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1 Introduction

The works [I]–[IV] combine algebra in braided tensor categories and topological field theory
in three dimensions to construct correlation functions of two-dimensional euclidean conformal
quantum field theories. In [C] some relevant aspects of the representation theory of algebras in
braided tensor categories are investigated in depths. The present text provides an introduction
and overview of [I]–[IV] and [C] and places these works into context.

Classical conformal invariance

Recall that two C∞-manifolds M , M ′ with metrics g, g′ (either of euclidean or Minkowski
signature) are conformally equivalent if there is a diffeomorphism f : M →M ′, called conformal
transformation, such that (f ∗g′)(p) = Ω(p)g(p) for some smooth function Ω : M → R>0. In
words, conformal transformations preserve angles, but not necessarily lengths.

An example of a classical field theory with conformal invariance is a free scalar field in two
dimensions. It can be formulated in terms of an action principle for smooth functions φ from
a two-manifold M with metric g to R,

Sg[φ] =

∫
M

(
gij ∂

∂xiφ
∂
∂xjφ

)
dvol , (1.1)

This action is invariant under Weyl-transformations of the metric, i.e. Sg[φ] = Sg′ [φ] if the
metrics g and g′ on M are related by g(p) = Ω(p)g′(p) for some Ω : M → R>0. In particular,
the field theory (1.1) has conformal symmetry. The most famous example of a classical field
theory with conformal invariance is Maxwell’s theory of electrodynamics.

Conformal quantum field theories

The study of quantum field theories with conformal symmetry emerged in the late 1960s on
the one side from the study of critical behaviour in statistical mechanics [Py], and on the
other side from investigations of the high energy behaviour of quantum field theories and the
renormalisation group [Wl]. In two dimensions, an interacting quantum field theory which
exhibited conformal symmetry was presented by Thirring already in 1958 [Th]. The major
breakthrough came with the realisation by Belavin, Polyakov and Zamolodchikov in 1984 that
in a certain class of 2dCFTs, which is now called the Virasoro minimal models, the correlators
can be found by solving linear differential equations [BPZ]. Since then conformal field theory
has developed many more connections to various areas in mathematics and physics,
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The present text makes use of the connection to the invariants of knots and three-manifolds
(via three-dimensional topological field theory, see chapter 3), to vertex algebras (chapter 4)
and to algebra in tensor categories (chapter 5). The relevance of the latter to euclidean CFT
was discovered and announced in [FuRS] and elaborated in the works [I]–[IV] and [C].

In view of the above diagram, it would be important to formulate an axiomatic framework
for 2dCFT in order to have a well-defined setting in which to study its properties, as well
as to develop methods which allow to construct examples. There are at present two rather
different axiomatic approaches to 2dCFT, depending on whether one considers Minkowskian or
euclidean theories. While in the latter case an all-encompassing axiomatic framework is not yet
available, for theories in Minkowski space one can apply the formulation of algebraic quantum
field theory.

1.1 Conformal field theory in Minkowski space

The approaches to axiomatic QFT in d-dimensional Minkowski space M are first, the formu-
lation via fields inserted at points in terms of the Wightman axioms [SW] and second, the
formulation via algebras of observables related to regions of M in terms of algebraic QFT (also
called Local Quantum Physics) by Araki, Haag and Kastler [Ha]. We will briefly introduce
some concepts relevant for the latter.

Denote by η(x, y) = x0y0−
∑d−1

i=1 xiyi the metric on M . A double cone O is the intersection
of a forward and a backward light cone V± = {x∈M | η(x, x)>0 , ±x0>0 } in M , i.e. O =
(V++x) ∩ (V−+y) for some x, y ∈ M . Let K be the set of double cones in M . A net of von
Neumann algebras is an inclusion preserving assignment O 7→ A(O) where O ∈ K and the A(O)
are von Neumann algebras on a common Hilbert space H. In QFT, these are the ‘algebras of
observables on the space-time region O’. In the application to QFT, a net A of von Neumann
algebras has to be covariant and local. The net A is called covariant, iff each element g of the
Poincaré group gives rise to a family αg,O : A(O) → A(gO) of automorphisms of C∗-algebras
(note that if O∈K then so is gO). Further, A is called local iff

[
A(O1),A(O2)

]
= {0} whenever

O1 and O2 are spacelike separated (i.e. g(x1−x2, x1−x2) < 0 for all x1 ∈O1 and x2 ∈O2).
The relation to tensor categories appears in the study of ‘superselection sectors’ of a local,

covariant net A [DHR,DR1], that is, of appropriately defined representations (positive energy
representations satisfying the DHR-criterion) of A. For d ≥ 4 space-time dimensions, the
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category of such representations is a symmetric tensor category, which contains a subcategory
equivalent to the category G-mod of finite dimensional continuous unitary representations of
a compact group G. The group G gives the global symmetries of the QFT. In fact, from the
knowledge of the superselection sectors one can recover the symmetry group [DR2].

In two [FhRS] and three [FG1] dimensions one finds braid statistics, i.e. the category formed
by the superselection sectors is still braided, but in general no longer symmetric. We will
concentrate on the application of algebraic QFT to chiral CFT in two-dimensional Minkowski
space [Ma,FG2], following the review in [Mu1].

The restriction to chiral CFT means that one considers only ‘left-moving degrees of free-
dom’ (say), so that the net A on two-dimensional Minkowski space can be recovered from
its restriction to the line R given by x0=0, in the following sense. Each double cone O∈K
can be projected to R along the light ray x0=x1+(const), giving an open interval I on R. If
two double-cones O1 and O2 result in the same interval I, then the associated von Neumann
algebras coincide, A(O1) = A(O2). In more detail, a chiral CFT is defined as follows.

Let L be the set of intervals on S1 (the compactification of the line R above), that is, the
set of connected open non-dense subsets of S1. A chiral conformal field theory in Minkowski
space consists of a Hilbert space H0 with a distinguished vector Ω (the vacuum), an assignment
I 7→ A(I) of von Neumann algebras to intervals forming a net, and a strongly continuous
unitary representation U of the Möbius group PSU(1, 1) on H0. The net A has to be local
(A(I) ⊂ A(J)′ if I ∩ J = ∅) and covariant (U(g)A(I)U(g)∗ = A(gI)), as well as irreducible,
with a unique vacuum and the representation U has to be of positive energy (see [FG2,Mu1] for
details). A large class of examples of chiral CFTs can be constructed in terms of representations
of loop groups [BMT,FG2,Wa].

A representation π of the net A on a Hilbert spaceHπ is a family { πI | I ∈L }, where each πI
is a representation of A(I) on Hπ, and for I ⊂ J we have πJ

∣∣
A(I)

= πI . Denote by Rep(A) the

category of separable, irreducible representations of A, completed w.r.t. direct sums (see [Mu1]
for details). If a chiral CFT in Minkowski space A satisfies three more properties, namely it
has to be strongly additive, split and of finite index (for details refer again to [Mu1]), it is called
completely rational. For a completely rational CFT in Minkowski space one can prove [KLM]
that Rep(A) is a modular tensor category (the definition is reviewed in section 3.2) which is in
addition unitary.

In the study of extensions of local nets of both, chiral theories (where the net is over the line
R) and full theories (where the net is over the Minkowski space M) one needs the notion of ‘nets
of subfactors’ [LRe1]. A factor is a von Neumann algebra B with trivial centre, and a subfactor
is a von Neumann algebra A which is a factor, as well as a subalgebra of B which has the same
unit as B. For a net of subfactors, one has a subfactor A(O) ⊂ B(O) for every interval (in the
chiral case), respectively every double cone (in the full theory), O, see [LRe1] for more details.
A subfactor A ⊂ B can alternatively be characterised by a so-called ‘Q-system’ in B [Lo,LRo].
Similarly, a Q-system can characterise the extension A ⊂ B of a local net [LRe1,Re].

The approach of algebraic QFT has also been applied to boundary conformal field theory
on a two-dimensional Minkowski half-space { (x0, x1) |x1≥0 } [LRe2]. Further, in [BFV] the
formalism of algebraic QFT is extended to space-times with Lorentzian metric.
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1.2 Conformal field theory in euclidean space

In this text we will be concerned with euclidean CFTs (from hereon also referred to only as
CFTs) that can be defined on two-dimensional surfaces of arbitrary genus. From the point
of view of applications to statistical mechanics or condensed matter systems, this may seem a
somewhat unnatural restriction. On the other hand, in the application to string theory, it is
necessary to control the CFT also on surfaces of higher genus.

As already mentioned, up to now there is no universally agreed list of axioms which can be
taken as “the” axioms defining a CFT, and which covers all known models one might want to
call a CFT. There exist, however, precise mathematical frameworks for certain aspects of CFT.

There are, broadly speaking, two related languages in which one can formulate the properties
a CFT should fulfil. In the field theoretically motivated language one uses correlation functions
assigned to surfaces with point like field insertions and poses conditions on their behaviour
when two insertion points are taken close to each other. This is the point of view used in
the seminal work [BPZ]. If one restricts oneself to so-called holomorphic fields (see section
2.4) one obtains the mathematical notion of a meromorphic CFT [Go, GG] and the notion
of a conformal vertex algebra, originally due to Borcherds [B] and by now subject of several
books [FLM,Kc,Hu,LL,FB].

In the formulations motivated by string theory (see e.g. [FrS, Va] or [Pl, section 9.4]) one
would instead assign maps to surfaces with holes and require properties for the behaviour
of these maps under cutting and gluing, an idea which has been cast into the language of
functors by Segal [Se1, Se2]. This approach to CFT has been reviewed and developed further
e.g. in [Ga1,Ga2,HK1,HK2], and it is also the formulation we will use in most of chapter 2.

Comparing to the formulation of CFT in Minkowski space in terms of algebraic QFT, a
conformal vertex algebra is the analogue of a chiral CFT in Minkowski space, while a euclidean
CFT on a surface of genus zero corresponds to a full CFT in Minkowski space. The difficulty
in finding a good set of axioms resides in the need to formulate the euclidean CFT also on
surfaces of higher genus.

It is not the aim of this text or of the works [I]–[IV],[C] to provide an axiomatic definition
of a CFT. The description in section 2.4 is intended to show what one aims for, rather than
to be the final answer. Instead, these works are part of a larger research effort to develop
the methods necessary to gain complete control over a large class of examples for CFTs, the
so-called rational conformal field theories. This research effort can be broadly divided in two
parts, a “bottom up”, or complex-analytic part, and a “top down”, or algebraic part.

In the complex-analytic part one treats the chiral conformal field theory, that is, one for-
malises the properties of holomorphic fields in the notion of a conformal vertex algebra. Chiral
conformal field theory should be thought of as encoding the symmetries of a CFT. The study of
representations of a vertex algebra then gives two pieces of information. First, the space of all
fields of the CFT has to be a representation of the vertex algebra, so that one obtains constraints
on the field content of the CFT. Second, it provides the so-called conformal blocks, multi-valued
analytic functions which serve as the basic building blocks of the correlation functions of the
CFT. We will return to this point in chapter 4.

In the algebraic part one is concerned with the full conformal field theory. Here one takes
the analysis of the chiral conformal field theory as an input and tries to assemble the conformal
blocks into a system of correlators that fulfils the consistency conditions required for a CFT.
For a general vertex algebra, this problem is still too hard to solve. We will restrict our
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attention to a class of vertex algebras which are more manageable, and refer to those as rational
chiral conformal field theories. In short, we demand that the representation category of the
vertex algebra is a modular tensor category (section 3.2) and that the 3dTFT derived from
it (section 3.4) correctly encodes the factorisation and monodromy of the conformal blocks
(section 4.3). Given such a rational chiral CFT and the associated modular tensor category,
one can answer the question “What is a consistent system of correlation functions?” (Problems
6.4 and 6.6) purely on the level of this tensor category, without further reference to the often
rather complicated representation theory and spaces of conformal blocks of the associated vertex
algebra.

This is the starting point of the treatment in [I]–[IV]. It is shown that a symmetric special
Frobenius algebra leads to a solution of the consistency conditions for CFT correlators (The-
orem 6.11). Properties of these algebras are described in chapter 5. The basic tool used in
the construction of CFT correlators, three-dimensional topological field theory, is reviewed in
chapter 3. Finally, the construction of the correlators is described in chapter 6.

The works [I]–[IV] are thus an important step in the construction of CFTs since they solve
the second, algebraic, part in the program outlined above for the class of rational CFTs.

The investigation of the chiral CFT was termed “bottom up” because it starts from a
subset of the correlators of the CFT, which is then used to constrain which form the full set
of correlators can take. The algebraic part was called “top down” because it takes a rather
sophisticated piece of information as an input, the monodromy and factorisation properties of
conformal blocks as encoded in a modular tensor category, and uses this to determine which
combinations of conformal blocks describe correlation functions of a CFT. What is still missing
is the final link, i.e. a precise list of properties for a vertex algebra to be a rational chiral CFT
in the above sense, so that it can serve as an input for the algebraic construction. This is an
important goal for future investigations.

1.3 Frobenius algebras and tensor categories

It should be appreciated that the same structure, a modular tensor category, appears in the
study of the chiral theories in both, Minkowskian and euclidean conformal field theories. In fact,
the structural similarity between the two approaches extends even further, because also in the
study of subfactors, Frobenius algebras arise naturally, in the guise of ‘Q-systems’ [Lo, LRo].
Indeed, every Q-system is a symmetric special *-Frobenius algebra [EP]. As mentioned in
section 1.1, Q-systems characterise extensions of nets of von Neumann algebras. The relevance
of symmetric special Frobenius algebras to the computation of correlators in boundary CFT
was first pointed in [FuRS]. With these considerations in mind, it is a natural aim to investigate
the properties of such algebras in tensor categories.

Algebras in symmetric tensor categories already played an important role in Deligne’s char-
acterisation of Tannakian categories (see e.g. [Sa,DM]). They were studied in much detail by
Pareigis (see e.g. [Pa1, Pa3]). More recently, commutative algebras were e.g. studied in the
context of conformal field theory and quantum subgroups in [KO], in relation to weak Hopf
algebras in [Os], and in connection with Morita equivalence for tensor categories in [Mu2].
The algebras relevant in the conformal field theory context are symmetric special Frobenius
algebras [FuS, FuRS, I]; those encoding properties of conformal field theory on surfaces with
boundary are, generically, non-commutative.
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In [C], such aspects of the representation theory of algebras in braided tensor categories are
investigated, which have no nontrivial classical analogue, i.e., when applied to the category of
vector spaces (or any symmetric tensor category), these results become tautologies.

A commutative algebra A in a braided tensor category has an interesting subclass of A-
modules, the so-called dyslectic [Pa6], or local, modules (section 5.3); when specialising to
symmetric tensor category, every A-module becomes local. Let now A be not necessarily
commutative. One can then distinguish two different centres of A [VZ,Os], the left centre Cl
and right centre Cr (section 5.2). If the braiding is symmetric, the left and right centre coincide.
However, in the genuinely braided case, they can be non-isomorphic (as illustrated in Example
5.13 below). Nonetheless, as the first main result in [C], the category of local Cl-modules is
equivalent to the category of local Cr-modules (Theorem 5.20).

As another example, consider correspondences of finite groups. A correspondence of two
groups G1 and G2 is a subgroup R of G1 × G2. One can now wonder if, given the categories
Rep(G1) andRep(R) of finite-dimensional complex representations ofG1 andR, one can recover
Rep(G2). It is possible to find a commutative algebra A in Rep(G1) �Rep(G2) (the product
� is defined in section 6.1 of [C]) such that the category of A-modules is equivalent to Rep(R).
The original question can then rephrased as, given Rep(G1) and the category of modules of a
commutative algebra in Rep(G1) �Rep(G2), can one recover Rep(G2)? Clearly, the answer is
“no”, as can be seen by taking G1 and R to be trivial. Surprisingly, in a truly braided setting,
an analogous problem can be solved (Theorem 5.23). This constitutes the second main result
of [C].

This text is organised as follows. Chapters 2–4 provide an introduction and background
to the problem we ultimately want to treat, namely the solution of the algebraic part in the
two-step construction of a CFT. In these chapters, emphasis has been laid on conveying the
general ideas, rather than on a detailed derivation (which is also not always available). The
purpose of chapters 2–4 is to motivate the questions addressed in chapters 5 and 6, which then
give an overview of the main results in [I]–[IV] and [C]. There, care has been taken to properly
define all the notions needed in the statements of the main theorems.

Sections, definitions, equations etc., of [I]–[IV] and [C] will be referred to as section II:2.3,
Definition C:3.20, equation (IV:5.47) and so forth.

2 Two-dimensional conformal field theory

It is a recurring theme in this text that certain quantum field theories are expressed as functors.
This is physically motivated by the euclidean path integral, and by its discrete version, a
statistical lattice model.

In this chapter we will treat two topological QFTs (sections 2.1 and 2.3) as well as one lattice
model (section 2.2). These should motivate the functorial formulation of euclidean 2dCFT in
section 2.4. In chapters 4 and 6, the formulation of CFT in terms of correlators is used; this is
reviewed in sections 2.5 and 2.6.
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2.1 Two-dimensional topological field theory

A simple but instructive example of a quantum field theory that is expressed as a functor is that
of a two dimensional topological quantum field theory (2dTFT). This axiomatic framework was
first discussed in [At1]; detailed expositions can be found e.g. in [Q,Ko] or [BK, section 4.3].

A 2dTFT is a tensor functor from the cobordism category 2Cob to the finite dimensional
k-vector spaces Vectf (k), for some field k. An object U in 2Cob is either an ordered disjoint
union of oriented circles S1, or the empty set. A morphism m : U → V is an equivalence class
of oriented, compact two-manifolds with parametrised boundary (M, ι, o). Here ι : U → ∂M
(standing for “in”) and o : V → ∂M (standing for “out”) are injective, continuous, have non-
intersecting images and cover the boundary of M , ∂M = Im(ι)∪Im(o); the map ι is orientation
preserving while o reverses the orientation (∂X is oriented via the inward pointing normal).
The equivalence relation (M, ι, o) ∼= (M ′, ι′, o′) on cobordisms is given by orientation preserving

homeomorphisms that respect the boundary parametrisation. The composition U
m−→ V

m′
−→

W is given by gluing the two-manifolds using the parametrisation of their boundaries. The unit
morphism idU : U → U is provided by (the equivalence class of) the unit cylinder U × [0, 1]
over U . 2Cob is a strict tensor category, 1 with the tensor product given by disjoint union of
objects and morphisms, and unit object 1 being the empty set. Furthermore, 2Cob is equipped
with a partial trace (or cancellation, cf. [HK1]), i.e. for any objects U, V,W we have a map
tr (W ) : Hom(U ⊗W,V ⊗W )→ Hom(U, V ), which acts as follows onm ∈ Hom(U ⊗W,V ⊗W ).
Choose a representative (M, ι, o) of m and construct a new cobordism M ′ by identifying ι(W ) ∼=
o(W ) (the in- and out-going boundary components labelled by W are glued together). Then
tr (W )(m) : U → V is the equivalence class of M ′.

We will use the notation (Z,H) for the functor 2Cob → Vectf (k). Here H denotes the
action of the functor on objects and Z the action on morphisms. (Z,H) is required to preserve
the partial trace in the sense that Z

(
tr (W )(m)

)
= tr (H(W ))Z(m).

Recall that a Frobenius algebra over a field k is a pair (A, ε) where A is an algebra over k
and ε is a linear map A → k, called trace, with the property that the bilinear, invariant form
b(a, b) = ε(a · b) on A × A is non-degenerate. In particular, being Frobenius is an additional
structure, not a property of an algebra. An equivalent characterisation of Frobenius algebras
will be given in Theorem 2.3 below.

It turns out that 2dTFTs are in fact the same as finite dimensional, commutative Frobenius
algebras.

Theorem 2.1 :

Let k be a field. The 2dTFTs (Z,H) : 2Cob→ Vectf (k) are in one-to-one correspondence with
finite dimensional commutative Frobenius algebras A over k.

This theorem is taken from [BK, section 4.3], it is originally due to [Ab1] (where it is
formulated as an equivalence of the category of 2dTFTs with the category of commutative
Frobenius algebras). Related earlier results can be found in [D,Vo].

1 Often, the existence of a duality is included in the definition of a tensor category. What we refer to as a
tensor category is then called a monoidal category.
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To see the idea of the proof, suppose we are given a 2dTFT (Z,H). Then we set A = Z(S1).
The unit, multiplication and trace are given by applying Z to the following cobordisms

η = Z
( )

: k→ A , m = Z
( )

: A⊗A→ A , ε = Z
( )

: A→ k .

(2.1)
Here the unit e ∈ A is encoded in the linear map η : k → A s.t. η(1) = e. Associativity, unit-
property and non-degeneracy of ε then follow from functoriality of Z and comparing the glued
cobordisms. Conversely, one can construct a functor (Z,H) given a commutative Frobenius
algebra.

Remark 2.2 :

The 2dTFT described above is a closed TFT because the only boundaries a cobordism is allowed
to have are parametrised boundaries linked to an object of 2Cob. There is also an open/closed
version of 2dTFT [La,Mo]. In this case one considers a cobordism category whose objects are
disjoint unions of intervals and circles, and whose corbordisms are manifolds with boundaries
and corners. An open/closed TFT then corresponds to a not necessarily commutative Frobenius
algebra.

2.2 Lattice models as a functor

A lattice model can be thought of as a discrete version of a euclidean quantum field theory. It
will also be described by a functor, with cobordism now given by cell-complexes.

The category 2Cpx is defined as follows. Denote by Dn an oriented polygon with n>0
vertices and edges, as well as a preferred vertex labelled 1. An object U of 2Cpx is an ordered
disjoint union Dn1t· · ·tDnk

, or the empty set. A morphism L : U → V is a triple L = (Γ, ι, o).
Here Γ is a two dimensional (abstract) oriented cell complex, i.e. we have sets of vertices v(Γ),
edges e(Γ) and faces f(Γ). Further, ι is an orientation preserving injection ι : U → ∂Γ and o an
orientation reversing injection o : U → ∂Γ such that Im(ι)∩ Im(o) = ∅ and ∂Γ = Im(ι)∪ Im(o).

Composition of U
L−→ V

L′−→ W is given by identifying the edges and vertices via the maps o
of L and ι of L′.

Since a cell complex Γ with a non-empty boundary has at least one face, composing mor-
phisms always increases the number of faces. Thus 2Cpx is actually a non-unital category (a
notion taken from [Mi]), i.e. a category with associative composition, but without unit mor-
phisms.

Similar to the previous example, 2Cpx becomes a strict tensor category by taking the tensor
product to be given by disjoint union of objects and morphisms. There is also a trace tr (W ) :
Hom(U ⊗W,V ⊗W )→ Hom(U, V ), which acts on a morphism L = (Γ, ι, o) by replacing Γ with
a new cell-complex Γ′ obtained by identifying ι(W ) with o(W ), s.t. tr (W )(L) = (Γ′, ι|U , o|V ).

Lattice models from statistical mechanics provide examples of tensor functors (Z,H) :
2Cpx → Vectf (k). Let us illustrate this in the case of the Ising model. On the objects Dn

we set
H(Dn) = spank

{
σ : v(Dn)→ {−1,+1}

}
, (2.2)
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that is, the 2n-dimensional vector space spanned by maps from the vertices of the polygon Dn

to the two element set {−1,+1} ⊂ Z. For a general object in 2Cpx we take appropriate tensor
products of the spaces (2.2). In physical terms, σ(i), i ∈ v(Dn) is the spin at the lattice site i.
The vector space H(Dn) is called the space of states on Dn.

Choose a constant q ∈ k×. This will be a parameter entering the definition of the lattice
model. In statistical mechanics one takes k = C and q = e−β where β is the inverse temperature.
On H(Dn) we define a non-degenerate pairing ( · , · )n in terms of the values it takes on basis
vectors σ, τ : v(Dn)→ {−1, 1} as

(σ, τ)n = δσ,τ
∏

〈i,j〉∈e(Dn)

qσ(i)σ(j) = δσ,τ

n∏
i=1

qσ(i)σ(i+1) . (2.3)

Here the product 〈i, j〉 ∈ e(Dn) is over all edges in Dn; i and j denote the vertices at the ends
of the edge. In particular we can write

idH(Dn) =
∑
τ

τ
(τ, ·)n
(τ, τ)n

. (2.4)

On the spaces H(U) for a general object U of 2Cpx the non-degenerate pairing ( · , · )U is defined
analogously.

Given a morphism L : U → V , to fix Z(L) it is enough to define (τ, Z(L)σ)V for all basis
elements σ, τ . Suppose L = (Γ, ι, o). We set

(τ, Z(L)σ)V =
∑
s

∏
〈i,j〉∈e(Γ)

qs(i)s(j) . (2.5)

The sum over s is over all maps s : v(Γ)→ {−1, 1} with values on the boundary ∂Γ fixed by the
conditions s(ι(i)) = σ(i) for all vertices i ∈ v(U) and s(o(j)) = τ(j) for all vertices j ∈ v(V ).
The quantity (2.5) is called partition function or state sum in statistical mechanics.

As an illustration, let us verify that the so defined Z(L) is consistent with composition.

Consider morphisms U
L−→ V

L′−→ W with L = (Γ, ι, o) and L′ = (Γ′, ι′, o′). Using (2.4), on the
one hand we have

(σ′ , Z(L′)Z(L)σ)W =
∑
τ

(σ′, Z(L′)τ)W (τ, Z(L)σ)V
(τ, τ)V

=
∑
τ

1

(τ, τ)V

∑
s,s′

∏
〈i,j〉∈e(Γ)

qs(i)s(j)
∏

〈k,l〉∈e(Γ′)

qs
′(k)s′(k) .

(2.6)

The τ -sum is over all maps τ : v(V )→ {−1, 1}, the s-sum over all maps s : v(Γ)→ {−1, 1} with
boundary values given by τ and σ, and finally the s′-sum is over all maps s′ : v(Γ′)→ {−1, 1}
with boundary values fixed by σ′ and τ . On the other hand, for L′ ◦L = (Γ′′, ι′′, o′′),

(σ′ , Z(L′ ◦L)σ) =
∑
s′′

∏
〈i,j〉∈e(Γ′′)

qs
′′(i)s′′(j) , (2.7)

where s′′ is summed over all maps s′′ : v(Γ′′) → {−1, 1} with boundary values given by σ′

and σ. One can now convince oneself that by construction of Γ′′, the sum over τ, s, s′ in (2.6)
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amounts to the sum over s′′ in (2.7). However, in the two products in (2.6), the edges of V
appear twice, which is compensated by the factor (τ, τ)−1

V =
∏

〈i,j〉∈e(V ) q
−τ(i)τ(j).

For the Ising model, Z is obtained by summing over all possibilities to assign a spin to
a vertex in v(Γ). For other lattice models, values may be assigned also to edges or faces or
combinations thereof. An example of this is provided in the next section.

2.3 Topological lattice models

In the Ising model, the linear map Z(L) assigned to a morphism L : U → V depends explicitly
on the cell complex Γ in L = (Γ, ι, o), and not only on its homotopy class. In this sense lattice
models are in general not topological. However, for special choices of the state sum (2.5) the
linear map Z(L) only depends on the homotopy class of the complex Γ. Such a theory will
be called a two-dimensional lattice TFT. After what has been said in section 2.1 it should not
come as a surprise that the construction of a 2d lattice TFT also involves a Frobenius algebra.

Let us quickly recall some notions related to Frobenius algebras. One of the many alternative
characterisations of a Frobenius algebra is the following [Ab2, Theorem 2.1].

Theorem 2.3 :
A finite dimensional, unital, associative algebra A over a field k is Frobenius with trace ε :
A → k if and only if it has a coassociative, counital comultiplication ∆ : A → A⊗A which is
a map of A-bimodules, and which has counit ε; the A-bimodule structure on A⊗A is given by
a.(c⊗ d).b = (ac)⊗ (db).

A Frobenius algebra is called symmetric if ε(a · b) = ε(b · a) (see e.g. [CR, p. 440]). An
algebra A is called separable (see e.g. [Pi,KS]) if there is a map D : A→ A⊗A of A-bimodules
s.t. m ◦D = idA. Here m : A⊗A → A denotes the multiplication on A. A Frobenius algebra
A is called special [FuS, Definition 2.3] if m ◦∆ = βAidA and ε(e) = β1 for some constants
βA, β1 ∈ k× and for ∆ the comultiplication on A. By definition, a special Frobenius algebra
is in particular separable. By modifying ∆ and ε by a multiplicative factor, one can always
achieve βA = 1. For a symmetric special Frobenius algebra, βA = 1 implies β1 = dim(A),
cf. [FuS, Remark 3.13]. We will always assume that for a symmetric special Frobenius algebra,
coproduct and counit have been normalised in this way.

A 2d lattice TFT will again be a functor (Z,H) : 2Cpx→ Vectf (k). For simplicity, we will
only describe Z(L) for the case where L : ∅ → ∅ and where the complex Γ in L = (Γ,−,−) has
only trivalent vertices.

Let A be a symmetric special Frobenius algebra over k. Choose a basis {ua | a∈ I } of A.
Define

Cabc = ε(uaubuc) , gab = ε(uaub) (2.8)

and denote by gab the matrix elements of the matrix inverse to g, i.e.
∑

b g
abgbc = δa,c. Note that

since A is symmetric, C is invariant under cyclic permutation of the indices and g is symmetric.
The value of Z(L) will again be given as a state sum. However, rather than summing over all
possibilities to assign a spin {−1, 1} to each vertex of the 2-complex Γ as in the Ising model,
we assign a value a∈ I to every element in the set of pairs Q =

{
(e, v)∈ e(Γ)×v(Γ)

∣∣ v ∈ ∂e}.

Z(L) =
∑
p

∏
v∈v(Γ)

Ca(v)b(v)c(v)
∏
e∈e(Γ)

ga(e)b(e) , (2.9)
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where p runs over all functions p : Q → I. Further, since at each vertex v three edges meet,
for a given v there are three elements (e1, v), (e2, v), (e3, v) in Q which share this vertex (and
are ordered, up to cyclic permutations, by the 2-orientation of Γ); the values of a(v), b(v)
and c(v) in (2.9) are then defined to be p(e1, v), p(e2, v) and p(e3, v), respectively. Similarly,
for a given edge e there are two pairs (e, v1) and (e, v2) in Q, and we set a(e) = p(e, v1) and
b(e) = p(e, v2). One can verify that Z(L) does not depend on the choice of basis. An explicitly
basis-independent formulation is obtained by specialising the construction in chapter 6 to the
category C = Vectf (k).

To see that two cell complexes Γ, Γ′ in the same homotopy class (or rather their associated
morphisms L,L′ : ∅ → ∅) lead to the same state sum Z(L) = Z(L′), it is convenient to adopt
a slightly different point of view. Suppose we are given a two-dimensional compact surface Σ
with ∂Σ = ∅. In order to assign a topological invariant to Σ, proceed in two steps. First, choose
a triangulation of Σ (with three-valent vertices, and arbitrary polygons as faces). This gives
a complex Γ and a morphism L = (Γ,−,−) for which one can evaluate Z(L). Second, show
that this prescription is independent of the triangulation. The latter point can be established
by demonstrating invariance under the 2d Matveev moves,

fusion
←→

bubble
←→ (2.10)

These two moves, called fusion and bubble move, allow to transform any triangulation of Σ into
any other. In terms of the quantities (2.8) the moves (2.10) leave Z(L) invariant if∑

m,n

Cijmg
mnCnkl =

∑
m,n

Cjkmg
mnCnli and

∑
m,n,p,q

CimnCjpqg
mqgnp = gij (2.11)

One can verify that these identities are implied by A being symmetric special Frobenius (this
is a consequence of the discussion around (I:5.11) applied to the special case C = Vectf (k)).
Since the only topological invariant of Σ is its genus g, the state sum (2.9) should take a very
simple form. Indeed, if A is in addition simple, a short calculation (e.g. by applying the general
construction of CFT correlators in chapter 6 below to the category Vectf (k)) shows that

Z(L) =
(
dimA

)1−g(
dim Zentr(A)

)g
, (2.12)

where Zentr(A) is the centre of A.

2d lattice TFTs where first defined in [BP,FHK] via the state sum (2.9). Conversely, it was
also shown there that for k = C, quantities Cabc and gab satisfying (2.11) as well as Cabc = Ccab
and gab = gba define a semi-simple associative algebra over C, i.e. a direct sum of matrix
algebras. Further, for k = C, by Wedderburn’s theorem any symmetric special Frobenius
algebra is isomorphic to a direct sum of matrix algebras.

As we have just seen, a (not necessarily commutative) symmetric special Frobenius alge-
bra A over k defines a 2d lattice TFT. On the other hand, in section 2.1 it was stated that
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a commutative Frobenius algebra is equivalent to a 2dTFT. The two constructions are in-
deed related; it can be verified that for a compact, oriented surface Σ with ∂Σ = ∅, we have
Z2d lattice(L) = Z2dTFT(Σ), where L is the morphism in 2Cpx obtained by triangulating Σ and
Z2dTFT is constructed as in section 2.1 by using the commutative Frobenius algebra Zentr(A)
(with trace given by restriction of the trace ε on A). This is easy to check for genus zero (since
by convention ε(e) = dimA for the symmetric special Frobenius algebra A) and for genus one
(where both sides give dim Zentr(A)).

2.4 2dCFT as a functor

The actual object we are interested in – a 2d CFT – can intuitively be thought of, on the
one hand, as a continuum limit of a lattice model, and, on the other hand, as a generalisation
of a 2dTFT. As already pointed out in the introduction, there is to date no all-encompassing
axiomatic treatment of CFT, and it is also not the aim of the present text to provide such
a list of axioms. The working definition described below is closely related to the approach
by Segal [Se1, Se2], which has been given a precise formulation in [HK1, HK2] using “stacks
of lax commutative monoids with cancellation”. The two main differences are, first, that as
in [Ga1,Ga2] we will consider surfaces with a metric, rather than surfaces with just a complex
structure, and second, that we do not assume the state spaces to be Hilbert spaces, i.e. we will
want to allow for non-unitary CFTs. The latter point is necessary, because the CFTs needed in
the relation to critical percolation (recall the diagram in the introduction), or in the description
of the ghost sector in string theory, are non-unitary.

A working definition

A 2dCFT (Z,H) is a functor (with some additional properties) from the category 2Rie, where
the cobordisms are two-dimensional Riemannian manifolds, to the category Vecttop(C) of topo-
logical C-vector spaces. 2 Let us first describe 2Rie in more detail.

For ε > 0 define the open annulus Aε =
{
p ∈ R2

∣∣ 1−ε < |p| < 1+ε
}
, as well as A+

ε =
{
p ∈

Aε
∣∣ |p|≥1

}
and A−

ε =
{
p ∈ Aε

∣∣ |p|≤1
}
. Denote by S1 the unit circle. An object U of 2Rie

is a k+1-tupel (ε; Ω1, . . . ,Ωk), for some k ≥ 0, where ε > 0 and each Ωi is a smooth function
from Aε to R>0. Each of the Ωi defines a metric g(p) = Ωi(p)(dx

2 + dy2) on Aε. If we denote
by (Aε)

tk the disjoint union of k copies of Aε, then equally (ε; Ω1, . . . ,Ωk) defines a metric on
(Aε)

tk. This metric will be important to ensure that the composition of cobordisms via gluing
leads again to a smooth metric.

A morphism m : U → V is an equivalence class of two-dimensional compact oriented
Riemannian manifolds with parametrised boundaries, (M, ι, o). The equivalence relation will
be given by parametrisation preserving isometries. To describe the parametrisation, suppose
U = (ε; Ω1, . . . ,Ωk) and V = (ν;σ1, . . . , σl). Then ι : (A+

ε )tk → M and o : (A−
ε )tl → M are

required to be orientation preserving isometries (onto their images) s.t. Im(ι) ∩ Im(o) = ∅ and
∂M = ι(S1) ∪ o(S1). The special form of metric on Aε is not a restriction because we can
always choose isothermal coordinates.

2 The target category is the main reason why what is presented here is only a “working definition”. Topo-
logical vector spaces are needed to have a notion of continuity. However, it is likely that a more restricted class
of topological vector spaces turns out to be the appropriate target category.
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Composition of two morphisms U
m−→ V

n−→ W in 2Rie is again given by gluing with the
maps ι and o. Specifically, n ◦m is the equivalence class

n ◦m =
[
(G , ιM , oN)

]
where G = N t (Aε)

tl tM/ ∼ (2.13)

and the identification ∼ is given by

ιN(p) ∼ p for p ∈ (A+
ε )tl and oM(p) ∼ p for p ∈ (A−

ε )tl . (2.14)

Since the composition always increases the area of a cobordism, just as was the case for 2Cpx,
the category 2Rie does not have unit morphisms and is hence a non-unital category.

A tensor product on 2Rie is again given by disjoint union for morphisms (on objects, in
U ⊗V one takes the minimum value of ε in U , V ). The trace is also defined as before. Given
a morphism m : U ⊗W → V ⊗W with m =

[
(M, ι, o)

]
, we set

tr (W )(m) =
[ (
M t (Aε)

tl/ ∼ , ιU , oV
) ]

. (2.15)

Here W is taken to be a l+1-tuple, and the equivalence relation is p ∼ ιW (p) for p∈(A+
ε )tl and

p ∼ oW (p) for p∈(A−
ε )tl. (In fact, composition of morphisms is always a special case of the

partial trace).

Remark 2.4 :

(i) The parameter ε in the description of objects in 2Rie can be removed by formulating
everything in terms of function germs rather then via functions. We will however not do this
here.

(ii) Intuitively, one may think of a functor 2Rie→ Vecttop(C) as a continuum limit of a lattice
model. Fix a two-dimensional surface Σ. A morphism in the lattice model is obtained by
choosing a triangulation of that surface. One then passes to finer and finer triangulations of
that same surface Σ. Taking each face to have the same area (keeping the overall area of Σ
constant), one sees the appearance of a metric on Σ. It should be emphasised that there are
few mathematical results about this continuum limit, and this view is supported mostly by the
physical idea of renormalisation group flows and by computer simulations of statistical systems.

So far, we did not restrict how Z depends on the metric of the cobordisms. For a conformal
field theory we demand a simple behaviour of Z if two different metrics are related by a Weyl
transformation. Here is our working definition of a CFT.

A 2dCFT (Z,H) of central charge c∈C obeys the following conditions.

(C1) (Z,H) is a tensor functor 3 from 2Rie to Vecttop(C) which preserves the partial trace.

(C2) H is independent of the functions Ωi, i.e. for U = (ε,Ω1, . . . ,Ωk) and U ′ = (ε′,Ω′
1, . . . ,Ω

′
k)

we demand H(U) = H(U ′).

(C3) Let U , U ′ be two k+1 tupels and V , V ′ be two l+1 tupels. Then by (ii), H(U) = H(U ′)

3 Here is another point where we are being negligent: the proper definition of the tensor product to be
used in the target category. These functional analytic aspects will not be treated (nor needed) in this text.
A requirement for the appropriate definition of the target category is the existence of a well-behaved tensor
product.
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and H(V ) = H(V ′). Consider two morphisms m : U → V and m′ : U ′ → V ′ represented by
manifolds M and M ′ with metrics g, g′, respectively, and parametrised boundaries. Suppose
there is an orientation preserving conformal transformation f : M → M ′ which is compatible
with the boundary parametrisation, so that in particular (f ∗g′)(p) = e2σ(p)g(p) for some function
σ : M → R. Then

Z(m) = ecSliou(σ)Z(m′) , (2.16)

where S[σ]∈C is the (suitably normalised) Liouville action, see e.g. [Ga2] for details.

Remark 2.5 :
(i) In physical terms, property (C2) means that in a 2dCFT the space of states does not
change under local scale transformations of the boundary circle. This will lead to the state-
field correspondence.

(ii) Property (C3) implies in particular, that if two metrics on a given manifold are related by
a Weyl-transformation, then the corresponding state sums Z differ only by a scalar factor. In
other words, a 2dCFT is covariant under local scale transformations.

(iii) A 2dTFT as defined in section 2.1 is an example of a 2dCFT. In this case Z is altogether
independent of the metric g. Compatibility with (C3) then requires the central charge c to be
zero.

(iv) Even with the restricted dependence on the metric of the Riemannian manifold as required
in (C3), a 2dCFT remains an extremely complicated object. The construction of (Z,H) is
basically only known for the topological case and for certain free field theories, like free bosons
where the properties of Z on a given Riemannian manifold are related to the Laplace operator,
see e.g. [Se1,HK2].

Compact CFT

As a first simplification, we restrict ourselves to what might be called “compact CFTs”. Denote
by Sr the object (ε,Ω ≡ r−2) of 2Rie, i.e. Aε carries the standard metric of R2, multiplied
by a constant factor r−2. Consider the annulus A(R, r) = { p∈R2 | r<|p|<R } with metric
given by the restriction of the standard metric on R2. This can be turned into a morphism
A(R, r) : Sr → SR of 2Rie by choosing the parametrisations ι(p) = r · p and o(p) = R · p.

Denote H(Sr) = H(SR) ≡ H. Then from A(R, r) we get a linear map Z(A(R, r)) : H→ H.
We would like to think of Z(A(R, r)) as in some sense “being close to the identity operator”,
because for r ≈ R, A(r, R) is “close to the (non-existing) unit morphism in 2Rie”. Concretely
we demand Z(A(R, r)) to have the following nice properties.

By (C3), Z(A(R, r)) only depends on the ratio q = r/R. Using this we define U(r/R) =
Z(A(R, r)) for any choice of R > r. This is called the dilation operator, cf. [DMS, section 6.2].
From functoriality of Z it follows that U(q1)U(q2) = U(q1q2). We demand that there is an
operator D : H→ H with discrete, real spectrum S bounded from below, s.t. U(q) = qD.

Let F = ⊕∆∈SV∆ be the direct sum of eigenspaces F∆ of D with eigenvalue ∆. We demand
that dimF∆ <∞ and that F is dense in H. The eigenvalues ∆ are called scaling dimensions.

Remark 2.6 :
The name “compact” as well as the properties listed above are again motivated by the physical
picture. The operator D is closely related to the Hamiltonian of the CFT on a cylinder.
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The properties of D imply that the Hamiltonian has discrete spectrum and finite degeneracy
of each energy level. The discreetness of the spectrum is typical for a system with compact
configuration space. On the mathematical side an analogue is provided by the Laplace or Dirac
operator, which have a discrete spectrum on compact manifolds.

2.5 Correlation functions

In chapters 4 and 6, we will mainly use the language of correlation functions to describe a
2dCFT. Let us have a short look at how this is related to the functorial formulation.

Field insertions

In quantum field theory one considers correlation functions of fields inserted at certain points
(or of Wilson loops, in gauge theories), rather than a functor (Z,H). For a compact CFT,
these two pictures are related by the state-field correspondence, which will be outlined below.

By a (closed, oriented) Riemannian world sheet Xg we mean an oriented, compact two
dimensional Riemannian manifold with empty boundary, also denoted by Xg, with a finite,
ordered set of distinct marked points p1, . . . , pn. For each marked point pk there is a germ [fk]
of orientation preserving local isometries from a disc shaped neighbourhood of zero Dε =

{
p ∈

R2
∣∣ |p| < ε

}
to Xg s.t fk(0) = pk. The notation Xg is to remind of the presence of the metric;

in chapter 6 a topological world sheet X will be used, which does not carry a metric. However,
until chapter 6 we will only be dealing with Riemannian world sheets, which will be called
“world sheets” for short.

Given a compact 2dCFT (Z,H), we would like to construct an assignment

Xg 7−→ C(Xg) where C(Xg) : F ⊗ · · · ⊗F︸ ︷︷ ︸
#(field ins.) copies

−→ C . (2.17)

The linear functional C(Xg) is called correlation function of the 2dCFT on the world sheet Xg.
To obtain the correlation functions, one first constructs a morphism Xg

ε : U −→ ∅ in 2Rie from
the world sheet Xg and then defines C(Xg) in terms of Z(Xg

ε).
In more detail, let ε be small enough s.t for each k, at the the k’th marked point we can

choose a representative fk : Dε → Xg of the coordinate germ [fk]. Define the map ιk : A+
ε →

Xg to be ιk(p) = fk(εp/2). Let n be the number of marked points on Xg and consider the
object U =

(
ε; Ω1≡ ε2/4 , · · · , Ωn≡ ε2/4

)
of 2Rie. One can verify that taking the manifold Xg

ε

obtained by cutting the image of the disc Dε/2 under each of the fk out of Xg, together with
the parametrisation ι : (A+

ε )tn → Xg given by the union of the ιk, is a morphism

Xg
ε : U −→ ∅ (2.18)

in 2Rie (more precisely, the morphism is given by the equivalence class of Xg
ε, which will also be

denoted by Xg
ε). By definition, Z(Xg

ε) is a linear map H⊗n → C. We define C(Xg) by prescribing
its values on tupels (v1, . . . , vn) where each vk has a definite scaling dimension vk ∈ F∆k

,

C(Xg)(v1, . . . , vn) = ε−∆1−···−∆nZ(Xg
ε)(v1, . . . , vn) . (2.19)

For a different choice ε′ instead of ε, the definitions can be related by gluing appropriate annuli
A(ε/2, ε′/2) to Xg

ε. The simple form of Z(A(ε/2, ε′/2)) for compact CFTs then ensures that
the definition (2.19) is actually independent of ε.
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Conversely, if we are given H and the assignment C, we can recover the functor (Z,H).
To see this, first note that by property (C1), H(U) is fixed to be H⊗k if U has k components.
Second, it is enough to give Z(M) for cobordisms of the form M : U → ∅. For a general
cobordism N : U → V , we can glue cylinders with two ingoing boundaries to all connected
components of V . Each cylinder defines a non-degenerate pairing H×H→ C and thus allows to
recover Z(N) starting only from Z restricted to morphisms with target ∅. Third, by property
(C3) above, it is enough to give Z(M) for morphisms M : U → ∅ where U is of the form
U = (ε,Ω1 ≡ 1, . . . ,Ωk ≡ 1). In this case we simply set, for v1, . . . , vn ∈ F ,

Z(M)(v1, . . . , vn) = C(Xg)(v1, . . . , vn) , (2.20)

where Xg is the world sheet obtained by gluing unit discs into the holes of M using the map
ι. As marked points on Xg we take the centres of the unit disc, with the identity function as
local coordinate. It is not difficult to check that this construction is inverse to the construction
of C in terms of Z.

What have we gained by doing this? We see that the data of the functor (Z,H) can
equivalently be encoded in the pair (H, C). In quantum field theory, one works mostly with
correlation functions, i.e. in the formulation (H, C). In fact, both formulations have their merit.
In the functorial language, the consistency conditions are easiest to formulate. The language
of correlation functions is very powerful for concrete calculations, since in many cases the
correlators obey differential equations acting on the positions of the field insertions.

Factorisation of correlators

Factorisation is a consistency conditions for correlators, which in the functorial formulation
corresponds to compatibility of Z with composition and the partial trace.

Let m =
[
(M, ι, o)

]
be a morphism from U to V . Consider the annulus Aε with metric

g(p) = Ω(p)
(
dx2+dy2

)
. Given an isometric embedding f : Aε → M , we can construct a new

morphism Λf (m) : U ⊗W → V ⊗W , for W = (ε,Ω), by “cutting M along the image of S1

under f”. That is, let M ′ = M\f(S1) be given by M minus the image of the unit circle under
f . Then

Λf (m) =
[ (
M ′ t A+

ε t A−
ε / ∼ , ι, o

) ]
, (2.21)

where the identification ∼ is given by f(p) ∼ p for p ∈ A+
ε and equally f(p) ∼ p for p ∈ A−

ε .
Thus Λf (m) has one ingoing and one outgoing boundary component more than m, parametrised
by f restricted to A+

ε and A−
ε , respectively.

Note that taking the partial trace is left-inverse to this procedure of “cutting along an S1”,
tr (W )

(
Λf (m)

)
= m. Applying Z to both sides yields

tr (H)Z(Λf (m)) = Z(m) , (2.22)

which in physical terms is nothing by the sum over intermediate states.

The corresponding identity for correlators is called factorisation and takes the form∑
α,β

Uα,β C
(
Γf (X

g)
)
(v1, . . . , vn, uα, uβ) = C

(
Xg

)
(v1, . . . , vn) . (2.23)
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This follows when choosing m = Xg
ε in (2.22), with Xg

ε as given in (2.18). To turn the lhs
of (2.22) back into a correlator, one has to change the outgoing boundary of Λf (X

g
ε) to an

ingoing boundary by gluing an annulus with two ingoing boundaries. All ingoing holes are then
removed by gluing discs with fields inserted in their centres, as above. This results in a world
sheet with two more field insertions as Xg, and which as been denoted by Γf (X

g) on the lhs of
(2.23). The matrix Uα,β compensates for the effect of gluing the annulus, i.e. it is related to
the inverse of the two-point correlator on a sphere.

In fact, when choosing Xg to be a sphere with two field insertions, then cutting Xg along
an S1 produces two spheres with two field insertions. The correlator of one of these cancels
against the matrix Uα,β.

Holomorphic fields

A holomorphic field of weight ∆ is an element W of F∆ with the property that all correlators
with an insertion of W depend holomorphically on the insertion point.

Concretely, let Xg be a world sheet and p be one of the marked points, with coordinate
germ [f ]. Choose a representative f : Dε → Xg. We can then define a new world sheet Xg(z)
to be equal to Xg except for the marked point p, which gets replaced by p̃ = f(z), with local
coordinates f̃ : Dδ → Xg(z), f̃(ζ) = f(ζ + z). This is well defined for |z| < ε and δ small
enough. Suppose p is the first of n marked points of Xg. Choose vectors v2, . . . , vn ∈ H. An
element W ∈ F∆ is a holomorphic field of weight ∆ if

d

dz
C

(
Xg(z)

)
(W, v2, . . . , vn) = 0 (2.24)

for all choices of vk and for all world sheets Xg. This is an infinite set of conditions. However,
using factorisation we can always cut the world sheet Xg along an S1 containing only W and
no other field insertion. It is then enough to know that (2.24) holds for all two-point functions
on the sphere (with one W and one other insertion).

In the same way, a field W ∈ F∆ is an anti-holomorphic field of weight ∆ if

d

dz̄
C

(
Xg(z)

)
(W,φ2, . . . , φn) = 0 (2.25)

for all choices of vk and for all world sheets Xg.

Remark 2.7 :

(i) Holomorphic and anti-holomorphic fields should be thought of as symmetries of the CFT.
Via contour integration they generate an infinite set of relations between correlation functions,
the so-called Ward identities. It is beyond the scope of this introduction to explain this in
any detail, see e.g. [DMS, section 5.2] for more information. Nonetheless it should at least
be mentioned that the most important holomorphic field is the stress tensor T ∈ F2, which
also has an anti-holomorphic partner T̄ ∈ F2. The corresponding symmetry is the covariance
of correlation functions under Weyl transformations of the metric, see [Ga2, lecture 2] where
this point is further developed. The stress tensor is also responsible for the appearance of the
Virasoro algebra in conformal field theory, see [DMS, section 6.2] for an introduction from the
physics point of view.
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(ii) If we restrict ourselves to correlators of holomorphic fields on the complex plane, we obtain
a so-called meromorphic conformal field theory. For such theories there exist an axiomatic
formulation [Go, GG]. This is also the motivation for the introduction of conformal vertex
algebras, a point to which we will return in chapter 4.

2.6 Surfaces with boundaries and unoriented surfaces

In the beginning of the previous section we introduced oriented, closed Riemannian world sheets
Xg. Let us first extend this notion to oriented Riemannian world sheets by allowing the surface
Xg to have non-empty boundary. In this case we first need to fix a set B, the set of boundary
conditions. In addition to the marked points pk in the interior Xg\∂Xg of the world sheet,
there is a finite, ordered set of distinct marked points {q1, . . . , qm} on the boundary ∂Xg. For
each marked point ql ∈ ∂Xg there is a germ [gl] of orientation preserving local isometries from a
half-disc shaped neighbourhood of zero Hε =

{
p≡(p1, p2) ∈ R2

∣∣ |p| < ε , p2≥0
}

to Xg such that
gl(0) = ql and the interval ]− ε, ε[ on the x-axis gets mapped to ∂Xg. Finally, each segment of
∂Xg\{q1, . . . , qm} gets assigned a boundary condition, i.e. it gets labelled by an element of B.

A CFT that is defined on oriented world sheets requires more structure than a CFT only
defined on oriented closed world sheets. Let us call the former an open/closed oriented CFT and
the latter a closed oriented CFT. In particular, an open/closed oriented CFT always gives rise
to a closed oriented CFT by simply restricting to world sheets with empty boundary. However,
not every closed oriented CFT can arise in this way.

The additional structure we need is first, the set of boundary conditions B already mentioned
above, and second, for each pair a, b∈B a C-vector space Fab, the spaces of boundary fields.
The CFT is again defined by an assignment of correlators Xg 7−→ C(Xg), but as opposed to
(2.17) we now have to take into account the marked boundary points

C(X) : Fa1b1 ⊗Fa2b2 · · · ⊗F ⊗F · · · −→ C , (2.26)

where al and bl refer to the label assigned to the boundary segment to the left and to the right
of the insertion point ql, respectively (the boundary ∂Xg is oriented by the orientation of Xg).

The boundary conditions B have to be conformal in the following sense. There is an
embedding of the subset of holomorphic and anti-holomorphic fields of F into each Faa.
For the holomorphic and anti-holomorphic component T and T̄ of the stress tensor (cf. Re-
mark 2.7 (i)), we require that for any world sheet Xg with at least one boundary insertion,
C(Xg)(T, . . . ) = C(Xg)(T̄ , . . . ), where C(Xg) : Faa ⊗ · · · → C (see [C1, C3] for the physical
reasoning behind this). In fact, in section 4.2 below we will require a similar identity to hold
for a larger set of holomorphic and anti-holomorphic fields. In physical terms, we then consider
boundary conditions which preserve more than just conformal symmetry.

The consistency conditions for an open/closed CFT take a more complicated form than those
discussed in section 2.4 and 2.5 for a closed CFT. Again, these conditions can be expressed in
the functorial formulation of the theory. For this one needs to consider a different cobordism
category, where in addition to the annuli making up the objects of 2Rie, there are also rectangles
[−1, 1]×[−ε, ε], endowed with a metric. Further, the cobordisms are then Riemannian manifolds
with corners, see also [HK2]. We will not develop any further details of this approach here.
In the algebraic setting, the consistency conditions are formulated in terms of correlators in
Problem 6.6 below.
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Finally, one can also consider CFTs defined on Riemannian world sheets. These are defined
in the same way as oriented Riemannian world sheets Xg, except that one does not specify
an orientation on Xg (and thus also does not require the local coordinates around the marked
points to be orientation preserving). Instead one has to fix an orientation of the boundary ∂Xg.
Let us denote a CFT defined on closed Riemannian world sheets as an unoriented closed CFT,
and a CFT defined on Riemannian world sheets as an unoriented open/closed CFT. A closed
or open/closed oriented CFT can be obtained from an unoriented closed or open/closed CFT
by restricting to oriented world sheets, but again one does not obtain every oriented CFT in
this way.

The algebraic construction of CFT correlators in section 6 is given for oriented open/closed
CFTs. The unoriented open/closed case will also be mentioned, but for the details the reader
will be referred to [II] and [IV].

3 Three-dimensional topological field theory

Three dimensional topological field theory (3dTFT) is a well developed mathematical machine
to construct invariants of three manifolds with embedded ribbon graphs from a modular tensor
category. It was originally developed by Reshetikhin and Turaev [RT1, RT2, Tu1, Tu] and is
reviewed e.g. in [BK,KRT] as well as in section I:2. In the present chapter only a short overview
will be given.

3.1 Ribbon categories

As a convention, in this text we take all categories to be small. To define a modular tensor
category let us first recall the notion of a ribbon category [JS1,JS2], see [Ks, chapter XIV] for
a more thorough introduction.

A ribbon category C is a tensor category with the following additional structure. To every
object U ∈Obj(C) one assigns an object U∨∈Obj(C), called the (right-) dual of U , and there
are three families of morphisms,

(Right-) Duality: bU ∈ Hom(1, U⊗U∨) , dU ∈ Hom(U∨⊗U,1) ,

Braiding : cU,V ∈ Hom(U⊗V, V⊗U) ,

Twist : θU ∈ Hom(U,U)

(3.1)

for all U ∈Obj(C), respectively for all U, V ∈Obj(C), subject to certain compatibility condi-
tions (see definition C:2.1). Instead of detailing these conditions, let us introduce a graphical
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representation of the morphisms via ribbons.

idU =

U

U

f = f

U

V

g ◦ f

U

W

=

U

f

V

g

W

U⊗V

f ⊗ g

Y⊗Z

=

U

f

Y

V

g

Z

(3.2)

In these pictures, the lines stand for ribbons that lie flat in the paper plane. The surface of a
ribbon is oriented and we will refer to this orientation as “white” and “black” side of a ribbon;
the ribbons implied by the lines in (3.2) face the reader with their white side. This abbreviation
is referred to as blackboard-framing. The morphisms in (3.1) are represented as

U

V

cU,V

V

U

=

U

V

V

U

U V

c−1
V,U

V U

=

U

V

V

U

U

θU

U

= θ

U

U

=

U

U

θ−1
U

U

U

= θ−1

U

U

=

U

U

bU

U U∨

=

U U∨

U∨

dU

U

=

U∨ U

V ∨

f∨

U∨

=

V ∨

f

U∨ (3.3)

Ribbons labelled by the tensor unit 1 are not drawn in the graphical notation. If one does not
use backboard-framing, the ribbon representation of, e.g., θU , cU,V and bU looks as

θU =

U

cU,V =

U V

bU =
U

(3.4)

The compatibility conditions on the morphisms (3.1) amount to the statement that deforma-
tions of the ribbons in the ribbon-representation of a morphism do not change the corresponding
morphism in C. For example,

U∨

U∨

=

U∨

U∨ U

U

=

U

U

(3.5)
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In terms of the morphisms (3.1), the first of these identities amounts to (dU ⊗ idU∨) ◦ (idU∨ ⊗ bU) =
idU∨ which holds by definition of the right-duality. In a ribbon category there is automatically
also a left-duality b̃U , d̃U which coincides with the right-duality on objects and where

b̃U ∈ Hom(1, U∨⊗U) , d̃U ∈ Hom(U⊗U∨,1) , (3.6)

see e.g. [Ks, Proposition XIV.3.5] and figure (I:2.12). One also defines the trace of an endomor-
phism f ∈Hom(U,U) as

tr(f) := dU ◦ (idU∨ ⊗ f) ◦ b̃U = d̃U ◦ (f ⊗ idU∨) ◦ bU . (3.7)

The two expressions for tr(f) can be verified to coincide by definition of the dualities. The
quantum dimension of an object U is defined as

dim(U) := tr(idU) . (3.8)

The important feature of ribbon categories is that they give homotopy invariants of ribbon
graphs in S3 [RT1], see [Tu, chapter I] or [BK, chapter 2] for a review. For example, the graph

sU,V := U V (3.9)

gives an element of Hom(1,1). Expressed in terms of the morphisms (3.1), (3.6) it reads

sU,V = (dV ⊗ d̃U) ◦ [ idV ∨ ⊗ (cU,V ◦ cV,U)⊗ idU∨ ] ◦ (b̃V ⊗ bU) (3.10)

which is nothing by the trace of the endomorphism cU,V ◦ cV,U of V ⊗U .

3.2 Modular tensor categories

Given a category C, let us call the set of isomorphism classes of simple objects of C the index
set I. Let k be a field. A modular tensor category [Tu1] is a strict k-linear abelian semisimple
ribbon category, s.t. the index set I is finite, every simple object is absolutely simple, and for
which the s-matrix s= (si,j)i,j∈I with entries

si,j := sUi,Uj
= tr(cUi,Uj

◦ cUj ,Ui
) (3.11)

is non-degenerate. An element D ∈ k is called rank of a modular tensor category C if

D2 =
∑
i∈I

(dim Ui)
2 . (3.12)

Given a simple object Ui of C, also U∨
i is simple, and thus U∨

i
∼= Uı̄ for some ı̄ ∈ I. The

assignment i 7→ ı̄ defines an involution on I.
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Remark 3.1 :

(i) Recall that an object V of an abelian category is simple iff any injection U ↪→ V is either
zero or an isomorphism. An object V of a k-linear abelian category is called absolutely simple
iff Hom(V, V ) = k idV . If C is semisimple and k is algebraically closed, absolutely simple is
equivalent to simple.

(ii) In the original definition of a modular tensor category (see [Tu1] and [Tu, section II.1.4]),
k is replaced by a commutative ring, semisimplicity is replaced by the weaker dominance prop-
erty, and abelian by the weaker property additive.

(iii) The restriction to strict categories in the definition of modular is done merely for con-
venience. If a ribbon category is not strict, we can always replace it by an equivalent strict
category via MacLane’s coherence theorem (cf. [ML, section XI.3] or [Ks, section XI.5]). This
must in particular be done for some of the examples listed below.

(iv) The existence (and choice) of a rank D ∈ k is required in the construction of a 3dTFT
from a modular tensor category, see [Tu, section 1.6] and section 3.4 below.

The simplest example of a modular tensor category is the category Vectf (k) of finite di-
mensional k-vector spaces. On the other hand, the category of representations of a finite
group is ribbon, but in general not modular, since the braiding is symmetric and hence
si,j = dim(Ui) dim(Uj) is degenerate. An example for a category of representation that is
modular is provided by integrable representations of a semi-simple affine Lie algebra at positive
integer level. Recently, quite a few results have been obtained that characterise cases when
certain representation categories are modular:

• If H is a connected C∗ weak Hopf algebra, then the category of unitary representations of
its double is a unitary modular tensor category [NTV].

• Similarly, the representation category of a connected ribbon factorisable weak Hopf algebra
over C (or, more generally, over any algebraically closed field k) with a Haar integral is
modular [NTV].

• If a finite-index net of von Neumann algebras on the real line is strongly additive (which for
conformal nets is equivalent to Haag duality) and has the split property, its category of local
sectors is a modular tensor category [KLM].

• Finally, according to the results of [Hu1], if a self-dual vertex algebra that obeys Zhu’s C2

cofiniteness condition and certain conditions on its homogeneous subspaces has a semi-simple
representation category, then this category is actually a modular tensor category.

Another class of examples for modular tensor categories is provided by theta-categories.

3.3 Example: Theta-categories

An object V of a tensor category C is called invertible iff there exists an object V ′ such that
V ⊗V ′ is isomorphic to the tensor unit 1. A theta-category [FK] is a k-linear abelian semisimple
ribbon category in which every simple object is invertible.

To obtain examples of theta-categories, choose a finite abelian group G and consider the
category of finite-dimensional G-graded k-vector spaces with the grade-respecting linear maps
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as morphisms. This is an abelian semisimple category whose isomorphism classes of simple
objects Lg (a one-dimensional vector space of grade g) are in bijection to the elements g of G.
A general object V can be written as a direct sum

⊕
g∈GVg of finite-dimensional vector spaces.

Every three-cocycle ψ ∈Z3(G, k×) defines an associator via

αV,V ′,V ′′ :
(
Vg1 ⊗V

′
g2

)
⊗V ′′

g3
→ Vg1 ⊗

(
V ′
g2
⊗V ′′

g3

)
(v⊗ v′)⊗ v′′ 7→ ψ(g1, g2, g3)

−1 v⊗ (v′⊗ v′′) .
(3.13)

A short review of group cohomology can be found in appendix III:A. The pentagon identity for
αV,V ′,V ′′ translates into the cocycle condition for ψ(g1, g2, g3). The triangle identity for the unit
constraint is trivially fulfilled because we simply identify k ⊗k V = V = V ⊗k k. It turns out
( [JS2], see also [FK]) that a braiding and a twist can be obtained from a representative (ψ,Ω)
of the third abelian group cohomology of G (as defined in [EM] and summarised in appendix
III:A). We define

cV,V ′ : Vg1 ⊗V
′
g2
→ V ′

g2
⊗Vg1 θV : Vg → Vg

v⊗ v′ 7→ Ω(g2, g1)
−1 v′⊗ v v 7→ Ω(g, g)−1 v .

(3.14)

In this way one obtains a ribbon category, which we will denote by C(G,ψ,Ω). One can also
show (see e.g. Proposition III:2.11) that every theta-category with finite index set I is equivalent
to an appropriate C(G,ψ,Ω). More details on theta-categories can be found in section III:2.

For C(G,ψ,Ω) to be also modular, the only condition that remains to be verified is non-
degeneracy of the s-matrix. The latter is easily calculated to be

sg,h =
(
Ω(g, h)Ω(h, g)

)−1
. (3.15)

Finally, since we defined a modular tensor category to be strict, while C(G,ψ,Ω) is not (for
ψ 6= 1), we also have to invoke MacLane’s coherence theorem to replace C(G,ψ,Ω) by an
equivalent strict ribbon category Cstr(G,ψ,Ω).

3.4 3dTFT from modular tensor categories

A 3dTFT will again be formulated as a functor. As opposed to the 2dTFT in section 2.1,
here the cobordisms are three-manifolds and the objects two-manifolds. In fact, one can define
[Wt1,At1] d dimensional topological field theories with d-dimensional cobordisms as morphisms
and d−1 dimensional manifolds as objects, for reviews see [Q], [BK, section 4.2] or [Tu, chapter
III].

Let C be a modular tensor category. The category 3Cob(C) has extended surfaces as objects
and weighted cobordisms between extended surfaces as morphisms. An extended surface E
consists of the following data:

A compact oriented two-dimensional manifold with empty boundary, also denoted by E.

A finite (unordered) set of marked points – that is, of quadruples (pi, [γi], Vi, εi), where the
pi ∈E are mutually distinct points of the surface E and [γi] is a germ of arcs 4 γi: [−δ, δ]→E
with γi(0) = pi. Furthermore, Vi ∈Obj(C), and εi ∈{±1} is a sign.

4 By a germ of arcs we mean an equivalence class [γ] of continuous embeddings γ of intervals [−δ, δ]⊂R
into the extended surface E. Two embeddings γ: [−δ, δ]→E and γ′: [−δ′, δ′]→E are equivalent if there is a
positive ε < δ, δ′ such that γ and γ′ are equal when restricted to the interval [−ε, ε].
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A Lagrangian subspace λ⊂H1(E,R).

A morphism E→E ′ is a weighted cobordism M, consisting of the following data5:

A compact oriented three-manifold, also denoted by M, such that ∂M = (−E)tE ′.
Here −E is obtained from E by reversing its 2-orientation and replacing any marked point
(p, [γ], U, ε) by (p, [γ̃], U,−ε) with γ̃(t) = γ(−t). The boundary ∂M of a cobordism is oriented
according to the inward pointing normal.

A ribbon graph R inside M such that for each marked point (p, [γ], U, ε) of (−E)tE ′ there is
a ribbon ending on (−E)tE ′. The notion of a ribbon graph is reviewed in section I:2.3 and
the allowed ways for a ribbon to end on an arc are shown explicitly in (IV:3.1).

An integer m, called the weight. If M = ∅ then we require m = 0.

To make explicit the weight of a morphism in 3Cob(C) we will write (M,m) instead of
M. In the composition (N, n) = (M′,m′) ◦ (M,m) of two morphisms (M,m) : E → E ′ and
(M′,m′) : E ′ → E ′′, the cobordism N is obtained by identifying M and M′ along E ′ and the
weight n is computed from m, m′ and the Lagrangian subspaces of E, E ′ and E ′′. Details can
be found in [Tu, section IV.9.1]. The tensor product in 3Cob(C) is given on objects by disjoint
union E⊗E ′ = E t E ′ and on morphisms by (M,m)⊗ (M ′,m′) = (M tM ′,m+m′).

Given the modular tensor category C with rank D (so that in particular, a rank exists),
one can construct a tensor functor (Z,H) : 3Cob(C)→ Vectf (k) [Tu, Theorem IV.9.2.1]. Here
again, H denotes the action of the functor on objects, i.e. H(E) is a finite-dimensional k-vector

space, and Z denotes the action on morphisms, s.t. Z(E
M−→ E ′) is a linear map from H(E) to

H(E ′).

If one prefers to work with cobordisms rather than weighted cobordisms (this is done in
[I]–[IV]), one can start from a category 3Cob′(C) which has the same objects as 3Cob(C), but
the morphisms are now only cobordisms, without the integer m. One can then define (Z ′,H′) :
3Cob′(C)→ Vectf (k) in terms of (Z,H) via H′(E) = H(E) and Z ′(M) = Z((M, 0)). The pair
(Z ′,H′) is now only a projective functor in the sense that

Z ′(M ′ ◦M) = κµ Z ′(M ′) ◦ Z ′(M) , (3.16)

where M : E → E ′, M ′ : E ′ → E ′′ are cobordisms, κ ∈ k× and µ is an integer computed
from the Lagrangian subspaces in E, E ′ and E ′′ via Maslov indices; for details see [Tu, section
IV.7] or [FFFS, section 2.7]. The rank D of C one has to choose enters in the definition of κ,
cf. [Tu, Theorem 7.1].

3.5 Combinatorial data of modular tensor categories

For explicit computations it is helpful to encode the tensor product and the braiding of a
modular tensor category C in terms of fusing and braiding matrices, whose entries are numbers
(i.e. elements of k). In fact, this combinatorial data (or chiral data) had been extracted from

5 In principle we should take the morphisms of 3Cob to be equivalence classes of cobordisms, as we did for
similar categories in chapter 2. In order to keep the notation simple, we will instead use the cobordisms directly,
but the reader may also think of the morphisms of 3Cob as equivalence classes.
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considerations in chiral CFT [MS1,MS3] before the notion of a modular tensor category had
been introduced.

For each i ∈ I, choose once and for all a representative Ui of the isomorphism class of simple
objects labelled by i. Define

Nij
k = dimk Hom(Ui⊗Uj, Uk) . (3.17)

To avoid a large number of indices, in this section we make the simplifying assumption that
Nij

k ∈ {0, 1}. The notation with all indices in place can be found in section I:2.2.
To define the fusing and braiding matrices, first choose a basis vector λ(ij)k in each space

Hom(Ui⊗Uj, Uk) for which Nij
k = 1. This choice also determines an element of λ̄(ij)k ∈

Hom(Uk, Ui⊗Uj) via the requirement λ̄(ij)k ◦λ(ij)k = idUk
. The morphism λ̄(ij)k will be referred

to as the dual basis to λ(ij)k. In the special case i = 0 or j = 0 we require λ(i0)i = idUi
and

λ(0j)j = idUj
. For the morphisms λ(ij)k and λ̄(ij)k we use the graphical notation

λ(ij)k

i

k

j

=

i

k

j

λ̄(ij)k

i

k

j

=

i

k

j

(3.18)

By semisimplicity we have the relation

i

i

j

j

=
∑
k∈I

i

i

k

j

j

(3.19)

The fusing matrices F and the braiding matrices R are defined via the relations

i

l

j

p

k

=
∑
p

F (i j k) l
p q

i

q

j

l

k i

k

j

= R(i j) k

i

k

j

(3.20)

In the first equation, the numbers F
(i j k) l
p q are the coefficients expressing vectors of one basis of

Hom(Ui⊗Uj ⊗Uk, Ul) in terms of another. In the second equation, the number R (i j) k is the
multiplicative constant relating one nonzero element of Hom(Ui⊗Uj, Uk) to another.

Define the numbers θi ∈ k× via θUi
= θiidUi

. Together with the index set I and the fusion
multiplicities Nij

k, the constants

dim(Ui) , θi , F (i j k) l
p q , R (i j) k (3.21)
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fully encode the modular tensor category. However they do so in a highly non-canonical way,
as many basis choices had to be made.

The invariants associated to ribbon graphs via the 3dTFT can be expressed in terms of the
combinatorial data. In particular, the s-matrix is obtained as

si,j = i j =
∑
k∈I

i j

k
=

∑
k∈I

R (i j) kR (j i) k

j i

k

=
∑
k∈I

R (i j) kR (j i) k

j i

k

=
∑
k∈I

Nij
k θk
θi θj

dim(Uk) ,

(3.22)

where we used (3.19), the definition (3.20) of the braiding matrices (as well as the corresponding
dual relation, see appendix II:A.1 for a collection of rules), and equation (I:2.43) for the product
of two braid matrices.

For example, for C(G,ψ,Ω) (or rather, its strict version Cstr(G,ψ,Ω)) we have I = G and,
for a, b, c ∈ G, Nab

c = δa·b,c as well as (for an appropriate choice of bases in the Hom-spaces),

dim(Ua) = 1 , θa = Ω(a, a)−1 , F
(a b c) a·b·c
b·c , a·b = ψ(a, b, c)−1 , R (a b) a·b = Ω(b, a)−1 , (3.23)

where ‘·’ denotes the product in G. More details can be found in remark III:2.12. As another
example, the combinatorial data for the representation category of the affine Lie algebra ŝu(2)k
is summarised in section I:2.5.2.

3.6 Mapping class group and factorisation

An isomorphism of extended surfaces f : E → E ′ is an orientation preserving (degree one)
homeomorphism from E to E ′ compatible with the marked points and Lagrangian subspaces.
That is, if E has n marked points, there is a numbering of the marked points of E ′ s.t.
(p′i, [γ

′
i], V

′
i , ε

′
i) = (f(pi), [f ◦ γi], Vi, εi); for the Lagrangian subspaces we require λE′ = f∗λE.

Mapping class group

Given an isomorphism of extended surfaces f : E → E ′ we can construct a cobordism Mf :
E → E ′ by setting

Mf =
(
E × [−1, 0]

)
t

(
E ′ × [0, 1]

)
/ ∼ (3.24)

where the equivalence relation is given by (e, 0) ∼ (f(e), 0) for all e ∈ E. By construction, if
f and f ′ are homotopic, then so are Mf and Mf ′ . Choosing the weight to be zero, we obtain
a morphism Mf ≡ (Mf , 0) in 3Cob(C). Applying the functor (Z,H) results in a linear map
Z(Mf ) : H(E)→ H(E ′). We will also use the notation f] := Z(Mf ).
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In the special case E = E ′ this gives rise to a projective representation ρE of the mapping
class group Map(E) of E on H(E). If f is a representative of an element [f ] ∈ Map(E) we set
ρE([f ]) = Z(Mf ). One then checks

ρE([f ]) ρE([g]) = Z(Mf )Z(Mg) = Z(Mf ◦Mg) = κµ Z(Mf ◦ g) . (3.25)

The factor κµ arises because the weighted cobordism Mf ◦Mg will in general not have weight
zero, while Mf ◦ g has weight zero by definition. For computations of the power µ see e.g.
[Tu, section IV.5] or appendix II:A.3 where the torus is treated.

Since the mapping class group of a torus T without marked points is the modular group
PSL(2,Z), a modular tensor category provides in particular a projective representation of the
modular group. This is the reason for the name. Denote the standard generators of PSL(2,Z)
by

S̃ =

(
0 −1
1 0

)
, T̃ =

(
1 1
0 1

)
. (3.26)

The space H(T) has dimension |I| and it comes with a natural basis
{
|χi; T〉

∣∣ i ∈ I }
, see

(I:5.15) for a figure and appendix II:A.3 for more details. In terms of this basis, the elements
S̃, T̃ get represented by I×I-matrices,(

ρT(S̃)
)
ij

= Ŝij := D−1 si,j ,
(
ρT(T̃ )

)
ij

= T̂ij := δi,j θ
−1
i , (3.27)

where si,j is the s-matrix (3.11) and the θi ∈ k× are the defined via θUi
= θi idUi

as above.

Factorisation

Let Aε ⊂ R2 be an annulus as defined in section 2.4. Denote by D1+ε(U)± ⊂ R2 a disc of radius
1+ε with a marked point (0, [γ], U,±), where γ(t) = t.

Given an extended surface E and an embedding f : Aε → E such that Im(f) contains no
marked point of E, we can define a new extended surface Γf,U(E) as follows. Let E ′ = E\f(S1)
be the surface E minus the image of the unit circle under f . Then

Γf,U(E) = E ′ tD+
1+ε(U) tD−

1+ε(U)/ ∼ , (3.28)

where, if we identify R2 ≡ C, z ∼ f(z) for all z ∈ A+
ε ⊂ D+

1+ε(U) and z ∼ f(−1/z) for all
z ∈ A+

ε ⊂ D−
1+ε(U). The Lagrangian subspace for Γf,U(E) will be given below.

In words, this amounts to removing an S1 from E and gluing two half discs into the resulting
holes, one with a marked point (U,+) and the other with a marked point (U,−).

From such a cutting procedure one also obtains a linear map gf,U(E) : H(Γf,U(E))→ H(E),
a gluing homomorphism, as follows. Consider the cobordism

Mf,U(E) = Γf,U(E)× [0, 1]/ ∼ (3.29)

where the equivalence relation identifies two subsets of Γf,U(E) × {1}. Specifically, for all
z ∈ C with |z| ≤ 1, we identify z ∈ D+

1+ε(U) ⊂ Γf,U(E) with −z∗ ∈ D−
1+ε(U) ⊂ Γf,U(E). This

identifies the two discs just added, so that they are not part of the boundary of Mf,U(E) and
we obtain a cobordism Γf,U(E)→ E, see [FFRS] for details and figures.

28



The cobordism Mf,U(E) also defines the Lagrangian subspace λ′ of the extended surface
Γf,U(E) by taking λ′ to consist of all elements x′ ∈ H1(Γf,U(E),R) for which that there exists
an element x ∈ λE such that x′ − x is contractible in Mf,U(E). It is shown in [Tu, section
IV.4.2] that this indeed defines a Lagrangian subspace.

Choosing Mf,U(E) to have weight zero, we obtain a morphism Γf,U(E) → E in 3Cob(C).
The gluing homomorphism is then just defined as gf,U(E) = Z(Mf,U(E)). The factorisation
relation between the spaces of states of the 3dTFT is that [Tu, Lemma IV.2.2.2]⊕

i∈I

gf,Ui
(E) :

⊕
i∈I

H(Γf,Ui
(E)) −→ H(E) (3.30)

is an isomorphism.

Remark 3.2 :

The gluing homomorphisms are needed to formulate the factorisation condition on CFT cor-
relators – already described in section 2.5 – in the algebraic construction of a consistent set of
correlators to be formulated in chapter 6.

4 Relating 3dTFT and 2dCFT

4.1 Vertex algebras and conformal blocks

In section 2.5 the notion of holomorphic fields was introduced. It was already mentioned in the
introduction that a conformal vertex algebra is a formalisation of the properties of holomorphic
fields. Vertex algebras where introduced by [B] and further studied in [FLM]. As there are
already several books on this subject [FB,Hu,Kc,LL], this section will be very brief. A slightly
more extended summary is given in sections IV:5.1, IV:5.2 (the following is based on sections
1.2, 1.3, 2.5 and 5.1 of [FB]).

Vertex algebras and modules

Let End(V )[[z]], for V a vector space, denote the space of formal power series in the inde-
terminate z with coefficients in End(V ). Suppose V =

⊕
n∈Z V

(n) is Z-graded. A field of
conformal dimension ∆ ∈ Z is a formal power series A(z) =

∑
j∈ZAjz

−j ∈ End(V )[[z, z−1]] s.t.

Aj(V
(n)) ⊂ V (n−j+∆) for all n and, for any v ∈V , Aj(v) = 0 for large enough j.

A conformal vertex algebra V of central charge c consists of the following data. There
is a vector space RΩ, the space of states, which is Z≥0-graded with finite-dimensional homo-
geneous components. We have a state-field correspondence Y , assigning to every W∈RΩ a
field Y (W ; z)∈End(RΩ)[[z±1]]. There are two distinguished vectors in RΩ, the vacuum state

vΩ ∈ R
(0)
Ω and the Virasoro vector vvir ∈ R

(2)
Ω .

This data is subject to the following conditions. The field associated to the vacuum state
is the identity, Y (vΩ; z) = idRΩ

, and Y (u; z)vΩ =u+O(z) for all u∈RΩ. The coefficients Lm in
T (z) := Y (vvir; z) =

∑
m∈Z Lmz

−m−2 obey the Virasoro algebra of central charge c,

[Lm, Ln] = (m−n)Lm+n + c
12
δm+n,0(m

3−m) . (4.1)
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Further, L0 gives the grading on RΩ, i.e. L0R
(n)
Ω = nR

(n)
Ω and L−1 is the generator of transla-

tions, [L−1, Y (W, z)] = ∂zY (W, z) for all W ∈ RΩ. The field T (z) is called the (holomorphic
component of the) stress tensor. Finally, and most important, all fields Y (·; z) are local, i.e. for
all A,B ∈ RΩ one may find an N ∈ Z≥0 s.t.

(z − w)N
[
Y (A; z), Y (B;w)

]
= 0 (4.2)

as a formal power series in End(RΩ)[[z±1, w±1]].

A (graded) module of a conformal vertex algebra V is a C-graded vector space R equipped

with a map YR( · ; z) : RΩ→End(R)[[z±1]], which assigns to every A ∈ R
(m)
Ω a field YR(A; z) of

conformal dimension m, and which is compatible with the structure of the conformal vertex
algebra V, see e.g. section 5.1 of [FB] for details. In particular, V will be a module over itself.
If this module is simple, then we call also V simple.

Given a V-module R, we define its character χR(q) to be the formal power series given by
the trace

χR(q) = trR q
L0−c/24 . (4.3)

If we substitute q ∈ C, as we will do below, the result may be infinite, but for the examples
coming from CFT this series converges for |q| < 1.

An important class of examples is provided by conformal vertex algebras V(ĝk) constructed
from affine Lie algebras ĝk; in this case, RΩ is given by the integrable highest weight represen-
tation with highest weight zero. The simple modules are given by irreducible integrable highest
weight representations of ĝk and the characters of these representations are provided by the
Weyl-Kac character formula, see e.g. [FB, example 5.5.5] for more details and references.

Extended Riemann surfaces and conformal blocks

An extended Riemann surface Ec is a compact Riemann surface with empty boundary, also
denoted by Ec, together with a finite ordered set of marked points (pi, [ϕi],Ri), where pi ∈ Ec

are mutually distinct points, [ϕi] is a germ of injective holomorphic functions from a small disk
Dδ⊂C around 0 to Ec such that ϕi(0) = pi, and Ri is a module of the conformal vertex algebra
V. Finally, Ec is equipped with a Lagrangian submodule λc⊂H1(E

c,Z) (see section IV:5.2).
Let Ec be an extended Riemann surface with n marked points. The space of conformal

blocks Hc(Ec) is defined as a subspace of (R1⊗ · · · ⊗Rn)
∗, i.e. of the space of multi-linear

functions R1× · · ·×Rn → C. The subspace is characterised by a somewhat involved compat-
ibility condition with the action of V (the difficulty is to remove the local coordinate in the
definition of the action of V), details can be found in e.g. in section 10.1 of [FB].

Modular tensor categories

In order to make the connection to 3dTFT later on, we need to restrict our attention to a
subclass of conformal vertex algebras, namely to those, whose category Rep(V) of V-modules
is a modular tensor category.

A sufficient set of conditions on a vertex algebra V for Rep(V) to be modular have been
given in [Hu1, Theorem 3.1], (building on earlier work [HL] defining a braided tensor structure

on Rep(V)): V should be simple, have R
(0)
Ω = CvΩ, and obey Zhu’s C2-cofiniteness condition.

30



Further, every graded V-module R has to be completely reducible, and R(0) = 0 for any
irreducible V-module not isomorphic to V.

Given a conformal vertex algebra V s.t. Rep(V) is modular, we choose a set { Si | i∈I } of
representatives for the isomorphism classes of simple V-modules. In particular, the index set
I is finite.

It can also be shown that under the above assumptions, the characters χi ≡ χSi
(q) form a |I|-

dimensional representation of the modular group [Z,DLM]. In particular, setting q = exp(2πiτ),
there are matrices Sij and Tij such that

χi
(
e2πi(τ+1)

)
=

∑
j∈I

Tij χj(q) and χi
(
e2πi(−1/τ)

)
=

∑
j∈I

Sij χj(q) . (4.4)

Remark 4.1 :

Recall that in (3.27) we have already met a |I|-dimensional representation of the modular group
defined in terms of a modular tensor category. As will be stressed in section 4.3 below, the
structure of a modular tensor category on Rep(V) is defined entirely in terms of genus zero
conformal blocks. In particular, as stated in (3.27), the quantities Ŝij and T̂ij are given by the
invariant of the Hopf link (3.11) and by the twist of the modular tensor category, respectively,
and not in terms of transformation properties of characters. It is a quite non-trivial fact, known
as Verlinde conjecture [Ve] and proved under the above assumptions in [Hu1] (the proof being a
rigorous version in the framework of vertex algebras of the CFT-based argument in [MS1,MS3])
that the matrices in (3.27) and (4.4) are simply related by

S = Ŝ and T = e−2πic/24 T̂ij , (4.5)

with the phase accounting for the fact that the representation generated by Ŝ and T̂ is only
projective. The natural setting in which to understand this surprising relation is the (also
conjectured) deep relation between the space of conformal blocks of V on a given extended
Riemann surface and the corresponding space of states of the TFT associated to Rep(V), see
section 4.3 below.

4.2 Correlators and conformal blocks on the double

Holomorphic fields on the Riemann sphere

Given a conformal vertex algebra V, we would like to construct a CFT which contains V as
a subspace of its holomorphic fields. More precisely, recall from section 2.5 that the space of
fields F ⊂ H was defined as the direct sum of graded components of H. Let the world sheet
Xg be a sphere with some metric g, an orientation or2 and n marked points. Let Ec be the
extended Riemann surface which is given by Xg, considered as a complex manifold (i.e. the
Riemann sphere), with each marked point in addition labelled by the vacuum module RΩ of
V. In this case the space of conformal blocks Hc(Ec) is one-dimensional (see e.g. [FB, section
10.4]).

We say that a CFT has V as chiral algebra if there is an embedding ι : RΩ → F such that
the image of ι lies in the subspace of holomorphic fields, and such that for Xg as described
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above, and for v1, . . . , vn ∈ RΩ we have

C(Xg)(u1, . . . , un)

C(Xg)(u0, . . . , u0)
=
β(v1, . . . , vn)

β(vΩ, . . . , vΩ)
, (4.6)

where uk = ι(vk), u0 = ι(vΩ), and β is any nonzero element of Hc(Ec). That is, the normalised
correlators of holomorphic fields (in the image of ι) on the Riemann sphere are just given by
the unique (normalised) conformal block that is available.

In the same way we say that a CFT has V as anti-chiral algebra if there is an embedding
ῑ : RΩ → F that lies entirely in the subspace of anti-holomorphic fields, and such that (4.6)
holds for a nonzero block β ∈ Hc(Ēc), where Ēc is obtained from Xg with orientation −or2

instead of or2.

We will only consider CFTs which have a given conformal vertex algebra V both as chiral
and anti-chiral algebra. The notion of a module over V is tailored to imply that the space of
bulk fields F is in fact a module of V × V (the action of the chiral and anti-chiral algebra).
Further, we demand that Rep(V) is modular. It is then reasonable to make the ansatz

F =
⊕
i,j∈I

(
Si⊗ Sj

)⊕Zij , (4.7)

for some non-negative integers Zij, and where Si refer to the simple V-modules.
For the space boundary fields Fab the situation is different. Recall from section 2.6 that

for a conformal boundary condition, given q ∈ ∂X, we have T (q) = T̄ (q) inside any correlator.
In order to make full use of the chiral algebra V we have to restrict ourselves to boundary
conditions that preserve V, i.e. for all v ∈V we requireW (q) = W̄ (q) whereW = ι(v), W̄ = ῑ(v)
and q ∈ ∂Xg.

From this argument one sees that the two copies V×V ↪→ F actually act in the same way
on boundary fields (an observation first made in [C1]) and hence

Fab =
⊕
i∈I

S
⊕A b

ia
i (4.8)

for some non-negative integers A b
ia.

A CFT with chiral algebra V(ĝk) is called a g-WZW model at level k, see e.g. [DMS,
chapter 15]. Next to the Virasoro minimal models of [BPZ], WZW-models are the best studied
conformal field theories.

Holomorphic factorisation

Let Xg be a world sheet, possibly with boundaries, possibly unoriented. One can construct an
extended Riemann surface X̂g, the complex double of Xg by taking the orientation bundle over
Xg, divided by an equivalence relation,

X̂g = Or(Xg)/∼ with (x, or2) ∼ (x,−or2) for x∈ ∂Xg . (4.9)

Since a metric (or just a conformal structure) together with an orientation defines a complex
structure, we obtain a complex structure on X̂g. Note also that by construction, X̂g has an

32



empty boundary. Further, there is a projection π : X̂g → Xg taking [x, or2] to x. The marked
points on X̂g are obtained by taking the pre-images of the marked points on Xg under π, see
section IV:6.1 for more details, where also the Lagrangian submodule for X̂g is defined. In
particular, a bulk insertion on Xg leads to two marked points on X̂g, and a boundary insertion
on Xg leads to one marked points on X̂g. Some examples of Xg and the resulting X̂g are

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

Xg =

X̂g =

a) sphere b) disc c) torus

(4.10)

Examples where Xg is non-orientable can be found in sections II:3.3 and II:3.5.
The significance of conformal blocks in the construction of correlators of a CFT with chiral

(and anti-chiral) algebra V is the fact that a correlator on Xg is an element in the space of
conformal blocks for V on the double X̂g,

C(Xg) ∈ Hc(X̂g) . (4.11)

This is the principle of holomorphic factorisation [Wt3]. Note that we have already met one
instance of this condition in (4.6). Let us consider some more examples of this important
principle.

Oriented surfaces without boundaries

Consider the situation in figure (4.10 a), where Xg is a sphere with, say, n bulk field insertions.
Recall from section 2.5 that in this case C(X) is a functional F⊗n → C. Suppose that at the
k’th marked point we only insert fields in the component Sik ⊗ Sjk of F , i.e. we restrict the
functional C(X) to

C(X) :
(
Si1⊗Sj1

)
⊗ · · · ⊗

(
Sin⊗Sjn

)
−→ C . (4.12)

The double of an oriented surface (Xg, or) with empty boundary consists of two copies of that
surface with opposite orientations X̂g = (Xg, or) t (Xg,−or). Analogous to the discussion in
the beginning of the section, denote by Ec and Ēc the extended Riemann surfaces obtained by
taking (Xg, or) and (Xg,−or) (both of which are isomorphic to the Riemann sphere as complex
curves), and labelling the marked points by Si1 , . . . , Sin and Sj1 , . . . , Sjn , respectively. The space
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of conformal blocks on X̂g is then Hc(X̂g) = Hc(Ec)⊗Hc(Ēc) and holomorphic factorisation
states that there exist βα ∈ Hc(Ec) and β′α ∈ Hc(Ēc) s.t.

C(X)(vi1 ⊗ vj1 , . . . , vin ⊗ vjn) =
∑
α

βα(vi1 , . . . , vin)β′α(vj1 , . . . , vjn) (4.13)

for any vik ∈ Sik and vjk ∈ Sjk .

Surfaces with boundaries

Let now Xg be a disc as in figure (4.10 b), with m boundary field insertions and n bulk field
insertions. In this case the correlator C(X) is a functional of the form

C(X) : Fa1b1 ⊗Fa2b2 · · · ⊗F ⊗F · · · −→ C . (4.14)

Restricting to the components Srk ⊂ Fakbk of the k’th boundary field and to Sil ⊗ Sjl ⊂ F of
the l’th bulk field we obtain a functional

C(Xg) :
m⊗
k=1

Srk ⊗
n⊗
l=1

(Sil ⊗ Sjl) −→ C . (4.15)

According to the construction of the double in (4.10) this now has to be an element in the
space of conformal blocks on the Riemann sphere with m+ 2n marked points (again, this was
first observed in [C1]).

Torus

Finally, for the third case in figure (4.10), let Tτ be the torus obtained by dividing C by the
lattice spanned by the vectors 1 and τ , where τ lies in the upper half plane. On Tτ we take
the metric and complex structure induced by C. The space of conformal blocks on the torus is
spanned by the characters of the irreducible representations of V,

Hc(Tτ ) = span
C

{
χSi

(q)
∣∣i ∈ I} , (4.16)

where q = exp(2πiτ). Note that two tori Tτ and Tτ ′ describe the same elliptic curve iff τ
and τ ′ are related by a modular transformation τ ′ = (aτ + b)/(cτ + d) (i.e. a, b, c, d ∈ Z and
ad−bc = 1). That modular transformations leave the space Hc(Tτ ) invariant is guaranteed by
the modular transformation properties (4.4) of the characters.

Holomorphic factorisation requires C(Tτ ) ∈ Hc(Tτ )⊗Hc(T−τ∗). In fact, using the property
that in the functorial description of a CFT, the trace in 2Rie gets mapped to the trace of vector
spaces, one finds that C(Tτ ) is determined by the ansatz (4.7) to be

C(Tτ ) =
∑
i,j∈I

Zij χSi
(q)χSj

(q∗) (4.17)

where again q = exp(2πiτ). The correlators C(Tτ ) have to obey

C(Tτ ) = C(Tτ ′) whenever τ ′ =
aτ + b

cτ + d
for

(
a b
c d

)
∈ SL(2,Z) , (4.18)

34



To see this, first note that the pairs (τ, 1) and (aτ+b, cτ+d) generate the same lattice in C.
The latter set of generators is related to (τ ′, 1) by a simple rescaling ζ 7→ f(ζ) = aτ+b

cτ+d
· ζ. In

particular, f is a conformal transformation from Tτ to Tτ ′ and property (C3) in section 2.4
implies C(Tτ ) = ecSliouC(Tτ ′). Due to the simple form of f , one finds Sliou ≡ 0.

Since all modular transformations are generated by τ 7→ τ + 1 and τ 7→ −1/τ , comparing
to (4.4) we find that (4.18) holds if

[S, Z] = 0 = [T, Z] . (4.19)

If all characters χSi
(q) are linearly independent, we also have “only if” in the above statement.

In this case, (4.19) is thus a necessary condition in order to have a consistent CFT. (In fact,
considering also correlators with one bulk field insertion on the torus, one can show that (4.19)
is always necessary).

It was first noted in [C2] that this can put strong constraints on the possible values for
Zij. For the case of su(2)-WZW-models at level k, there is a classification theorem [CIZ] which
states

Theorem 4.2 :
All k×k matrices Z with non-negative integer entries, and which obey

Z00 = 1 , [S, Z] = 0 = [T, Z] (4.20)

are given by the following list.

(A-series) for all k:
Zij = δij . (4.21)

(Deven-series) for k ∼= 0 mod 4 :

Zij = δi∈2Z
(
δi,j + δi,k−j

)
. (4.22)

(Dodd-series) for k ∼= 2 mod 4 :

Zij = δi∈2Z δi,j + δi∈2Z+1 δi,k−j . (4.23)

(E6) for k=10:

Zij = (δi,0+δi,6)(δj,0+δj,6) + (δi,3+δi,7)(δj,3+δj,7) + (δi,4+δi,10)(δj,4+δj,10) (4.24)

(E7) for k=16:

Zij = (δi,0+δi,16)(δj,0+δj,16) + (δi,4+δi,12)(δj,4+δj,12) + (δi,6+δi,10)(δj,6+δj,10)

+ δi,8δj,8 + δi,8(δj,2+δj,14) + (δi,2+δi,14)δj,8
(4.25)

(E8) for k=28:

Zij = (δi,0+δi,10+δi,18+δi,28)(δj,0+δj,10+δj,18+δj,28)

+(δi,6+δi,12+δi,16+δi,22)(δj,6+δj,12+δj,16+δj,22) .
(4.26)

It should be stressed, however, that (4.19) is only necessary and by no means sufficient
to have a consistent CFT. For the su(2)–WZW models it turns out (combine Theorem 5.17
and Remarks 5.16 (ii) and 6.12 (iv) below) that all cases in Theorem 4.2 are realised, i.e. the
modular invariant bilinear combinations of characters (4.17), with Z taken from Theorem 4.2,
do indeed occur as the correlator on the torus of a full CFT. But examples of modular invariant
combinations of characters are known (see e.g. [FSS]) which cannot occur as torus correlator
of a full CFT.
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4.3 Conformal blocks and 3dTFT

Now, given a V s.t. C = Rep(V) is modular, we can apply the construction of section 3.4 to
obtain a 3dTFT (Z,H) : 3Cob(C)→ Vectf (C). In view of how the relation between chiral CFT
and 3dTFT first arose in the case of Chern-Simons theory [Wt2, FK], one would expect that
there are isomorphisms between the state spaces H(E) assigned to an extended surface by the
3dTFT and the spaces Hc(Ec) of conformal blocks for an extended Riemann surface Ec, which
are compatible with the action of the mapping class group and with factorisation. However, in
general the existence of such isomorphisms is not at all obvious, for the following reason.

Denote by P1[R1, . . . ,Rn] the extended Riemann surface given by P1 with n marked points
labelled by the V-modules R1, . . . ,Rn. The tensor product on C ≡ Rep(V) is defined in terms
of conformal blocks on P1 [HL], for example one has

dim HomC(R1 ⊗C · · · ⊗C Rn,RΩ) = dimHc
(
P1[R1, . . . ,Rn]

)
. (4.27)

The braiding on C is defined in terms of analytic continuation of conformal blocks on P1 along
a path which exchanges two of the marked points (i.e. each point of the path is an extended
Riemann surface given by P1 with varying coordinates for two of the marked points).

Thus, by definition, the structure of a braided tensor category (and thus also that of a
modular tensor category) on C = Rep(V) is entirely fixed by the genus zero conformal blocks.
Now, as described in section 3.6, the 3dTFT provides a projective representation of the mapping
class group on extended surfaces of every genus, and it also describes how the space of states
behave under factorisation.

Analogously, projective representations of the mapping class group and the behaviour under
factorisation can also be obtained directly from the spaces of conformal blocks on extended
Riemann surfaces of higher genus.

The (open) question is now, what properties does one have to demand of V to ensure that
there is an identification of the spaces of states of the TFT obtained from C = Rep(V) with
the spaces of conformal blocks of V, which is compatible with the projective action of the
mapping class group and with the behaviour under factorisation, both of which are defined
independently on the complex-analytic and the topological side.

Remark 4.3 :

For surfaces of genus zero, such an identification exists basically by construction (compatibility
with the action of the mapping class group is illustrated in sections IV:5.3 and IV:5.4). At
genus one there is still some control due to the results mentioned in Remark 4.1. For genus
≥ 2, no criteria are known which guarantee the existence of such an identification.

As already stated in the introduction, the approach of the works [I]–[IV] is “top-down”,
in the sense that the aim is not to determine a precise set of conditions to gain control over
the complex-analytic side of the construction of a CFT (desirable as it may be), but rather to
separate the two problems by assuming that we are given a conformal vertex algebra V with
sufficiently nice properties. These properties are that
Rep(V) is a modular tensor category and for every extended Riemann surface E, the space

of conformal blocks Hc(E) is finite-dimensional.
for the 2dTFT (Z,H) constructed from Rep(V), there exists an identification between H(E)

36



and Hc(E), which is compatible with the action of the mapping class group and with factori-
sation.
Let us refer to a conformal vertex algebra with these properties as a rational chiral algebra.

Borderline

We have now arrived at the borderline between the complex-analytic and the algebraic part of
the construction of a CFT. The content of chapters 2 and 4 was mainly to motivate, and to
state in a more or less precise way (limited by space and by the present day understanding of
some of the issues involved) the properties one would like a CFT to have, as well as to describe
the complex-analytic approach via vertex algebras.

The content of chapters 5 and 6, on the other hand, is entirely algebraic. A specific problem
(Problem 6.6) in the setting of modular tensor categories (and their associated 3dTFTs) is
solved (Theorem 6.11). From this point of view, the only purpose of chapters 2 and 4 is to
show that this is indeed an interesting problem, via its relation to the construction of rational
conformal field theories.

5 Algebra in braided tensor categories

Let us now turn to the study of algebras in braided tensor categories. We will focus on concepts
needed to present the main results of [C]. Recall from chapter 3 that all categories are taken to
be small.

5.1 Frobenius algebras

The notion of an algebra over a field k can be extended to general tensor categories in a
straight-forward way [Pa1]. Let C be a tensor category with associator αU,V,W : (U ⊗V )⊗W →
U ⊗ (V ⊗W ) and unit constraints λU : 1⊗U → U , µU : U ⊗1→ U .

Definition 5.1 :

An (associative) algebra (with unit) A in C is a triple (A,m, η) consisting of an object A of C,
a multiplication morphism m∈Hom(A⊗A,A) and a unit morphism η ∈Hom(1, A), satisfying

m ◦ (m⊗ idA) = m ◦ (idA⊗m) ◦ αA,A,A , m ◦ (η⊗ idA) = λA , m ◦ (idA⊗ η) = µA . (5.1)

Remark 5.2 :

(i) We will often take C to be strict. In this case αA,A,A = idA⊗A⊗A and λA = µA = idA.
(ii) If we take C to be Vectf (k), then 5.1 is the usual definition of an unital associative k-algebra.

Example 5.3 :

Let G be a finite abelian group. Consider the k-vector space A = k[G]. Define a bilinear
multiplication m : A⊗A → A via its values on a basis, m(g, h) = ω(g, h) g ·h with ω :
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G × G → k× s.t. ω(g, e) = 1 = ω(e, g) for all g ∈ G. Define also a unit map η : k → A via
η(c) = c e, with e the unit of G.
For (A,m, η) to be an associative unital algebra in Vectf (k) we need

ω(f, g)ω(fg, h) = ω(g, h)ω(f, gh) (5.2)

for all f, g, h ∈ G. Equivalently, in the terminology of group cohomology (see appendix III:A
for conventions), ω has to be a normalised 2-cocycle on G with values in k×. In this case A is
a twisted group algebra.
On the other hand, if we define the 3-cocycle ψ(f, g, h) = dω(f, g, h), then for any normalised
2-cochain ω, (A,m, η) is an associative unital algebra in the category C(G,ψ,Ω) as defined
in section 3.3. This is true for any allowed choice of Ω; the braiding does not enter into the
definition of an algebra. If however Ω(g, h) = ω(g, h)/ω(h, g) then (ψ,Ω) is an exact abelian
3-cocycle and the category C(G,ψ,Ω) is equivalent to C(G, 1, 1) as a symmetric tensor category.
Under this equivalence, the algebra A gets mapped to the (untwisted) group algebra k[G].

Let us now assume that C is a strict tensor category. It is helpful to introduce a pictorial
notation for the morphisms m, η entering the definition of an algebra,

m =

A

A

A

η =

1

A

(5.3)

The associativity and unit conditions for m, η can then be depicted as

A A

A

A

=

A A

A

A

A

A

=

A

A

=

A

A

(5.4)

Analogously to an algebra (A,m, η) in C we define a coalgebra to be a triple (A,∆, ε) obey-
ing coassociativity and counit conditions, which amount to “turning (5.4) upside down”. In
particular, for ∆ and ε we use the pictorial notation

∆ =

A

A

A

ε =

1

A

(5.5)

The classical notions of Frobenius algebra, symmetric and special (cf. section 2.3) also extend
to more general tensor categories in a straight-forward way.

Definition 5.4 :

Let C be a strict tensor category.
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(i) A Frobenius algebra in C is a quintuple (A,m, η,∆, ε) such that (A,m, η) is an algebra in
C, (A,∆, ε) is a co-algebra in C, and there is the compatibility relation

(idA⊗m) ◦ (∆⊗ idA) = ∆ ◦m = (m⊗ idA) ◦ (idA⊗∆) (5.6)

between the two structures.

(ii) A Frobenius algebra is called special iff

ε ◦ η = β1 id1 and m ◦∆ = βA idA (5.7)

for some β1, βA ∈ k×.

(iii) If C has left and right dualities, a Frobenius algebra in C is called symmetric iff the two
morphisms

Φ1 := [(ε ◦m)⊗ idA∨ ] ◦ (idA ⊗ bA) =

A

A∨

(5.8)

and

Φ2 := [idA∨ ⊗ (ε ◦m)] ◦ (b̃A⊗ idA) =

A∨

A

(5.9)

in Hom(A,A∨) are equal.

Recall that in the classical case, a Frobenius algebra A over k was defined to have a trace ε :
A→ k which gives rise to a nondegenerate bilinear, invariant form on A. This characterisation
is related to the above definition by Theorem 2.3. An analogous theorem (Theorem 5.5) exists
also for tensor categories with dualities. It is proved in Lemma I:3.7.

Theorem 5.5 :

Let C be a strict tensor category with left and right dualities. An algebra A ≡ (A,m, η,∆, ε)
in C is Frobenius according to Definition 5.4 if and only if either of the morphisms Φ1,Φ2 ∈
Hom(A,A∨) in (5.8) and (5.9) is invertible.

We will also be interested in modules and bimodules of an algebra A in C. Their definition
is again analogous to the classical case.

Definition 5.6 :

Let C be a strict tensor category and A an algebra in C.
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(i) A left module over A is a pairM = (Ṁ, ρ) consisting of an object Ṁ of C and a representation
morphism ρ≡ ρM ∈Hom(A⊗Ṁ, Ṁ), satisfying

ρ ◦ (m⊗ idṀ) = ρ ◦ (idA⊗ ρ) and ρ ◦ (η⊗ idṀ) = idṀ . (5.10)

A right module over A is defined analogously.

(ii) An A-bimodule is a triple M = (Ṁ, ρl, ρr) such that (Ṁ, ρl) is a left A-module, (Ṁ, ρr) is a
right A-module, and the left and right actions of A commute.

For morphisms between A-modules that intertwine the module action we use the notation

HomA(N,M) := {f ∈Hom(Ṅ , Ṁ) | f ◦ ρN = ρM ◦ (idA⊗f)} . (5.11)

Similarly, the space HomA|A(N,M) for two A-bimodules N ,M is the subspace of Hom(Ṅ , Ṁ)
which intertwines both left and right action of A. Denote by CA the category whose objects
are left A-modules and whose morphism sets are given by HomA. Analogously, ACA denotes the
category of A-bimodules with morphisms HomA|A. Note that in contrast to CA, ACA is always a
tensor category. The notion of an A-bimodule is also used to define when an algebra is simple.

Definition 5.7 :
An algebra A in a tensor category C is called simple iff HomA|A(A,A) = k idA, i.e. it is simple
as a bimodule over itself.

The category CA of left A-modules carries more structure than just that of a category. Note
that if M = (Ṁ, ρ) is a left A-module, then so is (Ṁ ⊗U, ρ⊗ idU), for any object U of C. This
turns CA into a (right) module category over C, i.e. we have a bifunctor ⊗ : CA × C → CA as
well as an appropriate associator and unit constraints. The concept of a module category was
introduced in [Pa2]; for more details and references see sections I:4.1 and IV:2.

Two algebrasA andB in C are called Morita-equivalent if CA and CB are equivalent as module
categories over C [Pa4, Pa5]. Morita equivalence is a much weaker notion than isomorphy of
algebras.

5.2 New phenomenon in the braided setting

In the application to CFT we have in mind, the categories of interest are modular tensor
categories. Let us in this chapter be more general and take C to be a ribbon category. We
would like to investigate the special features that arise due to the presence of a braiding.

First note that already the notion of commutativity of an algebra requires a braiding. The
braiding also allows to define the opposite algebra as well as the tensor product of two algebras.

Definition 5.8 :
Let C be a strict braided tensor category and let A = (A,m, η) be an algebra in C.
(i) A is said to be commutative iff m ◦ cA,A =m, or, equivalently, iff m ◦ c−1

A,A =m.

(ii) The opposite algebra of A is Aop = (A,m ◦ c−1
A,A, η).

(iii) Given another algebra A′ = (A′,m′, η′), the tensor product algebra A⊗A′ has multiplication
mA⊗A′ = (m⊗m′) ◦ (idA⊗ (cA,A′)

−1⊗ idA′) and unit ηA⊗A′ := η⊗ η′.
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In the pictorial notation, the multiplications mop and mA⊗A′ take the form

mop :=

A

A

A

mA⊗A′ :=

A A′

A A′

A A′

(5.12)

A proof that the opposite algebra and the tensor product algebra are indeed algebras is given
in Propositions I:3.18 and I:3.22.

Remark 5.9 :
(i) In the definition of Aop and A⊗A′ the inverse braiding has been used. In the first case one
can in fact define a whole family of algebras A(n) = (A,m ◦ (cA,A)n, η) with Aop = A(−1). If C
is in addition ribbon, then the twist θA provides an isomorphism A(n) ∼= A(n+2), cf. Proposition
I:3.20. Second, instead of A⊗A′ one can define A ⊗̃A′ which has the same unit as A⊗A′, but
the multiplication is now mA ⊗̃A′ = (m⊗m′) ◦ (idA⊗ cA′,A⊗ idA′), see also remark I:3.23 (i).
We will only work with the tensor product as given in Definition 5.8 (iii).

(ii) If A and A′ are Frobenius then so are Aop and A⊗A′ if we set εop = ε and ∆op = cA,A ◦∆,
as well as

εA⊗A′ = εA⊗ εA′ and ∆A⊗A′ = (idA⊗ cA,A′ ⊗ idA′) ◦ (∆A⊗∆A′) . (5.13)

If A and A′ are special and/or symmetric, then so are Aop and A⊗A′, see Propositions I:3.18
and I:3.22.

In the investigation of CFT on unoriented surfaces one needs the notion of a reversion on
an algebra A [II]. It is defined as follows (Definition II:2.1).

Definition 5.10 :
Let C be a strict ribbon category.

(i) A reversion on an algebra A= (A,m, η) in C is an endomorphism σ ∈Hom(A,A) that is an
algebra anti-homomorphism and squares to the twist, i.e.

σ ◦ η = η , σ ◦m = m ◦ cA,A ◦ (σ⊗σ) , σ ◦ σ = θA . (5.14)

If the algebra A is also a coalgebra, A= (A,m, η,∆, ε), then we demand that in addition

ε ◦ σ = ε and ∆ ◦ σ = (σ⊗σ) ◦ cA,A ◦∆ (5.15)

hold. In pictures:

=
σ

σ
θ =

σ

σ σ

=

σ

σ σ

=σ
=σ

A

A

A

A

A

A

A A

A

A

A

A

A A

A

A A A

A A

(5.16)
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(ii) The quadruple A= (A,m, η, σ) consisting of an algebra and a reversion is called an algebra
with reversion.

(iii) A symmetric special Frobenius algebra with reversion will also be called a Jandl algebra.

Remark 5.11 :

In the classical case C = Vectf (k), an algebra with reversion is the same as an algebra with
involution. However, for a ribbon category both requirements σ ◦σ = idA and σ ◦σ = θA are
natural. The former is a direct generalisation of an involution, hence a different name was
adopted for the latter.

In the treatment of algebras, the first significant difference to the classical case arises when
one defines the centre of an algebra A: in the braided setting one has to consider two different
centres [VZ,Os]. Here we will define left/right centres for symmetric special Frobenius algebras
in terms of idempotents, which makes it applicable to a larger class of categories, cf. the
discussion in section C:2.4.

An idempotent is an endomorphism p such that p ◦ p = p. A retract of an object U is a
triple (S, e, r) with e ∈ Hom(S, U) (the embedding) and r ∈ Hom(U, S) (the restriction) such
that r ◦ e = idS. An idempotent p ∈ Hom(U,U) is called split if there exists a retract (S, e, r)
of U with e ◦ r = p; in this case the retract (S, e, r) is unique up to isomorphism of retracts.
We will use the following graphical notation for the embedding and restriction morphisms of a
retract,

e =

S

U

r =

U

S

(5.17)

For the remainder of this section, let C be a strict ribbon category and A a symmetric
special Frobenius algebra in C. The following two morphisms are idempotents in Hom(A,A)
(see section C:2.4):

P l
A :=

A

A

A

A

and P r
A :=

A

A

A

A

(5.18)

Definition 5.12 :

If the idempotent P l
A is split, then a left centre of A is a retract Cl(A) = (Cl(A), el, rl) of A

s.t. el ◦ rl = P l
A. If the idempotent P r

A is split, then a right centre of A is a retract Cr(A) =
(Cr(A), er, rr) of A s.t. er ◦ rr = P r

A.
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Both, left and right centre are unique up to isomorphism of retracts. The centres Cl/r(A)
exist in particular if C is Karoubian, as then by definition every idempotent is split. All abelian
categories, as well as all additive semisimple categories are Karoubian.

The left and right centres deserve their names because by remark C:2.34 we have

Cl(A)

A

A

=

Cl(A)

A

A

and

A

A

Cr(A)

=

A

A

Cr(A)

(5.19)

Conversely, by lemma C:2.32 Cl/r(A) are maximal in the sense that any other retract of A with
properties (5.19) factors through Cl/r(A) .

Since in the classical setting, i.e. in the category Vectf (k), the braiding is symmetric cU,V =
c−1
V,U , it is easy to see from (5.18) that always P l

A = P r
A, s.t. left and right centre coincide. To

construct a simple example where this is not the case, we can endow the category of graded
vector spaces with a non-symmetric braiding.

Example 5.13 :

Let k = C, or alternatively any field which contains an element (−1) with the property (−1)2 =
1. Consider the category C(G, 1,Ω) for the group G = Z2 × Z4. Since ψ ≡ 1, the associator in
C(G, 1,Ω) is the same as in the category of G-graded vector spaces. We will, however, choose a
non-standard braiding by setting, for x = (x1, x2) and y = (y1, y2) elements of Z2×Z4, Ω(x, y) =
(−1)(x1+x2)y2 ∈ k. For (1,Ω) to be an abelian 3-cocycle, Ω has to be a bihomomorphism (see
(III:A.8)), which is easily verified.
Since ψ ≡ 1, the group algebra A = k[G] is also an algebra in C(G, 1,Ω). One can verify
that choosing ε : A → k, ε(g) = 8 δg,e with e the unit of G, turns A into a symmetric special
Frobenius algebra (recall that the definition of symmetric did not involve the braiding; the
factor of 8 accounts for the normalisation convention ε ◦ η = dim(A), cf. the text after Theorem
2.3).
Combining (3.14) and (5.19) we see that the left centre is given by (compare also to Proposition
III:3.29 and eqn. (III:3.38))

Cl(A) = spank
{
c ∈ G

∣∣ Ω(a, c)−1 = 1 ∀a ∈ G
}

= spank
{
(c1, c2) ∈ G

∣∣ (a1+a2)c2 ≡ 0 mod 2 ∀(a1, a2) ∈ G
}

= spank
{
(0, 0), (0, 2), (1, 0), (1, 2)

} ∼= k[ Z2 × Z2 ] .

(5.20)

In the same way, for the right centre we find

Cr(A) = spank
{
c ∈ G

∣∣ Ω(c, a)−1 = 1 ∀a ∈ G
}

= spank
{
(0, 0), (0, 2), (1, 1), (1, 3)

} ∼= k[Z4] .
(5.21)
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Thus Cl(A) and Cr(A) are distinct subobjects of A, and they are not isomorphic as algebras.
In fact, as we will see now, they are not even Morita-equivalent.
Using the method of induced modules (see sections I:4.3 and III:4.2 for more details and refer-
ences) one computes that CCl(A) has two simple objects, M l

1 = Cl(A) and M l
2 = Cl(A)⊗L(0,1).

As objects in C we have (Lg denotes the simple object kg in C(G, 1,Ω))

Ṁ l
1
∼= L(0,0) ⊕ L(0,2) ⊕ L(1,0) ⊕ L(1,2) , Ṁ l

2
∼= L(0,1) ⊕ L(0,3) ⊕ L(1,1) ⊕ L(1,3) (5.22)

Similarly, for Cr(A) we find two simple modules M r
1 = Cr(A) and M r

2 = Cr(A)⊗L(0,1), which
as objects in C are given by

Ṁ r
1
∼= L(0,0) ⊕ L(0,2) ⊕ L(1,1) ⊕ L(1,3) , Ṁ r

2
∼= L(0,1) ⊕ L(0,3) ⊕ L(1,2) ⊕ L(1,0) (5.23)

For the action of L(1,0) ∈ Obj(C) on CCl(A) and CCr(A) we find

M l
1⊗L(1,0)

∼= M l
1 , M r

1 ⊗L(1,0)
∼= M r

2

M l
2⊗L(1,0)

∼= M l
2 , M r

2 ⊗L(1,0)
∼= M r

1

(5.24)

so that CCl(A) and CCr(A) are not equivalent as module categories over C.

The left and right centre of A inherit natural structure as a retract of A.

Proposition 5.14 :

Let C be a strict ribbon category and A a symmetric special Frobenius algebra in C such that
Cl(A) and Cr(A) exist.

(i) Cl(A) and Cr(A) are commutative symmetric Frobenius algebras.

(ii) If A is simple and dimCl/r(A) 6= 0, then Cl(A) and Cr(A) are simple and special.

This is shown in Proposition C:2.37; the multiplication and comultiplication on Cl/r(A) are
given explicitly in (C:2.70).

Frobenius algebras in Rep ŝu(2)k

As an example for commutative Frobenius algebras consider the category C = Rep ŝu(2)k of
integrable representations of ŝu(2)k, or, equivalently, a semi-simple quotient of the category of
finite-dimensional representations of Uq(sl(2)) at the root of unity q = eπi/(k+2). There is the
following classification theorem [KO, Theorem 6.1].

Theorem 5.15 :

There is a one-to-one correspondence between commutative simple symmetric special Frobenius
algebras in C and Dynkin diagrams of type An, D2n, E6 and E8. Algebras of type An occur at
all levels k ∈ Z≥0, algebras of type D2n for k ∼= 0 mod 4, algebras of type E6 and E8 at k=10
and for k=28, respectively.
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Remark 5.16 :

(i) This theorem can be formulated in the framework of operator algebra and subfactors. In
fact, it is in this context that it has first been stated and proved [Oc,Pp,BN1,BN2, I1, I2].

(ii) The classification given in the theorem above should be compared to that of Theorem 4.2.
One finds an almost complete agreement, except that the cases Dodd and E7 are missing. The
agreement is prefect if one instead classifies module categories over C = Rep ŝu(2)k. This is
done in [Os, Theorem 6], see also [BEK2] for related subfactor results.

In view of this remark, the relevant objects to consider for comparision to CFT are module
categories. This finding is explained by combining the construction of a consistent set of CFT
correlators from a symmetric special Frobenius algebra in section 6 with the following theorem
(obtained as a special case of [Os, Theorem 1] and [Os, Theorem 3])

Theorem 5.17 :

Let C be a modular tensor category and letM be a semisimple indecomposable module category
over C. Then there exists a symmetric special Frobenius algebra A in C with dim Hom(A,1) = 1
such that the module categoriesM and CA are equivalent.

Several symmetric special Frobenius algebras A can give rise to the same module category
CA. By definition these algebras are then Morita equivalent. In the construction of CFT
correlators in chapter 6 one finds that Morita equivalent algebras lead to equivalent CFTs, cf.
Remark 6.12 (iv). One of the merits of the construction in chapter 6 is, that it explains the
correspondence between module categories and torus partition functions found ‘experimentally’
for su(2): a module category defines a Morita class of symmetric special Frobenius algebras, and
by Theorem 6.11 below each such algebra defines a consistent set of correlators. Evaluating
the correlators on the torus, one recovers the result of Theorem 4.2. In particular, module
categories give rise to consistent CFTs, not only to modular invariant bilinear combinations of
characters.

5.3 Local modules

Let A be a commutative symmetric special Frobenius algebra in a strict ribbon category C.
Another property which is not found in symmetric tensor categories is the presence of an
interesting subclass of A-modules, the so-called local [KO], or dyslectic [Pa6], A-modules, see
the discussion below Definition C:3.15 and Proposition C:3.17 for the relation between these
definitions.

Definition 5.18 :

Let A be a commutative symmetric special Frobenius algebra in a ribbon category C. A left
A-module M is called local iff θM ∈ HomA(M,M).

Analogous to the category CA of all A-modules, one can define the full subcategory C`oc
A of

all local A-modules. The importance of the category C`oc
A lies in the fact that it inherits many

of the properties of C, which is in general not so for CA.
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Proposition 5.19 :

Let C be an additive, k-linear, strict ribbon category C which is also Karoubian, and the tensor
unit 1∈Obj(C) is simple as well as absolutely simple. For every commutative symmetric special
Frobenius algebra A in C the following holds:

(i) C`oc
A is a ribbon category.

(ii) If C is semisimple, then C`oc
A is semisimple. If C is closed under direct sums and subobjects,

then C`oc
A is closed under direct sums and subobjects.

(iii) If C is modular and if A is in addition simple, then C`oc
A is modular.

The proof is a combination of the results in [Pa6,KO,FuS], see Proposition C:3.21. We can
now state the first main result of [C], namely Theorem C:5.20.

Theorem 5.20 :

Let C be an additive, k-linear, strict ribbon category C which is also Karoubian, and the tensor
unit 1∈Obj(C) is simple as well as absolutely simple. Let A be a symmetric special Frobenius
algebra in C such that the symmetric Frobenius algebras Cl/r(A) are special as well. Then there
is an equivalence

C`oc

Cl(A)
∼= C`oc

Cr(A) (5.25)

of ribbon categories.

Remark 5.21 :

(i) The equivalence of the categories of local modules over the left and right centres given in
Theorem 5.20 is a category theoretic analogue of Theorem 5.5 of [BE1], which was obtained
in the study of relations between nets of braided subfactors and modular invariants. In the
context of module categories, this equivalence has been formulated, as a conjecture (claim 5),
in [Os, section 5.4].
The importance of the category theoretic result Theorem 5.20 is, that it does not need on an
underlying realisation of the category C via subfactors. In particular, in the subfactor language
one always takes k = C, and one assumes the existence of a conjugation. Theorem 5.20 thus
has a wider range of applicability.

(iii) In [MS2] it was shown that the modular invariant partition function of a rational CFT takes
the form of a ‘fusion rule automorphism on top of maximal extensions of the chiral algebra’.
This statement can be recovered from Theorem 5.20, together with the construction of CFT
correlators from symmetric special Frobenius algebras as in section 6. For more details see
remark C:5.24 (ii).

Theorem 5.20 has no classical analogue. For algebras over a field k, the left and right centre
coincide, and the statement is trivial. In the genuinely braided case Cl(A) and Cr(A) can be
distinct subobjects, non-isomorphic as algebras and even non-Morita equivalent, as we saw
explicitly in example 5.13.
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Example 5.22 :
Continuing example 5.13, recall that the simple Cl(A)-modules where given by (5.22) and the
simple Cr(A)-modules by (5.23). Let us apply Definition 5.18 to see which of these are local.
By (3.14), the twist on Lg is given by multiplication with Ω(g, g)−1. Thus on L(0,0), L(0,2),
L(1,0), L(1,2), L(1,1) and L(1,3) the twist is just the identity, while on L(0,1) and L(0,3) it acts by
multiplication with −1.
A simple module is local iff the twist is a multiple of the identity morphism (Corollary C:3.18).
From the explicit decompositions (5.22) and (5.23) we see that the only simple object in C`oc

Cl(A)

is Cl(A) and the only simple object in C`oc

Cr(A) is Cr(A). In particular, both categories are
equivalent as implied by Theorem 5.20.

In order to state the second main result of [C] we need two more notions. First, given two
k-linear categories C and D, their Karoubian product C � D is obtained in two steps. One
starts with category whose objects are pairs U × V with U ∈ Obj(C) and V ∈ Obj(D), and
whose morphism sets U × V → X × Y are tensor products HomC(U,X)⊗kHomD(V, Y ). Then
one takes the Karoubian envelope, i.e. one completes the category so obtained with respect to
idempotents, cf. definitions C:2.7 and C:6.1. Second, the dual category C of a braided tensor
category (C,⊗, c) is the braided tensor category (Copp,⊗, c−1), see definition C:6.13. We can
now formulate

Theorem 5.23 :
Let Q, H be modular tensor categories. Let A be a commutative symmetric special Frobenius
algebra in Q �H s.t. the only subobject of A of the form UQ × 1H is 1Q × 1H. Denote by G
the modular tensor category

G =
(
Q�H

)`oc

A
. (5.26)

Then there exists a commutative symmetric special Frobenius algebra B in G�H s.t. the only
subobject of A of the form UQ × 1H is 1Q × 1H and s.t.

Q =
(
G �H

)`oc

B
. (5.27)

This theorem is proved under slightly weaker assumptions in Theorem C:7.6, where also the
algebra B is constructed. The basic idea of the proof is to find an algebra F in D = Q�H�H
with the properties D`oc

Cl(F )
∼= Q and D`oc

Cr(F )
∼= (G � H)`oc

B . The statement (5.27) then follows
from Theorem 5.20.

Note that also Theorem 5.23 does not have a classical analogue. If applied to categories
of vector spaces, the constraints imposed on A would force A ∼= 1. It shows, however, that
if the braiding is ‘maximally non-symmetric’ a problem analogous to the one posed in section
1.3 does have a solution. The formulation of Theorem 5.23 is motivated by the so-called coset
construction in chiral conformal field theory (see e.g. [DMS, chapter 18]), for more details on
this relation refer to [FFRS2].

5.4 α-induced bimodules

Let A be an algebra in a braided tensor category C The presence of a braiding allows us to
define two tensor functors α±A from C to ACA, called α-induction. To an object V ∈ Obj(C) we
assign the A-bimodule

α±A(V ) :=
(
A⊗V, m⊗idV , ρ

±
r

)
(5.28)
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where the right representation morphisms ρ±r ∈Hom(A⊗V ⊗A,A⊗V ) are

ρ+
r := (m⊗ idV ) ◦ (idA⊗ cV,A) and ρ−r := (m⊗ idV ) ◦ (idA⊗ (cA,V )−1) , (5.29)

respectively (for a figure see (6.11) below). On a morphism f ∈ Hom(V,W ), α±A acts as

α±A (f) := idA⊗ f ∈ Hom(A⊗V,A⊗W ) . (5.30)

One can verify that the α-inductions α±A are indeed tensor functors. They were first studied in
the theory of subfactors (see [LRe1] and also e.g. [X, BE3, BEK3]), and were reformulated in
the form used here in [Os].

Define also the non-negative integers (cf. section I:5.4 and remark C:2.28; these numbers
where first introduced in the context of subfactor theory [BEK1, Definition 5.5])

Z̃(A)U,V := dimk [HomA|A(α−A (V ), α+
A (U))] . (5.31)

Suppose now that C is a modular tensor category. Then there is a finite label set I for
simple objects Ui and all integers Z̃(A)U,V can be recovered from the corresponding expression
for simple objects, Z̃(A)ij ≡ Z̃(A)Ui,Uj

. We will write Z̃(A) for the I × I-matrix with entries

Z̃(A)ij. This matrix has a number of surprising properties.

Theorem 5.24 :

Let A be a symmetric special Frobenius algebra in a modular tensor category C. Then

(i) as objects in C the left and right centre of A are isomorphic to

Cl(A) ∼=
⊕
i∈I

U
⊕Z̃(A)i0

i and Cr(A) ∼=
⊕
j∈I

U
⊕Z̃(A)0j

j (5.32)

(ii) Z̃(Aop) = Z̃(A)t.

(iii) given a second symmetric special Frobenius algebraB in C, we have Z̃(A⊗B) = Z̃(A)Z̃(B),
as matrix product.

(iv) the number of isomorphism classes of simple objects in CA is given by tr Z̃(A).

(v)
[
Ŝ, Z̃(A)

]
= 0 and

[
T̂ , Z̃(A)

]
= 0 for Ŝ and T̂ as given in (3.27).

(vi) Z̃(A)ij = Z̃(A)ı̄ ̄.

(vii) if A is simple, then Z̃(A)ij ≤ dim(Ui) dim(Uj).

The proof of part (i) is obtained from Lemma C:3.13, Proposition C:3.6 and Remark C:3.7.
The proof of parts (ii) and (iii) is given in Proposition I:5.3, part (iv) is demonstrated in Theo-
rem I:5.18, part (v) amounts to Theorem I:5.1 (i), part (vi) follows from Theorem I:5.23 (ii,iii)
and finally part (vii) is proved in [BE2, section 1]. An alternative proof for (vii) is given in
Lemma III:3.5.

Remark 5.25 :

(i) For a symmetric special Frobenius algebra A over k, Z(A) ≡ Z(A)00 is just the dimension of
the centre of A. (This follows from Theorem I:5.1 together with the fact that for C = Vectf (k)
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we have Atop
∼= A.) It is intriguing that when considering arbitrary modular tensor categories,

the dimension of the centre of an algebra generalises to a matrix.

(ii) Property (iv) is also useful to compute the number simple of A-bimodules. To this end,
one notes that A-bimodules are in one-to-one correspondence to A⊗Aop-left modules. For the
latter, by points (ii) and (iii) of the theorem, the number of irreducible modules is given by
tr

(
Z̃(A)Z̃(A)t

)
, cf. Remark I:5.19 (ii).

(iii) Recall that a modular tensor category gives rise to a 3dTFT. The numbers Z̃(A)ij can
be computed as invariants of ribbon graphs in S2×S1. The corresponding ribbon graph is
obtained from the general construction of CFT correlators in section 6, applied to the torus.
The resulting graph is given in (I:5.30) and the relation to (5.31) is provided in section I:5.4.
In accordance with (i) above and the discussion in the end of section 2.3, when applied to the
category of vector spaces one obtains a 2d lattice TFT and its correlator on the torus is given
by the dimension of the centre of A.

6 From Algebras to 2dCFT

In this chapter we will combine the tools described in chapters 3 and 5 to construct CFT
correlators. As discussed in section 1.2, this will be done on the algebraic level, not on the
complex-analytic level. In particular, also here we will work with an arbitrary field k, not
necessarily with the complex numbers.

We will start with a precise statement of the problem we want to solve, and then describe
how to construct a solution starting from a symmetric special Frobenius algebra in a tensor
category.

6.1 Statement of problem

Definition 6.1 :

Let C be a modular tensor category with a field k as ground ring, and let {Ui | i∈I } be
representatives of the simple objects.

(i) A choice of field data consists of
a finite dimensional k-vector space φij for each pair i, j ∈ I, the bulk field degeneracy spaces
a set B, the set of boundary conditions
for each k ∈ I and each pair a, b ∈ B, a finite dimensional k-vector space ψk,ab, the boundary

field degeneracy spaces.

(ii) A topological world sheet X is a compact, two-dimensional manifold, also denoted by X
(which may have non-empty boundary and may be non-orientable), together with a finite,
unordered set of marked points and an orientation or(∂X) of its boundary. A marked point is
either

a bulk insertion, that is, a tupel Φ = (i, j, φ, p, [γ], or2(p)), where i, j ∈ I, φ ∈ φij, p ∈ X\∂X,
[γ] is an arc-germ with γ(0)=p and or2(p) is an orientation of a neighbourhood of p ∈ X.

a boundary insertion, that is, a tupel Ψ = (a, b, k, ψ, p, [γ]) where a, b ∈ B, k ∈ I, ψ ∈ ψk,ab,
p ∈ ∂X and [γ] is an arc-germ with γ(0)=p. There has to be a representative γ of [γ] which is
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a subset of ∂X.
No two bulk or boundary insertions are allowed to be at the same point of X. If two boundary
insertions Ψ1 = (a, b, k, ψ1, p1, [γ1]) and Ψ2 = (c, d, l, ψ2, p2, [γ2]) are adjacent and Ψ1 is “after”
Ψ2 w.r.t. or(∂X),

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �a

b c
dΨ1 Ψ2

(6.1)

then we require b = c. If there is a connected component of ∂X without boundary insertions,
it gets labelled by an element of B.

(iii) An oriented topological world sheet X is topological world sheet X together with an orien-
tation or2(X) of X. For a bulk insertion Φ = (i, j, φ, p, [γ], or2(p)), or2(p) is required to agree
with or2(X). Also, or2(X) induces an orientation of ∂X via the inward pointing normal, which
is required to agree with or(∂X).

Remark 6.2 :

(i) If V is a rational chiral algebra and C = Rep(V), then the space of bulk fields is given by
(4.7) with Zij = dimC φij. In particular, according to (4.19), the matrix Z so obtained should

commute with S and T , or, equivalently, with Ŝ and T̂ (see Remark 4.1).

(ii) Here are two examples of topological world sheets, a two-point function on the sphere and
a two-point function on the disc

XS2(Φ,Φ′) =

Φ

Φ′

xy

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

XD(Ψ,Ψ′) =

Ψ

Ψ′

a b
x

y

(6.2)

(iii) The topological world sheet is the analogue of the world sheet Xg as defined in sections 2.5
and 2.6. For example, the arc-germ entering the data of a marked point is what remains of the
germ of local coordinates on a Riemannian world sheet.

The double of a topological world sheet is defined in complete analogy with the Riemannian
case (4.9).

Definition 6.3 :

The double X̂ of a topological world sheet X is the orientation bundle over X divided by an
equivalence relation,

X̂ = Or(X)/∼ with (x, or2) ∼ (x,−or2) for x∈ ∂X , (6.3)
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together with a finite collection of marked points and a choice of Lagrangian subspace of
H1(X̂,R). The marked points on X̂ are obtained as follows.

Every boundary field insertion Ψ = (a, b, k, ψ, p, [γ]) on X gives rise to a marked point (p̃, [γ̃], Uk,+)
on the double. Here p̃ = [p,±or2] and [γ̃] is obtained by choosing a representative γ: [−δ, δ]→ ∂X
of [γ] which lies in ∂X; a representative γ̃: [−δ, δ]→ X̂ of [γ̃] is then given by γ̃(t) := [γ(t),±or2]
(compare to section IV:3.2).

Every bulk field insertion Φ =
(
i, j, φ, p, [γ], or2(p)

)
gives rise to two marked points (p̃i, [γ̃i], Ui,+)

and (p̃j, [γ̃j], Uj,+) on the double X̂. Here p̃i = [p, or2(p)], p̃j = [p,−or2(p)], and similar for γ̃i(t)
and γ̃j(t) (compare to section IV:3.3).

Finally, the relevant Lagrangian subspace of H1(X̂,R) is given above remark II:3.1. The so-
defined double X̂ is an extended surface.

An isomorphism f : X→ Y of topological world sheets is defined similar to an isomorphism
of extended surfaces (see section 3.6), i.e. it is a (degree one) homeomorphism f from X to Y
compatible with the marked points as well as with orientation and labelling of the boundary
components. An isomorphism of oriented topological world sheets is in addition orientation
preserving.

An isomorphism f : X → Y induces an isomorphism f̂ : X̂ → Ŷ between the doubles of X
and Y via

f̂
(
[x, or]

)
= [f(x), f∗(or)] , (6.4)

where f∗ denotes the push-forward of the local orientation or at x ∈ X via f . Recall that as an
isomorphism of extended surfaces, f̂ in turn induces an isomorphism (f̂)] between state spaces
of a 3dTFT, see section 3.6.

We have now gathered all the necessary notation to state the two problems to which we
would like to find solutions.

Problem 6.4 :

Given a modular tensor category C, find a choice of field data {φij,B, ψk,ab} and an assignment

C : X 7−→ C(X) ∈ H(X̂) , (6.5)

for any topological world sheet X. Here H(X̂) is the k-vector space assigned to the extended
surface X̂ by the 3dTFT (Z,H) constructed from C. The assignment C must have the following
five properties.

(i) (Non-degeneracy of the bulk two-point function) For every non-zero bulk insertion Φ there
exists a bulk insertion Φ′ such that C

(
XS2(Φ,Φ′)

)
6= 0. The worldsheet XS2(Φ,Φ′) is the one

given in (6.2).

(ii) (Non-degeneracy of the boundary two-point function) For every non-zero boundary insertion
Ψ there exists a boundary insertion Ψ′ such that C

(
XD(Ψ,Ψ′)

)
6= 0. The worldsheet XD(Ψ,Ψ′)

is given in (6.2).

(iii) (Covariance under isomorphisms) Let X,Y be two topological world sheets and f : X→ Y
an isomorphism of topological world sheets. Then (f̂)] ◦C(X) = C(Y).

(iv) (Factorisation of bulk correlators) Let Aε be an annulus of width 2ε as in section 2.4. For
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any continuous injection u : Aε → X s.t. the image of u does not contain any marked point of
X we have

C(X) =
∑
α,β

Ubulk
α,β Gbulk

u,αβ

(
C(Γbulk

u,αβ(X))
)
, (6.6)

(The various ingredients will be briefly explained below, for details see [FFRS].)

(v) (Factorisation of boundary correlators) Let Iε = [−1, 1] × [−ε, ε] for some ε > 0. For any
continuous injection u : Iε → X, s.t. the image of u does not contain any marked point of X,
and s.t. the images of {−1} × [−ε, ε] and {1} × [−ε, ε] are subsets of ∂X, we have

C(X) =
∑
α,β

Ubnd
α,β Gbnd

u,αβ

(
C(Γbnd

u,αβ(X))
)
. (6.7)

(The same comments as in (iv) apply.)

Remark 6.5 :

(i) Clearly, the factorisation conditions (iv), (v) are the most complicated of the above re-
quirements. The precise statement of all ingredients is somewhat lengthy and can be found
in [FFRS].
In words, Γbulk

u,αβ(X) is a new world sheet obtained from X by cutting X along the image of
the unit circle under u and gluing half-spheres to the resulting holes. The two half-spheres
carry bulk field insertions Φα and Φβ, respectively. Here, {Φα} denotes a basis of bulk fields
and in the sum, α and β run over the index set for this basis. Denoting X′ = Γbulk

u,αβ(X),

Gbulk
u,αβ : H(X̂′) → H(X̂) is a linear map obtained by applying Z to a certain cobordism analo-

gous to the one in the formulation of the factorisation property in section 3.6. The Ubulk
α,β ∈ k

are related to the inverse of the two-point function on the sphere (which exists due to condition
(i)). The meaning of the various objects in (v) is similar.

(ii) Condition (iii) above implies in particular invariance under the action of the mapping class
group of the world sheet X, as can be seen by restricting (iii) to the case X = Y.

(iii) The factorisation conditions are the analogue of the factorisation of correlators in the
complex-analytic formulation as sketched in (2.23).

In the formulation Problem 6.4, the world sheet X was allowed to be orientable or non-
orientable. One can also formulate an analogous problem by restricting to oriented world
sheets. This is consistent, because the applying the cutting procedure in conditions (iv), (v) to
an oriented world sheet does again produce an oriented world sheet (while, on the other hand,
it would not be consistent to restrict oneself to non-orientable world sheets).

Problem 6.6 :

Solve the Problem 6.4 with the following modifications. The topological world sheet X in (6.5)
is required to be oriented. The isomorphism f in (iii) has to be orientation preserving. The
embeddings u in (iv) and (v) are required to be orientation preserving.

Clearly, solving Problem 6.4 in particular provides a solution for Problem 6.6. However,
not every solution of 6.6 can be extended to a solution of 6.4. This is also displayed clearly
in the construction of sections 6.3 and 6.4 below, where a symmetric special Frobenius algebra
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provides a solution for Problem 6.6, while according to [II], for Problem 6.4 we need a symmetric
special Frobenius algebra with reversion, i.e. a Jandl algebra.

Let us call a solution (U , C) of Problem 6.4 a set of correlators for the chiral data C and a
solution of Problem 6.6 a set of oriented correlators for the chiral data C.

6.2 Appearance of Frobenius algebras

Below we will only treat Problem 6.6, the analogous steps for Problem 6.4 are explained in [II]
and [IV], while the proof that the conditions (i)–(v) are satisfied is given in [FFRS].

The ansatz for C formulated below requires the specification of a symmetric special Frobe-
nius algebra in C. It turns out that one can extract such a Frobenius algebra from any solution
C to Problem 6.6. In fact, one gets one such algebra for every element of B. Let us have a
brief look how this works (this amounts to what is said in section I:3.2, using the language of
operator product expansions in CFT).

Let {φij,B, ψk,ab} and C be a solution to Problem 6.6. Pick your favourite boundary con-
dition a ∈ B. As an object in C, the Frobenius algebra will be given by

A =
⊕
k∈I

U
⊕ dimk ψk,aa

k . (6.8)

We can then identify ψk,aa ∼= Hom(Uk, A). Next consider a world sheet X given by a disc with
three boundary insertions Ψi = (a, a, ki, ψi, pi, [γi]), i = 1, 2, 3. To this, C assigns an element
C(X) in the space of states for an sphere with three marked points (Uk1 ,+), (Uk2 ,+) and
(Uk3 ,+), which by construction of the 3dTFT is isomorphic to Hom(Uk1 ⊗Uk2 ⊗Uk3 ,1). We
determine an element c ∈ Hom(A⊗A⊗A,1) by requiring that C(X) = c ◦ (ψ1⊗ψ2⊗ψ3) ∈
Hom(Uk1 ⊗Uk2 ⊗Uk3 ,1). Repeating this construction for a disc with one and two insertions
yields elements ε ∈ Hom(A,1) and g ∈ Hom(A⊗A,1).

The morphism ε will be the counit of the Frobenius algebra A. Since g is non-degenerate
by requirement (ii) on C, it provides an isomorphism φ−1 ∈ Hom(A∨, A). This isomorphism
can be used to construct morphisms m ∈ Hom(A⊗A,A) and ∆ ∈ Hom(A,A⊗A) from c, as
well as η ∈ Hom(1, A) from ε. For example, g and c are then related to m and ε via g = ε ◦m
and c = ε ◦m ◦ (m⊗ idA).

One now has to verify that (A,m, η,∆, ε) is a symmetric Frobenius algebra. Associativity,
coassociativity and the Frobenius property (5.6) can be derived by applying condition (v) to
cut a four-point function on the disc into two sets of three-point functions on the disc. The
unit and counit property also follows from (v), this time by using it to cut a two-point function
on the disc into a three-point and a one-point function.

Specialness of A is a little more tricky. Here one has to pass to a world sheet which has the
topology of an annulus with one insertion of a boundary field, cf. the argument in I:3.2.

The outcome of this rather sketchy presentation is that each choice of a ∈ B allows us to
extract a special symmetric Frobenius algebra A from C. Turning the argument around, it is
a reasonable ansatz to start from such an algebra and try to construct a choice of field data as
well as an assignment C which then gives a solution to Problem 6.6.
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6.3 Choice of field data

In the remainder of this text we want to understand how a choice of field data and an assignment
X 7→ C(X) for oriented topological world sheets can be obtained from a symmetric special
Frobenius algebra A. As starting point, we will define a choice of field data in terms of natural
quantities obtained from A. To do so, we will need a little more notation (cf. section IV:2.2).

Definition 6.7 :

Let C be a braided tensor category and A an algebra in C. Given an object U of C and an
A-bimodule X = (Ẋ, ρl, ρr), we define the A-bimodules U ⊗±X as

U ⊗+X := (U⊗Ẋ, (idU⊗ρl) ◦ (c −1
U,A⊗idX), idU⊗ρr) and

U ⊗−X := (U⊗Ẋ, (idU⊗ρl) ◦ (cA,U⊗idX), idU⊗ρr) ,
(6.9)

Similarly the bimodules X ⊗±U obtained by tensoring with U from the right are defined as

X ⊗+ U := (Ẋ⊗U, ρl⊗idU , (ρr⊗idU) ◦ (idX⊗cU,A)) and

X ⊗− U := (Ẋ⊗U, ρl⊗idU , (ρr⊗idU) ◦ (idX⊗c−1
A,U)) .

(6.10)

In graphical notation, the left/right action of A on U ⊗±X and X ⊗± U reads

A U⊗+X A

U⊗+X

A U⊗−X A

U⊗−X

A X⊗+U A

X⊗+U

A X⊗−U A

X⊗−U

(6.11)

The bimodules defined above are related to α-induced bimodules (see section 5.4) via α±A(V ) =
A⊗± V .

If C is semisimple and A is special Frobenius, then CA is semisimple [FuS, Proposition 5.24].
Also, for A special Frobenius, every A-module is submodule of an induced module [FuS, Lemma
4.15], so that if C only has finitely many isomorphism classes of simple objects, then so has CA.
In our case C is modular, so that indeed |I|<∞. Let {Mµ |µ∈J } be a choice of representatives
for the finite set of isomorphism classes of simple left A-modules.

Definition 6.8 :

Let A be a symmetric special Frobenius algebra in a modular tensor category C. The choice of
field data UA is given by taking the set of boundary conditions B(A) to be a set of representatives
of isomorphism classes of A-modules, i.e. B(A) ∼= Z≥0J . For a ∈ B we denote the corresponding
A-module by Ma. Further,

φij(A) = HomA|A(Ui⊗+A⊗−Uj, A) and ψk,ab(A) = HomA(Ma⊗Uk,Mb) . (6.12)
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This does certainly seem ad hoc, but the construction of the assignment X 7→ C(X) below
will let the choice UA appear in a more natural light. For the moment, just notice that as a
special case of Lemma IV:2.2 we have

HomA|A(A⊗− V,A⊗+ U∨) ∼= HomA|A(U ⊗+A⊗− V,A) . (6.13)

Combining this with (6.12) gives

Zij(A) := dimk φij(A) = dimk HomA|A(A⊗− Uj, A⊗+ Uı̄) = Z̃(A)ı̄j , (6.14)

where Z̃(A)kl was defined in (5.31). As pointed out in remark 6.2, the matrix Zij(A) should

commute with the matrices Ŝ and T̂ . This is indeed the case, as follows from Theorem 5.24 (v)
if one uses in addition that Z(A) = CZ̃(A), as well as the fact that [Ŝ,C] = 0 = [T̂ ,C], where
Ckl = δk,l̄ is the charge conjugation matrix.

6.4 The assignment X 7→ C(X)

In this section, A is again a symmetric special Frobenius algebra in a modular tensor category
C. Given an oriented topological world sheet X, we would like to construct an element CA(X) ∈
H(X̂) such that the assignment X 7→ CA(X) gives a set of oriented correlators. The element
CA(X) will be given through the action of the 3dTFT on a particular cobordism MX with
embedded ribbon graph RX, both to be defined below.

The connection manifold MX

Definition 6.9 :

Given a topological world sheet X, the connecting manifold is defined as [FFFS]

MX = X̂× [−1, 1]/ ∼ where ([x, or], t) ∼ ([x,−or],−t) . (6.15)

This definition also applies to unoriented topological world sheets. If X is oriented, as in
our case, the definition of MX simplifies to

MX = X× [−1, 1]/ ∼ where (x, t) ∼ (x,−t) for all x ∈ ∂X . (6.16)

Thus in words, for oriented world sheets, the connecting manifold is obtained by taking an
interval [−1, 1] above each point of X and “folding” the interval back to itself over the boundary
of X (see (IV:3.12) for an illustration).

In both, the oriented and unoriented case, there is a natural embedding ιX : X ↪→ MX given
by

ιX(x) =
[
[x,±or], 0

]
, (6.17)

and the boundary of MX is just the double X̂ (as a manifold)

∂MX =
(
X̂×{1} t X̂×{−1}

)
/ ∼ = X̂ . (6.18)
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Embedded ribbon graph RX

Next, we choose MX to have weight zero and provide it with a ribbon graph RX , turning it into
a morphism MX : ∅ → X̂ of extended surfaces. The construction 6 of RX involves a number of
arbitrary choices, but the linear map Z(MX) : k → H(X̂) will be shown to be independent of
these choices. In steps (i)–(viii) below, we will always think of X as embedded in MX via ιX.

(i) Choose a triangulation T of X which has two- or three-valent vertices and faces with an
arbitrary number of edges – Choice #1. The choice of T is subject to the following conditions.

The boundary ∂X is covered by edges of T .
Two-valent vertices in T are only allowed at marked points of X and every marked point on

X coincides with a two-valent vertex of T .
For a bulk insertion at p with arc germ [γ], there has to be a representative γ of [γ] such that

γ is covered by edges of T (see e.g. figure (IV:4.26))

(ii) On each three-valent vertex in the interior of X place the following fragment of ribbon graph
with three outgoing A-ribbons,

A

A

A

x

y

(6.19)

such that the orientation of X agrees with the one indicated in the figure. There are three
possibilities to do this (rotating the graph) – Choice #2.

(iii) One each edge of T which does not lie on ∂X, place one of the following two fragments of
ribbon graph with two ingoing A-ribbons such that the orientation of X agrees with the one
indicated in the figure – Choice #3.

A A

A Ax

y

x

y (6.20)

(iv) The edges on the boundary ∂X get labelled by elements of B as follows. If an edge e of T
lies on a connected component of X without field insertion, it gets labelled by the element of
B assigned to that boundary component (recall Definition 6.1 (ii)). Otherwise, e lies between
two (not necessarily distinct) boundary insertions. In this case it gets labelled by b = c, using
the convention in figure (6.1).

6 When comparing to [I]– [IV], it has to be taken into account that in [I, II] a slightly different convention
for orientations as in [IV] and the present text has been used. In short, in [I, II] the surface of the embedded
ribbons carries the same orientation as the world sheet, while in [IV] and the present text, it carries the opposite
orientation. More details on the relation between the two conventions are given in section IV:3.1.
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(v) On each edge on the boundary ∂X place a ribbon labelled by Ma, with a the label assigned
to that edge. The orientations of the ribbon core and surface have to be opposite to those of
∂X and X, respectively.

(vi) On each three-valent vertex on the boundary ∂X place ribbon graph fragment

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

x

y

Ma

A

Ma

(6.21)

such that bulk and boundary orientation indicated in the figure agree with those of X. Here
a is the label of the two edges lying on the boundary ∂X, as assigned in (iv) (they have the
same label by construction). Shown in (6.21) is a horizontal section of the connecting manifold
as displayed in figure (IV:3.12). Correspondingly the lower boundary in (6.21) is that of MX

while the ribbons Ma are placed on the boundary of X as embedded in MX. The arrow on the
boundary in (6.21) indicates the orientation of ∂X (transported to ∂MX along the preferred
intervals).

(vii) Let v ∈ ∂X be a two-valent vertex of T and let Ψ = (a, b, k, ψ, p, [γ]) be the corresponding
boundary insertion. At v place one of the two ribbon graph fragments

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �

Ma Mb

ψ

Vk

Ma Mb

ψ

Vk

y

x

y

x

(6.22)

depending on the relative orientation of the arc-germ [γ] and the boundary ∂X, and such that
bulk and boundary orientation indicated in the figure agree with those of X. (The dashed-line
notation refers to the “black” side of a ribbon, see figure (II:3.3)).

(viii) Let v be a two-valent vertex of T in the interior of X and let let Φ = (i, j, φ, p, [γ], or2(p))
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be the corresponding bulk insertion. Place the following fragment of ribbon graph at v,

∂MX

∂MX

x

y

Ui

Uj

A A A
φ

t= 0-plane

x

y

x

z
y

y

x

(6.23)

s.t. the 2-orientation in the t=0-plane and the orientations of the arcs on ∂MX are as indicated
in the figure. (Also, in this picture, the A-ribbons are viewed white side up).

Remark 6.10 :
(i) This is the prescription for oriented world sheets. The modifications necessary in the
unoriented case are described in II:3.1 and IV:3.

(ii) The prescription might seem complicated at first glance, but is in fact rather straightforward
and probably best understood by looking at some examples, such as the topological world sheet
being a torus (section I:5.3), an annulus (section I:5.8), and various correlators on the disc and
on the sphere (sections IV:4.2–IV:4.4).

(iii) The above procedure is analogous to the definition of a two-dimensional lattice TFT in
section 2.3. In fact, a 2d lattice TFT is obtained as a special case when choosing C = Vectf (k).

Definition of CA

As before, we denote by MX also the morphism obtained by taking the connecting manifold
with embedded ribbon graph RX and weight zero. Then Z(MX) is a map k → H(X̂). We
define, for an oriented topological word sheet X,

CA(X) = Z(MX)1 ∈ H(X̂) (6.24)

The ribbon graph RX embedded in MX, as constructed above, depends on the choices made in
steps (i)–(iii). In order for the assignment (6.24) to be well-defined we need to verify that all
choices lead to equivalent ribbon graphs in the sense that the invariant Z(MX) assigned to the
morphism MX : ∅ → X̂ is independent of these choices.
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This independence has been shown in several steps in sections I:5.1, IV:3.2 and IV:3.3 (for
unoriented world sheets one needs in addition section II:3.1). Indeed, independence of the
choices involved was the guiding principle in identifying the correct algebraic objects to be
used in UA and CA( · ). For example,

the two elements in step (iii) are the natural ribbon graph fragments to insert at an edge of
the triangulation. However, there is no preferred choice, and in order to guarantee indepen-
dence of CA( · ) from choice #3, A is required to be symmetric, compare to figures (5.8) and
(5.9).

that all three rotations of the vertex in step (ii) lead to equivalent ribbon graphs follows from
symmetry and coassociativity of A, see (I:5.9) for a figure with the required identity.

any two triangulations can be related by a sequence of fusion and bubble moves, as displayed
in (2.10). That two triangulations related by a single fusion move lead to equivalent ribbon
graphs follows from the various associativity properties of A (i.e. associativity of m, coassocia-
tivity of ∆ and the Frobenius property stating that ∆ is an A-bimodule morphism). If two
triangulations are related by a single bubble move, the corresponding ribbon graphs are equiv-
alent due to A being special.

if the fusion move involves an edge on the boundary, equivalence of the ribbon graphs is guar-
anteed by the representation property of the representation morphism ρMa of the corresponding
A-module Ma, see (I:5.12) for a figure.

to relate any two triangulations in the presence of field insertions, we have to be able to move
the three-valent vertices of the triangulation past the two-valent vertices whose position is fixed
by the marked points. For a marked point on the boundary, this is possible because the mor-
phism ψ inserted in (6.22) is an intertwiner of A-modules, see figure (IV:3.15). For a marked
point in the bulk, the corresponding moves are possible, because the morphism φ in (6.23) is in
HomA|A(Ui⊗+A⊗−Uj, A), with ⊗+ and ⊗− in precisely this order (since an A-ribbon arriving
from the “left” has to under the Ui-ribbon, while an A-ribbon arriving from the “right” as to
stay above the Uj-ribbon, see (IV:3.25) for an illustration).

Solution to problem 6.6

We have following theorem; it was announced in [FuRS] and the details of its proof are presented
in [FFRS].

Theorem 6.11 :

Let A be a symmetric special Frobenius algebra in a modular tensor category C. The choice of
field data UA (as in Definition 6.8) together with the assignment X 7→ CA(X) given in (6.24) is
a set of oriented correlators.

Remark 6.12 :

(i) An instructive example is the case where X is the torus without field insertions. It is treated
in detail in section I:5.3.

(ii) Problem 6.4 can be solved in a similar fashion. In this case the required datum is a Jandl
algebra (Definition 5.10 (iii)). The construction of the ribbon graph for unoriented world sheets
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without marked points is given in section II:3.1. Marked points are then treated in section IV:3.
The statement and proof of the corresponding version of Theorem 6.11 can be found in [FFRS].

(iii) The converse statement “Every solution to Problem 6.6 is of the form (UA, CA)” is an
important open point. We have seen in section 6.2 that the presence of a Frobenius algebra is
immediate. The difficulty lies is showing that this fixes the rest of the structure uniquely, in
particular the correlator of three bulk fields on the sphere.

(iv) Let us call two sets of oriented correlators (U , C) and (U ′, C ′) equivalent if there are iso-
morphisms between the data (φij,B, ψk,ab) and (φ′ij,B′, ψ′k,ab) s.t. for all topological world sheets
X we have C(X) = C ′(X′), where X′ is obtained from X by using the above isomorphism to
relabel boundary conditions and field insertions.
Two non-isomorphic symmetric special Frobenius algebras A and A′ can lead to equivalent
sets of oriented correlators. In fact, it turns out that if A and A′ are Morita-equivalent, then
(UA, CA) and (UA′ , CA′) are equivalent.

6.5 Outlook

After presenting the construction of rational CFT correlators via 3dTFT and symmetric special
Frobenius algebras in braided tensor categories, let us comment on some points in [I]–[IV] not
discussed in this text and on directions for future studies.

A point not mentioned in this text was that apart from conformal boundary conditions, one
can study also conformal defect lines. In the simplest case, these are marked circles on the world
sheet. On the algebraic side they correspond to bimodules of the symmetric special Frobenius
algebra A. We thus have a natural interpretation of A-modules (as boundary conditions) and
A-bimodules (labelling defect lines). It turns out that bimodules are related to group-like and
order-disorder symmetries of the CFT. For further details and references consult sections I:5.10,
II:3.8, III:5 and IV:3.4, as well as [FFRS3].

In chapter 5 we have seen that the categories C(G,ψ,Ω) are useful to construct examples.
Given a modular tensor category, we can consider all invertible objects, i.e. objects U such that
U ⊗U∨ ∼= 1 (cf. section 3.3). The subcategory generated by direct sums of such objects (called
the Picard category in Definition III:2.1) is equivalent to one of the C(G,ψ,Ω). Symmetric spe-
cial Frobenius algebras in a Picard category can be analysed by group-cohomological methods,
and this is the subject of [III]. In the conformal field theory literature, invertible objects are
referred to as simple currents [SY].

Also, the relationship to an approach to euclidean rational CFT based on weak Hopf algebras
[BPPZ, PZ1, PZ2] has not be touched upon in this text; regarding this point, the reader is
referred to [FFRS4].

A pressing point for future studies is to make precise the relation between the complex-
analytic part of the construction of a euclidean CFT and the algebraic part, which is the
subject of [I]–[IV].

Another important aim is to develop tools to address the question of classification of modular
tensor categories and of the Morita classes of symmetric special Frobenius algebras in them.

Using the fact that Davydov–Yetter cohomology of the pair M, C can be expressed in
terms of Hochschild cohomology of a certain Hopf algebra, it was shown in [ENO] that rational
conformal field theories cannot be deformed within the class of rational conformal field theories.
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Still, it would be highly interesting to study the deformations of CFTs. To this end it is at
least necessary to generalise the approach presented in this text to compact, but not necessarily
rational CFTs.

Altogether, the works [I]–[IV] and [C] represent a significant advance in the understanding
of the structure of CFTs and of the corresponding questions arising in the study of algebras in
braided tensor categories, and provide many relevant directions for further research.
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[BEK3] J. Böckenhauer, D.E. Evans, and Y. Kawahigashi, Longo--Rehren subfactors arising from
α-induction, Publ. RIMS 37 (2001) 1 [math.OA/0002154]

[B] R.E. Borcherds, Vertex algebras, Kac--Moody algebras, and the monster, Proc.Natl. Acad.
Sci. USA 83 (1986) 3068

[BMT] D. Buchholz, G. Mack, and I.T. Todorov, The current algebra on the circle as a germ of local
field theories, Nucl. Phys. B (Proc. Suppl.) 5B (1988) 20

62



[BFV] R. Brunetti, K. Fredenhagen, and R. Verch, The generally covariant locality principle – A new
paradigm for local quantum physics, Commun. Math. Phys. 237 (2003) 31 [math-ph/0112041]

[CIZ] A. Cappelli, C. Itzykson, and J.-B. Zuber, The A-D-E classification of minimal and A
(1)
1

conformal invariant theories, Commun. Math. Phys. 113 (1987) 1
[C1] J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240 (1984) 514
[C2] J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.

B 270 (1986) 186
[C3] J. L. Cardy, Conformal Invariance And Statistical Mechanics, in: Les Houches Summer School

(1988) 169.
[CR] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebra

s (Wiley Interscience, New York 1962)
[DM] P. Deligne and J.S. Milne, Tannakian categories, Springer Lecture Notes in Mathematics 900

(1982) 101
[DMS] P. di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory (Springer Verlag, New

York 1996)
[D] R. Dijkgraaf, A geometrical approach to two-dimensional conformal field theory , Ph.D. thesis

(Utrecht 1989)
[DLM] C. Dong, H. Li, and G. Mason, Modular-invariancece of trace functions in orbifold theory and

generalized moonshine, Commun. Math. Phys. 214 (2000) 1 [q-alg/9703016]
[DHR] S. Doplicher, R. Haag, and J.E. Roberts, Fields, observables and gauge transformations I ,

Commun. Math. Phys. 13 (1969) 1
[DR1] S. Doplicher and J.E. Roberts, Endomorphisms of C∗-algebras, cross products and duality for

compact groups, Ann. Math. 130 (1989) 75
[DR2] S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. math. 98

(1989) 157
[EM] S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and homotopy theory

I–IV , Proc.Natl. Acad. Sci. USA 36 (1950) 443, 657, 37 (1951) 307, 38 (1952) 325
[ENO] P.I. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, preprint math.QA/0203060
[EP] D.E. Evans and P.R. Pinto, Subfactor realisation of modular invariants, Commun.Math. Phys.

237 (2003) 309 [math.OA/0309174]
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