Institute of Architecture of Application Systems
University of Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Masterarbeit

Quantum-enhanced Machine
Learning in the NISQ era

Marco Radic
Course of Study: Informatik
Examiner: Prof. Dr. Dr. h. c. Frank Leymann
Supervisor: Daniel Vietz, M.Sc.
Commenced: April 29, 2019

Completed: October 29, 2019

Abstract

Quantum computation technologies have reached a new level of sophistication with the release
of the first commercial offerings. Likewise, Machine Learning is popular for use-cases in both
industry and research. With Quantum Machine Learning, one hopes to combine both areas in a
symbiotic relationship to achieve an advantage in artificial intelligence with the use of quantum
technologies. Recently presented approaches make use of quantum technologies in combination
with classical hardware resources in order to mitigate the problems imposed by shortcomings of
quantum computers of the current generation. Some of these approaches use quantum circuits
with free parameters, which are optimized to solve problems and objectives in Machine Learning.
This work presents a concept for automated modelling of these quantum circuits, with the goal
of constructing suitable circuits for the task of classification. The concept is implemented in a
prototype and validated in experiments.

Kurzfassung

Mit der Veroffentlichung der ersten kommerziellen Angebote haben Quantencomputer-Technologien
einen neuen Reifegrad erreicht. Ebenso erfreuen sich Machine Learning-Verfahren groem Interesse
aus Forschung und Industrie. Mit Quantum Machine Learning erhofft man sich, diese beiden Felder
symbiotisch zu vereinen, um einen Vorteil im Bereich kiinstlicher Intelligenz durch den Einsatz
von Quantentechnologien zu erreichen. Kiirzlich vorgestellte Ansétze behandeln den Einsatz
von Quantencomputern in Kombination mit klassischen Hardwareressourcen, um Nachteilen der
aktuellen Generation von Quantencomputern entgegenzuwirken. Einige dieser Verfahren nutzen
Quantenschaltkreise mit freien Parametern, welche mit klassischen Optimierungsverfahren auf
Machine Learning-Probleme abgestimmt werden. In dieser Arbeit wird ein Ansatz vorgestellt,
welcher die Modellierung dieser Quantenschaltkreise dynamisch iibernimmt, mit dem Ziel, geeignete
Schaltkreise fiir die Klassifikations-Aufgabe zu konstruieren. Der Ansatz wird prototypisch
implementiert und mit Experimenten validiert.

Contents

1 Introduction

2 Foundations

2.1 Quantum Computationo e
2.2 Machine Learning
2.3 Quantum Machine Learning L.

3 Related Work

3.1 Quantum Circuit Structure e
3.2 Neural Architecture Search for Deep Learning
33 Summary L e e e e e e
4 Approach
4.1 Data Acquisition
4.2 Data Quantum Embedding L.
4.3 Circuit Structure Search e
4.4 Final Classifier Construction

5 Validation
5.1 Implementation
5.2 Experiments

6 Conclusion and Future Work

6.1 Conclusion e
6.2 Future Work e
Bibliography

13

15
15
21
26

35
35
36
37

39
39
40
40
45

47
47
50

55
55
55

57

List of Figures

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8

29

2.10

2.11

4.1
4.2

4.3

5.1
5.2

53

54

Iustration of the Bloch sphere, adapted from [NCO0]. A quantum state |y) is a
point on the depicted sphere Lo
Common gates used in quantum circuits, listed with their description, gate symbol
and unitary transformation that they implement
Circuit that prepares the Bell state |®*) in Eq. 2.8 from the ground state |00)
Hierarchical ontology of Machine Learning and its main subfields
Generic Reinforcement Learning Agent-Environment-loop, adapted from [SB98]
General Neural Architecture Search method illustrated with the main tasks, adapted
from [EMHI9] e
Quantum Machine Learning typology table, adapted from [ABGO6]
State preparation circuit that encodes a datapoint x € R¢ into the amplitudes of the
[0Y® State
Generic variational circuit for classification consisting of a state preparation layer, a
parametrized model circuit structure and a measurement for a classification result
Hybrid training scheme for variational quantum circuits adapted from [SBSW18].
Here, QPU denotes a Quantum Processing Unit, which describes any quantum
computation resource that can execute quantum circuits, including simulations.
Layer cells building blocks proposed by Schuld et al. [SBSW18]. These layers are
repeatedly placed to construct a circuit structure with free parameters

Sequence diagram for the general workflow of the end-to-end approach
Workflow of the approach (left) with their respective outputs and detailed illustration
of the Circuit Structure Searchstep
Generic quantum circuit for classification composed by a state preparation circuit
Sy(x)» a stack of layer blocks L, .., L,, and a measurement operation.

Conceptual architecture for the prototype
Conceptual illustration of the modified Q-Learning update procedure using a replay
memory. 1: Trajectories are generated using the current Q-value estimates and
stored in a replay memory. 2: Trajectories are randomly sampled from the replay
memory for updates of the value function
Accuracy (left) and circuit depth (right) plotted over time for different values of vy.
The plots are smoothened using a moving average with window size 40 for accuracy
and window size 10 for circuitdepth.
Most common circuit structures generated by the agent after € was set to 0.05 for
various valuesof y L L

16
19
19
21
22

25
26

29

30

32

33

39

41

41

47

48

List of Tables

5.1 Schedule for the value of & over the entire training procedure

List of Algorithms

2.1 Q-Learning e

11

1 Introduction

When the idea of using quantum systems for computation was first introduced by Feynman [Fey82],
it was merely a theoretical concept to improve the simulation of physical systems. In recent years,
the research field has seen a jump in activity and interest with the first commercial offerings of
quantum computers reaching the market [LMR+17]. Although this marks a milestone for the
field, existing devices have several shortcomings that separate them from fully utilizing their
capabilities for a quantum advantage. It is hypothesized that it will take at least several years for the
hardware to overcome these shortcomings. Quantum devices of this generation are labeled as noisy
intermediate-scale quantum (NISQ) [Pre18]. In order to suit the capabilities of NISQ devices, a
new group of quantum algorithms have been explored in research. By combining computational
advantages of quantum hardware along with classical computation in specialized hybrid-algorithms,
shortcomings of either computing paradigm can be mitigated and quantum computers have the
potential to become of interest for industry applications in the near future [MRN+17].

Especially Machine Learning, which experiences popularity in research and industry, is considered
to be an area where specialized quantum hardware could soon lead to an advantage. In recent
times, several algorithms were proposed, which rely on incorporating quantum computation in a
hybrid setting, combined with classical optimization to realize Machine Learning models using
quantum resources of the current generation. To train the models, parametrized quantum circuits
are constructed and then optimized by incorporating classical hardware and optimization methods
to suit a particular use-case, for example performing classification on a dataset. When designing
quantum circuits, special considerations have to be made in order suit to currently available NISQ
devices. As such, circuits should be performing as few operations as possible, in order to guarantee
the most reliable computation that is currently possible. Furthermore, these short, low-depth circuits
are also best suited for error correction schemes [TBG17]. The search for a suitable circuit structure
is mostly manual, time consuming and does not always follow systematic procedures. This is similar
to the shortcomings of finding neural network architectures in Deep Learning. Oftentimes, better
performing network architectures are found by manually tweaking existing architectures, running
time consuming training and comparing the models. In order to systematically automate this search
procedure for Deep Learning, but also other fields of Machine Learning, the research field for
automated Machine Learning gained traction in the past years [THHL13]. By leaving the search for
suitable architectures, settings and hyperparameters up to an automated procedure, non-domain
experts can focus on problem solving. This is desirable especially in the context of the complexity
quantum computing theory.

To this end, we present an approach that applies concepts from automated Machine Learning to
parametrized quantum circuits used for classification tasks. Instead of using fixed circuits structures,
different structures are systematically explored with the goal of generating the most-suitable quantum
circuit. It eliminates the complexity of manually designing quantum circuits to realize Machine

13

1 Introduction

Learning use-cases with quantum hardware and hopefully can accelerate the adoption of quantum
computers for real-world applications. We validate our approach in experiments that were conducted
using a prototypical implementation.

Outline

The remainder of this work is divided into the following Chapters:

Chapter 2 — Foundations: Here, necessary foundational knowledge for quantum computation and
Machine Learning is introduced.

Chapter 3 — Related Work: Related research for dynamic quantum circuit generation and auto-
mated Machine Learning is presented and differences to our work are discussed.

Chapter 4 — Approach: This Chapter presents our approach and constitutes the main part of this
work.

Chapter 5 — Validation: The prototypical implementation is presented. Furthermore, it is used to
validate the approach in an experimental setting.

Chapter 6 — Conclusion and Future Work: Provides a summary of the work and gives conclusive
remarks, along with an outlook to future work.

14

2 Foundations

This Chapter establishes the foundations necessary to follow the remainder of this work. The basics
of quantum computation are introduced, followed by a general overview of Machine Learning,
where Supervised Learning and Reinforcement Learning are touched upon followed by a brief
introduction into methods of automated Machine Learning. Eventually, the emerging discipline of
Quantum Machine Learning is introduced.

2.1 Quantum Computation

The following section aims to describes the basics of quantum computation, starting with the
definition of a qubit, up to performing arbitrary computations using a system of qubits and
manipulations of said system. Unless noted otherwise, the content of this section is based on the
standard textbook on the topic by Chuang and Nielsen [NCOO0].

2.1.1 Introduction

Quantum computation describes a computational paradigm where phenomena from quantum
mechanics are used to perform arbitrary computations on so-called qubits. When this idea was first
introduced [Fey82], no actual physical realization was in sight. Moreover, for years it was not clear
whether a quantum computer would ever be built. Nonetheless, research sparked many subfields of
quantum computation and quantum information. With recent progress in research and development,
the first commercially available quantum computing systems became available.

2.1.2 Qubits

A qubit, or quantum bit, mathematically describes the state of a quantum system. In comparison, a
classical bit also describes the state of a system. The states of a classical bit are limited to O and 1.
A qubit can represent these states, as vectors in Dirac notation, as |0) and |1) respectively. In the
standard basis, we can write out these vectors as

M=By|w=m o0

15

2 Foundations

In the following, we will assume the |0) and |1) vectors to be in standard basis at any time. In
addition to the |0) and |1) state, a qubit can be in a superposition of these states:

W) = a|0) + B|1) = [Z] 2.2)

where a, 8 € C with respect to the constraint le) H: 1, which implies |e|*> + |8]> = 1. The values
a and B are called the amplitudes of the |0) and |1) state, respectively. An alternative representation
is given by

W) = e (cos g |0) + &' sing |1>) (2.3)

where ¢ € [0,27],0 € [0, 7]. Because global phase factors of a quantum system are not measurable,
e and subsequently y can be dropped. Equation 2.3 can therefore be simplified to

ly) = cosg |0) + €' sing 1) (2.4)

With the two remaining degrees of freedom ¢ and 6, the state of a single qubit can be visualized as
a point on the Bloch sphere, which is depicted in Figure 2.1. It is considered particularly useful for
human interpretation of the state of a single qubit, as a state that changes over time can be observed
as a moving point on the sphere.

2 =(0)

2 =)

Figure 2.1: Illustration of the Bloch sphere, adapted from [NC00]. A quantum state |i/) is a point
on the depicted sphere

Systems with Multiple Qubits

Multiple systems of single qubits {|y1) ... |¥n,)} can be combined into a system of multiple
qubits |¥'), where

16

2.1 Quantum Computation

V) =) ®...®n) = Y1) ... [¥n) = [Y1...¢n) (2.5)
=a|0...0)+---+apn |1...1) (2.6)

which we call a qubit register of size n. The symbol *®’ describes the Kronecker product, or tensor
product, defined as

AynB ApB - ApB
A®B=| : : (2.7)
AmB ApB -+ A,uB

where A € C™" B € CP*4,

We note that the resulting qubit register |'¥') now has 2" amplitude entries and still satisfies || V) ||= 1,
that is, the squared amplitudes of the system sum up to one. Every amplitude «a; is associated with
a bitstring by € {0, 1}", representing a number between 0 and 2" — 1 in the decimal system. The
value |ax|? can be interpreted as the probability of measuring by and therefore |¥) lends itself to
the interpretation of describing a probability distribution over bitstrings of length n. The notion
of measurement will be touched upon in the following section. From this point of view, quantum
computation can be understood as manipulating the probabilities of measuring a certain bitstring,
which can for example encode a certain result. This core idea is used for many algorithms, especially
the family of algorithms that rely on performing amplitude amplification, such as for example the
Grover algorithm [Gro96] for search in an unstructured set.

Measurement

While qubits can be in a linear combination of states, the so-called superposition of states, these
states cannot by observed. To observe a qubit, a measurement of the qubit has to be performed.
While the set of possible states of a qubit is infinite, the set of measurable states is finite. As
previously mentioned, amplitudes can be associated with the probability of observing a basis state
when measuring in an appropriate basis. This leads to the observation that a single measurement in
general leads to a result that is subject to stochastic variance. In practice, computation followed
by measurement is therefore repeated multiple times, resulting in a probability distribution of
measurement results. The most probable result can then be selected from the distribution following
the maximum likelihood principle.

Entanglement

Up to now, a qubit register can be viewed as the tensor product of single-qubit systems, which is
called separable. A characteristic property of quantum systems is the ability for the system to
evolve into a state that is not separable into its single-qubit systems. We call this state entangled.
An example is the Bell state |®*) with

17

2 Foundations

|00) + |11)

or) = 10

(2.8)

There exist no valid single qubit states |x), |y), such that |®*) = |x) ® |y). Therefore, |®*) is an
entangled state. We note that this state has interesting and illustrative properties for measurement.
Let the outcome of the measurement of the first qubit of |®*) be 0. Then, with certainty, the
second qubit can subsequently only be measured in the O-state too. By measuring one qubit, the
probabilities for measuring the other in a certain state are affected. Entanglement is a characteristic
property of a quantum system and necessary for quantum speedup [JLO3]. That is, a quantum
algorithm on a quantum computer can only gain relevant speedup over a classical computer if
entanglement is used as a resource in the algorithm.

2.1.3 Gate-based computing model

The previous section assumed a qubit or multiple qubits to be in a certain state. Quantum
computation includes manipulating this state in order to perform computation. This is accomplished
by applying transformations to the state. Physically, this is realized by, for example, laser beams.
Omitting further details for the physical realization of quantum computers, we are concerned with
the mathematical abstractions and introduce a standard method of composing, structuring and
visualizing quantum algorithms.

Quantum states are manipulated using unitary transformations. An operator U is unitary iff it
preserves the inner product in a complex Hilbert space /. The operator U is therefore length
preserving and implies the existence of an inverse. This means that every step in a quantum
algorithm and therefore the entire algorithm is reversible, which is another characteristic of quantum
computation.

A general framework for building quantum algorithms is the gate-based circuit model by
Deutsch [Deu89]. One or multiple qubits are manipulated by applying unitary operations in
the form of gates over time. The most commonly used gates in quantum algorithms are listed in
Figure 2.2. The entirety of gates applied over time is called a circuit.

While the unitary operators for single qubits are 2 X 2 complex matrices, the unitary transformation
Uy can be applied to the k-th of n qubits in a register by constructing the unitary transformation

U=Li® - Ui --Ql, 2.9

where [; is the 2 x 2 identity matrix. Similar conditions hold for multiple-qubit-gates, such as the
conditional NOT-gate (CNOT) acting on two qubits.

An example for a circuit is depicted in Figure 2.3. From the initial ground state |y) = |00), an
application of the Hadamard gate on the first qubit leads to

18

2.1 Quantum Computation

1

Hadamard @ E 11]

Pauli-X (o) [(1) é}

o) (71 [0 7]

' 1 0

Pauli-Z (o) [0 —1]
1 000
conditional NOT (CNOT) —¢— 8 (1) 8 (1)
—— o010

Measurement)

Figure 2.2: Common gates used in quantum circuits, listed with their description, gate symbol and
unitary transformation that they implement

|0) D—

0) S

A\

Figure 2.3: Circuit that prepares the Bell state |®*) in Eq. 2.8 from the ground state |00)

W) = %um +[19)® [0) 2.10)

After applying the CNOT gate to the qubits, which is the quantum equivalent to a classical
XOR-operation of two bits, we get the desired state

_100) +11)

2.11
7 (2.11)

ly2) = |@)

In addition to the transformations listed above, a generalized gate can be described by the following
matrix, which performs a rotation around an arbitrary axis:

| eBcosa e?sina
R(a,B,7,¢) = ¢ . . 2.12
(.5,7.¢) —e Vsina e Pcosa ()

19

2 Foundations

The ¢/ and subsequently ¢ can be dropped because its a global phase factor that cannot be
measured.

The rotation operators R, (6), Ry(6), R, () around the main axes are given by:

‘ 0 9 0 _ign?
Re(0) = X2 =cos =1 —isin=Xx = | ~ 2, 072 (2.13)

2 2 —isin3 coszs

. 0 0 9 _sin?
Ry(0) = ¢/? =cos =T —isin=y = |“ 02~ N2 (2.14)

2 2 sing cosy
, 0 0 e 1020
_ i60Z/2 _ . e _

R,(0) = ¢! 12 = cos 51 —isin EZ = [0 o012 (2.15)

2.1.4 Physical Realization in the NISQ-era

DiVincenzo [DiV00] names the following five necessary conditions for the successful implementation
of quantum computation:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial/ground state
3. Long relevant decoherence times, much longer than the gate operation time
4. A “universal” set of quantum gates
5.

A qubit-specific measurement capability

Realizations of quantum computers are currently for example performed using superconducting
circuits, ion traps or quantum dots. While first commercial offerings are available, they do have
shortcomings, not necessarily fulfilling all of the stated necessary conditions. Quantum computation
devices of this era are therefore in summary characterized as noisy intermediate-scale quantum
(NISQ) devices [Pre18]. Characteristical for offerings of existing quantum computers or devices in
the near future are noise, connectivity issues and limited decoherence time [Pre18], which affects
the third necessary condition. Here, noise refers to errors that manipulate or corrupt the quantum
state over time or with the application of gates. As a result, a gate in a quantum circuit might not
perform the expected transformation. The noise properties of a qubit might change over execution
time and vary for every qubit. Decoherence refers to the loss of the ability to steadily remain in
an arbitrary, possibly superposition-, state over time. Current devices have limited decoherence
times. This effectively limits the number of gates that can be applied and therefore the length
of the algorithms that can be executed on the device, before calculations become unreliable. In
addition, the number of qubits made available by the underlying quantum system of a quantum
computer is limited, as devices in the near future are not able to scale well, perturbing the first
condition. Connectivity of qubits, or topology, refers to the connections between physical qubits,

20

2.2 Machine Learning

which are needed to apply multi-qubit gates to them. Currently, devices oftentimes do not offer
full connectivity, which means that intermediary qubit swap routines have to be inserted during
the compilation step of a quantum circuit to run on actual hardware. Specialized efforts towards
error mitigation and NISQ-ready compilation have been made [PZW] [AAA+19] [MBJ+19] in
addition to benchmarking methods [CBS+18], which hopefully accelerate the quality of quantum
computation systems and research for NISQ devices.

2.2 Machine Learning

This section briefly introduces Machine Learning and its different subfields. Unless noted otherwise,
the content is based on [HTFFO05].

Machine Learning

Supervised Unsupervised Semi-supervised Reinforcement
Learning Learning Learning Learning

Figure 2.4: Hierarchical ontology of Machine Learning and its main subfields

Machine Learning describes a subfield of artificial intelligence, where generally data is used to
make decisions and find patterns in unstructured environments. The field is further divided into
four main subfields, as shown in Figure 2.4. Supervised Learning refers to learning from labeled
datasets for tasks such as classification and regression and needs labeled examples, such as a dataset
D = {(xi, yi)}! |, where each datapoint x; is assigned a label y;. Unsupervised Learning describes
learning methods that are suited for datasets that do not have a label available. Example tasks
include dimensionality reduction and clustering. Semi-supervised Learning is mostly concerned
with learning with data that is only partially labeled. Oftentimes, the goals are the same as in
supervised learning, but labelling the entire dataset might not be possible or economically feasible.
In Reinforcement Learning, one or multiple agents act in an environment and learn through active
exploration and exploitation inside the environment from the feedback it provides. Active areas of
research for Reinforcement Learning include robotics and solving complex games [SB98].

2.2.1 Neural Networks

While a throughout description of all important aspects of neural networks and Deep Learning
is out of the scope of this work, we still want to briefly discuss the two relevant core concepts:
layer-based architectures and gradient-based optimization, as they share similarities and partially
acted as an inspiration for variational circuit classifiers, which are the focus of this work. For an
extensive introduction into the field we refer to the textbook by Goodfellow et al. [GBC16]. The
following content is based on [GBC16] and [LBH15].

21

2 Foundations

Firstly, neural networks are composed by neurons and weights which are combined into various
layers. These layers can be of different size and implement different functions, but they have to
be compatible with each other for chaining them together to compute a result. As such, a neural
network can be seen as a stacked sequence of individual layers, without being explicitly concerned
with every single weight that is part of it. In Deep Learning, stacking a high number of layers, along
with nonlinear transformations between them, is successfully used for state-of-the-art methods in
the fields of Computer Vision and Natural Language Processing (NLP).

The second import concept we want to mention is gradient-based optimization. Neural networks
are optimized by minimizing a cost function C. This cost function usually measures how well the
networks predictions on a dataset compare to the true labels. If the cost function is differentiable,
its gradient with respect to the weights can be used to update the weights 6 in such a way, that the
updated values minimize the cost function. This can be summarized in the gradient descent update
rule, which updates the weights 6; € 6 in iteration ¢ + 1 using the weight values from the previous
iteration ¢, and the loss gradient Vo, C(0):

6" — 6" —7v4,C(0) (2.16)

where 7 € [0, 1] is the learning rate. The loss gradient can be computed using the backpropagation
algorithm. As we will see later, this useful optimization can be achieved with quantum circuits, as
the gradient of the circuit with respect to inputs can be evaluated on quantum hardware [SBG+19].

2.2.2 Reinforcement Learning

Agent

state s; reward r; action ay

te—t+1 L Tel

St41 Environment

Figure 2.5: Generic Reinforcement Learning Agent-Environment-loop, adapted from [SB9§]

The term Reinforcement Learning describes a class of methods where one or multiple agents
are placed in an environment for interactive task solving. The research field is influenced by
artificial intelligence, especially robotics, and classical control theory. In the following, we follow
the formalism from the textbook by Sutton et al. [SB98]. First, we introduce the terminology of
Reinforcement Learning:

22

2.2 Machine Learning

Environment and Agent The environment describes the space that a learning agent is placed in
to solve tasks. While the environment can be either simulated or real, the agent is usually following
a strategy that computationally defines how to explore and ’act’ in the environment. The goal of
an agent in an environment is to learn to solve the specified task in the environment. During the
learning phase, it follows a search strategy to explore and learn a strategy to exploit the experienced
knowledge in order to solve the task.

States A state s describes an observable part of the environment that the agent is in. That
description might not necessarily be complete, as the environment might only be partially observable.
For example, a robot tasked with navigating in a room might only have access to a camera image
representing the room and the robots position. Terminal states denote a goal state, after which the
environment usually experiences some kind of reset to an initial state. A terminal state also marks
the end of an episode. The State space S describes the space of all possible states.

Actions When in a state s, an agent can perform an action a from an action space A. This results
in a new state s” € S and a reward signal. From then on, the agent is again tasked with performing
an action, given the state s’. This loop is also illustrated in Figure 2.5. An agents interaction in an
episode with the environment gives rise to a sequence

T = ((So, Ao, R1),(S1, A1, Ry), (2.17)

which is also referred to as a trajectory. For example, a robot tasked with navigating from point A
to B might get a small negative reward of —1 for every part of the trajectory it takes towards point B,
but a huge positive reward of 100 for actually stepping into B, and thus reaching a terminal state
that finishes the trajectory. The rewards therefore encourage the robot to reach B with as few, well
thought-out actions as possible, taking the direct route, as to minimize the potential negative reward
that accumulates from taking detours.

Policy A policy is a learned function that the agent uses to navigate in the environment. For
example, after every step, the previously mentioned robot directing towards a goal point is tasked
with deciding in which direction to navigate next. A policy accomplishes this task. Usually, the
policy is essentially random at the beginning of the learning phase. The agent uses interactions
with the environment in order to estimate a policy that maximizes its expected rewards over time.
Formally, we define a policy 7 to be a function that, conditioned on a state s € S, outputs the
probability of choosing an action a € A.

Vae A,seS:nals)el0,1] VseS: Z m(als) = 1 (2.18)

aceA
The agents goal is to approximate the optimal policy 7* that, starting from any state s;,, chooses
an action a, that maximizes the expected discounted return G, it can expect when following the

optimal policy afterwards:

23

2 Foundations

(o)

Gi = Rt + YR + V' Ris + -+ =) V¥ Rikan (2.19)
k=0

The parameter y € [0, 1] is called discount rate and refers to a measure of how important future
rewards are for the current timestep ¢. Usually, rewards that are farther away in the future are
discounted, as to put more emphasis on rewards that can be collected in the short-term. In order to
construct a policy it can use to base its decisions on, an agent usually keeps track of experienced
rewards for the actions it performs in certain states. Oftentimes, this is accomplished by keeping
track of value estimates, which capture the expected discounted returns for every state-action pair
that is encountered. The state-action value function g, (s,a) formalizes these value estimates for
choosing action a in state s. It is defined as the expected value of returns that can be achieved, when
following a policy =, after choosing an action a in state s:

(o)

Gx(5,a) = Ex [G/|S; = 5,Ar =al =Ex | > V*Reis1|Si = 5.4, =a (2.20)

k=0

Using these state-action value estimates, a policy can be derived. For example, a simple greedy
policy can constructed as follows: for every state s that is encountered, choose the action a € A
which maximizes the state-action value function g(s, a).

Q-Learning

Building on the state-action value function g, the Q-Learning [WD92] algorithm can be used as a
learning agent. As a temporal difference control algorithm, it can be used to iteratively estimate the
state-action action value function Q by modifying previous estimates. When action A, is performed
in state S;, a reward R, is received along with a successor state S;,1. Then, the update to the value
function Q follows the Bellman equation update:

O(S1,Ar) «— Q(S1,A;) +a |Ry1 +ymax Q(Sy41,a) — O(S1, Ar) (2.21)
N , acA
current estimate

weighted update of estimate

where « is the step size and y the discount factor with a,y € [0,1]. Using the value update in
Equation 2.21, the Q-Learning agent strategy can be constructed. The procedure is shown in
Algorithm 2.1. The e-greedy policy acts as follows: with probability €, a random action is chosen,
with probability (1 — &), action argmax, Q(s, a) is chosen for a state s.

24

2.2 Machine Learning

Algorithm 2.1 Q-Learning

procedure QLEarRNING(@ € (0,1],y € (0,1], & > 0)
O(s,a) —0 VseS,aeA
for each episode do
s « initial state of environment
for each step in episode do
a « action following policy derived from current Q, e.g. using e-greedy strategy
r,s’ « take action a in environment // taking action a led to state s’ and reward r
0(s,a) — Q(s,a) + a[r + ymax, O(s’,a) — O(s,a)]
s — s // update current state
end for
if s is terminal then
finish episode
end if
end for
end procedure

architecture a € A

Search Space Performance
Search Strategy Estimation
A Strategy
performance

estimate of a

Figure 2.6: General Neural Architecture Search method illustrated with the main tasks, adapted
from [EMH19]

2.2.3 Automated Machine Learning

The term AutoML, or automated Machine Learning, describes a variety of meta-modelling algorithms
that are concerned with automatic optimization and structure search for hyper- and metaparameters
of Machine Learning models [THHL13]. Depending on the Machine Learning algorithm, different
aspects of the model are subject to manual design and hyperparameters, such as for example
threshold values, learning rates or number of clusters that are predetermined.

Neural Architecture Search (NAS) is a family of AutoML techniques for the automated modelling
neural network structures and hyperparameters, which mainly consists of choosing and appropriate
sequence of neural network layers. When first introduced, the focus was on using evolutionary
algorithms to design neural network architectures [SWE92] [SMO02], while more recent work is
mostly based on Reinforcement Learning [BGRN17][ZL16][LDY]. The process of searching for a
suitable neural network structure for a given dataset in NAS methods can be generally divided into
three components following Elsken et al. [EMH19]:

25

2 Foundations

Search Space The search space is the space of valid network architectures than can be found.
It contains all structures that can be constructed using the available building blocks, rules and
constraints. Oftentimes, the search space is induced by defining a set of valid parts, so-called
layers or cells alongside a set of rules, both of which are usually defined manually and stem from
experience and the observation of previously proposed architectures.

Search Strategy The search strategy defines how the space of network architectures is explored
with the goal of finding well-performing architectures according to measures of performance.
Special considerations in the strategy have to be made to prevent problems such as early convergence,
as the space is usually high dimensional and might have multiple nonoptimal local maxima.

Performance Estimation Strategy The best network architectures are usually those with high
performance and generalization capabilities on test data that was not part of the dataset that was
used for training. While this type of performance evaluation is common, it might impose a burden if
the training process takes too long. Performance estimation allows for the formulation of methods
to evaluate the architectures performance consuming less resources, such as by using parameter
sharing schemes or training on smaller subsets of the data to achieve lower fidelity estimates of the
actual performance.

2.3 Quantum Machine Learning

hardware

cc | CO

information

QC | Q0

Figure 2.7: Quantum Machine Learning typology table, adapted from [ABGO6]

The term Quantum Machine Learning (QML) generally describes the involvement of quantum com-
putation or quantum information in Machine Learning methods [SP18]. It is considered a promising
area of research in the NISQ-era [PBRB18]. Early work was concerned with translating classical
Machine Learning methods to run entirely or mostly on quantum hardware [HHL09] [RML14].
The practicality of those algorithms, especially for near-term devices, is debatable [Aar14]. While
this inspired algorithms on classical hardware to adopt techniques proposed in quantum-related
research [Tan18a] [GLT18] [Tan18b] [CLW], the current focus of research lies on using the inherent
capabilities of quantum computers to an advantage [PBRB18][SFP17], rather than translating
classical work. The involvement of quantum computation and quantum information in Machine
Learning can be categorized in four types according to Aimeur et al. [ABGO06], as displayed

26

2.3 Quantum Machine Learning

in Figure 2.7. Generally, one differentiates between the involvement of quantum and classical
computing resources, and whether the data comes in the form of quantum information or classical
information. This leads to a distinction of four types of Quantum Machine Learning:

CC - Classical Information on Classical Hardware This describes the conventional case, where
classically encoded data, for example in the form of vectors or images, is used to train a model using
exclusively classical hardware. Most research and development in the field of Machine Learning is
focused on this case.

QC - Quantum Information on Classical Hardware Here, the focus is on classical Machine
Learning models that run on conventional hardware, which are fed with quantum or quantum-related
information. Examples include learning from the measurement data of quantum computers, or
performing prediction tasks of physical behaviour of quantum systems [MNK+18]. We note that the
dataset must be made available in data structures on classical hardware, which makes the difference
between QC and CC opaque, at least for the Machine Learning model.

CQ - Classical Information on Quantum Hardware When denoting hardware as quantum, we
do not restrict ourselves to exclusive usage of quantum computers. As described later, the two
types of computing resources can be used in conjunction. Generally, quantum hardware refers to
the involvement of quantum computation resources in the computation or learning process. Much
like in the QC-type, classical information also has to undergo a transformation to be available in a
quantum computer. In theory, all conventional Machine Learning tasks can also be accomplished
with the involvement of quantum hardware, provided that the quantum hardware can scale along
with classical hardware.

QQ - Quantum Information on Quantum Hardware In the special case of quantum-related
datasets that use quantum hardware for learning, a possibly time-consuming quantum encoding
procedure of classical data might be prevented. This leads to different possible scenarios, such as
for example placing a QML procedure that directly receives inputs from physical experiments in a
superposition state.

We note that this work focuses on the types CQ and to a degree QQ. That is, we do not assume the
data to be originating from either a classical or quantum source. Furthermore, we are concerned
and therefore focus on supervised learning, especially the task of classification.

2.3.1 Data Encoding

In the most general case, classical information in the form of data samples is provided to Machine
Learning models. In the case of classification, a dataset D = {(x;, yi)}f.:1 is provided, where x € R¢
as well as y € R are samples of classical information. We explicitly state here that we assume
datapoints to be vectors over real numbers. As previously mentioned, special consideration has to
be paid to the encoding and representation of data in a quantum computer.

27

2 Foundations

Amplitude Encoding

In this work, we rely on encoding a datapoint into the amplitudes of quantum registers. This
approach of data encoding is called Amplitude Encoding [SBSW18]. In order to properly represent
a datapoint in the state of a quantum registers, consideration has to be paid to the constraints that
a quantum state imposes. A datapoint thus first has to undergo a preprocessing procedure, in
which its dimensions are padded to the nearest higher power of 2, which requires [log, d] qubits.
Here, uninformative padding is preferred, where every datapoint is padded equally. This can be
accomplished using either zero-padding, or padding using a constant ¢ € R. Secondly, a quantum
state has to be of length 1, the padded datapoint therefore has to be normalized. The resulting
vector can then be represented as a quantum state, which needs to be prepared first. Assuming an
initial ground state of |0 . . . 0), there exist procedures on quantum computers to prepare an arbitrary
state [MVBSO04] [SP18]. In the remainder of this work, we consider the state preparation-, or
amplitude encoding-procedure that encodes the i-th dimension of the preprocessed datapoint x into
the i-th amplitude of a quantum register to be provided and denote it as Sy. The visual notation of
the procedure in a quantum circuit is shown in Figure 2.8.

Feature Maps

In addition to necessary preprocessing for amplitude encoding, datapoints can be manipulated
before they are encoded for classification. This includes embedding datapoints into different vector
spaces using feature maps. For example, these mappings allow linear models to linearly separate
data in a higher-dimensional space, which may not be possible in the original space.

Schuld et al. [SBSW 18] propose to use a fensorial feature map in the context of Quantum Machine
Learning. This feature mapping maps a quantum state to a new state that results from applying the
tensor product to multiple copies of the input state:

¢)y [Y)®" neNT (2.22)

A popular example for feature maps in conventional Machine Learning models is the polynomial
feature map, which is comparable to tensorial feature maps [HTFF05]. Feature maps have a strong
relation to so-called kernels, which provide explicit formulas to compute inner products in feature
spaces, without actually performing the feature mapping. This makes them popular in algorithms
such as Support Vector Machines or Gaussian Processes [HTFF0S5].

Data Dimensionality

In the context of NISQ devices, scalability imposes a constraint, especially for Machine Learning
models. Because there is only a limited number of qubits available, datapoints cannot exceed a
certain dimension. To address this issue, there exist several approaches for dimensionality reduction,
such as principal component analysis, neural network autoencoders, slow feature analysis or or
feature hashing [GBC16][KL18][HTFFO05]. While the remainder of this work does not make use

28

2.3 Quantum Machine Learning

0~

Figure 2.8: State preparation circuit that encodes a datapoint x € R? into the amplitudes of the
|0)®" state

of dimensionality reduction techniques, we argue that special consideration has to be paid to the
scalability, as the dimensionality does play a role in the feasibility of QML algorithms for real-world
use-cases.

2.3.2 Hybrid Quantum-Classical Algorithms

With the limitations and constraints of NISQ devices, real-world quantum speedup and scalability
are not to be expected in the near future when relying exclusively on quantum computers, or more
generally Quantum Processing Units (QPU). A promising group of algorithms and methods that
overcome at least some limitations in the NISQ-era are the so-called hybrid Quantum-Classical
Algorithms, or variational quantum algorithms. In general, these quantum algorithms have free
parameters and other tuneable parts that run on quantum hardware, but are (partially) controlled
using classical computation, thus the term hybrid is used. Comparable to other specialized hardware
such as Graphical Processing Units (GPU), in this setting, a QPU is considered as a computational
resource that can be leveraged for certain parts of an algorithm that benefit from the potential
speedup or resource efficiency, while topics such as the main control flow and persistence are
handled by classical hardware. This hybrid setting can therefore mitigate limitations of quantum
hardware, such as decoherence time or scalability. On the other hand, due to the overhead of
communicating and encoding classical to quantum information and vice versa, pure quantum
speedup might be lost due to long processing times.

Another characteristic of variational quantum algorithms are free parameters, such as rotational
degrees of rotation gates, which are optimized towards an objective. This optimization is then
usually carried out on classical hardware and can leverage the full theoretical and practical support
in the form of research and high-efficiency libraries for optimization. Furthermore, due to dynamic
adaptation of the parameters for a specific QPU, the characteristics of the topology and properties of
individual qubits are implicitly taken into consideration during the optimization process. This leads
to more robustness and device-tailored algorithms that, in contrast to standard textbook algorithms,
take into consideration the characteristics of the quantum device that algorithms run on.

29

2 Foundations

An impactful variational quantum algorithm presented is the Variational Quantum Eigensolver
(VQE) [PMS+14]. It can be used to compute the smallest eigenvalue of a Hamiltonian describing a
system, building on the variational principle [SC95]. Another example is the Quantum Approximate
Optimization Algorithm (QAOA) [FGG14], which can be used for combinatorial optimization, such
as for computing the MaxCut of a graph.

2.3.3 Variational Circuit Classifier

With the recent shift in focus for the research community towards "NISQ-ready” quantum algorithms,
several proposals for the usage of parametrized quantum circuits for classification have been
made [SBSW18] [FN18] [HCT+19] [MNKF18]. The general approach is generally referred to
as a Variational Circuit Classifier, Quantum Neural Networks or Quantum Circuit Learning. An
overview for various approaches and techniques is provided in [BLS19]. We follow the nomenclature
and framework presented by Schuld et al. [SBSW18] in the following description. Furthermore, we
limit the scope of this work to binary classification, which discriminates data between two classes.

0y H A=)
0 — _

Sy uo)

- H -
0) |- -

Figure 2.9: Generic variational circuit for classification consisting of a state preparation layer, a
parametrized model circuit structure and a measurement for a classification result

The variational circuit classifier describes a parametric quantum-classical hybrid computation
model, in which the free parameters of a parametrized circuit are optimized to minimize an object
function using gradient-based optimization on classical hardware in order to solve a classification
task using labeled samples of an underlying distribution.

Classification

An illustration for the general structure of a variational circuit is depicted in Figure 2.9. In order
to classify a datapoint x € R? using the classifier, it is preprocessed and encoded in the quantum
circuit, for example using amplitude encoding. The resulting quantum state is ¢(x). The remainder
of the quantum circuit contains gates, of which a nonempty subset contains free parameters 6; € 6.
Common parametrized gates are rotation and controlled-rotation gates, which perform a rotation
operation on the target qubit iff the control-qubit is set. The entirety of the parametrized unitary
U(0) acts on ¢(x), resulting in the state ¢’(x) = U(0)¢(x). In the end, a measurement on ¢’(x)
is performed to obtain classical information. In the case of binary classification, without loss of

30

2.3 Quantum Machine Learning

generality, the classification can be realized by measuring the first qubit ¢; in the o, measurement
basis. The probability of observing the first qubit in state |1) is then interpreted as the probability
p(q1 = 1, x;6) of datapoint x belonging to a class y, which is the sum of squared amplitudes of the
states in which the first qubit is set to 1:

”
plgr=1Lx0)= > 1@ @k? (2.23)

k=2n-141

Together with a bias parameter b € R that is added during classical postprocessing

n(x;0,b) =p(qy = 1,x;0)+ b (2.24)

the result can then be thresholded by a function f that assigns a class label to x;:

x:6) = {1 if 7(x;6,b) > 0.5 (225

0 else

Optimization

Optimization of the classifier happens in an iterative hybrid-setting, illustrated in Figure 2.10, as the
parameters 6, including the bias parameter b, are controlled by classical hardware. The goal of the
training process is to optimize values for the parameters that minimize the classification error for a
dataset . Comparable to training the weights of deep neural networks, the free parameters start
out with random values or are determined by educated guesses [GB10]. The performance using the
current parameter values on the data is then assessed by calculating the error of the results compared
to the labels. This is achieved by using a so-called loss function, for example the mean-squared
error function (MSE). Using gradient information of the circuit, the parameters are updated with
the aim of minimizing the loss function for the next iteration. Gradients of quantum circuits can be
computed according to a differentiation scheme presented by Schuld et al. [SBG+19]. Because
parameters are stored and optimized on classical hardware, they do not have to be held in a quantum
state. Problems with decoherence times are therefore mitigated, as information is held in classical
storage. Furthermore, the optimization uses gradient information that is evaluated on the quantum
device, which leads to device-specific optimization that takes properties of the individual qubits
such as fidelity of operations and noise behaviour into account.

Circuit Structures
While a variational quantum circuit contains trainable parameters, the general structure, also called

ansatz, of the circuit is predetermined. In their work, Schuld et al. present a circuit structure for n
qubits that consists of repeated placements of the unitary

31

2 Foundations

h\) QPU output p(qo = 1)

input x € R A q

T ‘ gradient

D = {(xi, i)} | ———> optimize & update 6

Figure 2.10: Hybrid training scheme for variational quantum circuits adapted from [SBSW18].
Here, QPU denotes a Quantum Processing Unit, which describes any quantum
computation resource that can execute quantum circuits, including simulations.

U; = CNOT®" o R,(0)®" o Ry(6)®" o R(6)®" (2.26)

after the state preparation procedure to construct U(6). Here, n refers to the number of qubits and
CNOT®" refers to a layer of cascading CNOT gates, defined as:

n—1
CNOT®" =]_[CNOT((i + 1),((i + 1) mod n) + 1) (2.27)
i=0

CNOT((i + 1),((i + 1) mod n) + 1) denotes the controlled NOT operation acting on the

(((i + 1) mod n) + 1)-th qubit conditioned on the (i + 1)-th qubit. It is used to generate entangled
quantum states. A visual depiction of the resulting circuit representation of U; can be seen in
Figure 2.11. To construct U(@), U; is concatenated d times after a state preparation circuit to
construct the parametrized circuit.

32

2.3 Quantum Machine Learning

[
A\

Figure 2.11: Layer cells building blocks proposed by Schuld et al. [SBSW18]. These layers are
repeatedly placed to construct a circuit structure with free parameters

33

3 Related Work

Chapter 2 was concerned with providing foundations necessary for this work. In the following
Chapter we present related work in the field of automated quantum circuit generation. Especially,
approaches for specialized NISQ-ready device-specific quantum circuit compilation are examined.
Furthermore, in order to provide a wider context for existing approaches in Machine Learning
research, several Neural Architecture Search methods are briefly outlined.

3.1 Quantum Circuit Structure

Grimsley et al. [GEBM] propose the Adaptive Derivative-Assembled Pseudo-Trotter ansatz Varia-
tional Quantum Eigensolver (ADAPT-VQE) procedure to dynamically find a shallow circuit with a
preferably small number of parameters by iteratively growing an initially empty circuit structure
and optimizing the Variational Quantum Eigensolver [PMS+14] procedure in a joint manner. In
every iteration, candidate operators from a predefined set of available operators are placed in the
ansatz. Then, the operator with the largest gradient of the energy function with respect to each
candidate operator is selected in a greedy manner until a convergence criterion is met.

Khatri et al. [KLP+18] describe Quantum-assisted Quantum Compiling (QAQC), a variational
hybrid algorithm for dynamically finding a device-specific quantum circuit using a trainable unitary
V for implementing a known optimal target unitary U. They propose to differentiate between the
continuous free parameters of individual quantum gates and the discrete set of gates that make up the
circuit structure. For continuous parameters, gradient-free as well as gradient-based optimization is
used. In order to evaluate the corresponding cost function on the quantum device, they propose to
incorporate the Hilbert-Schmidt-Test (HST). Structural changes of the circuit ansatz are performed
iteratively in a pertubative fashion based on simulated annealing, where an existing circuit is
modified by randomly replacing a subset of gates with new candidate gate structures from a set
of gate structures. If the cost of the newly proposed circuit decreases after optimization of the
continuous parameters, the changes to the circuit are accepted, otherwise they are rejected. This
procedure of structural optimization is performed iteratively until convergence. We note that this
approach attempts to optimize the circuit structure in a greedy manner, without keeping track of
a measure of value or contribution for the subsets of gates. Additionally, the algorithm needs
knowledge a known optimal unitary on an optimal quantum computer, which would paradoxically
imply knowledge about an optimal classification model in the context of variational quantum circuit
classifiers.

The work of Cincio et al. [CSSC18] similarly uses random changes in the gate sequence with
continuous parameter optimization to optimize the circuit structure. Different from QAQC, in
their problem setting, they do not require a known target unitary and rely on labelled samples that
the targeted unitary or circuit would produce instead. This essentially comes down to learning a

35

3 Related Work

circuit structure that solves a regression problem for a given dataset D = {x;, f(x;)}!',, where f is
the function to implement on the quantum computer. We want to point out the similarity to our
approach, in that it aims to construct circuits that solve a supervised learning task. While we focus
on the task of classification in our approach, an extension to the task regression is possible with
modifications.

Ostaszewski et al. [OGB19] present an approach for circuit structure learning that also jointly
optimizes circuit structure as well as rotation angle parameters. Their approach relies on properties
of the expectation value of the Hermitian of a circuit.

The general idea of using Reinforcement Learning for dynamically learning circuit structures has
already been explored by McKiernan et al. [MDAR19] in the context of learning a circuit structure
for solving the MaxCut problem for graphs. Instead of Q-Learning, they propose to use Proximal
Policy Optimization (PPO) [SWD+17], a policy-gradient-based agent strategy using deep neural
networks for function approximation. Furthermore, in order for the agent to generalize to unseen
graph instances, the authors propose to encode a representation of the entire graph into the state
representation of the environment during training. This inherently leads to longer training time for
the agent, because in addition to solving the MaxCut problem using the state representation, it has to
find a generalized representation of the problem representation in the state. The PPO-agent was
trained for approximately 1.7 million episodes on graphs to solve the MaxCut-problem and observed
better performance on average than with a generic QAOA ansatz with p = 1. We want to add to
this that policy-gradient based methods in practice, while considered powerful, are considered
to have a high sample complexity. Additionally, encoding the problem instance into the state of
an environment is not a feasible option for supervised learning, as the model performance highly
depends on the dataset that is provided.

Evolutionary algorithms for circuit modification share characteristics with Reinforcement Learning
approaches. Both have to balance between exploration and exploitation [Dav91] [SB98]. Different
from Reinforcement Learning, evolutionary approaches use a different search strategy, made up
of operations that are inspired by evolution observed in nature. The recent work of Potocek et
al. [PRFC] explores a multi-objective evolutionary approach, applying standard genetic operators
such as but not limited to the insertion, replacement, swapping or deletion of random subsequences
of quantum circuits and applies it to Grover and Fourier Transform.

3.2 Neural Architecture Search for Deep Learning

Baker et al. [BGNR16] use Q-Learning to optimize the structure of image classifiers based
on Convolutional Neural Networks (CNN). In their experiments, tabular Q-Learning compares
favourably to model-free policy-gradient methods when comparing training time in order to generate
high-performing architectures [Bak17].

Zoph et al. [Z1L16] [ZVSL18] similarly generate architectures for CNNs, but generate architecture
sequences using Recurrent Neural Networks (RNN). In their proposed framework, the policy
gradient-method PPO is used for training this sequence generator to output high performing
architectures.

36

3.3 Summary

In a recent approach by Liu et al. [LDY], a framework for differentiable architecture search called
DARTS is proposed. In their formulation, the discrete space of architectures becomes continuous
and differentiable, which allows for gradient-based optimization towards higher performing network
architectures.

3.3 Summary

While device-specific circuit structure generation approaches exist, they mainly rely on essentially
random modifications to existing circuit structures. Such approaches arguably do not scale well to
larger circuits, as they do not memorize the effect of placements of subsets of circuit structures over
time. Our approach systematically links building blocks of a circuit to a value, enabling to first
follow a similar approach to random replacement in an initial, explorative phase, but to later make
use of these memorized value estimates for proposing more suitable circuit structures.

37

4 Approach

Quantum Data Circuit Structure Final Classifier

Data Acquisition Embedding Search Construction

Figure 4.1: Sequence diagram for the general workflow of the end-to-end approach

In this Chapter, we present our approach for the automated generation of variational quantum circuit
structures in an end-to-end manner for supervised learning tasks. We divide the proposed workflow
into four main tasks, as can be seen in Figure 4.1. The tasks range from collecting a dataset,
appropriately preparing the data for use with a variational quantum circuit classifier, to dynamically
exploring circuit structures in order to construct and finally output a well-performing classification
model. The novelty in our approach lies in the fact that circuit structures are systematically explored
using Reinforcement Learning methods following key concepts of Neural Architecture Search,
which aim to estimate the value of parts of the circuit structure. We also show a way to regulate
the depth of explored circuits, which reduces the number of gates and takes decoherence time of
qubits into consideration. This allows for the proposal of shallow-depth circuit structures, which is
highly desirable for near-term devices. The following sections describe every task of the workflow
in detail.

4.1 Data Acquisition

While the performance of any supervised learning task is data-driven and therefore influenced by
the quality and properties of the data that is available, desirable properties for a dataset are difficult
to assess generally. As datapoints are samples of an underlying distribution, in general, enough of
these samples have to be available in order to represent the distribution, as new samples that have to
be classified in the future also originate from it. A dataset O can also undergo transformations
before it is made available to any learning procedure in order to enrich it. For example, domain
expertise can be applied and be used to determine new or enhanced features. Furthermore, in the
context of NISQ devices, the dimensionality of features of a datapoint have to be taken into account.
Because quantum computational systems having scaling limitations in terms of available qubits
in the near term, the datasets that are being considered for use with them have to reflect that. To
mitigate this problem, there exist techniques for dimensionality reduction that can be applied here.
Finally it is to be noted that, while for the most part we assume data to be available as classical
information, it can also originate from quantum experiments. In this case, data is already quantum
encoded, the next step may be skipped in case no further transformations are required.

39

4 Approach

4.2 Data Quantum Embedding

In the case of data that is in the form of classical information, it has to undergo a preprocessing
in order to be ready for use with a quantum computation device. To this end, we aim encode
datapoints according to the Amplitude Encoding scheme outlined in Chapter 2. Following a
standard normalization procedure, which applies uninformative padding and normalizes the length,
feature maps can be applied to further enrich the classifiers capabilities to find linearly separate the
dataset in the mapped feature space. The resulting datapoints are then ready to be encoded into the
amplitudes of a quantum state. In the case of data that is already available as quantum information,
different possibilities arise. For example, a more complex preprocessing or embedding can take
place. An interesting area of research is finding feature maps or transformations for datapoints that
are considered difficult to compute classically, which can lead to a quantum speedup. The output of
the embedding task is a dataset Dy, to which feature maps have already been applied. The labels
y; are unaffected by transformations and do not require a quantum embedding, as they are only
classically processed and compared with the output of measurements, which is also presented to the
optimizer in the form of classical information.

4.3 Circuit Structure Search

With having a ’quantum-ready’ preprocessed dataset D4 available, a suitable circuit for the
classification task has to be found. As with the overwhelming majority of conventional machine
learning models, certain aspects of the model are tuneable or subject to predefined hyperparameters.
For instance, convolutional neural networks are usually composed by a stack of layers of different
types, such as convolutional layers, pooling layers and fully-connected layers [GBC16]. Each of
these types has different hyperparameters at different stages of the network that are fixed for the
network architecture during training and inference, such as the size of the convolution- and pooling
operators, the layer width or activation function. In the case of the variational quantum circuit model,
the circuit architecture acts as a metamodel, or blueprint, for the trained circuit. The difference lies
only in the values of the free parameters 6, as the structure itself is fixed. Section 2.3.3 presented
a proposed circuit structure that is constructed using repeated building blocks for rotations and
entanglement of qubit registers. While they provide the parametrized model with many degrees of
freedom, the number of repetitions of these building blocks still has to be manually determined.
Furthermore the fully flexible rotations with three degrees of freedom in addition to cascading
CNOT gates imply a relatively high resource usage and do not encourage shallow-depth circuits. In
order to eliminate the need for a human in-the-loop to propose and define circuit structures, we aim
to automatically find resource-efficient and well-performing circuit structures by active exploration.
We propose to frame the problem of circuit structure search as an instance of Neural Architecture
Search that we solve using a tabular Q-Learning agent for Reinforcement Learning. Figure 4.2
provides a detailed depiction for the task. We use a learning agent to construct quantum circuits,
which are evaluated by a training procedure and then used to estimate a value function that can
be used to propose well-performing circuits. Although neural networks and variational quantum
circuit classifiers do have some fundamentally differentiating characteristics, we hypothesize that,
along with an appropriate problem formulation, core concepts from Neural Architecture Search
can be transferred and accelerate research in the specialized QML domain. In the following, we
describe a way to compose quantum circuits, formalize the problem and present a way to solve it.

40

4.3 Circuit Structure Search

Data

Acquisition

Q-Learning Agent

dataset
D

Y
Quantum Data
Embedding

embedded
Dy

aeA
l(a) = Ly

5141 €S

Y

Circuit Structure Quantum Circuit

Environment

Search

Classical
Optimization
|0>% . . 0[

|0>% . ce Ci
values

0

10y
|0>% C,

Final Classifier
Construction

circuits

{ci}

Figure 4.2: Workflow of the approach (left) with their respective outputs and detailed illustration
of the Circuit Structure Search step

o HH

0) — | | L I
10) Sox) L Ly L

Figure 4.3: Generic quantum circuit for classification composed by a state preparation circuit Sgx),
a stack of layer blocks £y, ..., L, and a measurement operation.

4.3.1 Circuit Layers

In order to abstract the placement of individual gates in quantum circuits to facilitate the automatic
generation, we view circuits as a sequence of individual unitaries, or layers, as illustrated in
Figure 4.3. A layer is therefore defined as a unitary acting on the entire qubit register at a specific
timestep t. From an algorithmic viewpoint, each layer acts as steps of an algorithm at time ¢,
manipulating the current quantum state |,_]), resulting in the state [y,), where |)p) is the initial
state:

41

4 Approach

[Ym) = Lmo---0oLy|yo) 4.1)

As mentioned, Schuld et al. also proposed to compose circuits for the variational quantum circuit
classifier using layer, or blocks of unitaries [SBSW18]. In order to provide more flexibility for the
construction, and with the goal of constructing short-depth circuits we propose to use a set of layers
LL,, that splits the fully rotational layer into their *primitive’ unitaries:

L, = {R:(6)®", Ry(6)®", R,(6)®",CNOT®", L7} 4.2)

Here, n refers to the number of qubits and CNOT®” refers to a layer of cascading CNOT gates. L7
is a terminal layer and indicates the measurement operation on the first qubit. We note that more
and modified layers can be added to the proposed set L, such as more high-level building blocks
that can compose algorithms. Furthermore, the layers can be of different varying granularity.

4.3.2 Quantum Circuit Environment

In order to solve the Circuit Structure Search problem using Reinforcement Learning methods, we
propose the definition of an environment in which quantum circuits can be iteratively constructed
by agents using layers as building blocks. We define the state and action space of the environment,
discuss reward signals and outline the relation to the main components of Neural Architecture
Search.

Action Space

In order to define the action space A of the environment, we first define a bijective function
¢ : A — L, that maps every action from the action space to a specific layer. The action space A is
then induced by the image of £~'. Upon choosing an action a; € A in state s,, the layer associated
with the action is appended to the circuit.The agent can notably only perform modifications to the
existing circuit in the environment by appending a layer to the current structure. While more flexible
formulations of the action space could have been made, such as allowing for insertions between
any pair of previously placed layers, they generate an exponentially larger set of state-action pairs,
increasing the training time. Here, a tradeoff between accuracy and complexity has to be made.
Choosing the terminal action corresponding to the layer £© marks a circuit as complete. Any
subsequent action will not result in any change of the state until the environment is reset, which
marks a new episode for an agent. Every circuit C; that can be constructed by the agent is part a set
C. It is finite and forms the search space in the Neural Architecture Search framework.

42

4.3 Circuit Structure Search

State Space

Every state s; € S is defined as a tuple of the most recently placed layer and the current circuit
depth, which is equal to the number of layers placed at timestep #:

s = (L(az-1),1) 4.3)

The state of the environment is therefore only described by the most recently added layer along
with the current number of layers. A similar state space was also used by Baker et al. [BGNR16]
for Neural Architecture Search for CNNs. In order to define a finite state space, we limit the
number of layers that can be placed in a circuit. Although imposing a circuit depth limit is not
necessary by construction, it mitigates issues, such as overly long optimization times if the number
of free parameters becomes too large, as the analytical differentiation scheme used requires several
evaluations on the quantum device for each parameter. Furthermore, different than simulations,
real-world NISQ devices imply a depth limit for the circuit with their relatively short decoherence
times.

Reward Signals

After every step that an agent takes in an environment, a new state along with a reward signal is
returned to the agent. In our approach, after the placement of every layer a reward of 0 is rewarded to
the agent, except for placing the terminal layer L. The terminal layer is also placed automatically
if the predefined depth limit for a circuit is exceeded. After the terminal layer is placed, the reward
signal is determined by a training procedure, which optimizes the parameters of the circuit C;
using optimization on classical hardware as described in Section 2.3.3. The resulting circuit with
optimized parameters C; is then used to evaluate the performance of the circuit structure for the
variational quantum circuit classifier for the dataset Dy. The resulting accuracy is then fed back to
the agent as a reward. This sparse reward setting, where for example an informative reward is only
given for reaching the goal state, is not uncommon in Reinforcement Learning tasks and emphasizes
the requirement for agents to be able to learn from long-term dependencies and propagate reward
information along trajectories.

4.3.3 QO-Learning Agent for Quantum Circuit Construction

This section briefly outlines properties of the Q-Learning algorithm formulation that are useful in
the context of our problem at hand. First, the design of the reward function is discussed, followed by
a method for regulating the depths of generated circuits. Then, initial value estimates are examined.
The section is concluded with a discussion on scheduling the exploration in the space of circuit
structures.

43

4 Approach

Reward Shaping

As described, we define the environment to only give out non-null rewards when a circuit is
completed. Using domain knowledge, especially about the quantum computer that the classifier
should be executed with, a more complex reward function can be designed. This way, rewards can
be used to signal the agent to favour circuit with certain properties over other, an can be 'nudged’ to
create more suitable circuits, especially in the context of near-term devices. In the following, we
aim to provide pointers to domain-specific considerations for the reward function with regards to
the construction of quantum circuits:

Classifier Accuracy The classifiers accuracy is vital to assess the actual performance of the
classifier and therefore considered the dominant reward signal. A reward function should therefore
always refer to this signal in some way.

Circuit Depth As low-depth circuits are considered preferable in the NISQ-era, because of
decoherence properties of the qubits, the reward function can reflect that. For example, instead of
outright not allowing circuits to exceed a certain depth, small or, depending on the design, negative
reward signals can be introduced, which can discourage the agent from exploring deep circuit
structures to instead focus on shorter ones.

Gate Cost Similarly to circuits regarding their depth, the execution of certain gates can be more
costly than others on some quantum computer implementations. Especially multi-qubit gates
can impose a higher execution time than others. If the qubit-topology is not fully connected, a
multi-qubit gate affecting qubits that are not connected in the topology can lead to a sequence of
CNOT gates that have to be inserted into the circuit during the transpilation stage to swap qubit
states in order to map the intended operation to the qubits. The cost of added operations and the
potential introduction of noise can be reflected in the reward function, encouraging the agent to
only place expensive gates or layers when they are necessary.

Regulating Circuit Depth

A common shortcoming of NISQ devices is their limited decoherence time and therefore limited
number of operations that can be executed with a certain level of reliability [Pre18]. The formulation
of the value estimate update in the Q-Learning algorithm allows to use the parameter vy, called
the discount factor, for regulation of circuit depths. Depending on the value of y, rewards that
are propagated backwards during the value update are discounted along the along the trajectory.
Suppose the value of y to be smaller than 1, and two constructed circuit structures with depths
d; and d,, where d| < d,. If both structures received the same reward for the placement of the
terminal layer, and a reward of 0 otherwise, the trajectory for the circuit with depth d; yields a
higher expected discounted return for choosing its initial action when used repeatedly for value
updates until convergence.

44

4.4 Final Classifier Construction

Value Initialization

Before an untrained agent starts interacting with an environment, the value function has to
be initialized. In the case of tabular Q-Learning, this means that every state-action value
0(s,a),s € S,a € A is assigned with a default value. We resort to the commonly found
initialization [SB98] with

Q(s,a) =0 seS,aeA 4.4)

but want to point out the possibility of biased initial estimates [SB98]. In this setting, some states,
or state-action pairs, might be heuristically preferred over others, and therefore can be initialized
with a higher initial value than others. In relation to our work, this means that choosing certain
layers at certain depths might be favoured. For example, a previously proposed circuit can act as a
heuristic, resulting in slightly higher initial values for the layers found in its structure, which leads
the agent to at least initially prefer choosing these layers for circuit construction. Over time, these
initial estimates are either further enforced, or discarded as better performing circuit structures are
consistently found.

Exploration versus Exploitation

Another parameter that can be actively used to tune the exploration of circuit structures is the value
of &, which is used in the e-greedy strategy when deriving a policy from the value function Q.
Usually, € starts out with a high initial value, for example 1, which is then decayed over time to
a value closer to 0. When ¢ is is initially deliberately set to a high value, this leads the agent to
explore the space of circuits it can generate, because most actions will be chosen at random with
probability . Doing so is important for the agent, as otherwise states and actions encountered early
on during the learning phase are biased, which can lead to unfavourable early convergence and
the exploration of only a small subspace. When the value is decayed, the agent can use its value
estimates it constructed from experience to act more greedily and exploit the structures more to
maximize the expected return.

4.4 Final Classifier Construction

The final step of the workflow is to provide a suitable circuit structure for use with a variational
quantum circuit classifier. After the training procedure, the agent has accumulated value estimates
for every state-action pair by interacting with the environment. At this point, using this information,
we have different options to construct quantum circuits.

One option is to use the highest-performing classifier that was encountered during the training
phase, which is the circuit that yielded the highest accuracy in the variational quantum classifier
setting. This has the advantage that trained parameters are already available and the classifier can be
used without performing optimization of parameters again. On the other hand, if the performance

45

4 Approach

estimation strategy for example only uses a subset of the data for training during the structure search
loop, this results in lower fidelity estimates. Retraining the circuit is advisable in this case, taking
advantage of the entire dataset that is available.

The other option is proposing new circuit structures using a policy derived from the value function
that was learned during circuit structure search. A deterministic policy proposes exactly one action,
in our case a layer, for every state it encounters:

n(s)=a a€AseS 4.5)

During the Q-Learning procedure, the e-greedy policy was used, building an estimate of the policy,
which does not yield one action but a probability distribution over actions. To sample a circuit from
the subspace of circuits, that can be constructed using a combination of layers from the defined set
of layers, then means sampling from the policy by sampling from the probability distributions. The
distribution has probability 1 — & for sampling the layer that yields the highest expected return

argmax Q(s, a) 4.6)
acA
and probability
>
— 4.7)
|Al

for choosing a random layer.

46

5 Validation

This Chapter describes the prototypical implementation of the ideas presented in the approach
detailed in Chapter 4. The prototype was developed in Python! and aims for a modular and reusable
design. In addition, the approach is validated in an experimental setting.

5.1 Implementation

In the following we describe the components of our prototypical implementation. It is structured
according to the architecture depicted in Figure 5.1. In addition to interactions between the agent
and environment, additional components have been introduced in the implementation to achieve
higher modularity, reusability and a separation of concerns.

Circuit Classical
Synthesizer Optimization

Environment

Replay Memory

Figure 5.1: Conceptual architecture for the prototype

5.1.1 Q-Learning Agent

We modified the Q-Learning procedure in the implementation by adding a replay memory for
experience replay [Lin93] [MKS+15]. This memory buffer stores the resulting trajectories of
finished episodes and has the benefit of decorrelating the trajectories from their temporal order.
The training procedure of the agent is split into two parts because of it, as indicated in Figure 5.2.
In the first part, episodes are played out regularly using the current value estimates from Q. The
trajectories of the episodes are then stored and persisted in the replay memory. The memory
conveniently also doubles as a cache, storing all rewards, including the accuracy of the optimized
circuit. If an identical circuit is constructed again by the agent, the stored rewards are reused and
the circuit parameters are not optimized again from scratch, which increases the performance of

1 https://www.python.org/

47

https://www.python.org/

5 Validation

the entire search process. The update procedure, where the Q function is updated according to the
experiences from the trajectories, is decoupled from the episode loop and is only performed in a
fixed interval, happening after every k episodes have been played out. In order to update the Q
function, a fixed number of trajectories, in our case this corresponds to the constructed circuits
along with the received rewards, is sampled from the replay memory and used to update the value
estimates, similarly to the procedure described in Algorithm 2.1, with a slight modification. Instead
of using a sampled trajectory for updates unmodified, we reverse the order in which the state-action
pairs are updated, which empirically results in faster convergence, as the value of all state-action
pairs involved in a trajectory are updated at once.

@ @ o0

(s1,a1)
construct circuit

0) —
10) —
0y —

sample

Replay Memory

1) —
0y —

(sm, an)

Figure 5.2: Conceptual illustration of the modified Q-Learning update procedure using a replay
memory. 1: Trajectories are generated using the current Q-value estimates and stored
in a replay memory. 2: Trajectories are randomly sampled from the replay memory for
updates of the value function

5.1.2 Environment

The environment implements an interface very similar to the standardized interfaces in the gym”
library, a popular framework for benchmarking Reinforcement Learning implementations. This
achieves a decoupling from the search strategy that the agent component uses. Furthermore, the
environment is decoupled from the task of actual circuit construction and execution, as it only
exposes an abstracted view of actions and states to the agent.

5.1.3 Circuit Synthesizer

The environment externalizes the task of handling quantum circuits directly by introducing a Circuit
Synthesizer in order to achieve higher modularity and separation of concerns. The synthesizer
manages the construction and implementation of quantum circuits based on the available layers.
It furthermore manages what backend device is used for the execution of a quantum circuit. The
actual construction of quantum circuits is implemented using PennyLane [BIS+18], which is a
framework for gradient-based optimization of quantum circuits and mainly developed by Xanadu®.
We consider the framework to be suitable for our use-case because of the following capabilities:

2https://gym.openai.com/
3https://www.xanadu.ai/

48

https://gym.openai.com/
https://www.xanadu.ai/

5.1 Implementation

Computational Graph Paradigm The paradigm of structuring computations in the form of a
directed graph, as described by Abadi et al. [ABC+16] and Murray et al. [MMI+13] is popular
for Machine Learning, especially Deep Learning, with support from major libraries. Individual
computational nodes have a defined input and output format and are connected with directed edges,
forming a computational graph. This allows for effective and clean distribution of computations,
their respective resources, internal states and coordination of distributed systems. PennyLane
supports this paradigm by providing nodes labeled QNodes. QNodes provide an abstraction for how
computations are actually executed on a quantum device or simulation. For the global view on the
graph, the definition of the input and output format suffices. PennyLane manages the calculations of
gradients of QNodes with a differentiation scheme described in [SBG+19][BIS+18].

External Library Support PennyLane supports integration with the existing popular Machine
Learning libraries as backends. Currently TensorFlow [ABC+16] and PyTorch [PGC+17] are
officially supported. When using either backend, computations of classical and quantum type can
be combined into a single machine learning model. The hybrid quantum-classical optimization part
of the circuits is also realized in a computational graph setting, where the optimizer is a classical
computation node. The extensive support of these major libraries allows the usage of their optimized
routines such as built-in optimizers and integrating quantum computational parts into existing,
classical models.

Open Source Software The PennyLane development repository is publicly available* and is
licensed under the Apache License 2.0 [AL2] license. This allows for contributions by community
members and grants the rights to modify and extend the framework. Nowadays, Open Source
Software (OSS) is considered a driving force of innovation in many areas including Machine
Learning research and development. We argue that the same holds true for Quantum Machine
Learning research.

Device agnostic Quantum devices in PennyLane are entirely plugin-based. Every QNode is
associated with such a device-instance that it is executed on. Therefore, multiple devices can be
used for multiple different QNodes in composition. New devices can be connected by implementing
a standardized interface. Devices expose their supported gatesets and operations and provide means
to provide an input to the device and receive an output. This makes it trivial to switch out devices
and train and test circuits on different devices. For example, initial parameter optimization for
a parametrized circuit can be performed using a simulated quantum device for efficiency, while
fine-tuning for specific hardware can be accomplished using further training of the circuit on real
quantum hardware.

5.1.4 Classical Optimization

When a previously untrained, completed circuit is encountered in the environment, a training
procedure for the variational quantum circuit classifier is triggered. In the beginning, every free
parameter 6; € 6 of the circuit is uniformly random initialized with a value in [—x,). The dataset

4https ://github.com/XanaduAI/pennylane

49

https://github.com/XanaduAI/pennylane

5 Validation

episodes e
1-300 1.0
301-600 0.8
601-960 0.5
961-1080 | 0.2
1081-1200 | 0.05

Table 5.1: Schedule for the value of & over the entire training procedure

Dy is shuflled and split into sets for training and testing. Then, the parameters 6 are optimized
in a hybrid setting, as described in Chapter 2, using the Adam optimizer [KB14], a variant of the
stochastic gradient descent optimizer with an adaptive stepsize for better convergence properties.

5.2 Experiments

In order to validate our approach, we conduct experiments where the goal is to find a classifier
for a synthetic dataset. Quantum computation was performed on a simulated quantum computer
using four qubits. We perform circuit structure search for 1200 episodes with a Q-Learning agent
with @ = 0.2 and a scheduled value of €. The schedule is listed in Table 5.1. For the parameter
optimization of variational quantum circuit classifiers, we use the Adam optimizer [KB14] with a
mean-squared error loss for 10 epochs, a learning rate of 0.1 and a batch size of 4. Additionally, we
limit the number of layers that can be placed by an agent to 10. This setup is executed multiple
times for different values of the discount rate y.

5.2.1 Dataset

We used a two-dimensional, balanced, synthetically generated moons’ dataset D with 100
datapoints, where two halfmoon-shaped point clouds, each belonging to one class, interleave. It
was generated using the make_moons function from the scikit-learn Python library’. The data was
preprocessed with a tensorial feature map ¢:

2

X
X X X X1X
! H[l]@)[l]: I (5.1)
X2 X2 X2 X2X1

x2

2

and normalized, such that ||¢(xl-)||= 1 for every (x;,y;) € D.

5https://scikit—[earn.org/

50

https://scikit-learn.org/

5.2 Experiments

1.00

0.95 1

0.90 4

0.85 1

0.80 4

0.75 1

0.70

= accuracy

1.00

T T T T T T
200 400 600 800 1000 1200

@@y =06

0.95 1

0.90 4

0.85 1

0.80 4

0.75 1

0.70

= accuracy

200 400 600 800 1000 1200

(©y =09

1.00

0.95 1

0.90 4

0.85 1

0.80 4

0.75 1

= accuracy

0.70

0

T T T T T T
200 400 600 800 1000 1200

(e y=10

= circuit depth

T T T T T
400 600 800 1000 1200

(b)y =0.6

= circuit depth

400 600 800 1000 1200

(dy =09

= circuit depth

T T
0 200

T T T T T
400 600 800 1000 1200

)y =10

Figure 5.3: Accuracy (left) and circuit depth (right) plotted over time for different values of y. The
plots are smoothened using a moving average with window size 40 for accuracy and

window size 10 for circuit depth.

51

5 Validation

5.2.2 Results

Figure 5.3 shows the results for y at 0.6, 0.9 and 1.0. As previously described, this parameter acts
as a circuit depth regularizer, as smaller values encourage the agent to exploit the rewards from
shorter circuits. Over time, the accuracy tends to rise after the initial exploration phase, where &
has a value of 1 and uniformly random circuits are generated.

For y = 0.6, we can observe that the average performance decreases towards the end (Figure 5.3
(a)). At the same time, we can see that the average circuit depth makes stepwise jumps when the
value of ¢ is decreased (Figure 5.3 (b)). After & is scheduled to a value of 0.2, model accuracy
drastically suffers, as choosing a lower depth circuit becomes a dominating force. This can be
interpreted as a tradeoff between accuracy and complexity of the model. The staircasing effect of
the average circuit depth along with the suffering average accuracy leads to our interpretation that
the choice of v is too aggressive at 0.6. This is confirmed when observing the accuracy curves
in the Figures 5.3 (c) and (e). Here, the choice of y, while providing an incentive for the agent to
construct shorter circuits, does not sacrifice performance as much. As such, we can observe that
the agent produces the best results on average in the last episodes (Figure 5.3 (e)), with an average
circuit depth of around 4. The choice of y at 0.9 seems like a reasonable compromise, regulating
the average circuit depth to around 3 in the last few episodes(Figure 5.3 (f)), with a steadily rising
average accuracy towards the end of training.

Interestingly, when observing the most common structures that the agent proposes for various values
of y after £ was decayed to 0.05, as depicted in Figure 5.4, it becomes apparent that the circuit
structures in (b) and (c) are very similar. The two subsequent R, (0)®" layers in (c) can be merged
into one rotational unitary, leaving two rotations, similarly to the structure seen in (b). Another
interesting observation is that, for our dataset, no entangling layers were used for construction of the
final classifiers, except for the structure proposed by the agent with y = 0.6. Because a measurement
only occurs on the first qubit, this means that the agents with y chosen at 0.9 and 1.0 only make use
of one qubit in their proposed computations. The gates performing operations on the other qubits
can therefore be dropped, which can easily be detected and transpiled in a compilation step.

5.2.3 Summary

This Chapter outlined our implementation and presented experiments which validate our general
approach for finding circuit structures. We observed that the learning agent can be trained propose
structures that maximize the expected return over time. Furthermore, we can manually encourage
the agent to favour certain structures over others, as demonstrated with the depth of the proposed
circuits. The experiments additionally showed an important insight which should be reflected in
the environment. As duplicate layers following each other immediately in the circuit can, for our
proposed set of layers, be merged and are therefore redundant, the repeated placement could for
example be punished with a negative reward.

52

5.2 Experiments

10) — 0~
10) — — — |0y — - |
Soix CNOT®" So(x R (9)®n Rx(9)®n
10) — ¢ | | L 10) — ¢ | | By
0 - — 0 -
@)y =0.6 (b)y =09

s

0 s [| o [o [o [

0 - = = —

(©y=1.0

Figure 5.4: Most common circuit structures generated by the agent after £ was set to 0.05 for
various values of y

53

6 Conclusion and Future Work

This Chapter briefly recapitulates the the presented work with a summary as well as providing an
outlook for Quantum Machine Learning research in the near future. First, foundations of quantum
computation and Machine Learning lead up to an introduction of Quantum Machine Learning,
where the variational quantum circuit classifier was outlined. We then presented related work in
the domains of automated quantum circuit generation and Neural Architecture Search. This is
followed by a detailed description of our approach, which dynamically searches for quantum circuit
structures that perform well on a classification task for a dataset. The approach is then validated in
a prototypical implementation and experiments using a simulated quantum computer.

6.1 Conclusion

Work on variational quantum algorithms forms one of the most promising areas of research in
quantum computation for applications in the near-term, as typical paradigms of Machine Learning,
such as the effect of noise to generelization properties, can be mapped to NISQ devices. We base
the motivation for our approach on the desire of non-experts in the field of Quantum Machine
Learning to make use of this research by introducing self-supervised metamodelling capabilities
with our approach based on Reinforcement Learning. The validation indicates that automatically
constructing circuit structures that optimize an objective function using our approach is possible. In
contrast to previous work, information and feedback that is received during explorative phases is
used to make more informative guesses for future actions. Additionally, the approach fits well into
the NISQ-era, as special considerations have been actively made towards handling the constraints
that the properties of near-term devices imply.

6.2 Future Work

The flexible problem formulation extends beyond the specialized research area of Quantum Machine
Learning and can also be incorporated generally for algorithms running on quantum hardware, as the
design of quantum algorithms is oftentimes considered to be unintuitive for humans [Sho03], which
we leave for future work. Furthermore, the design of more complex layers that involve more powerful
operations can be explored. The general formulation of Neural Architecture Search also leaves room
for further refinements. For example, the performance estimation strategy can be optimized for
large datasets by making use of lower fidelity estimates, as listed in [EMH19], or by extrapolating
the learning curve of the classifier as proposed in [BGRN17]. As for the search strategy, trying to
use agent strategies beyond Q-Learning can open new possibilities. Especially when distributed
Reinforcement Learning is introduced, which can construct and search for quantum circuits on
many devices in parallel. The optimization process of the classifier can be further modified, leaving

55

6 Conclusion and Future Work

room for further research on hyperparameters of the learning process, or benchmarking the effect
of using different optimizers, such as the recently presented Quantum Natural Gradient [SIKC19].
After circuit structures are found, additional techniques for transpilation, compilation and further
optimization could be used [NRS+18].

In the domain of QML, further research can be conducted on the possibility of learning circuit
structures for algorithms other than variational quantum circuit classifiers, such as quantum kernel
computing circuits for the Quantum Support Vector Machine [HCT+19].

56

Bibliography

[AAA+19]

[Aarl4]

[ABC+16]

[ABGO6]

[AL2]

[Bak17]

[BGNR16]

[BGRN17]

[BIS+18]

[BLS19]

[CBS+18]

[CLW]

H. Abraham et al. Qiskit: An Open-source Framework for Quantum Computing. 2019.
DOI: 10.5281/zenodo. 2562110 (cit. on p. 21).

S. Aaronson. “Quantum Machine Learning Algorithms: Read the Fine Print”. In:
Nature Physics (2014), p. 5. 1ssN: 1745-2473. por: doi: 10.1038/nphys3272. URL:
https://www.scottaaronson.com/papers/gml.pdf%0@Ahttp://www.scottaaronson.
com/blog/?p=2196 (cit. on p. 26).

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. “TensorFlow: A system for large-scale machine learning”.

In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 2016, pp. 265-283 (cit. on p. 49).

E. Aimeur, G. Brassard, S. Gambs. “Machine Learning in a Quantum World”.
In: Conference of the Canadian Society for Computational Studies of Intelligence.
Springer. 20006, pp. 431-442 (cit. on p. 26).

APACHE LICENSE, VERSION 2.0. Version 2. Apache Software Foundation, Jan. 1,
2004. URL: https://www.apache.org/licenses/LICENSE-2.0 (cit. on p. 49).

B. Baker. Towards Practical Neural Network Meta-Modeling. MIT, 2017 (cit. on
p- 36).

B. Baker, O. Gupta, N. Naik, R. Raskar. “Designing Neural Network Architectures
using Reinforcement Learning”. In: (2016), pp. 1-18. URL: http://arxiv.org/abs/
1611.02167 (cit. on pp. 36, 43).

B. Baker, O. Gupta, R. Raskar, N. Naik. “Accelerating neural architecture search
using performance prediction”. In: arXiv preprint arXiv:1705.10823 (2017) (cit. on
pp- 25, 55).

V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, C. Blank, K. McKiernan, N. Killoran.
“PennyLane: Automatic differentiation of hybrid quantum-classical computations”.
In: (2018), pp. 1-12. URL: http://arxiv.org/abs/1811.04968 (cit. on pp. 48, 49).

M. Benedetti, E. Lloyd, S. Sack. “Parameterized quantum circuits as machine learning
models”. In: arXiv preprint arXiv:1906.07682 (2019) (cit. on p. 30).

A.W. Cross, L.S. Bishop, S. Sheldon, P.D. Nation, J. M. Gambetta. Validating
quantum computers using randomized model circuits. Tech. rep. 2018. arXiv: 1811.
12926v1. URL: https://arxiv.org/pdf/1811.12926.pdf (cit. on p. 21).

N.-H. Chia, H.-H. Lin, C. Wang. Quantum-inspired sublinear classical algorithms
for solving low-rank linear systems. Tech. rep. arXiv: 1811.04852v1. URL: https:
//arxiv.org/pdf/1811.04852.pdf (cit. on p. 26).

57

https://doi.org/10.5281/zenodo.2562110
https://doi.org/doi:10.1038/nphys3272
https://www.scottaaronson.com/papers/qml.pdf%0Ahttp://www.scottaaronson.com/blog/?p=2196
https://www.scottaaronson.com/papers/qml.pdf%0Ahttp://www.scottaaronson.com/blog/?p=2196
https://www.apache.org/licenses/LICENSE-2.0
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1811.12926v1
https://arxiv.org/abs/1811.12926v1
https://arxiv.org/pdf/1811.12926.pdf
https://arxiv.org/abs/1811.04852v1
https://arxiv.org/pdf/1811.04852.pdf
https://arxiv.org/pdf/1811.04852.pdf

Bibliography

[CSSC18]

[Dav9l]
[Deu89]

[DiVO00]

[EMH19]

[Fey82]

[FGG14]

[FN18]

[GB10]

[GBCI16]

[GEBM]

[GLT18]

[Gro96]

[HCT+19]

[HHLO9]

[HTFFOS]

58

L. Cincio, Y. Subasi, A. T. Sornborger, P.J. Coles. “Learning the quantum algorithm
for state overlap”. In: New Journal of Physics 20.11 (2018), p. 113022 (cit. on p. 35).

L. Davis. “Handbook of genetic algorithms”. In: (1991) (cit. on p. 36).

D.E. Deutsch. “Quantum computational networks”. In: Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences 425.1868 (1989), pp. 73—
90 (cit. on p. 18).

D.P. DiVincenzo. “The physical implementation of quantum computation”. In:
Fortschritte der Physik: Progress of Physics 48.9-11 (2000), pp. 771-783 (cit. on
p- 20).

T. Elsken, J. H. Metzen, F. Hutter. Neural Architecture Search: A Survey. Tech. rep.
2019, pp. 1-21. URL: http://jmlr.org/papers/volume20/18-598/18-598.pdf (cit. on
pp- 25, 55).

R.P. Feynman. “Simulating physics with computers”. In: International journal of
theoretical physics 21.6 (1982), pp. 467-488 (cit. on pp. 13, 15).

E. Farhi, J. Goldstone, S. Gutmann. “A quantum approximate optimization algorithm”.
In: arXiv preprint arXiv:1411.4028 (2014) (cit. on p. 30).

E. Farhi, H. Neven. “Classification with Quantum Neural Networks on Near Term
Processors”. In: (2018), pp. 1-21. URL: http://arxiv.org/abs/1802.06002 (cit. on
p- 30).

X. Glorot, Y. Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. 2010, pp. 249-256 (cit. on p. 31).

I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. http://www.deeplearningbo
ok.org. MIT Press, 2016 (cit. on pp. 21, 28, 40).

H.R. Grimsley, S. E. Economou, E. Barnes, N.J. Mayhall. An adaptive variational
algorithm for exact molecular simulations on a quantum computer. Tech. rep. arXiv:
1812.11173v2. URL: https://arxiv.org/pdf/1812.11173.pdf (cit. on p. 35).

A. Gilyén, S. Lloyd, E. Tang. Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension. Tech. rep. 2018. arXiv: 1811.04909v1. URL:
https://arxiv.org/pdf/1811.04909.pdf (cit. on p. 26).

L. K. Grover. “A fast quantum mechanical algorithm for database search”. In: arXiv
preprint quant-ph/9605043 (1996) (cit. on p. 17).

V. Havlic¢ek, A.D. Corcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow,
J. M. Gambetta. “Supervised learning with quantum-enhanced feature spaces”. In:
Nature 567.7747 (2019), pp. 209-212. 1ssn: 14764687. por: 10.1038/s41586-019-
0980-2 (cit. on pp. 30, 56).

A.W. Harrow, A. Hassidim, S. Lloyd. “Quantum algorithm for linear systems of
equations”. In: Physical Review Letters 103.15 (2009), pp. 1-15. 1ssn: 00319007.
DOTI: 10.1103/PhysRevLett.103.150502 (cit. on p. 26).

T. Hastie, R. Tibshirani, J. Friedman, J. Franklin. “The elements of statistical learning:
data mining, inference and prediction”. In: The Mathematical Intelligencer 27.2
(2005), pp. 83-85 (cit. on pp. 21, 28).

http://jmlr.org/papers/volume20/18-598/18-598.pdf
http://arxiv.org/abs/1802.06002
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1812.11173v2
https://arxiv.org/pdf/1812.11173.pdf
https://arxiv.org/abs/1811.04909v1
https://arxiv.org/pdf/1811.04909.pdf
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.103.150502

Bibliography

[JLO3]

[KB14]

[KL18]

[KLP+18]

[LBH15]

[LDY]

[Lin93]

[LMR+17]

[MBJ+19]

[MDARI19]

[MKS+15]

[MMI+13]

[MNK+18]

R. Jozsa, N. Linden. “On the role of entanglement in quantum-computational speed-
up”. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences 459.2036 (2003), pp. 2011-2032 (cit. on p. 18).

D. P. Kingma, J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014) (cit. on p. 50).

I. Kerenidis, A. Luongo. “Quantum classification of the MNIST dataset via Slow
Feature Analysis”. In: (2018), pp. 1-25. URL: http://arxiv.org/abs/1805.08837
(cit. on p. 28).

S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P.J. Coles. “Quantum-
assisted quantum compiling”. In: (2018). URL: http://arxiv.org/abs/1807.00800
(cit. on p. 39).

Y. LeCun, Y. Bengio, G. Hinton. “Deep learning”. In: nature 521.7553 (2015), p. 436
(cit. on p. 21).

H. Liu, K. S. Deepmind, Y. Yang. DARTS: Differentiable Architecture Search. Tech.
rep. arXiv: 1806.09055v2. URL: https://github.com/quarke/darts (cit. on pp. 25,
37).

L.-J. Lin. Reinforcement learning for robots using neural networks. Tech. rep.
Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993 (cit. on
p. 47).

N.M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman,
K. Wright, C. Monroe. “Experimental comparison of two quantum computing
architectures”. In: Proceedings of the National Academy of Sciences 114.13 (2017),
pp- 3305-3310 (cit. on p. 13).

P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, M. Martonosi. “Noise-adaptive
compiler mappings for noisy intermediate-scale quantum computers”. In: Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM. 2019, pp. 1015-1029 (cit. on
p.- 21).

K. A. McKiernan, E. Davis, M. S. Alam, C. Rigetti. “Automated quantum program-

ming via reinforcement learning for combinatorial optimization”. In: arXiv preprint
arXiv:1908.08054 (2019) (cit. on p. 36).

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level control
through deep reinforcement learning”. In: Nature 518.7540 (2015), p. 529 (cit. on
p. 47).

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, M. Abadi. “Naiad: a
timely dataflow system”. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM. 2013, pp. 439-455 (cit. on p. 49).

A.A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger,
H.J. Briegel. “Active learning machine learns to create new quantum experiments”.
In: Proceedings of the National Academy of Sciences 115.6 (2018), pp. 1221-1226
(cit. on p. 27).

59

http://arxiv.org/abs/1805.08837
http://arxiv.org/abs/1807.00800
https://arxiv.org/abs/1806.09055v2
https://github.com/quark0/darts

Bibliography

[MNKF18]

[MRN+17]

[MVBS04]

[NCO00]

[NRS+18]

[OGB19]

[PBRB18§]

[PGC+17]

[PMS+14]

[Prel8]

[PRFC]

[PZW]

[RML14]

[SB98]

60

K. Mitarai, M. Negoro, M. Kitagawa, K. Fujii. “Quantum circuit learning”. In: Physical
Review A 98.3 (2018), pp. 1-3. 1ssN: 24699934. por: 10.1103/PhysRevA.98.032309
(cit. on p. 30).

M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev, R. Babbush, A. Fowler,
V. Smelyanskiy, J. Martinis. “Commercialize Quantum technologies in five years”.
In: Nature News 543.7644 (2017), p. 171 (cit. on p. 13).

M. Mottonen, J. J. Vartiainen, V. Bergholm, M. M. Salomaa. “Quantum circuits for
general multiqubit gates”. In: Physical review letters 93.13 (2004), p. 130502 (cit. on
p. 28).

M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. 2000. URL:
https://aapt.scitation.org/doi/pdf/10.1119/1.1463744 (cit. on pp. 15, 16).

Y. Nam, N.J. Ross, Y. Su, A. M. Childs, D. Maslov. “Automated optimization of
large quantum circuits with continuous parameters”. In: npj Quantum Information
4.1 (2018), p. 23 (cit. on p. 56).

M. Ostaszewski, E. Grant, M. Benedetti. Quantum circuit structure learning. Tech. rep.
2019. arXiv: 1905.09692v1. URL: https://arxiv.org/pdf/1905.09692v1.pdf (cit. on
p. 36).

A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gémez, R. Biswas. “Opportunities and
challenges for quantum-assisted machine learning in near-term quantum computers”.
In: Quantum Science and Technology 3.3 (2018), pp. 1-13. 1ssn: 20589565. por:
10.1088/2058-9565/aab859 (cit. on p. 26).

A.Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, A. Lerer. “Automatic differentiation in PyTorch”. In: (2017) (cit. on p. 49).

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A. Aspuru-
Guzik, J.L. O’brien. “A variational eigenvalue solver on a photonic quantum proces-
sor”. In: Nature communications 5 (2014), p. 4213 (cit. on pp. 30, 35).

J. Preskill. Quantum Computing in the NISQ era and beyond. Tech. rep. 2018.
DOI: 10.22331/9-2018-08-06-79. arXiv: 1801.00862v3. URL: https://quantum-
journal.org/papers/q-2018-08-06-79/pdf/? (cit. on pp. 13, 20, 44).

V. Potocek, A.P. Reynolds, A. Fedrizzi, D. W. Corne. Multi-objective evolutionary
algorithms for quantum circuit discovery. Tech. rep. arXiv: 1812 .04458v1. URL:
https://github.com/vasekp/quantum-ga (cit. on p. 36).

A. Paler, A. Zulehner, R. Wille. NISQ circuit compilers: search space structure and
heuristics. Tech. rep. arXiv: 1806.07241v1. URL: https://arxiv.org/pdf/1806.07241.
pdf (cit. on p. 21).

P. Rebentrost, M. Mohseni, S. Lloyd. “Quantum support vector machine for big data
classification”. In: Physical Review Letters 113.3 (2014), pp. 1-5. 1ssn: 10797114.
DOTI: 10.1103/PhysRevLett.113.130503 (cit. on p. 26).

R. Sutton, A. G. Barto. Reinforcement Learning: An Introduction (Adaptive Compu-
tation and Machine Learning Series). 1998, p. 338. 1sBN: 0262193981 (cit. on pp. 21,
22,36, 45).

https://doi.org/10.1103/PhysRevA.98.032309
https://aapt.scitation.org/doi/pdf/10.1119/1.1463744
https://arxiv.org/abs/1905.09692v1
https://arxiv.org/pdf/1905.09692v1.pdf
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1801.00862v3
https://quantum-journal.org/papers/q-2018-08-06-79/pdf/?
https://quantum-journal.org/papers/q-2018-08-06-79/pdf/?
https://arxiv.org/abs/1812.04458v1
https://github.com/vasekp/quantum-ga
https://arxiv.org/abs/1806.07241v1
https://arxiv.org/pdf/1806.07241.pdf
https://arxiv.org/pdf/1806.07241.pdf
https://doi.org/10.1103/PhysRevLett.113.130503

Bibliography

[SBG+19]

[SBSW18]

[SCI5]

[SFP17]

[ShoO3]

[SIKC19]

[SMO02]

[SP18]

[SWD+17]

[SWEO92]

[Tan18a]

[Tan18b]

[TBG17]

[THHL13]

[WD92]

[Z1.16]

M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran. “Evaluating analytic
gradients on quantum hardware”. In: Physical Review A 99.3 (2019), pp. 1-7. 1ssN:
24699934. por: 10.1103/PhysRevA.99.032331 (cit. on pp. 22, 31, 49).

M. Schuld, A. Bocharov, K. Svore, N. Wiebe. “Circuit-centric quantum classifiers”.
In: (2018), pp. 1-17. URL: http://arxiv.org/abs/1804.00633 (cit. on pp. 28, 30, 32,
33, 42).

J.J. Sakurai, E. D. Commins. Modern quantum mechanics, revised edition. 1995
(cit. on p. 30).

M. Schuld, M. Fingerhuth, F. Petruccione. “Implementing a distance-based classifier
with a quantum interference circuit”. In: arXiv preprint arXiv:1703.10793 (2017)
(cit. on p. 26).

P. W. Shor. “Why haven’t more quantum algorithms been found?” In: Journal of the
ACM (JACM) 50.1 (2003), pp. 87-90 (cit. on p. 55).

J. Stokes, J. Izaac, N. Killoran, G. Carleo. “Quantum natural gradient”. In: arXiv
preprint arXiv:1909.02108 (2019) (cit. on p. 56).

K. O. Stanley, R. Miikkulainen. “Evolving neural networks through augmenting
topologies”. In: Evolutionary computation 10.2 (2002), pp. 99-127 (cit. on p. 25).

M. Schuld, F. Petruccione. Supervised Learning with Quantum Computers. Vol. 17.
Springer, 2018 (cit. on pp. 26, 28).

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. “Proximal Policy
Optimization Algorithms”. In: arXiv preprint arXiv:1707.06347 (2017) (cit. on p. 36).

J.D. Schaffer, D. Whitley, L.J. Eshelman. “Combinations of genetic algorithms and
neural networks: A survey of the state of the art”. In: [Proceedings] COGANN-92:
International Workshop on Combinations of Genetic Algorithms and Neural Networks.
IEEE. 1992, pp. 1-37 (cit. on p. 25).

E. Tang. “A quantum-inspired classical algorithm for recommendation systems”. In:
arXiv preprint arXiv:1807.04271 (2018) (cit. on p. 26).

E. Tang. Quantum-inspired classical algorithms for principal component analysis
and supervised clustering. Tech. rep. 2018. arXiv: 1811 .00414v1. URL: https:
//arxiv.org/pdf/1811.00414.pdf (cit. on p. 26).

K. Temme, S. Bravyi, J. M. Gambetta. “Error mitigation for short-depth quantum
circuits”. In: Physical review letters 119.18 (2017), p. 180509 (cit. on p. 13).

C. Thornton, F. Hutter, H. H. Hoos, K. Leyton-Brown. “Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms”. In: Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2013, pp. 847-855 (cit. on pp. 13, 25).

C.J. Watkins, P. Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992), pp. 279-292
(cit. on p. 24).

B. Zoph, Q. V. Le. “Neural Architecture Search with Reinforcement Learning”. In:
(2016), pp. 1-16. URL: http://arxiv.org/abs/1611.01578 (cit. on pp. 25, 36).

61

https://doi.org/10.1103/PhysRevA.99.032331
http://arxiv.org/abs/1804.00633
https://arxiv.org/abs/1811.00414v1
https://arxiv.org/pdf/1811.00414.pdf
https://arxiv.org/pdf/1811.00414.pdf
http://arxiv.org/abs/1611.01578

[ZVSL18] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le. “Learning Transferable Architectures
for Scalable Image Recognition”. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (2018), pp. 8697-8710.
1ssN: 10636919. por: 10.1109/CVPR. 2018.00907 (cit. on p. 36).

All links were last followed on October 24, 2019.

https://doi.org/10.1109/CVPR.2018.00907

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Foundations
	2.1 Quantum Computation
	2.2 Machine Learning
	2.3 Quantum Machine Learning

	3 Related Work
	3.1 Quantum Circuit Structure
	3.2 Neural Architecture Search for Deep Learning
	3.3 Summary

	4 Approach
	4.1 Data Acquisition
	4.2 Data Quantum Embedding
	4.3 Circuit Structure Search
	4.4 Final Classifier Construction

	5 Validation
	5.1 Implementation
	5.2 Experiments

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

