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Representation theory suggests and string theory predicts
a mysterious superconformal field theory in six dimensions

People call this Theory X or The (2,0)-Theory.

Little is known. No Lagrangian exists.



We know:
It describes stacks of M5-branes with gravity turned off
(just as Yang–Mills theory describes stack of D-branes)
It has Wilson surfaces as observables
(just as Yang–Mills has Wilson lines)
It is a theory of (“self-dual”) strings

Conjecture

The (2,0)-theory is classically a higher gauge theory.
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“But Witten has said there is no Lagrangian!”

“... by hunting for unicorns we may find other creatures
that are useful in understanding the theory more generally.”

Neil Lambert



Wish:

Reality:

or
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Actual outline 7/34

Sketch: Higher Principal Bundles with Connections
Vanishing of Fake Curvature and Implications
Adjusted Higher Gauge Theory
Adjusted Higher Parallel Transport
Origin of Adjustment: EL∞-algebras
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Sketch: Higher Principal Bundles with Connections
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Higher Parallel Transport Requires Categorification 9/34

Non-abelian parallel transport of strings problematic:

•
��
oo
^^

g1��

g′1��

•�� oo
]]

g2��

g′2��

Consistency of parallel transport requires:

(g′1g
′
2)(g1g2) = (g′1g1)(g′2g2)

This renders group G abelian. Eckmann and Hilton, 1962
Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations ◦ and ⊗ satisfying Interchange Law:

(g′1 ⊗ g′2) ◦ (g1 ⊗ g2) = (g′1 ◦ g1)⊗ (g′2 ◦ g2) .
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Categorifying Gauge Groups 10/34

A Lie 2-group is a Lie groupoid with extra structure.

Lie 2-group
A Lie 2-group is a

monoidal category, morph. invertible, obj. weakly invertible.
Lie groupoid + product ⊗ obeying weakly the group axioms.

Simplification: strict Lie 2-groups 1:1←→ x-modules(Lie groups)

Crossed modules of Lie groups

Pair of Lie groups (G,H), written as (H
t−→ G) with:

left automorphism action B: G× H→ H

group homomorphism t : H→ G such that

t(g B h) = gt(h)g−1 and t(h1) B h2 = h1h2h
−1
1

Also: strict Lie 2-algebras 1:1←→ crossed modules of Lie algebras
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Cocycles of Principal Bundles from Functors 11/34

The cover
⊔
a Ua of a manifold M encoded in the Čech groupoid:

Č (U) :
⊔
a,b

Uab ⇒
⊔
a

Ua , Uab ◦ Ubc = Uac .

Principal G-bundle

Transition functions are nothing but a functor g : Č (U)→ (G⇒ ∗)⊔
a,b Uab

gab //

�� ��

G

�� ��⊔
a Ua

∗ // ∗

gabgbc = gac

Equivalence relations: natural isomorphisms.

Use higher categories: Higher bundles including gerbes

Christian Saemann Adjusted Higher Gauge Theory



Higher Gauge Algebras 12/34

Semistrict Categorified Lie Algebras ↔ L∞-algebras

Recall: Chevalley–Eilenberg algebra of a Lie algebra g:
Graded vector space V = g[1]∗, coords. ξα, |ξα| = 1.
Vector field Q = −1

2f
α
βγξ

βξγ ∂
∂ξα , Q2 = 0 and |Q| = 1.

Lie bracket [τα, τβ] = fγαβτγ , Q2 = 0 ⇔ Jacobi identity

Generalize to Chevalley–Eilenberg algebra of L∞-algebra:
g = ⊕i≤0gi, Q most general with Q2 = 0 and |Q| = 1

Structure constants in Q: µi : g∧i → g, |µi| = 2− i.
Q2 = 0 ⇔ homotopy Jacobi identities

Example:
g = g−1 ⊕ g0, Q quadratic: differential crossed module.
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Local connection data 13/34

Ideas: Atiyah, Strobl et al., Sati, Schreiber, Stasheff
Recall: Chevalley-Eilenberg algebra of Lie algebra g:

CE(g) = C∞(g[1]) , Qξα = −1
2f

α
βγξ

βξγ

Double to Weil algebra (CE(inn(g)))

W(g) := C∞(
σξα ξα

T [1]g[1]) , Q = QCE + σ , σQCE = −QCEσ

Potentials/curvatures/Bianchi identities from dga-morphisms

(A,F ) : W(g)→ Ω•(M) = W (M)

ξα 7→ Aα

(σξα) = Qξα + 1
2f

α
βγξ

βξγ 7→ Fα = (dA+ 1
2 [A,A])α

Q(σξα) = −fαβγ(σξα)ξβ 7→ (∇F )α = 0

Gauge transformations: homotopies between dga-morphisms
Topological invariants: invariant polynomials in W(g)
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Gluing things together 14/34

Notice:
Local connections can be glued together to global object
Best: analogous construction to Atiyah algebroid.
Everything clear in principle.

“Category theory is the subject where you can leave the
definitions as exercises.”

John Baez
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Cocycles for Principal 2-Bundles 15/34

Consider a manifold M with cover (Ua)
Object Principal G-bundle Principal (H t−→ G)-bundle

Cochains (gab) valued in G (gab) valued in G, (habc) valued in H

Cocycle gabgbc = gac t(habc)gabgbc = gac
hacdhabc = habd(gab B hbcd)

Coboundary gag
′
ab = gabgb gag

′
ab = t(hab)gabgb

hachabc = (ga B h′abc)hab(gab B hbc)

gauge pot. Aa ∈ Ω1(Ua)⊗ g Aa ∈ Ω1(Ua)⊗ g, Ba ∈ Ω2(Ua)⊗ h

Curvature Fa = dAa +Aa ∧Aa− Fa = dAa + 1
2 [Aa, Aa]− t(Ba)

Ha = dBa +Aa B Ba

Gauge trafos Ãa := g−1
a Aaga + g−1

a dga Ãa := g−1
a Aaga + g−1

a dga + t(Λa)

B̃a := g−1
a B Ba + Ãa B Λa + dΛa − Λa ∧ Λa

Remarks:
A principal (1

t−→ G)-bundle is a principal G-bundle.

A principal (U(1)
t−→ 1) = BU(1)-bundle is an abelian gerbe.
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Vanishing of Fake Curvature and Implications
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Why should the fake curvature(s) vanish? 17/34

F := dA+ 1
2µ2(A,A) + µ1(B) = 0

Without this condition:
For µ3 6= 0: infinitesimal gauge transformations do not close:

[δc0 , δc1 ]A = δ[c0,c1]A+ 1
2µ3(F , A,A)

For µ3 = 0, higher gauge transformations do not close
Higher parallel transport is not reparametrization invariant

Self-duality equation H = ?H is not gauge-covariant:

H → H̃ = g B H −F B Λ

With this condition:
Principal (1

t−→ G)-bundle is flat principal G-bundle.
Higher connections are locally abelian!
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Argument 18/34

Lie 2-group (crossed module) (H
t−→ G,B), (h

t−→ g,B)

Potential forms: A ∈ Ω1(Rd, g), B ∈ Ω2(Rd, h)

Fake flatness: F := dA+ 1
2 [A,A] + t(B) = 0

Gauge transformations: g ∈ Ω0(Rd,G), Λ ∈ Ω1(Rd, h)

A 7→ Ã = g−1Ag + g−1dg + t(Λ1)

B 7→ B̃ = g−1 B B + dΛ1 + Ã B Λ1 + 1
2 [Λ1,Λ1]

A and gauge transformations restrict to G◦ = G/im(t)

F ◦ = 0 and non-abelian Poincaré lemma: gauge with Ã◦ = 0

Ã ∈ im(t), gauge away with Λ-transformation: ˜̃A = 0

connection is abelian with ˜̃B ∈ ker(t)!
1908.08086, see also Gastel (2018)
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Solution: Adjusted Higher Gauge Theory
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Adjustment for skeletal string algebra 20/34

Example: Skeletal string Lie 2-algebra: string(g) = (R→ g)

Unadjusted action of differential of Weil algebra: QW:

tα 7→ −1
2f

α
βγt

βtγ + t̂α r 7→ 1
3!fαβγt

αtβtγ

t̂α 7→ −fαβγtβ t̂γ r̂ 7→ −1
2fαβγt

αtβ t̂γ

Adjusted action of QW

tα 7→ −1
2f

α
βγt

βtγ + t̂α r 7→ 1
3!fαβγt

αtβtγ−καβtαt̂β + r̂

t̂α 7→ −fαβγtβ t̂γ r̂ 7→ καβ t̂
αt̂β

Adjustment governed by Killing form καβ.
Projection W(string(g))→ CE(string(g)) unmodified
Redefinition of curvature: r̂ 7→ r̂ − καβtαt̂β.
Simply: coordinate change on Weil algebra
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Adjusted kinematical data 21/34

Gauge potentials:

(A,B) ∈ Ω1(U)⊗ g ⊕ Ω2(U)
Curvatures:

F := dA+ 1
2 [A,A]

H := dB − 1
3!µ3(A,A,A) + χsk(A,F )

= dB + (A,dA) + 1
3(A, [A,A])︸ ︷︷ ︸

cs(A)

Bianchi identities:
dF + [A,F ] = 0

dH − χsk(F, F ) = dH − (F, F ) = 0

Gauge transformations:
δA = dΛ0 + µ2(A,Λ0) δF = −µ2(F,Λ0)

δB = dΛ1 + (Λ0, F )− 1
2µ3(A,A,Λ0) δH = 0
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Remarks 22/34

Above example: Sati/Schreiber/Stasheff (2009)
Physicists studying supergravity were there first:

Nucl. Phys. B 195 (1982) 97
Phys. Lett. B 120 (1983) 105

Many more examples: tensor hierarchies
Without adjustment: BRST algebra “open”
With adjustment: BRST algebra closes
With adjustment:

0 CE(g) W(g) inv(g) 0

0 CE(g̃) W(g̃) inv(g̃) 0

u u u
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Adjusted Higher Parallel Transport
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Ordinary parallel transport 24/34

Usual functorial perspective on parallel transport (locally!):

Φ: PU −→ BG

paths G

U ∗

Φ1

Φ0

Modulo technicalities (thin homotopy, sitting instances)
Composition of paths ⇒ multiplication of group elements
Connection: g = 1+ ιXA for inf. paths in direction X
Conversely: g(γ) = P exp

∫
γ A

Readily extends to higher gauge theory:
Higher path groupoid
Higher gauge group, as one-object higher groupoid
But: requires fake curvatures to vanish!

Baez, Schreiber, Waldorf, ...
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Towards adjusted parallel transport 25/34

Ordinary parallel transport: Φ: PU −→ BG

This “sees” connections, but we adjust only curvatures!
Short exact sequence of groupoids:

∗ −→
G
�
G

↪−→ Inn(G) −→
G
�
∗
−→ ∗

Inn(G) is inner derivation Lie 2-group of G
Derived parallel transport functor:

PU P(2)U

BG BInn(G)

Φ Φ

Φ fully determined/equivalent to Φ
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Adjusted higher parallel transport 26/34

A bit technical, so here are the steps: Hyungrok Kim+CS
Unadjusted higher parallel transport requires fake curvature
Can construct adjusted derived parallel transport functor

PU P(2)U

BG BInn(G)

Φ Φ →
P(3)U

BInnadj(G )

Φ

such that for every pair of endpoints x0, x1 ∈ U ,

P(3)U(x0, x1)

G Innadj(G ) BG

Φadj(x0,x1)
Φadj
curv(x0,x1)

Π

commutes.
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Remarks 27/34

Adjusted Higher Parallel Transport Functor:

PU P(2)U

BG BInn(G)

Φ Φ →
P(3)U

BInnadj(G )

Φ

BInnadj(String(n)) is a bit hard to construct:
Use quasi-isomorphic (“equivalent”) strict version of string(n)

inn(string(n)) is then a 2-crossed module of Lie algebras
Readily integrates to 2-crossed module of Lie groups
Adjustment rotates potentials/curvatures in functor Φ
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Origin of adjustment: EL∞-algebras
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Observations 29/34

Evident question:

Where do the structure constants for adjustment come from?

Observation:
There is a family of quasi-isomorphic weak Lie 2-algebras

stringwk,α
sk (g) := (R

0−−→ g) ,

ε1(r) = 0 ,

ε2(x1, x2) = [x1, x2] , ε2(x1, r) = 0 ,

ε3(x1, x2, x3) = (1− α)(x1, [x2, x3]) ,

alt(x1, x2) = −2α(x1, x2)

Conjecture:

Adjustment data from alternators in weak Lie n-algebras
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hLie-algebras 30/34

Lie 2-algebras: equivalent to differential graded vector space L with

ε2 : L⊗ L→ L , |ε2| = 0 , alt : L⊗ L→ L , |alt| = −1
Roytenberg (2007)

Generalize, extending differential ideal: hLie-algebras

hLie-algebras
Graded vector space L with

ε1 : L→ L , |ε1| = 1 , εi2 : L⊗ L→ L , |εi2| = −i
such that

ε1(ε1(x1)) = 0 ,

ε1(εi2(x1, x2)) = ±εi2(ε1(x1), x2)± εi2(x1, ε1(x2)) + εi−1
2 (x1, x2)∓ εi−1

2 (x2, x1)

εi2(εi2(x1, x2), x3) = ±εi2(x1, ε
i
2(x2, x3))∓ εi2(x2, ε

i
2(x1, x3))∓ εi+1

2 (x2, ε
i−1
2 (x3, x1))

εj2(εi2(x1, x2), x3) = ±εi+1
2 (x2, ε

j−1
2 (x3, x1))

εi2(εj2(x1, x2), x3) = ±εj2(x1, ε
i
2(x2, x3))∓ εi2(x2, ε

j
2(x1, x3))± εi+1

2 (x3, ε
j−1
2 (x1, x2))

Generalizes hemistrict Lie 2-algs and specializes dg-Leibniz algs.
Christian Saemann Adjusted Higher Gauge Theory



(Rough) picture 31/34

Adjustments in tensor hierarchy: εi2(−,−) of hLie-algebras
Homotopy hLie-algebras: EL∞-algebras
Each EL∞-algebra is quasi-isomorphic to

L∞-algebras (antisymmetrization)
hLie-algebras (strictification)
minimal models

Non-trivial family of EL∞-algebras over each (?) L∞-algebra
Usual definition of Weil algebra too naive
Should be defined with respect to the EL∞-Family.
This then yields adjusted Weil algebras
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Other applications 32/34

They underlie generalized/exceptional/extended geometry
They suggest an integration of Leibniz algebras
Small cofibrant replacement of Lie over finite characteristic

Christian Saemann Adjusted Higher Gauge Theory



Summary 33/34

Usual connections on non-abelian gerbes are not suitable for
non-flat higher gauge theories.
There is, however, a generalized notion of higher gauge
theory, correcting this: adjusted higher gauge theory.
The adjustment happens at the level of the Weil algebra of
the higher gauge algebra.
This leads to adjusted curvatures, adjusted higher parallel
transport, etc.
The data needed for adjusting the Weil algebra originate in
the higher products of EL∞-algebras.
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Thank You!
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