomorphism of A-rings

R(GL,) —  Ko(B.GL,)

[p:GL, — GL,) +— (B.p)*[E™]

which, in fact, is an isomorphism: A vector bundle V on B.GL,, (up to isomorphism)
is completely determined by the following data (compare [Gil 3] p. 7/8):

- a trivial vector bundle O™ on B;GL,, = GL,, and
- an automorphism p of O™ such that djp o djp = dip (on B,GL,).

Obviously, p defines a homomorphism of group schemes p : GL,, — GL,, such that
[V] = (B.p)*[E™]. Now, let id, : GL, — GL, be the identity representation. We
then have (SGA 6 exp. 0 App. I §2)

R(GL,) = Z[N'[idy], ..., A"[id,], A"[id] 7] .

We now have achieved the construction of Chern class maps
¢ij: Ki(Y) — HY4Y,F)

for 4,5 > 0 and any scheme Y in V. By definition, they are homomorphisms in case
i > 1. The above Proposition on the other hand gives a rather complete description
of their properties in case 1 = 0. We therefore still have the task to determine their
behaviour with respect to the Adams operations and the product on higher K-theory
in case ¢ > 1. For that purpose it is necessary to consider all maps which arise from
classes in the image of ¢ simultaneously: We fix an affine scheme U = Spec(4) in V.
For any v € K¢(B.GL,) andi > 1,5 > 0 let

c,-,j(v) : Wi(BGLn(A)"') —_ Hi(GLn(A), Z)

Hurewics

1 Hi(ej(v))

HY=i(U, F")

denote the homomorphism constructed from the class c;(v) € H?/(B.GL,,F’) given
by ¢(v) = (rank v, ¢o(v), c1(v), ...).

Lemma:
For v,w € Ko(B.GL,) we have ¢; j(v + w) = ¢; j(v) + ¢ j(w).

Proof: (Compare [Gil 1] 2.25) From the commutative diagram
Ko(B.GL,) - Ch(B.GL,)

Jv unit section jv

Ko(gaa)=Z —  Ch(ga

22
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we see that, for j > 0, the composed homomorphism

Z 2% NzB.eL %% F2j)

section

is the zero map. Passing to cohomology groups this implies that we have commutative
diagrams ‘

Hi(GL.(A) x GL,(A),Z)

diagona.l/ l

Hi(GL(4),Z) "3 Hy(BGL,(A)* x BGL,(A)*, BGL.(A)* V BGL.(A)*;Z)

Hi(cj'(”)ch"(w)\ J |

H2G'+i =iy, 7

for all positive integers 4,;',5" > 0 (compare [Dol] VI. 12.8). We now make use of
the following two facts from topology:

- For any pointed CW-complex (T, P) there is a commutative diagram

H.(T x T, TV T;Z)
diagonal /‘

H.(T,P;Z) I

diagonal \
H.(T AT,P;Z)

(see [Dol] V.4.4).
- For any topological space T' and any ¢ > 1 the composed map

m(T) — H(T,Z) — Hi(TAT,Z)

Hurewicz diagonal

is the zero map (since H;(S* A S*,Z) = H;(S%*,Z) = 0).

If we combine these facts with the above diagram we end up with a commutative
diagram

5 Hi(e;1(v)Uc;n(w et .
r(BGLa(A)Y) T Hy(GL,(4),z) TS paiin-ig, £y
0\, l diagonal e

Hi(BGL,(A)* A BGL,(A)*,Z)

which shows that

H;i(cjr(v) U ¢jo(w)) o Hurewicz =0 for 4,5',5" >0 .
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Consequently we have

¢i,j(v + w) = Hi(cj(v + w)) o Hurewicz
= Hy( Z cj'(v) U ejn(w)) o Hurewicz

45 =i
J',)"ZO

= H;(c;(v)) o Hurewicz + H;(c;(w)) o Hurewicz
=¢;,;(v) + ¢ j(w) . q.e.d.

Next we will see that all the maps ¢; ;(v) can actually be computed in terms of
the Chern class maps ¢; ;. First we recall from the above Remark that we have a
canonical isomorphism

R(GL,) = Ko(B.GL,)

which we view from now on as an identification. In particular, we will write c;(p) and
¢i,j(p) for p € R(GL,). According to [Kra] Cor. 3.2 there is a natural homomorphism
of groups

R(GL,) — [BGL,(A)t,BGL(A)"]

where the group structure on the right hand side comes from the H-space structure
on BGL(A)*. The image of (the class of) a representation p : GL, — GL,, under
this homomorphism is the (pointed) homotopy class of the map

BGL,(A)* P*4" BarL,.(A)* — BGL(A)*
Via this homomorphism any p € R(GL,) induces natural maps
7i(p) : mi(BGL,(A)Y) — K;(4) for i>1
on homotopy groups with the property that
mi(p +p') = mi(p) + mi(p')
Lemma:
For p € R(GL,) we have ¢; ;(p) = ¢; ; o mi(p).

Proof: Let p first be the class of a “true” representation p : GL, — GL,,. We then
have the commutative diagram

m(BGL,(4)t) T8 Ki(A)
1Hurewicz Jv
Hi(GL,(4),Zz) ™Y gigr(4),2)

Hi(ci(p)) \, " Hi(ej(w))

H~4(U, F)
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for any ¢ > 1 and j > 0. The commutativity of the square, resp. triangle, is
obvious, resp. follows from the naturality of the Chern classes on K. Since any
class in R(GL,) can be written as a difference of classes of “true” representations the
previous Lemma implies that, for arbitrary p, we still have a commutative diagram

1:(BGL,(4)%) o) Ki(A)
¢ii(P) "\ i
HY-(U, F)

Proposition:

Fori,k > 1 and j > 0 we have ¢;j o p* = k7 - ¢; ; where ¥* denotes the k-th Adams
operation on K-theory.

Proof: By the homotopy property it suffices to prove the assertion for an affine scheme
U = Spec(A) in V. According to [Kra] §5 we have

¥* on Ki(A) = limmi(3*(fida] - [L,)))

where id,, resp. 1,,, denotes the identity, resp. trivial, n-dimensional representation
of GL,. Using the last Lemma and our Lemma about the Adams operations on
Ch(.) we compute

¢i,j 0 9* =limey;(9*([idn] - [L,]))
= liLnH,-(cj(gb”([idn] —[1,])) o Hurewicz
= lim H;(k? ¢;([idn] — [L,])) o Hurewica
=k’ lir_)nH,-(cg.n) ) o Hurewicz
=ki.c;; . qed
In the affine case the product in K-theory can be defined in the following way ([Lod)):
The tensor product representations id, ® id,, id, ® 1,, and 1. ® id, define continuous

maps -
id, ® id,,... : BGL,(A)* x BGL,(A)* —> BGL,,(A)*

and using the H-space structure of BGL(A)* we obtain the homotopy class of maps
id, ® 1d, —id, ® 1, — 1, ® id, : BGL.(A)* x BGL,(A)* — BGL(A)* .
This homotopy class factorizes through a homotopy class of maps
BGL,.(A)t A BGL,(A)* 5 BGL(A)*

and those u,, are compatible with respect to varying r and s and define in the limit
a weak homotopy class of maps

BGL(A)* A BGL(A)t £ BaL(4)t .
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If we fix 41,49 > 1 and put ¢ := 4; + ¢» the product is given by the composed
homomorphism

. Kiy(A) x Kiy(A) — m(BGL(A)* A BGL(A)*) =% K,(4) .

First we have to see how this product is behaved W1th respect to the Hurewicz map.
Let ®,,, denote the composed homomorphism

®r,s : H; (GL.(A), Z) @ H;,(GL,(A),Z) — H;(GL.(A) x GL,(A),Z)
HGd i) B (GLy(A), Z) — Hi(GL(A),Z) .
Similarly the direct sum representation id, @ id, induces a homomorphism
©r,s : H;)(GL(A), Z) ® H;,(GL,(A),Z) — H;(GL.(A) x GL,(A), Z)
Hi(L8ide) B (GLy4o(4), Z) — Hi(GL(A),Z) .

Lemma:

The diagram
i, (BGL,(A)") ® mi,(BGL,(A)*) — Ki(4)

Hurewicg l @®Hurewicz lHurewicz

Qr,s—78Dr,,
—

Hi,(GL(A),Z) ® Hi,(GL,(A), Z) Hi(GL(A),2)

18 commutative.

Proof: [Sus 2] (4.2).
Recall that v = {[E"] — [1"]},, € lim K(B.GL,,).

Lemma:

The diagram

H;,(GL.(A),Z) ® H;,(GL,(4),Z) 2 H/(GL(A),Z)
3 Hiy (cjy (w))® | Hiy (e (w)) Hi(e;(w))]
® H (U, F)e@ H¥ »(U,F) - HY{(U,F)
jitja=j

18 commutative.

Proof: This follows from the fact that the preimage of the universal vector bundle
E™** under the morphism

zd, Did,

B.GL, x B.GL, B.GL,4.,

is isomorphic to the direct sum bundle priE™ & pr3 E°.
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Lemma:

The diagram

7i,(BGL(A)*) @ mi, (BGL,(A)Y) ™=“5*®y. (GL.(A),Z) ® H;,(GL,(A),Z)

Hurewicz
®r,s |
Z("‘W%?T;);__m)jvqhh ®ciy iz Hi(GL(A)’ Z)
Hi(cj(uw)) |
& HM (U, F)® H* (U,F) - H¥-4(U, F)

Ji+ja=j3
18 commutative.

Proof: The preimage of the universal vector bundle E™* under the morphism

B.GL, x B.GL, *“** B.GL,,

is isomorphic to the tensor product bundle pr{ E™ ® pr3 E*. Therefore we have the
commutative diagram

Hi{(GL.(A) x GL,(4),Z) (%) H(GL.(A),Z) — H(GL(A),Z)
Hi(cj(pri E"®pr; E*)) \, < Hi(ej(w))

HY~(U, F)

By the theory of the Chern ring Ch(.) the Chern classes of a tensor product bundle
can be expressed as a polynomial in the Chern classes of the two factors. This leads
to a commutative diagram

H;,(GL.(4),Z) ® Hi,(GL,(A),Z) — Hi(GL.(A) x GL,(4),Z)
a] Hi(e; | (pri E"@pry E*))

® HYMH(U,F)@ ¥ a(U,F) L H*=4(U, F")

Jitia=j

where the homomorphism g is of the form

g=>_ ayHy (My(e1(), - 5(w) @ Hiy (N (e1(u), -y c5(1)))

with certain universal monomials M, (Xj,..., X;) and N, (Y, ...,Y;) and certain uni-
versal integers a, both depending only on r, s, and j. But we already know that

Hyy1(M(c1(u), ..., cj(u))) o Hurewicz = 0
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for any monomial M of degree > 1. On the other hand an explicit calculation in the
Chern ring (SGA 6 exp. 0 App. I §3) shows that the monomial X;,Y;, occurs in the
above expression with the coefficient

G-t
(1 =G =17

T8 —
Proposition:
For 11,13 > 1,i:=14; +142,5 >0, and z € K;,,y € K;, we have

_ —( - 1)!
ci:j(z ’ y) ]lg—" (.71 . 1);(12 1)'6;1,]1({6) U ciz,Jz(y)

Proof: Again by the homotopy property it suffices to treat the affine case. But here
one only has to combine the three Lemmata above. (For different proofs compare
[Sou 1] p. 262-265 and [Gil 1] Prop. 2.35.)

In order to bring these results in a particularly nice form we now assume that the
cohomology groups H*(., F") of our complex F" are Q-vector spaces. We then define
the Chern character

ch: Ki(.) — @ HY7'(,F)
i20

by )
3 %cu if ¢>1 ,
ch := = i1 .
Cho,o + Z>:1 (le_%éo,j if 1=0
i2
where
cho : Ko(-) 225 HY(., Z) - HY(.,F)

and

Z 'C'o,jtj =log(1 + Z Co,jtj)

izl i>1
(compare SGA 6 exp. V §6.3).

Corollary:

i. For i,5 > 0 we have ch(KEj)(.)) C HY (L, F);
. foriy,ip >0 and z € K;,y € K;, we have

ch(z - y) = ch(z) U ch(y)

Taking into account that Adams operations and product on K- theory are compatible
([Hil] or [Kra]) we get a “natural transformation”

R:H}(.,Q(x)) — H*(.,F)
which respects products and which satisfies the relation
ch=Rochy

In particular, this justifies Beilinson’s point of view that H% and ch4 are some kind
of universal objects.



Remark:
In the applications F often is a graded complex F* = '@o F*(7). The product
i>

structure then should be given by homomorphisms
L
e:Z— F(0) and U :f'(j)(%]-"(j'.) = FG+7) ;

furthermore, the homomorphism ¢ should be of the form & : G;,[—1] — F'(1). The
universal Chern classes then lie in H2/(B.GL,,F (j)) and the Chern class maps
consequently are of the form

cij: Ki(.) — HY7(, F(5)) .

Here is a list of the most important examples of complexes F which have the prop-
erties (I)-(IV) and therefore give rise to corresponding Chern class maps:

- F' = {1y the algebraic de Rham complex (in the Zariski topology); here the
base field has characteristic 0; - [Hart].

- F'(j) := p®’ the j-th tensor power of the sheaf of m-th roots of unity in the
etale topology; her m is prime to the characteristic of the base field; - [Mil].

- F(j) := W.Q{,’log[—j] the “logarithmic part” (in the etale topology) of the de
Rham - Witt complex; here the base field is perfect of characteristic > 0; - [Gros).
The homotopy property does not hold! Similarly, 7" := W.Q; gives rise to the
crystalline Chern class maps. '

- F(j) := K;[—j] the sheafification (in the Zariski topology) of Quillen’s K-
groups; - [Gil 1], [She], [Sch].

- F'(j) := 2%[—2j] the complex (in the Zariski topology) which computes Bloch’s
higher Chow groups (it is expected but not known, at present, to be bounded be-
low); - [Blo 3]. Bloch proves the very remarkable fact that the “natural transfor-

mation” R in this case induces isomorphisms H% (., Q(j)) — H*(.,2/[-2j])®Q.

The example of a complex F* we are especially interested in in this paper is the
Deligne complex _GEO Z(j)p. Here, V is the category of smooth quasi-projective
j

schemes over the field € equipped with the analytic topology. In §2 we defined
the complexes Z(j)p on projective schemes in V. If we take the same definition on
any scheme V then these complexes seem to have the properties (II)-(IV) (not the
homotopy property) which would suffice for the construction of Chern class maps.
But we do not pursue this here since there is a second and much more important
way to extend the definition of the complexes Z(j)p to all schemes in V. It involves
the theory of smooth compactifications by divisors with normal crossings and the
theory of holomorphic forms with logarithmic singularities and is explained in [Bei 1]
§1 or in the Chapter on Deligne cohomology in this book. In this case the properties
(I)-(IV) are established in [Bei 1] §1. Consequently we have the Chern class maps

eij Ki() — HY (., Z(5))
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which induce (as described above) a “natural transformation”
R:Ha(-»Q(x)) — Hp(, Q%) .

For any smooth projective variety X over Q we now define the regulator map to be

* * R * —conjugation
reg : H3(X,Q(%)) — HA(X )R, Q(*)) —Hp(X /¢, IR(x))PReoninget

|
H%(X/IR’ IR(*)) .

§5 The conjectures

Now, let X,q be again a projective smooth variety over Q. As before we let M
denote the family of all i-th cohomology groups of X for some fixed integer i between
0 and 2dim X. We assume that the Hypotheses (I)-(V) in §1 are fulfilled so that we
have the complex L-function L(M,s) of M with all its expected analytic properties.
Our interest lies in the numbers

ord,=m L(M,s) := multiplicity of L(M,s) at s =m
and
L*(M,m) := leading coefficient of L(M,s) in a Taylor series expansion at s = m

where m is an integer < § 41 (in the following we exclude the central point m = 1
since it is somewhat of a different nature - but see the last Paragraph). In §2 we have
seen that

ord,=m L(M, s) = dimg H3t' (X g, R(n))(+ ord,=n, L(M, s))

holds true if m < £(m = %); here again we always put n := 1 + 1 — m. Furthermore
we have constructed a canonical isomorphism

A™** F*Hpp(X/1R) ® AP HE (X g, IR(n)) —
AT HH (X (C), IR(n — 1))~

for any m < '—‘*211 and have discussed already that the first and the third term carry
an obvious Q-structure. The first conjecture says that the regulator map

reg : H(X,Q(*)) — Hp(X R, R(x))
constructed in §4 leads to a Q-structure on the second term.

Conjecture I:

For m < %, the regulator map induces an isomorphism
HZ(X,Q(n)z ® R = H (X, R(n))

We now define the regulator cpr(m) € IR*/Q™ for m < § to be the above isomor-
phism calculated in Q-rational bases.
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Conjecture II:

For m < £, we have L*(M,m) = cp(m) mod Q*.

In case m = the regulator map alone is not suﬁic1ent to induce a Q-structure. It
is easy to see that in addition the group

N™(X) = m-codimensional cycles on X q

modulo homological equivalence (over Q)
in a natural way is contained in the corresponding Deligne cohomology group: Let
2: N™(X) — Hpp(X/r) € HBR(X)¢) = H™(X(C),€)
be the cycle map into the de Rham cohomology. It is well-known that we have
2(N™(X)) C H™™ N H*™(X(C),Q(m))
(compare [Gro 2] (6.14)). Consequently
2(N™(X)) C H*™(X(C), R(m))™D"

and
Z(N™(X))NF™ HEE(X)R) = 0

hold true. We therefore see from the exact sequence () in §2 that the composed map
Z: N™X) 5 H™(X(C), R(m))D" — HZ™(X /g, R(m + 1))
is injective. (Warning: Z is not the cycle map into the Deligne cohomology.)

Conjecture III:
Form:% and n = % + 1 we have:

a. The maps reg and Z together induce an isomorphism
(HL7 (X, Q(n)z ® R) © (N™(X) ® IR) = H3"™ (X, R(n)) ;

b. ord,=mL(M,s) = dimg H{(X,Q(n))z;
c. ([Tat 1]) ord,=n L(M, s) = —rank N™(X);

d. if cpr(m) € IRX/Q™ denotes the regulator defined as before by using part a. then
L*(M,m) = c¢pr(m) mod Q™.



§6 Further hints

In the last Paragraph we did not discuss the center m = ‘—'2*i of the functional
equation. In that case the exact sequence (x) in §2 has to be replaced by the exact
sequence

0 — F™Hpa(Xr) — H'(X(C),IR(m —1))D™"" —, HiY (X g, R(m))
— H*™(X(C),R(m))=V" ng™™ — 0 .

Since the first two terms obviously have the same IR-dimension this sequence breaks
up into two isomorphisms of which the first one

F™Hjp(X/R) — HY(X(C),R(m — 1))"V"""

can be used, as in §2, to define the Deligne period cpr(m) € IR*/Q* (= the determi-
nant calculated in the obvious Q-rational bases). And, indeed, Deligne conjectures
([Del]81) that

L(M,m)-cm(m) 1 eQ .

But, of course, L(M,s) often will vanish at s = m = 1'3{,—1; the functional equation
only can detect the parity of the vanishing order. In the following we will very briefly
indicate a refined conjecture which was proposed by Beilinson ([Bei 1,3]) and Bloch
([Blo 1,2]). We fix an odd ¢, put m = 1, and define

Ch™(X)® := (m-codimensional cycles on X cohomologous to 0 (over Q)
modulo rational equivalence) ®Q.

Conjecture:
a. Ch™(X)? has finite dimension;

b. there ezists a natural nondegenerate “height pairing”

<, >miCH™(X)® x CHY=X-m+1(x\0 _, R ;
¢. ords=m L(M,s) = dimg CH™(X)° and

L*(M,m) = cm(m) -det <, >, modQ™ .

If X is an abelian variety and i = m = 1 then part a. of the above Conjecture is the
theorem of Mordell-Weil, part b. is the theory of the Néron-Tate height, and part c.
is part of the conjecture of Birch and Swinnerton-Dyer. In [Tat 2] the reader may
find a discussion of this case in which the conjectural picture is even more precise
insofar as L*(M,m) itself (not only mod @*) is predicted in terms of arithmetic
invariants of X. The general conjecture certainly is modeled on this case. Beilinson
([Bei 1,3]), Bloch ([Blo 2]), and Gillet/Soulé ([GS]) construct - all three by different
techniques - a natural height pairing for any X which has certain geometric properties
(conjecturally it always should have those). At least the archimedean component of
this pairing is defined for any X independent of additional assumptions; we should
indicate that the reason for this lies in the fact, which we have seen above, that the
canonical map H3™(X /¢, IR(m)) —» H2™(X(C),IR(m)) is injective.
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I also have to keep the promise to say something about the groups
HZ(X /C»Z(p)) which turn out to be very important but did not play a role in
the previous Paragraphs. It is straightforward that the exact sequence () in §2 in
this context becomes an exact sequence

0 — H (X(C), Z(p))\Hpy (X(C))/E? — HZ'(X/q,Z(p))
— preimage of H?? in H*?(X(C),Z(p)) — 0 .
The middle term appears as an extension of the group of Hodge p-cycles by the p-th
intermediate Jacobian of Griffiths. Furthermore, the Chern character into the middle

term combines the usual cycle map and Griffiths’ Abel-Jacobi map (see [Bei 1] §1 or
the Chapter on Deligne cohomology in this book).

Finally I cannot refrain from mentioning the following extremely fascinating line

of thought due to Deligne and Beilinson. In [Bei 2] it is shown that, for + < 2j,.

the Deligne cohomology Hj(X/jr,IR(j)) can be interpreted as the Yoneda group
Ext'(IR, H*=1(X(C),IR(j))) in the category of mixed IR-Hodge structures over IR.
One may speculate whether the absolute cohomology H%(X,Q(j)) has a similar
interpretation, for ¢ < 2j, as a Yoneda group Ext'(Q,H*~!(X)(j)) in a not yet
existing category of Q-linear mixed motives over Q. In this light the regulator map
should simply be induced by the functor which associates with each mixed motive
its realization as a mixed Hodge structure. The reader will find more about this in
the final Chapter by Jannsen in this book.

For additional hints the reader is advised to read Soulé’s Bourbaki article [Sou 3].
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