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Abstract

These notes are intended to provide an introduction in both z-space
and superspace to N = 1, d = 2+1 rigid supersymmetry and supergravity.

We give a detailed discussion at the classical level of various super-
symmetric models, namely the Wess-Zumino model, Yang-Mills theory,
Chern-Simons theory and supergravity. We also consider rigidly su-
persymmetric Yang-Mill-Chern-Simons theory at the quantum level and
prove that the theory is ultraviolet finite to all loops. At the one, two
and three-loop level in z-space, and at the one and two-loop level in su-
perspace, certain diagrams are power-counting divergent. This raises the
possibility that different regularization schemes may give finite but dif-
ferent results for the effective action. We consider the two most used
schemes: ordinary dimensional regularization with d > 3 in z-space, and
dimensional reduction with d < 3 in superspace. The well-known incon-
sistency of dimensional reduction (an ambiguity in the evaluation of the
product of three epsilon tensors) is multiplied by d — 3, so that it vanishes
at d = 3. Using BRST Ward identities, supersymmetry Ward identities
and general theorems of quantum field theory, we show that both schemes
yield the same effective action. Hence, for this model at least, the su-
perspace approach respects gauge invariance.
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1 Classical rigid supersymmetry

1.1 When and why supersymmetry?

The assumption that field theories have a Fermi-Bose symmetry leads to predic-
tions which will be tested in the next decade, certainly at the LHC at CERN,
and possibly earlier at the Tevatron at Fermilab. For example, in the mini-
mal supersymmetric extension of the standard model, one needs two (instead
of one) Higgs doublets, with one of the Higgs scalars classically lighter than the
7 boson and quantum corrections being able to lift its mass at most to about
150 GeV. For some of the predicted suspersymmetric partners, upper and lower
limits on their masses can be given, so that not finding these suspersymmetric
particles will be a serious problem for SUSY. On the other hand, discovery of su-
persymmetric particles will rank, with quantum mechanics, special and general
relativity and gauge theories, among the most important physical discoveries of
our century.

It is sometimes stated that there is not the slightest indication that nature
is supersymmetric. This is not the whole story, though. The standard model
becomes probably inconsistent at very high energies, of the order of 10'® GeV,
due to what is called “triviality”. This means that some extension or modifica-
tion of the Standard Model is needed. SUSY is one such modification, perhaps
the most consistent one available today. When combined with string theory,
SUSY produces a theory of quantum gravity without infinities. In addition,
supersymmetric quantum gauge field theories have duality symmetries which
give detailed information on the nonperturbative sector of the corresponding
effective actions, the hope being that also nonsupersymmetric gauge theories
have similar features.

In these notes we first give an introduction to SUSY, both in z-space and in
superspace. Then we discuss a fundamental problem with SUSY that has been
around since its beginning: a regularization scheme that respects both SUSY
and gauge invariance. In 241 dimensions we have found such a scheme, but
we make no claims concerning 3+1 dimensions. We conclude with a detailed
discussion of 2 + 1 classical supergravity. Rather than giving a full account of
the subject and the literature on it, something which would require much more
space, we have opted for a more direct presentation which hardly requires any
background on supersymmetry.

1.2 General properties of supersymmetric field theories

SUSY is a symmetry of certain actions with an anticommuting spinorial pa-
rameter, such that in the (anti)commutator of two supersymmetries one finds a
translation. There are other symmetries with anticommuting parameters, BRST
symmetry for example, which has an anticommuting constant parameter, but
this parameter is a scalar instead of a spinor under Lorentz transformations.
Suppose one has an action with some bosonic fields b(z) and fermionic fields
f(x) which satisfy the usual spin-statistics connection. A crucial property from



which SUSY springs is their mass dimension. Actions for bosonic fields con-
tain two derivatives. Examples are the Maxwell and the Klein-Gordon actions,
and also the spin 2 action of Fierz and Pauli which is the linearized limit of
the Einstein-Hilbert action of general relativity. On the other hand, actions for
fermions contain only one derivative. Quite familiar is the spin 1/2 Dirac action;
but also the spin 3/2 Rarita-Schwinger action for “gravitinos”, the supersym-
metric partners of gravitons, has only one derivative. It follows that the sum
of the mass dimensions of two bosonic fields and two derivatives is equal to the
sum of the dimensions of two fermionic fields and one derivative. Equivalently,
the dimensions of a Fermi and a Bose field differ by one half the mass dimension
of a derivative. If we define the latter to be unity, [9,] = 1, we find

[f1=[b]=1/2. (1)

This leads to SUSY as we now show.

Suppose that there are SUSY transformation rules which transform a boson
into a fermion and vice-versa and which leave the action invariant. Then'
6b ~ fe and 0f ~ be, with € a Fermi field. However, if b ~ fe contains no
derivative, it follows from eq. (1) that [¢] = —1/2, so that in §f ~ be there is a
gap of one unit of mass dimension. If there are no masses in the theory and we
there are no dimensionful coupling constants, the only object that can fill this
gap is a derivative. Hence

Sb~ fe  Of ~ Obe. (2)

(1) It is clear from the statistics of Bose and Fermi fields that ¢ must be
anticommuting. Usually one chooses Grassmann variables which anti-
commute, S0 €165 + €261 = 0. Recently, another choice for € has been
studied, namely Clifford variables Bouwknegt, McCarthy, and Nieuwen-
huizen (1997). This seems to lead to quantum groups, and could lead to
a completely different quantum superspace.

(2) From the conservation of angular momenta and the integer/half-integer
spin of bosons/fermions it follows that e has half-integer spin. The sim-
plest case is clearly spin 1/2. Spin 3/2 for € leads to field theories which
have no positive definite Hilbert space in flat spacetime. Thus, by angu-
lar momentum theory, bosons transform into fermions and fermions into
bosons whose spins differ by 1/2. This means that the basic building
blocks are Fermi-Bose doublets.

(3) The commutator of SUSY transformations of b(x) leads indeed to a trans-
lation:

(51 ((521)) ~ (51 (f€2) ~ (6bF1) €g ~ €1€2 8b (3)

ITo keep the notation simple, we denote SUSY variations by the letter § without any
subscript.



The translation 0, of b(z) is over a distance ee; which is the same ev-
erywhere, since in rigid SUSY the €’s are z-independent. For the fermion
f(x) one finds a similar result

(5] ((52f) ~ (5] (8[)62) ~ 8 (G]f) €9 ~ €1€n af . (4)

(4) We shall see that matters are a bit more complicated than in point 3)
above. In general, there are also “auxiliary fields” F' which do not corre-
spond to physical particles. Often they appear in the action as F? and
have field equations F' = 0. In 2+1 dimensions they have mass dimension
[F] = 3/2, so that now one can fill the mass dimension gap also with an
auxiliary field

df ~0ube+ Fe. (5)

With auxiliary fields, the SUSY algebra “closes”, meaning that the com-
mutator of two supersymmetries leads to a sum of symmetries, namely
a translation and sometimes a gauge transformation. Without auxil-
iary fields, the SUSY commutator of a fermionic field contains in general
fermionic field equations. Their origin is clear: because F' = 0 is a bosonic
field equation and, in general, field equations rotate into field equations
under SUSY, the SUSY variation of F(x) is a fermionic field equation.
Hence, if the SUSY commutator in the theory with F' closes, omitting F
from the theory will introduce fermionic field equations.

1.3 Spinors and Dirac matrices in three dimensions

Before discussing the WZ model in 241 dimensions, we recall first some simple
facts about spinors and Dirac matrices in 3 dimensions.

We shall exclusively discuss Minkowski spacetime and, in Section 1.7, its su-
perspace. In Euclidean space, the treatment of spinors is different; for example,
no real spinors exist in three-dimensional Euclidean space while in Minkowski
spacetime they exist. One can go from Minkowski spacetime to Euclidean space
by a Wick rotation, and construct in this way supersymmetric theories in Eu-
clidean space from supersymmetric theories in Minkowski spacetime Nieuwen-
huizen and Waldron (1996).

We take the metric in flat (241)-dimensional Minkowski spacetime to be

Npv :dlag(_171,1) N:0=172: (6)

while for the epsilon symbol e*”? we take €12 = +1. A spinor 1%(z) has two
components (a = 1,2) since the Dirac matrices

{9y =29 (7)



are 2x 2 matrices. If we choose the real representation?

(s =0" ()s=0", (8)

o(10) ee(0T) e=(hh) e

are the Pauli matrices, the Dirac operator @ is real and we can take ¢¥*(z) to be
real. Then ¢®(z) describes one physical state. Compare with four dimensions,
where one can also choose a real representation of the Dirac matrices, and
where a real 4-component spinor describes 2 physical states, namely particles
with helicities £1/2 which are their own antiparticles. An important difference
with four dimensions is that in three dimensions, and more generally in any odd
number of dimensions, there is no 4° and hence no chiral spinors exist. This is
due to the fact that in an odd number 2n + 1 of dimensions the product of all
the Dirac matrices 44! ... 42"+ is proportional to the unit matrix. In three
dimensions, the matrices {1,y#} form a basis of the Clifford algebra, so that
any 2 x 2 matrix will be a linear combination of them. These observations will
be important when considering supersymmetric extensions of purely bosonic
models.

The real spinors we consider are a special case of Majorana spinors. In an
arbitrary representation of the Dirac matrices, a Majorana spinor is a spinor
for which its Dirac conjugate 1 = 11iy? is equal to its Majorana conjugate
¢ = T C, where C is the charge conjugation matrix, Cy*C~! = —(y*)T. For
our real spinors, C' equals iv".

By definition, we raise and lower spinor indices with the epsilon symbols ¢*?
and €, and the northwest-southeast convention: \* = 6“5/\5 and A\, = )\Bega.
W= e define €'2 = +1. Raising the indices of e, as stated, €*? = e 7% ¢, 5,
shows that also €15 = 1. The Dirac matrices with both spinor indices down are
given by y*,3 = (7“)0‘,,3 €a’a- 1t is straightforward to check that e,5 = —(7")%3,
so that (v*)ag = (7°v*)* 3, which leads to

where

(’7“)&,3 = {_]L_US:U]} : (10)
The Dirac matrices with both indices up are obtained analogously
(1) = {1,0% —0'} . (11)

From these equations it follows that

('7“)043 ('Yu)aﬁ = =244,
(Y")ap (V)" = = (0a705° + 02057 ) .

2Tn Fuclidean space, one of the Dirac matrices is necessarily complex and no real spinors
can be defined.

(12)




Lowering spinor indices with €, in the last equation, we obtain

(V) as(Vu)vs = — (€ar€ps + €asepy ) - (13)

It is useful to write vectors as bispinors

Vag = (Y")apvu
1 «
v, = -3 (V) 8 Vag (14)
1Y = 0.

In this way both spinors and vectors can be described with one formalism (spinor
formalism). In 4 dimensions one can distinguish between “dotted” and “undot-
ted” indices, for spinors can be decomposed into left- and right-handed parts,
but (again) in odd dimensions there exists no matrix 5 and hence no chiral
spinors exist.

The normalization of the action for real spinors is as usual

1_
L=— 3 APN (15)
and is chosen such that the hamiltonian is positive definite

H = /dx]deH

1 _
3 / da' dz® MyF o\

1 _
= -3 /dxldx2 A9

= Y B [CT(E) (k) — ﬂ : (16)
E

Two identities that the Dirac matrices satisfy in three dimensions and that
will be used in the sequel are

PPy, = — il (17)
and
e L e M S b T (18)

It is instructive to check them by taking particular values for u, p and o. An-
other two identities for real spinors ¢ and x that we will repeatedly use are

vx=x¢  YyFx = XMy . (19)

To prove them, it is enough to use the definition of ¢ : 1 = ¢"0?. Note that
the second equation in (19) ensures that the lagrangian £ in (15) is not a total
derivative.



1.4 The simplest case: the Wess-Zumino model in z-space

Suppose that we begin with a real scalar field ¢(z) in (2+1)-dimensional
Minkowski spacetime, and choose as its action the Klein-Gordon action

S = /dgm (%n“” 8M<p8,,<p> . (20)

To make the system supersymmetric, we introduce a spin 1/2 fermion. We have
already said that in 2+1 dimensions a spinor ©(z) has two components and
describes one physical state. This gives equal numbers of states but not yet
equal numbers of bosonic and fermionic field components, since we have one
bosonic field component ¢(z) and two fermionic field components ¢ (z). Thus
we expect that we must add a bosonic auxiliary field F(z). This suggests the
free field action

1 1 - .
At this point it is not clear what the sign of the F? term is going to be, so we

have introduced a coefficient a. From the previous section we are motivated to
consider

odp = e
SF = ey (22)
0 = BPpetyFe,

with 8 and v constant coefficients to be determined. We have scaled € and F
such that d¢ and JF are normalized to € and €@y, respectively. Note that,
since &) and )y are real, the coefficients 8 and ~ are real. We recall that in
three dimensions there is no 4® and that the matrices {1,v#} form a basis of the
Clifford algebra. This accounts for the two terms in the SUSY transformation
law for dvy above, Lorentz covariance requiring the v* matrices in the first term
to be contracted with 9,. Invariance of the action under the transformations
(22) fixes f = 1 and a = 7. Indeed, the variation of the Klein Gordon action
gives & (Oyp), while the Dirac action varies into —3 e (dp) —y1@Fe and the
F? term into « Fe@i), the identities (19) implying then the thesis.

Exercise 1: Show that the mass term
1
Sy = /dgmm (F(p — §w¢> (23)

is supersymmetric provided 8 = 1 and v = 1. Hence, invariance of
both Swz and S,, requires that the F? term in (21) has positive sign,
i.e. a = 1. This has important consequences for SUSY breaking that
we do not discuss in these notes.



Exercise 2: Show that the self-interaction term
S = [ g(# " dug) (24)

is supersymmetric provided § = 1 and v = 1. To do this, note
that the (1)) (€2)) vanishes by itself, since (Y1) is completely
antisymmetric in all 3 ¢’s while there are only two independent
¥’s. Thus, one can also use SUSY invariance of Swz and Sy to fix
a=p0p=v=1, so that

dp = &
OF = &y (25)
p = Ppe+ Fe. (26)

Exercise 3: Using eq. (22), derive the SUSY commutator

[51,52](p = ﬂ?,g@(pﬂ + yérer B — (]. > 2)
= 2,6(62’7”6])8“(,0 (27)

and show that exactly the same result holds for ¥*(z) and F(x)
provided v = 3.

The fields ¢(z), ¥ (z) and F(x) fill up a real scalar superfield ¢(z,8) living
in superspace,

8(0.0) = (x) + 1070 @) + & 0°05cp0F () (28)

as we shall discuss in more detail in Section 1.6.

1.5 Supersymmetric Yang-Mills theory in z-space

Next we consider Yang-Mills fields A, with a a gauge, Lie algebra index. Since
Ay, describes one degree of freedom for fixed index a, we add a real spinor
field A%2. Counting field components shows that there are 2 fermionic field
components and 2 (and not 3) bosonic field components. The reason is that
gauge invariance can be used to gauge away one of the components of A}, for
example Aj or any other combination. Hence, we do not need an auxiliary field

this time, and the action reads

1 3, 1 a apv 17& a

where m is a parameter with dimensions of mass, g is the dimensionless coupling
constant, Ff, = 9,A% — 9, A% + fe*cAb A¢ is the field strength and D,“. =
0ud®e + f“""AZ is the covariant derivative. The gauge transformations are

Og Al = (DuQ)" A" = fNC7 (30)

10



It is straightforward to check that the gauge transforms of Fj, and (D,A\)*
are dg I, = fabe F;j,, (¢ and dg(D,N)" = f%¢ (D, A)° ¢, from which the gauge
invariance of the action follows.

By writing in eq. (29) the overall factor 1/m, we have taken the coupling
constant g to be dimensionless. In the literature one also finds the action (29)
written without the factor 1/m. This corresponds to taking for g mass dimen-
sion [g] = 1/2. In either case, there is always a dimensionful parameter, which
in our conventions is m.

The parameter m can be used to fill the mass dimension gap between § f and
fe discussed in Section 1.2, so that the SUSY transformation law for A* may in
principle have more terms than those given in eq. (2) for §f. The most general
SUSY transformation rules which are Lorentz covariant read

OA, = aéy,\° ON" = BFI A"y e+y0'AL e+ dmAe . (31)

Note that a term e"””F} vy,€ in 6A® is not independent because of the identity
(17). The variation of the action (29) under (31) is given by

1 - 1 -
0Svym = — /d3az [—F” (Do A)* — X (PoN)* — 3 Fexe (AN |
mg
(32)
We have used that (§A%)(D))? is equal to A*(JPJN)?, as can easily be shown by
partially integrating. The first two terms in (32) are linear in A and must cancel

each other, while the last one is cubic in A and must separately cancel. For the
first two, one finds after partial integration

& (DuF ) e = X (B (PEye) 277 7 (PO-A)e — S (DAL 7€)
(33)

From this we already see that v = 6 = 0. We now use the identity (18). The
term that arises with 4/#~4#~?] does not contribute due to the Bianchi identity

(D[quﬂ})a =0, (34)

the term with 7?” does not contribute since F), is antisymmetric, and the two
remaining terms give each the same contribution —3 (D" F),,;) A\y%¢. Recalling
that €v,A = —Ay,¢, we find a + 28 = 0. Hence,

a = a @ v
dA; = aey,A oA = —3 wY Y e . (35)

We still have to show that the third term in (14) cancels by itself. The same
term appears in 4-, 6- and 10-dimensional supersymmetric theories, and always
vanishes. In our case we must show that

ST NN (€7, A) = 0. (36)

11



Using that A% = ATi7%, that (y09#)%5 = (v#)afB and eq. (13), we have for the
left-hand side

7fn,bc )\Z )\% €Y )\g (6(17655 + €m5€6’y) ) (37)

which vanishes by (anti)symmetrization.
For the SUSY commutator acting on Aj, we find

2
(0%
[(51,(52] AZ = 7? EQ’yu’yp’yU€1 F;” — (]. — 2) . (38)

We now use the identities (18) and (19), and obtain for the right-hand side
—20°€,7 €1 F, . Hence

[61,85) A% = 20 (€77 €1) (9, AL — B, A% + [ AP AC) . (39)

The SUSY commutator acting on the gauge field gives thus a covariant trans-
lation. To interpret its meaning we split off the ordinary translation term with
0,A," and write the two remaining terms as a covariant derivative

[(5] 5 (52] AZ = 2&2 (62’7”6] ) BUAZ — 2&2 (62’)/”6]) (D[,LAU' )a . (40)

We have found a translation and a gauge transformation, the latter with parame-
ter (*=—2a>%(é377¢;)A%. Thus, the algebra closes, but not only on translations:
it also produces gauge transformations. To find the same translation as for the
WZ model we need a® = 1, which we assume from now on. Thus, o = £1. We
choose the sign of \* such that @ = 1. In other words, if a = —1, we redefine
A% as —A® and get the same action and SUSY transformation laws as for o = 1.
Hence

SAL = ey oA = f% wY Y e . (41)
Note that one can not set &« = 1 by rescaling €, since one could put together the
WZ model and supersymmetric Yang-Mills theory and € was already rescaled
to normalize the SUSY transformation ¢ of the scalar filed ¢ in the WZ model
to €.

Coming back to eq. (40), in superspace one finds only a translation. How-
ever, if one chooses a so-called Wess-Zumino gauge, one needs to add compen-
sating gauge transformations to the ordinary SUSY transformations in order to
stay in this gauge, and these produce then the terms with gauge transformations
in the SUSY commutator.

Exercise 4: Check that for A one finds the same result as in (25),
namely a covariant translation with (D,\)®.

Exercise 5: Suppose one were to add a mass term

S = /d%; [erm (A2)2 + eA7A" ] (42)

12



to the action Syym. Show by counting states that one would need
another real physical spinor field. Counting field components, show
that one would need one real auxiliary bosonic field. All these fields
fill up a real spinor superfield

1
A8 (2,6) = XA () + 0o HO () + 0°VEy (1) + 67 | 5 Basx" () — Al ()
(43)

where A, is essentially A\, and V' is essentially A}, as we shall see
in Sections 1.9 and 1.10.

The mass term (42) breaks gauge invariance, since (Af,)? is not gauge invari-
ant. In three dimensions, however, it is possible to give a mass to Yang-Mills
fields without breaking invariance under infinitesimal gauge transformations by
adding to the Yang-Mills action a Chern-Simons term Jackiw and Templeton
(1981), Schonfeld (1981). We see this in the next section.

1.6 Supersymmetric Chern-Simons theory in z-space

In three dimensions, out of the gauge field Af, the derivatives d, and a di-
mensionless coupling constant g, one can construct the following local action
invariant under gauge transformations (30)

1 v 1 a a 1 abc a c
Sos = /d3.7: il <§Au6,,Ap + g £ AuA,”,Ap> . (44)

Here, as is usual in quantum field theory, local means polynomial in the field
Ay and its derivatives. This action is known as the Chern-Simons action and
has field equation

F =0, (45)

As opposed to the Yang-Mills action, the Chern-Simons action is only in-
variant under infinitesimal gauge transformations (30). Suppose that the
gauge group is SU(N) and consider finite gauge transformations A4, — AZ =
h='0uh + gh™"A,h, where A, = AST®, with T* antihermitean generators of
the gauge Lie algebra. Then Scg is not invariant under large gauge transforma-
tions. Only the quantity e“cs is invariant, provided 47 /g? is an integer Deser,
Jackiw, and Templeton (1982). In these notes, however, we are concerned with
perturbative quantization, so that we are only interested in infinitesimal gauge
transformations, for which there is no restriction on g. In what follows, unless
stated otherwise, we will refer to infinitesimal gauge transformations as gauge
transformations.

The same counting of states and components as for Yang-Mills theory implies
that the supersymmetric extension of the Chern-Simons action will involve the

13



field A}, and the spinor field A”. In this case, it is straightforward to verify that
the action

1 3, v 1 a a 1 abc ga Ab Ac ]"n, a
SCS:?/dm[eup<§Au8,,Ap+6f ANAVA[,)EAA}, (46)

is gauge invariant and supersymmetric. Absence of dimensionful parameters and
locality imply that the fermion A? can only enter the action as a term A*A®, but
does not fix the coefficient. Invariance under the SUSY transformations (41)
fixes the value of the coefficient.

Exercise 6: Show that indeed SUSY requires the coefficient of the
term A®A? to be -1/2.

One can combine the Yang-Mills and Chern-Simons actions into one single
action

Svymcs = Sym + Scs - (47)

The resulting theory is called Yang-Mills-Chern-Simons theory or topologically
massive Yang-Mills theory. The action Syncs is gauge invariant and gives,
after gauge fixing, a massive propagator for the field Aj. To see this, let us
consider the nonsupersymmetric theory and work in the ordinary Landau gauge
O'Aj, = 0. The Faddeev-Popov procedure gives then for the gauge-fixed classical
action

S = Sym + Scs + Sar , (48)

where the gauge-fixing term Sqr reads
Sar = [ & (=494 — (@6") (D)) (49)
b® is a Lagrange multiplier field imposing the condition 9#A}, = 0, and ¢ and ¢*

are the Faddeev-Popov antighost and ghost fields. The part of the gauge-fixed
action quadratic in A, and b* has in momentum space the form

1 d3p a P a a p A
-5 [ [ K@ An e axn] L 6
where
K™ (p) = —€"" py + % (0" —pPp") . (51)

This defines the kinetic matrix of AZ and b? as

o = (K0 Y. -

pH

14



The propagator matrix

s = (% 7) - (54)

To find A(p), we write for A,,(p) and A,(p) the most general expressions
compatible with Lorentz covariance,

A;w (p) =fi Qmup” + fa Npv + f3 PuPv Au (p) = fa Pu (55)

with fi,..., fs functions of p?> and m to be determined, and impose eq. (54).
One thus finds

2

_ mg . 9 .
Auu(p) = - m (m€up1/pp + P Nuy — zpupu) (56)
and
p
Aulp) = p—;‘ : (57)

We see that the propagator (56) has a pole at p?> = —m?, which shows that the
gauge field has a mass. In Section 2.1 we will consider a supersymmetric gauge
in which the propagator of the gauge field is the same as in (56).

The propagator (56) has been obtained in three dimensions. When we define
dimensional regularization, we will use the original 't Hooft-Veltman prescrip-
tion, Hooft and Veltman (1972) and Breitenlohner and Maison (1977), for e#¥?
in n dimensions, which is the only algebraically consistent one known to date.
We will see that this prescription introduces in the n-dimensional propagator
extra terms which vanish for n=3 and which loosely speaking can be regarded
as proportional to n—3.

1.7 Three-dimensional rigid superspace

Having a symmetry between bosonic and fermionic fields suggests also to con-
sider a symmetry between bosonic coordinates z# and new fermionic coordi-
nates. The simplest choice are “spin 1/2 coordinates” 8%, with « = 1,2. Since
x# are real, we take 6 also real. According to eqs. (1) and (2), under SUSY,
z* should vary into ey*f. Hence [f] = —1/2, just as [¢] = —1/2. The reverse
law would be 06 ~ 0,2z, (gin"" + q2v"~")e, with ¢1 and ¢» constants, but since
Oz’ = 6,", this simplifies to J§* ~ €*. Hence

dx* = pey'o 00* = qe* | (58)

with p and ¢ real constants.
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We denote the derivative with respect to §* by 0, : 0, = 9/9§. Noting
that 0, satisfies {8,,0°} = 6,7, it is clear that (0,)' = 0,. Similarly, from
[0, 2] = 6," it follows that (8,)7 = —d,,. Since both 2# and 9, can be written
as bispinors by means of eq. (14), 2% = (7,)*2# and 0.5 = (7*)as0,, and
since the matrices (y")ag are real, we also have (9,5)" = —0ap.

Fields ®(x,6) defined on superspace are called superfields and are functions
of both coordinates z# and #“. A superfield will have an expansion in powers
of #*, with terms of order 0, 1 and 2 in ™. This is so since the coordinates
A anticommute and there are two such coordinates (« = 1,2), so that one can
have at most products §%6%¢5, = —26'62 of two §’s. For example, for a scalar
superfield ¢(z, ), one has

$(,0) = pla) + 1000 (x) + 00 e F(x) (59)

where the coefficients ¢, x, and F' are fields defined on z-space, usually called
component fields.

The SUSY transformations (58) can be viewed as a translation in superspace.
Superfields ®(z,6) will then transform with respect to SUSY as scalars, i.e. only
with orbital parts but not with spin parts. In other words, ®'(z',6') = ®(z,6),
where 2'# = 2# 4+ pey"d and 0'* = 6 + ge®. The SUSY generator @, called
supercharge, will therefore be such that

58 (2,0) = ®Qud(z,6) . (60)

Note that ), must be a spinor operator, for SUSY transformations are lin-
ear in €*. In order that the commutator of two SUSY transformation gives a
translation, we claim that we need

Qr! =0n — ieﬁaﬁa . (61)

To see this, let us take a scalar superfield ¢(z, ). Using the expansion (59) and
acting with 0 on it, we get on the one hand
3¢(,0) = € (9o — 167054 ) ¢(z,0)
: . anB : 1, 5 (62)
=1y — 1 €07 03a0(x) +i €0y F(x) — B 0°€*0napt)” |
and on the other

0o(z,0) = dp(x) +160%0),(z) + %926F(m) . (63)

In deriving (62), we have used that §°6° = —1 €*?9%, where 6° denotes §* =

3

0%6,. Comparing eqs. (62) and (63), we have

8o = i €%1hy = €*(—ieap) Y° = &b (64)
0pg = Ogap €™ + Feg & 01) = Pye + Fe (65)
OF = —ie"0ppy)?®  =epp = , (66)
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in accordance with eq. (25). From these transformation laws, and using eqs.
(19), the SUSY commutators

' '
[01, 0] oy =2(EN )0 ¥ (67)
F F

follow. The observant reader may notice that
[ Qa . Q5] = & €] {Qn, Qa} = € €7(~2i00p) = ~2&7"€18,  (68)

has opposite sign. The reason is that eq. (61) gives a representation for the
supercharge ), as a Lie derivative and the generator P, of translations is rep-
resented also by the Lie derivative d,,, and minus the Lie derivatives form (on
general coset manifolds) a representation of the algebra. For example,

(B0 10°050, 95— 1670, = 20 (")as (3. (69)

From either (68) or (69) it follows that in superspace the commutator of two
SUSY transformations yields only a translation and no gauge transformation.

As always in field theory, it is useful to introduce the notion of covari-
ant derivatives. Here this means derivatives, denoted by D, and D,, which
(anti)commute with the Lie derivatives (), and 0,. It is very easy to find that
they are given by

Dy =0, +i0°03, D, =20, . (70)

[The theory of coset manifolds can be applied to the coset (P + Q + M)/M,
where M is the Lorentz subalgebra, finding that the Lorentz connections on
Qa, Py, D, and D), all vanish].

Summarizing so far: Superspace is parameterized by coordinates z* and
0%, superfields ®(x, ) transform as d®(z,0) = e*Qp(z,0), where Qo = O —
iﬁﬁaga is the supercharge, and there exist covariant derivatives D, = 0, +
i0°95, and D,, such that

{Da:@s} =0 (71)

Hence 6D,® = €°Qp (Dy®) = Do(e°Qp®). Furthermore, since (%) = 62,
(0a)! = 0a and (Oap)t = —0ap, one has (D,)' = D,. It is clear that

{Da,Dg} = 2i0ag Do, Dl = —€agD®  [Da,85,]=0,  (72)

where D? = D*D,,.

Three-dimensional N =1 superspace is much simpler than four-dimensional
N =1 superspace. There are no chiral superfields, and hence no representation
“preserving constraints”. We recall that, as already mentioned, the notion of
chirality does not exist in an odd number of dimensions. Imagine one were
nevertheless to define a chiral superfield ¢ by the condition Di¢ = 0. Then
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DiD.¢ = i0n1¢ = 0, where 811 = v4,0, = —(0p + 01)¢. This restricts the
z-dependence of ¢, which is inadmissible. Another simplification in three di-
mensions is due to the simple fact that objects with three spinor indices which
are totally antisymmetric vanish. Namely, for any object O,g, one has the
identity

Oaﬁw + Oﬁw + Owﬁ - O’vﬁm - Oﬁrw - Oﬂ’vﬁ =0. (73)

Although this follows trivially from the observation that spinors in three dimen-
sion have only two indices, it leads to many simplifications. For example, taking
Oapy = Do DgD~ and contracting with €?7, we find

D,DzD" + D3D’D, + D’D,Djs =0 . (74)

If one next writes D,Dg = —DgDy + {D,, Dg} in the first term and D®D,, =
—D,D® + {D® D,} in the second term, the two terms with an anticom-
mutator cancel each other, {D,,Dg}D? + Dg{D? D,} = [{D.,Ds}, D°] =
2i [0ap, D?] = 0, and one is left with —DzD,D? — DgDaD? + DPD,Ds =
3D5DQD,3 = 0. Hence

D’D,Ds=0. (75)

From this fundamental identity, others follow; e.g.
D,D?*+ D?D, =0. (76)
The measure in superspace is d°zd*, where d>t is real and has mass dimen-
sion [d*] = —3 while d¥ = —2df'df? is imaginary and has mass dimension

[d*] = 1. The normalization factor —2 in the definition of d*¥ has been in-
troduced for convenience (see below). Integration over Grassmann variables is

defined by
/dG:O /d06:1. (77)

In the case we are considering here of two Grassmann coordinates, we have

/dea =0 /dé“ 6% =58 = /d29 626° = 2¢28 (78)

Thus, in an integral /d3x d* F(z,0), integration over d* picks the term in

F(z,0) quadratic in #’s. This coincides precisely with the result of acting with
D? on F(z,6) and taking afterwards % = 0, the reason for this being that
D?(#*6%) = 2¢*#. Hence one has

(79)

3

/d3.7: d0 F(x,0) = /d3m D?F(x,6)
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where the vertical bar denotes restriction to ¢ = 0. With another choice of
normalization for d%, this identity would have to be modified accordingly.
Let us consider the action

(80)

S = /d% d9 L(®,D,P, DyDs®,...) ,
with £ a lagrangian that does not depend explicitly on coordinates. Under a
SUSY transformation, the variation of £ is £ = €*Q,L. The term €*9,L that
arises from taking 0, in @), is made of terms which are order zero and one in
6 and which, therefore, vanish upon integration over d%. Similarly, the term
ie“()ﬁaﬁsmﬁ that arises from taking 729585(1 in ), gives rise to a total spacetime
derivative which can be ignored. Having d£ = 0, one concludes that the action
S is supersymmetric: 65 = 0.

1.8 The Wess-Zumino model in superspace

Since actions are dimensionless (we set i = 1) and d* d° has mass dimension
—2, to obtain the superspace action for the WZ multiplet, we need a lagrangian
Lywz with mass dimension 2. The scalar superfield ¢(z,6) in eq. (59) has two
scalars, ¢ and F', and one spinor, ¥)®. In three dimensions, and assuming that
there are no dimensionful parameters, a scalar field has mass dimension 1/2,
and a spinor field has mass dimension 1. This and the fact that [%] = 1/2
forces us to take ¢ as the scalar with mass dimension 1/2, since only then ®
has mass dimension 1. Thus [¢] = [¢] = 1/2. Recalling tha= t [D,] = 1/2,
we see that Lwz = (D*¢)(Dy¢) has the correct mass dimension. Furthermore,
because Ly is a function of ¢ and D, ¢, the argument given at the end of the
last section implies that

Swr = g / @ d% (D°§) (Dad) (81)

is supersymmetric, where the factor 1/8 has been introduced for convenience.
We can also add a mass term £,, = m¢? and a self-coupling £, = g¢*. Note
that [m] =1 but [g] = 1.

To obtain the component action from the superfield action (81), we use eq.

(79):
Swr =1 [ [(0°0)(0*D0) - (007 (DD . (62)

If we write D?D,, in the first term as D>D, = D?(=D,Dg + {Dg, D,}) =
2iD'385a, recast DgD, in the second term as DgD, = %{Dg,Da} +
1[Dg, Dy] =i 030 — % €gaD? and note that

o

<P:¢ ¢a:_iDa¢ F= 2D2¢ ; (83)
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we obtain
1 ) 1
SWZ = /dqﬂf |:—Z (8aﬁ Lp) (85(1 (p) - % '(/)aaa,g’l/JB + 5 F2 . (84)

This is precisely the WZ action (21). Note that the F? term comes out indeed
with a positive sign.

1.9 The covariant approach to Yang-Mills theory

To describe Yang-Mills theory in superspace, we need a superfield with a spin
1 field. The real scalar superfield ¢(z,6) in (59) can therefore not be used. The
spinor superfield

A(@,60) = Xa(2) +0aH () +67Vaa0) 416 | 5 0a’(0) — Mal®) [, (85)

contains a vector Vg, and hence can be taken as starting point. Because we
want to construct covariant derivatives for d, and D,, we consider A, as the
spinor part of a vector superconnection

Am =A{Aa; Aap}  Aap = (V") apAu - (86)
The connections are Lie algebra valued
A = A3, T, (87)
with T® the antihermitean generators of the gauge Lie algebra

Tt = ¢ [T,,Ty] = fobeTe . (88)

A=Al (89)

In order that the vector field Vg, be real, A% must be real. Then also x%, H”
and A% are real fields. Once we have a superconnection, we define a gauge
covariant superderivative and use it to construct gauge transformations. Since
D, is real, as we already saw, we define the spinor part V,, of the gauge covariant
superderivative Vs by

Vo =Dy +iA, . (90)

Note that the i in front of A, is needed because A, is Lie algebra valued and
the generators T, are antihermitean. We define the vector part of the gauge
covariant superderivative by

Vasg = 0ap + Aap - (91)
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Because J,p is imaginary, Agﬁ imaginary; note that there is no 7 in front of
Aqsp. Gauge transformations are defined by

dg (iAa) = VaQ = D0+ i[Aq, Q] (92)
5g Aap = Vsl = 0,50 + [.Aaﬁ, Q] , (93)

where Q = Q2T with Q% real. The covariant derivatives themselves transform
covariantly

0 Va =[Va, Q] ds Vag = [Vag, Q] . (94)

In general, given a covariant derivative V., the supertorsion Ty ' and the
group supercurvature Fsn are defined by

Var,Vn}=Tun' Ve +Fun , (95)

where [a,b} is the graded commutator, equal to {a,b} if both a and b are
fermionic, and equal to [a,b] otherwise. Explicit evaluation gives that only
Ta.3"° is nonvanishing and yields

{va: Vﬁ} = 2ivaﬁ + fa,@ ) (96)
with
Fap = iDa.Aﬁ + iDﬁAm — {7:./4(!, Aﬁ} — 27:./4(15 . (97)

The unusual term —2iA4,3 ensures that F,3 transforms covariantly under gauge
transformations. Indeed, under a gauge transformation (92)-(93), some straight-
forward algebra shows that d; Fapg= [Fap, ] . The presence of A,p in Ayp can
be understood by noting that rigid superspace, though flat, has a nontrivial
spin connection. The inverse rigid vielbeins E(O)QM and E(O)HM follow from
Dy = E@y o™ 0m, Dy = E(g)," 0u, and read

By = {07, 0" ("aa} oM =10, 81 . (98)

If one changes the basis from {Ay} to {An}, with A, = E() ™ Ay and
Anp = E) QBMAM, the curvature takes on the usual Yang-Mills form, as one
may check.
The connection in V.5 is Aqg, but one may always add a tensor O,g that
transforms covariantly under gauge transformations, since the new connection
wp = Aap + Oap will also transform as J; A 5 = V| ;0. If we go back to
the beginning and start with the modified connection A, 5 = Aap + 3:Fag, We
then end up with {V,,Vg} =2 =4V] ;. Thus, by a redefinition of the vector
connection we have obtained F,3 = 0, and from F,3 = 0 we have th= at

! 1 )
op = 5 | DaAs + DpAa +i{Aa, A} | - (99)
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Hence we have imposed the conventional constraint F,3 = 0, which is simply
an allowed redefinition of A,3. From now on we drop primes. Only A, is left
as an independent field, while A, 3 is expressed in terms of A, by

Clearly, A7 5 is real.
Next we study the Bianchi identities

[Va,[VN, VL }}+cyclic=0. (101)
We first look at the identity
[Va,{Vs, Vi ] +cyclic=0. (102)

From this equation, the anticommutator {V,,V} = 2iV,s and [V,, Vg, =
Fa,py: We get

Fa,8v + Fra8 + Fpya =0 (103)

This, the decomposition

1
Fobv =5 | (Fa,py + Frap + Fora) + (Fa.py — Fova) + (Fa,py — Frap)

3
(104)
and
Fo.py = Fprva = €ap € Fory (105)
implies that
Fa.py = % €ap (= F 7 r9) + €ay (=F 7 1p) | - (106)

The object F7 ., is the basic superfield strength in the theory. For reasons to
become clear, we normalize it as

3
[va,vag]:fa,mg:*§W5 . (107)
Then we have
1 1
[Va: V] = Fa gy = 5 €apWy + 5 €ar W (108)

The field strength is thus given by a (graded) commutator of two covariant
derivatives, as in ordinary Yang-Mills theory, but not by {V,, Vg}, which only
yields a torsion term, but rather by [V, Vg]. The third commutator that can
be formed with the covariant derivatives, namely [V o3, V5], gives the derivative
of the field strength, as we show below. Note that Wj is real because V® is real
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and Vs is imaginary. Hence W4 is imaginary. Explicit evaluation using (107)
and the relation in eq. (100) yields

Wg=—-D*DgAy —i[A%, Dy Ag] + % [AY { Ay, Ag}] . (109)
Another expression for Wy is
W =iV*VgV, . (110)
To derive it, apply eq. (73) to Oapy = VaVgV, to find
ViVoVg +V,VgV*+VViV, =0, (111)

and use this in the definition of W3
7: [e]
Ws = £ [V, {Va, Va}l (12)

Note that the right-hand side in eq. (110) defines a function in superspace, not
an operator. This is so since, as a result of the basic identity D*DgD, = 0, no
free derivatives are left in V*VgV,. The easiest way to check this is to first act
with V*V3V, on a function (2, and then show that the expression V*V3V, 2
contains no derivatives of Q. From eq. (94) it follows that Wj is covariant since
it transforms covariantly under gauge transformations

0 Wg = [W35,0Q] . (113)

In z-space, the variation (any variation, not necessarily a gauge variation) of
a curvature is the covariant derivative of the variation: 0F,, = D,(dA4,) —
D,(6A,). The same holds in superspace: dWg5 = —V*V3(dA,). This follows
easily from (107) if one uses that 64,3 = 1 (V, 645 + Vg dA,), which in turn
arises from (100).

The next Bianchi identity we study is

{vm [vﬁhvvtﬂ} + [V’v67 {vaz vﬁ}] - {Vﬁ, [V’767va]} =0. (114)

It can be used to express

1
‘7:01/37’75 = E [{vaz vﬁ}7vv6]
= (’yu)ﬂﬁ (7”)75 (auAu - auAu + ['AI“ Ay])

in terms of W,. We begin by decomposing the curvature F,3 4 into the sum of
terms symmetric in 3, and terms antisymmetric in 3,~. From the definition
of .7:(!5’75 in eq. (115) it follows that .7‘-(!5175 = Cfﬁmfy(; = 7.7:%;7(15, which in
turn implies that the terms in F,3,,5 symmetric (respectively antisymmetric)
in (8,7 are antisymmetric (respectively symmetric) in «,d. This allows us to
write without loss of generality

(115)

faﬁ,fyd = F«nyfmi + 5(15fﬁ’y > (116)
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with fas symmetric in its indices. We could have decomposed F,g3,5 using
other pairs of indices, with the first index in {a, 8} and the second index in
{7, 0}. For example, we could have decomposed in 3,4 and written

fmﬁ,fyﬁ = 565f(1’y + Fufyfﬁr; . (117)

Tracing eq. (114) with €7? and using eq. (116) yields

{Va, [V, Vias]} = {V7,[V5, Val} = —4ifas - (118)
Recalling now eq. (108) we find
-2V W5 + % €as VW, = —4difys . (119)
Hence
VW, =0 fap = % ViaWs - (120)

Exercise 7: Verify that the remaining Bianchi identities

[v(!7 [vﬁ’h VJFH + CyCIiC =0

121
[Vag, [Vys: Vec]] + cyclic =0 (121)

give no further information. Hint: substitute (116) and (108) and
then use that V,W3 = 2if,3.

Let us now obtain the gauge action. Recalling that ¢ is in our conventions
dimensionless and that W ¢ has mass dimension 1/2, an action which is gauge
and super Poincaré invariant and has the correct mass dimension is given by

Gates Jr., Grisaru, Rocek, and Siegel (1983) and Siegel (1979b)
Sym = g_(; / & P9 WO (122)

with ¢ a constant. Using §W, = —VPV,045 and integrating by parts, the field
equations are found to be given by

Vevelw, = 2iVePw, =0 . (123)
To find the component content of Syn, we use again d?0 = D2, but we may

replace D? by V2 = V*V,, since the action is gauge invariant. In other words,
for a gauge invariant action,

/d3.7:d29£ - /d3.7:D2/J‘ - /d% v%c‘ . (124)
We obtain then

Sym = 2c/d3:n [Weev2We — (VAW ) (VW] ‘ . (125)

24



Using VoW, = 0 and the identity (73), one gets for V2W2 in the first term
VW, +2iVasWP =0 . (126)
From this and eq. (120) it follows

Syap = 2c/d3m (—2i WV (W 4 4fael o) ‘ . (127)

Noting the relations in eq. (13) for (v#),g, we obtain

Fap o Fob0 = ('7“)(!6 (7”)75 Fuv ('Yp)ﬂﬁ (70)75 FPo =4 F,,FH

(128)
= (g fas + €asfay) (€770 + € f77) = 4 fapf*0 .
Recalling that W is imaginary and noting eq. (115), we define
a i a a __ a
A = 3 we AL =Aj - (129)

Finally, using that i\*® (7#)aA%% = A?4#A’ and making the choice ¢ =
—1/32 g%, we obtain

1 3 1 a apy ]"a a

This is indeed the component action of eq. (29).

The last subject we wish to study in Yang-Mills theory are the SUSY trans-
formation laws. The fact that fj; and W3 transform covariantly under gauge
transformations suggests to use covariant derivatives V, for the SUSY trans-
formations. Thus we write 6’ = €*V,. The result of acting with dsysy on any
gauge covariant quantity consists of the sum of the usual SUSY transformation &
going with D, (whose commutator yields an ordinary translation) plus a gauge
transformation (which leads to terms quadratic in superfields). The invariance
of the action Sy in eq. (122) under §' follows from its gauge invariance and
the fact that (6’ — 6)WJ = 6, W 7. Using 0’ we have

§AC = % AV We

= —ie’ f2,

7 (131)
or in vector notation
1
FAN = fEFSV YHye . (132)

To find the SUSY transformation law for the field AZB we note that the action
of § Aap on any superfield ¢, with § an arbitrary variation, is given by [0. 4,3, ¢].
This and the identities

[6-’40(57 ¢] = 6(va,3¢) - vaﬁ (6¢)
(133)

1
€'V Vs —Vage'Vyp =€'[V,,Vapld = 3 (eaWp +€sWy) @
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implies that

1 - (67 a b= a
§AL = =3 () 8 AL | = iea ()N = A (134)

Eqgs. (132) and (134) are the z-space transformation rules of (41).

1.10 The covariant approach to Chern-Simons theory

The non-supersymmetric Chern-Simons action (44) can also be written as
1 3. HVp pAa a 1 abc Ab Ac
SCS = Z d.’I:E AN prfgf AI/Ap . (135)
In superspace we therefore expect an action of the form

SCS — /d d20 Aaa C] Wa _|_202fabc Abﬁ(DﬁAc) + c3fabCfcdeAbﬁAdAe]
(136)

with ¢1, ¢ and c3 real coefficients. Invariance under gauge transformations
0g(1AL) = (Vo Q)? requires c2 = ¢1/3 and c3 = —cq/6, which gives Gates Jr.
et al. (1983), Siegel (1979h)

2
Sos = — d3 d [(DO‘A”’B)(D[;AZ) + é f¢ A AP (D AS)

. (137)
_ 6 fabCfcdeAamAbﬁAralA%} )

Another way to obtain this expression is the following. We expect the field
equation Fy, = 0 for the nonsupersymmetric theory to generalize to W5 = 0.
Any action which under an arbitrary variation yields

5Scs ~ / d*r d’%0 W §.A° (138)

will be gauge invariant, since 6,(iA%) = (VoQ)* and VAW = 0. Hence it is
enough to construct an action of the form (136) whose variation is (138). The
answer is eq. (137).

To find the component expression for the action (137),we make use of the
fact that the action is gauge invariant to set

Aa=0 DA% =0, (139)

which defines a Wess-Zumino gauge. The point is that these two conditions
can be imposed by suitably choosing the components D,Q%| and D?Q¢| of the
superfield Q7 in 64(iAy) = V,Q, while leaving the component Q°| arbitrary,
which is the only one that enters the gauge transformation laws of the physical
fields A% and A%. Indeed, from 0, (iA%)| = DaQ%[+if"" AL Q°| it follows that it
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is enough to take D,Q%| = 0 in order to have A% | = 0. Similarly, onc= e we have
A%| = 0and D,Q°| = 0, it follows from 6, (iD*A2)| = D?Q%|+if**D*(A%Q°) |
that, to have D*A%| = 0, it is enough to take D?Q?| = 0. Note, however, that
no restriction has been imposed on Q?|, which according to eqs. (93) and (113)
is the only component of (2 that enters in dgAf, and dgA®. Then, in the Wess-
Zumino gauge (139)

i

a a _ a a __ a | __ i a

and the action becomes

2ic

Scs = 7_21 d*r [(DQD“A“ﬁ) (DgA%) + (DYD*A"?) (D, D3 A%)
g N (141)
i
= 5 1) (D, %) (DA | |
Furthermore, using eqs. (75) and (76) to derive
D*DoAg =2i0," DA D’ Ay =2D"Dy Ay —2i0,7 A, (142)

and noting

1 1
D,yDgAa = 01540 = 5 €45 D’A, DyaAg = D, Agy — 3 €a DA,
(143)

we have

Scs = —- [ d% {271 (07 A%, 7) A"5* + (DYD*A%) (D Do A%)
ot (144)

)
_+_§ fabcAaav Abvﬁ Acﬁa] ‘ )

Finally, recalling eq. (140) and taking ¢; = 1/16, we arrive at
Scs = ! d? woo (] Ao, AS L pabe Ar AP AC ! A%\ 145
os =gz [ [0 (G ARG + G IV ALALAL ) 50N L (149

This is the component action of eq. (46). Here we have used the Wess-Zumino
gauge (139) to derive the component form of action from the superfield form
(137). We must emphasize, though, that the same component action is obtained
if one does not make assumptions about the components of the superfield A%. To
prove this, one directly integrates (137) over d¥ using d* = D?| and expresses
everything in terms of A%% and W2. Tt is very important to keep this in mind
since in Section 2.2 we will work in a supersymmetric gauge which imposes
different conditions on AZ| and D*A%].
One may define the components of the superfield A% by
1 i
Xe = A% Vs = Do A, H® =5 DA A" =3 DD A% | .
(146)
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Note that up to this moment we have not used any explicit form for the spinor
superfield A% as an expansion in powers of %, but only the fact that it contains
a vector V'5. The definition of the components given here reproduces the 6-
expansion in eq. (85). Using the expressions of A} 5 and W in eqgs. (100) and
(109), the physical fields Aj; and Af can be written in terms of x§, H*, Vi and
A% as

a a 1 abe o c
AL = Vo L gt (147)
1 1 1 _
A% = A2 — axa + 5 fabchXc _ 5 fabcAch + ﬂfabcJcccle,y,uxb (Xd,yuxf148)

The transformation laws of x*, H%, V*u and A%« under SUSY as given by
§ = €®Q s are linear in fields and read

dx* =Y — H%

0H® = —eA®

6V, = ey, (A" — Px*) + €0, X"
0N =0,V e — PH" € .

(149)

From these and the expressions in eqs. (147) and (148), we get the transforma-
tions rules

SAL = ey, A" +e(Dpx)?

1 bt (150)
A" = =M E e+ fUON(Ex)

By subtracting a gauge transformation with parameter éx®, we obtain the usual
z-space rules (41) for Af and A\*. The same result is obtained in superspace if
one adds a compensating gauge transformation which keeps one in the Wess-
Zumino gauge x* = H* = 0.

1.11 Higher N models and gauge couplings to matter

One can construct rigidly supersymmetric models with N <8 SUSY. One way
to obtain them is by dimensional reduction from the d = 3 + 1 models where
rigid SUSY exists for N < 4. For example, the N =2 Wess-Zumino model in
d = 2+ 1 corresponds to the N =1 model in d = 3 + 1 and contains two real
spinors, two real scalars and two auxiliary fields. It can clearly be written in
complex notation as a model with one complex scalar, one complex spinor and
one complex auxiliary field. The reader may check that

SWZ = /d% [—(0u9") (0"p) — Py + F1F ] (151)
is invariant under

do = ey 0 = Ppe + Fe OF =Py . (152)
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One may consider € and € as independent parameters, and consider separately
the variations of the action with € and €. For example, for the variation with e,
one finds

(Op) e — PP(Ppe + Fe) — F(8u1h)7y e , (153)

which clearly cancels after partial integration.

Similarly, one can write the action for the N = 2 Yang-Mills and Chern-
Simons models. In this case, the N =2 multiplet consists of the gauge field Aj,
two real spinors A? (i = 1,2) and two real auxiliary fields C* and D?, and the
actions have the form

AL (DA

1 a a 1 a 1 abce ya c
(DLC)" (D C)" + 5 (D")? = 5 "€, x;.c«]
(

N | =

1 1
S - d3 —_ 2 Fo pawv _
™ mgQ/x{ 4"

2 2
154)

and

1 3 v 1 a a 1 abc qa Ab Ac ]"n, a ama
scszg_z)/dg7 {Eup <§AuayAp+6f AHAVAp>§>\ A +CD] ,
(155)

where €15 = 1. The SUSY transformation rules that leave these action invariant
are

(5AZ = EVuA]

1
(5/\;1 = —5 'y”’yVF;VGi + eijDaej + 65_7‘$Ca6]‘ (156)
0C? = —61']'62')\@

J

6D = —€;;EPXY + fabegxbee .

It is also possible to set a superfield formalism for N =2 SUSY, Aragone (1983)
and Ivanov (1991), but we will not discuss this here. The N =2 actions Sym
and Scg can also be obtained from a truncation of corresponding N =3 actions
in 241 dimensions Kao, Lee, and Lee (1996).

Exercise 8: Verify that Sy and Scg in (154) and (155) are in-
variant under the transformations (156).

So far we have discussed supersymmetric models for scalar fields and for
gauge fields. It possible to construct supersymmetric models for matter fields
coupled to gauge fields. Although this subject lies outside the scope of these
notes, let us briefly mention how to couple the N =1 Wess-Zumino model for
scalars to gauge fields while preserving SUSY. To do this, one puts the scalars
in a particular representation R with generators (I'*)’; and replaces in x-space
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the ordinary derivatives in the action and the SUSY transformation rules by
gauge-covariant derivatives. This takes care of minimal coupling to Aj, but
since A}, and A\* form a SUSY multiplet, one also needs a “minimal” coupling
of A* to the scalar multiplet. This leads to additional Yukawa couplings of the
form App. The complete model reads

S = [ |5 Dupy(0e) = et 4 57 S raye| s

where D¢ = 8,¢" + gAL(T*)"; . For simplicity we consider the case that
the representation (Ta)ij is real; otherwise one must consider complex fields,
i.e. an N =2 model. Then one finds from the variations of first three terms in
the action the following extra terms

[ v a (mayi _j i i1 id
—5 W) B, (T3¢0 — (04,) | 9(Du’) (Ta)' 597 + 5 gw’(Ta)’jW} :
(158)
The Yukawa coupling, in turn, yields the following variations
1 -. .
3 ¥ (T Ve FL ok + ... (159)

Exercise 9: Check that all variations indeed cancel.

In superspace this coupling is given by Gates Jr. et al. (1983), Siegel (1979b)
1 ) )
S = 3 /d% d0 (V*¢') (Vo) (160)

To find the component action, one may again use d*6 = D?|. However, since we
already have covariant derivatives V,, it is more convenient to use d?6 = V?|.
As we have discussed earlier, this gives the same result because the action is
gauge invariant. The SUSY rules d¢p = €*Q,¢ leave the action invariant if
one also uses 0.A% = eﬁQgAZ, but we already saw that it was simpler to use
0'AL = e'BVﬁAZ. Hence, also for matter we use dsysy® = €*V,¢, which
contains now also gauge transformations, and which becomes now nonlinear in
fields, namely it contains Yang-Mills covariant derivatives.

As a last topic, we discuss Euclidean SUSY. Since the Dirac operator 750,
in Euclidean space is complex, we need complex spinors. Clearly we also need
then a complex scalar and a complex auxiliary field. The action

S = [t [-6" @ue') (Bu) ~ 01,0+ F'F]
is then hermitean and invariant under

Sp = —icly =@,  ppe+Fe  6F =ie Py . (161)
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The variation of the action contains the terms

i @) W) — i 1P, (B e + Fe) — i F@uph) e +he.  (162)

The construction of a hermitian action in Euclidean space is due to Schwinger,
and hermitian SUSY actions in Euclidean space were studied by Zumino. One
can also abandon hermiticity and introduce two independent complex spinors.
This is the approach of Osterwalder-Schrader. Let us consider, extending the
work of Nieuwenhuizen and Waldron (1996), the following continuous Wick

rotation for complex spinors in d = 2 4+ 1 dimensions (or any odd dimension):

W(Z,1) — vy (F,tg) = S(0) (T, tg)

; . (163)
9) = et27"0 tg = e 0t

Performing this substitution in Minkowski theory yields the Euclidean theory.

2  Quantum rigid supersymmetry: Yang-Mills-
Chern-Simons theory

2.1 Supersymmetric regularization of gauge theories

Supersymmetric gauge theories contain two symmetries: rigid SUSY and Yang-
Mills gauge invariance. If one covariantly quantizes these theories, one must
add to the classical action gauge fixing terms and a ghost terms. Then gauge
invariance is replaced with a rigid BRST symmetry. In principle, one can use
any gauge fixing term to fix the gauge invariance. The usual Lorentz gauge
fixing term —% (8“/12)2 for supersymmetric gauge theories in four dimensions
has been used in Capper, Jones, and Nieuwenhuizen (1980). It breaks SUSY
but one can still derive Ward identities and study whether they are satisfied at
the quantum level. Here, we shall use gauge fixing terms which are themselves
invariant under rigid SUSY, so that the corresponding ghost terms are also
SUSY invariant. The resulting gauge-fixed classical action will then have two
rigid symmetries: SUSY and BRST symmetry. To compute the effective action
perturbatively, one must evaluate Feynman graphs, and one must regulate the
divergences which many of these graphs possess.

We shall study the two most used regularization schemes: ordinary 't Hooft-
Veltman dimensional regularization (DReG), Hooft and Veltman (1972), and
Siegel’s regularization by dimensional reduction (DReD), Siegel (1979a).

The DReG scheme is formulated in d > 3 dimensions and treats e-tensors
€"¥P as essentially three-dimensional objects. This leads to two kinds of indices,
three-dimensional and (d — 3)-dimensional, and the SO(d — 1,1) symmetry of
the action is broken down to SO(2,1) x SO(d—3). Since in d > 3 the number of
bosons and fermions is no longer equal, one may violate SUSY and one cannot
use superfields. We must then use a component action in z-space. We show
below that this prescription for e*”? yields a consistent regularization which
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manifestly preserves BRST invariance. The DReD scheme is formulated for
d < 3. One works at all times with superfields and one performs first all 6-
integrals. The final momentum integrals are then treated as in DReG. Because
the algebra of the Feynman superdiagrams is performed with superfields, DReD
manifestly preserves SUSY. However, as we shall see later, it may violate BRST.

Thus DReG may violate SUSY but it preserves BRST. On the other hand,
DReD preserves SUSY but it may violate BRST. Our main result is that for
supersymmetric Yang-Mills-Chern-Simons theory, both schemes give the same
effective action, hence each scheme preserves both SUSY and BRST. In other
words, for this model at least, the superfield approach preserves “gauge invari-
ance”, rather BRST symmetry, at the quantum level.

Let us describe in more detail 't Hooft-Veltman’s prescription for e*”?. Fol-
lowing Breitenlohner and Maison (1977), we consider n-dimensional Minkowski
spacetime IM" with metric 7,, and decompose it as IM"” = M? @ R" . Here
n < 3. We call 7,, and 7, to the metric on M? and IR"?, respectively.
Any vector v will have a projection o* = f**v, onto IM® and a projection
" = H*v, onto IR" 2. One may define e#*? in n dimensions as a completely
antisymmetric object in its indices which satisfies

" Peqgy = f(n) (6" 6”567, + 5 terms) (164)

where f(n) is a function of n such that f(3) = —1 and ¢*, is n-dimensional.
Consider now three e-tensors contracted in two different ways:

(" €avp) €upy and P (€avp€upy) - (165)

The result should be the same for consistency. It is easy to check that for the
first contraction eq. (164) yields f(n)(n — 1)(n — 2)eqasy, while for the second
contraction it gives 2f(n)eap,. Clearly, for n # 3, both contractions disagree.
This shows that the definition of e#*? provided by eq. (164) is not algebraically
consistent, and suggests to treat e*"? as a three-dimensional object. Thus we
replace eq. (164) with

P ey = (84,87 0%, + 5 terms) €0 =0 (166)

Then the inconsistency above is no longer present. This is the 't Hooft-Veltman
prescription, Hooft and Veltman (1972) and Breitenlohner and Maison (1977),
and amounts to treating e””? as three-dimensional. Quantities with a caret
vanish at n=3 and are called evanescent.

A similar result holds for 75 in four dimensions. Suppose one were to consider
in n dimensions the existence of n Dirac matrices vy, satistying {v,, 7.} = 21,
and {vs,7,} = 0, with 1, the n-dimensional Minkowski metric. Then one finds
for n # 4 again an inconsistency. The proof proceeds by evaluating traces of one
5 and a set of Dirac matrices in two ways: one by commuting a Dirac matrix
through the others, and one by using cyclicity of the trace. For tr (y57,x7") and
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tr (Y5 7a7.7"), these two ways to compute traces give

e (167)

= tr (Y5 7) = —tr (157 0) = —ntrys
and

tr (B avuY) = —tr (B veny?) + 2t (157) = (2 — n) tr (v57,)

R (168)
=tr (YY) = —ntr (vs7,) -

Hence trvys =tr (y57y,) = 0 in n dimensions. Proceeding in the same way for
T (Y5 YA Y1 Vio Vois Yua YY) and using trys = tr (y57,) = 0, one finds that

(21 — 8) 1, (V5Yus Vo Vs Yuua) = 0 - (169)

This implies that tr (ys7u, ... Yu.) = 0 for n # 4, but at n = 4 the result
is nonzero, so the limit n — 4 would be discontinuous. Since the only two
assumptions made are {v,,v.} = 294 and {y5,7,} = 0, and one wants to
keep {vu, 7w} = 2140, one is led to give up a fully anticommuting 5. The
prescription of 't Hooft and Veltman, Hooft and Veltman (1972), studied in
detail by Breitenlohner and Maison Breitenlohner and Maison (1977), takes
{V5,%:} = 0 but [y5,%,] = 0, where 7, denotes the first four Dirac matrices,
while 4, denotes the extra n — 4 Dirac matrices. So <5 is the usual product of

the first four Dirac matrices, even in n dimensions.

2.2 Supersymmetric Yang-Mills-Chern-Simons theory

We consider now the following gauge-fixed action in three dimensions Ruiz Ruiz
and Nieuwenhuizen (1997):

70 = Scs + Sym + Sar + Sks - (170)
where Sqr is the gauge fixing term in the action and Sgs contains the nonlinear

BRST transforms. We work in the Landau gauge, characterized by the condition
DA% = 0. In this gauge the gauge-fixing action is

Sap = /d3.7:d20 [B“(D“Ag) —iCy(DV,0)] (171)

where B*(z,0) is a real superfield Lagrange multiplier imposing the Landau
condition, and C(x,0) and C®(x,6) are real antighost and ghost superfields.
We have already said that after gauge fixing gauge invariance is replaced by
BRST invariance. The BRST transformation laws are given by

1
s(i43) = (Va0)"  sB"=0  sC,=B, sC"=2f"C'ce. (172)
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The expression for sA% is as usual obtained by replacing the gauge parameter
Q% in a gauge transformation by the corresponding ghost field

8a(iA%) = (Vo) = s(iA%) = (VaC)" . (173)

The result for sC* follows from using the expression for s A% and requiring
that s24% vanishes. As a check of the expression above, one may verify that
nilpotency on the ghosts, s2C® = 0, follows from the Jacobi identities for the
structure constants. We may define the components of the superfields B?, Ce
and C* by

pe — B Rl éa:éa
(* =iD,B" " = D,C° ¢" = D,C" (174)
) ) ) A
ha:__DQBa a:__DQCa Aa:__DQOa .
2 “ 2 v 2

After using d = D?| to integrate over d%, the gauge-fixing action takes then
the form

~a a aoc C Z avc o Cc
Sar = /d3az {—b“BHV‘”‘ — (0"e) (8uc + fab V;c — Ef b vaunp)
> aa a abe ( c i c
—C*A* — {@p + faob (zA"c +§7"Xbauc
Lo c 1 b, ¢ i b, ¢
TRl §H¢+§X‘*’)}
—hOH® 4 o° (wa_+_fabc Hbcc_ %fﬂbcxbwc)} . (175)

The BRST transformation laws for the components are obtained from those for
the superfields and the definition of the components as projections. They read

SX{L _ 77:()0(1 + fn,bcxbcc sh® =0
sAl = —(Dyc)® s¢* =0
sHY = —® — fabchcc + %fabcib(pc sh® =0
S\¢ = fabc/\bcc
~a a a 1 abe b c
s¢* =0 sct =5 fc’c
S@a — ica S(pa — _fabccpbcc
skt = ho sw® = fabcwbcc + % fabc wac .

(176)

The supersymmetry transformations for the components are obtained similarly
from § = €*@Q), and the definition of components as projections. For the com-
ponents of the gauge supermultiplet they are given in eqs. (149) and (150); for
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the components of B?, C® and C® they take the form

5 = — ("€
0C% = h% — Pb%e (177)
Oh* =ep
and
6t =ig'e o =i @te
0p" = —iPée +iw% 0 = —iPcte+iwe (178)
00 =iedp” dw* =ieP .

Exercise 10: Since our starting point was the superfield gauge-
fixing term (171) and this is supersymmetric, the component action
(175) is supersymmetric. Verify that indeed the SUSY transforma-
tions for the components leave Sgp invariant.

Exercise 11: Check that the operators s and 0 generating the
BRST and SUSY transformations in above commute:

[s,0] = 0. (179)
Exercise 12: Verify that Sgr can also be written as

Sar = /d% s (— G,V i g A — wH) . (180)
We thus see that the gauge-fixing condition D*A% = ( is equivalent

to the the conditions H* = 0, "V} = 0 and A" = 0. Check that
these conditions remain invariant under SUSY transformations.

The term Sgs
) 1
Ses = % /d??“ 49 <§ K sAq + K¢ SC’“) . (181)

couples the nonlinear BRST variations s.A% and sC® to external sources K%9*
and K¢. We may define the components of the latter by

ko = Kgs t" = K¢
G = -5 DKy 70 =i DLK,
. (182)
K&y =iDKg)a L = - 5 DK
a Z a
ot =—-DD,Kj§ 4
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The component expression of Sgg is then
Sks = /d3m [iE“SA“ + K%sV) + G sH" +ic%sx" + (" sw® +1i7%sp® + L%sc"
' (183)

The SUSY transformations for the components of K%* and K¢ are obtained
again from the definition of components as projections and the action of § =
€“(), on the supersources. They have the form

0 =1 K%+ i G o =er
dG" = ieP K" + i éc” 0T =i Pl —i L%
KO = i €0,k + i €7,0° 5L = epre (184)

v 14 a a
oot = 57“7 e(0,K, —8HKN)

Power counting for 7 g shows that there is only a finite number of superficially
divergent diagrams, thus proving that the theory is superrenormalizable. At
one loop there are quadratic, linear and logarithmic divergences; at two loops
there are linear and logarithmic divergences; and at three loops only logarithmic
divergences survive. Furthermore, quadratically divergent one-loop diagrams do
not have internal gauge lines and the only primitively divergent one-, two- and
three-loop 1PI diagrams are those in Table 1, where w denotes the superficial
UV degree of divergence of the diagram.

external lines 1 loop | 2 loops | 3 loops
XX w=2| w=1 w=0
AY A? AH H? _ _
xxA xxH (xx)* w=1]w=0
AA cc PP X
YAA XA\H A? A’H  AH?> H°?

£
I
o

(xx) (xA)  xxA4?  xxAH xyH?
0’4 ow)’H (w)?

Table 1: Power counting for component fields

2.3 Ward identities, dimensional regularization and regu-
larization by dimensional reduction

The BRST identity for the full renormalized effective action ? takes the form
07 47 6? 07 07
h— ] =0 185
/ <26¢5K¢ b Tt (m) ! (185)

where the sum is extended over ¢* = x“, Vi, H?, A%, ¢* ¢% w". In what
follows, we will write this equation as

(?7,7)=0 (186)
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and use the notation © for the Slavnov-Taylor operator:
©=(70, ). (187)

It is very important to note that the operator ® commutes with the supersym-
metry generator 4:

[0,0]=0. (188)

If we write for ? a loop expansion
=3 W7y (189)
k=0

and substitute it into eq. (186), we obtain at one, two and three loops
07, =0
075+ (71,71) =0 (190)
073+ (71,72) +(72,71) =0.
The SUSY Ward identity for the effective action is
57 =0. (191)

We remark that ? generates 1PI Green functions for the fields V! and A" and not
for the elementary fields AZ and A?. This is due to the fact that Sgg introduces
external sources for the BRST variations of V/' and A?, and not for those of Aj
and A*. To compute 7, we use the Feynman rules for A} and A* and treat V
and A as composite fields defined by (146). It is not difficult to see that, given
a 1PI diagram with superficial degree of divergence w, all the diagrams that
result from replacing one or more of the external Aj and/or A®-lines with any
of the composite fields have superficial degree of divergence strictly less than @.
Regarding then V;' and A as composite fields does not worsen power counting.

To define DReG, we follow Giavarini, Martin, and Ruiz Ruiz (1992) and use
for e"”? the definition in eq. (166). Since the terms in the action 7 which are
linear and quadratic in the gauge field A} are the same as in the nonsupersym-
metric Landau gauge of Section 1.6, the kinetic matrix is the same as in eq.
(52). The propagator matrix is then given by its inverse and has the structure
n (53), but now A, (p) and A, (p) have the form

A;w (p) = fl Qmup” + f2 Nuv + fBﬁ;w + f4pupu + f5puﬁu + fﬁﬁupu + f713u151/

Ay(p) = fspu + fobu -
(192)

The distinction between n-dimensional objects and (n — 3)-dimensional objects,
or equivalently between 3-dimensional and (n — 3)-dimensional arises from the
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fact that the definition of €#*? in eq. (166) is not SO(n — 1, 1)-covariant but
rather SO(2,1) x SO(n—1). After substituting (192) in (53) and imposing (54),
we find

g°m
(P2 —i0)2 + m2p?

Auu(p) = — {meup,, P’ + iPan — i Dubv

(193)

im

2 2
P —io <ﬁ2ﬁuu + %pupu - puﬁu - ﬁupu +ﬁuﬁu> :| .

Because, by construction, the propagator is the inverse of the kinetic term in the
n <3 dimensions and the BRST transformation for the gauge field is the same as
in the unregularized theory, DReG preserves BRST invariance, Giavarini et al.
(1992) and Breitenlohner and Maison (1977). Hence, the DReG regularized
effective action ? PReG gatisfies the BRST identity

(7DReG 9DReGy _ (194)

The complicated propagator for the gauge field is the price for having a
consistent treatment of e#”? while manifestly preserving BRST invariance. As
regards supersymmetry, we have already explained that DReG does not mani-
festly preserve it. The propagator A, (p) can be decomposed into the sum

Auv(P) = Dyv(p) + By (p) (195)
of the naive covariant generalization

M €ppy P° + i D°Npw — i DDy

196
P P +m?—i0) (19

D,u(p) = —g°m

to n dimensions of the three-dimensional propagator plus an evanescent term

g>m? 1
(p?—i0)? + m? p? {

B () = = p>+m?—io

p? im?

X P(meup,,p"+zp nuu+mpupu) ( )
]

~2 A ~ ~ PN
+ p277:0 (p Nuv — PuPv — PuPv +pupu)

Note that R, (p) is more UV convergent than A, (p), but less IR convergent:

1 1
Auv(p) ~ 7 Ry, (p) ~ o for large p

1 1 (198)
AI~“/(p) ~ = Ruu(p) ~ — for small p.

D p?

This will be important in the sequel.
DReD can also be formulated in terms of components. In DReD, all the fields
and matrices are kept three-dimensional and the momenta are continued in the
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sense of ordinary DReG to d < 3. Because the Dirac algebra is performed in
three dimensions, DReD manifestly preserves supersymmetry. The regularized
action ¢? PReD computed with DReD satisfies then

57 PReD — (199)

The BRST transformation for the gauge field in DReD, however, is not the same
as in the unregularized theory. Indeed, whereas the first d < 3 components of
the gauge field have the same BRST transformation law as the gauge field in the
unregularized theory, the last 3—d components transform as sAj = f“'”"AZ(:“’.
Hence one has to introduce two external sources, one for the first d components
of Vi and one for the last 3 — d, which in turns yields a regularized BRST
identity different from that in eq. (186). It may happen that at the end of all
calculations, once the limit d — 3 has been taken, all effects due to the splitting
of the gauge field into d and 3 —d components go away, but this is not what
is meant by manifest BRST invariance. Concerning the well known algebraic
inconsistency Siegel (1980) that occurs in products of three or more epsilons in
DReD, we mention that it disappears in the limit d — 3, since contributions
with three or more epsilons are finite by power counting at d=3.

Our goal is to prove that DReG and DReD preserve both supersymmetry and
BRST invariance and define the same Green functions Ruiz Ruiz and Nieuwen-
huizen (1997). Our strategy is to first prove that the theory is finite to all
loop orders, so that the regularized effective actions ? PReG and ? PReD are also
renormalized effective actions and the difference A? = ?PReG _ 72 DReD g the
difference of two renormalized effective actions. Next we show that this differ-
ence vanishes. This, together with the observations that DReG preserves at all
stages the BRST identities of local gauge invariance and that DReD preserves
supersymmetry, implies the thesis.

One may try to define DReG for pure Chern-Simons theory in a way analo-
gous to the way defined here for Yang-Mills-Chern-Simons theory. In this case,
the kinetic matrix has the same form as in eq. (52) with K?*(p) now given by

K(p) = €"7p, - (200)

To invert the kinetic matrix in n < 3 dimensions, one has to use the same
Auy(p) and A, as in eq. (192), since these are the most general expressions
for A,y (p) and A, in the propagator matrix allowed by SO(2,1) x SO(2 — 3)
covariance. It happens, however, that the equation (54) has then as only solution
n=3, fi = —g*/p* and fs = 1/p*>. = In other words, the propagator only exists
in three dimensions Martin (1990). This can be understood by noting that, since
€"V? is essentially three-dimensional, in n >3 dimensions the kinetic matrix has
rows and a columns with all zeros and hence does not have an inverse. To
dimensionally regularize Chern-Simons theory, one then has to add a term to
the action such that in n > 3 dimensions it has nontrivial projection onto the
(n—3)-sector. If, in addition one want to preserve BRST invariance, the added
term must be BRST invariant. An obvious candidate is a Yang-Mills term Sy
Giavarini et al. (1992), but other higher covariant derivative terms can also be
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considered, Giavarini, Martin, and Ruiz Ruiz (1993a), Giavarini, Martin, and
Ruiz Ruiz (1993b), and Giavarini, Martin, and Ruiz Ruiz (1994). In case one
adds a Yang-Mills term, the complete regularization method consists of two
regulators: the mass m in Syy and the e from DReG. They should be removed
in a very specific order: one must first take the limit ¢ — 0 and then take
m — oo. Because the limit € — 0 is finite to all orders in perturbation theory

(see next section), it then makes sense to take m — oo in the result.

2.4 Perturbative finiteness

To prove perturbative finiteness at one loop, we consider a one-loop 1PI diagram
and denote by D(d) its value in DReG. According to eq. (195), if the diagram
has an internal gauge line, D(d) is the sum of two contributions: D(d) = Dp(d)+
Dr(d). The contribution Dp(d) contains the SO(d) covariant part D, of all
the gauge propagators®. The contribution Dg(d) contains at least one R, and
can be easily seen to be both UV and IR finite at d=3 by power counting. Recall
that diagrams with an internal gauge field are at most linearly UV divergent.
Being finite at d=3 and being at least linear in 7j,,, Dg(d) vanishes as d — 3.
We are thus left with only the SO(d) covariant contribution Dy (d). If the
diagram has no internal gauge line, D(d) is already SO(d) covariant. The one-
loop SO(d)-covariant dimensionally integrals we have are of the form

[ dY Q= Qun
Ty i (Pe,m, d) = /(27T)d Hr,s (Qg)n, (Qé+m,2)ns 5 (201)

where Q¥ and Q¥ are linear combinations of the loop momentum ¢* and the
external momenta p¥, and n, and n, are nonnegative integers. These integrals
do not produce poles when d is analytically continued to a an odd integer, Speer
(1974) and Speer (1975). This completes the proof of perturbative finiteness at
one loop and shows the result is independent of the number of dimensions in
which the Lorentz algebra of the diagrams is performed, which in turn implies
that in the limit d — 3 1PI Green functions at one loop are identical in DReG
and in DReD.

At two loops we proceed differently, since two-loop SO(d)-covariant integrals
have poles in an odd number of dimensions. Let us assume that the two-loop
correction ? DReG tq the effective action consists in the limit d — 3 of a divergent

part ?QE%G and a finite part ?}ZESG. Since DReG manifestly preserves BRST

invariance, 7 DReC gatisfies the BRST identity at two loops
@7 PReG o (7 PReG 2 DReG) — (202)

Recalling that ? PR¢G ig finite, we have that the divergent part ? PRe¢ satisfies

© 2,div
o7 EE%G = 0. Because 1PI Feynman diagrams with external sources as external

lines are finite by power counting and there are no one-loop subdivergences,

3In DReD, and also in DReD, to compute dimensionally regularized integrals, a Wick
rotation is performed. This transforms SO(d — 1,1) covariance in SO(d) covariance.
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?2}}&(3 does not depend on the external sources and @?2}}&(} = 0 reduces to
s? ngf’ = 0. Using the power counting in Table 1 and that contributions to
two-loop 1PI diagrams from R, are finite, we have that the most general form
of ?PReG is 7 PReS = 12 Py, , where

P, = m/d% [Oé] m X" + s XX + a3 XA + ag A"AY + a5 H*H®

abc -a b c abc cade ( —a — €
+ag fUOXOATXE 4 ar £ FO () ()
(203)

and a1,...,ar are numerical coefficients. The terms in P, correspond to all
two-loop Lorentz invariant divergences that can be constructed from Table 1
with s derivatives. The equation s? ];’f}i‘i,G = 0 is an equation in the coefficients
a; whose only solution is a; = 0. This completes the proof at two loops.

The proof at three loops is analogous. Now the only three-loop Lorentz

invariant divergence is ??};ff = ﬁpg:a, with
Py, = am? /d3:n X“x®, (204)

but Py, is not BRST invariant. At higher loops, finiteness follows from power
counting and from absence of subdivergences.

2.5 A BRST invariant and supersymmetric effective ac-
tion

Since the theory is finite, every regularization method defines a renormalization
scheme. We consider two renormalization schemes: scheme one uses DReG as
regulator and performs no subtractions, scheme two uses DReD and performs
no subtractions. We want to prove that the difference A? = ?PReG _ 7 DReD
between the corresponding renormalized effective actions is zero. We have seen
in Section 2.4 that this is the case at one loop. So let us consider the two-loop
case.

There is a general theorem in quantum field theory, Hepp (1971) and Ep-
stein and Glasser (1973), that states that if two different renormalization (not
regularization) schemes yield the same Green functions up to k—1 loops, then
at k loops they give Green functions that can differ at most by a local finite
polynomial in the external momenta of degree equal to the superficial overall
UV degree of divergence wy at k loops. This, and the power counting in Table
1, implies that the difference A?5 at two loops can at most be of the form

?l;ReG _ ??RGD =P, , (205)

with P, as in eq. (203). We recall that ? PReS gatisfies eq. (202) and observe

that, since DReD preserves supersymmetry, ? PReP gatisfies

§79RP =0 . (206)
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Figure 1: Two-loop topologies for (H H )1p1

Acting with § on eq. (202), using eqs. (205) and (206), and recalling that
[0,d] = 0 and that A?; = 0, we obtain that ©@dFP,, = 0. Since P, does not
depend on the external sources, 6P, is independent of the external sources
and O§P,, = 0 reduces to sé Py, = 0, which is an equation in the coefficients
a=86,...,ar in Pg,. Because §P;, depends polynomially on the components
of the gauge multiplet and their derivatives and has an overall factor of m, any
nontrivial § Py, satisfying s0P;, = 0 must be m times a BRST invariant of mass
dimension two. However, there are no such invariants. Hence, §P;, = 0. The

only supersymmetry invariant that can be formed from P, is

1 _
sus 3 —a a a)\a a Aqa afrra
@23’ = am/dm |:§X$X + XA+ AA" — H°H

1
a5 I ) () | - (207

At this point we have exhausted all the information given by BRST symmetry
and supersymmetry. We determine the value of the coefficient o in P, by
means of an explicit calculation (see below) and find a=0.

At three loops, the difference is A?3 = aPg,. Since A73 is not BRST
invariant, nor supersymmetric, the same arguments as used at the two-loop
level are now powerful enough to conclude that a =0 without the need of any
explicit computation. At higher loops, the difference A? vanishes since at one,
two and three loops it vanishes and there are no overall divergences by power
counting.

We now compute « in P;‘;Sy. To do this, we evaluate the difference between
the contributions from DReG and DReD to the selfenergy of the field H®. The
vertices with an H are H(x, Hgp, Hoc and Hpxe [see eq. (175)]. Using
them, one can construct two-loop 1PI diagrams with the six topologies in Fig.1.
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In fact, since ¢ only propagates in ¢ and ¢ into ¢, and there is no four-point
vertex containing the fields H, ¢ and ¢, no graphs with the topology of Fig.1la
can be constructed. The topologies in Figs.1b and 1c, being products of one-
loop topologies, give the same contributions in DReG as in DReD, hence they
do not contribute to a. We are thus left with the topologies in Figs.1d, le and
1f. Because one-loop subdiagrams give the same contributions in DReG as in
DReD, only the overall divergent part of the corresponding two-loop diagrams
contribute to a.. Since the two-loop diagrams are logarithmically divergent, con-
tributions to a come from setting in the numerators the external momentum p#
and the mass m equal to zero, except, of course, for the overall factor m. The
overall divergent part of every diagram then reads

/ dik dlq  N(k,q)
(2m)4 (2m)4 D(k,q,p,m)

(208)

Due to the different propagators that DReG and DReD use for the gauge field,
the diagrams with internal gauge lines may give different contributions to a. It
happens, however, that such diagrams only occur in topology le and that their
contributions separately cancel, so that their net contribution in both DReG
and DReD is zero.

The other source for different results is the different way in which DReG and
DReD treat the Dirac matrices. In fact, the numerator N (k, ¢) always contains a
trace over a fermion loop. This is obvious for those diagrams in which H couples
to fermions. The only vertex where H does not couple to fermions is the vertex
Hoe, but in this case @ propagates into w and now w couples to fermions; in
fact, closer inspection reveals that no two-loop diagram with this structure can
be constructed. It then follows that the overall divergence in DReG and DReD
is the same except for the trace over the fermions. Now, the trace of a sum
of products of ¢ and  can always be written as d-dimensional scalar products
k2, kq and ¢® times an overall trace of the unit matrix. So, after summing over
diagrams, a can be written as

Ak diq  f(k2 kq,q%)
(2m)e (2m)? D(k,q,p,m) ’

o = (trnReG 11— tr DReD ]1) / (209)

where f(k?, kq, ¢?) is a polynomial of its arguments. Because the theory is finite,
the integral is finite and therefore the difference due to the trace vanishes in the
limit d — 3. Hence a = 0.

The equality of ? PReG and ?PReD ig not explained by local quantum field
theory. One possible explanation might be that there exists a third, as yet
unknown, symmetry of the model. Another explanation might be that the
existing theorems of local quantum field theory, Hepp (1971) and Epstein and
Glasser (1973), concerning the difference between the renormalized expressions
for the same Green function computed in two different renormalization schemes
can be sharpened for finite models which are superrenormalizable by power
counting and which have symmetries.
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Our analysis relies on the fact that our model is superrenormalizable by
power counting and finite. There exist several all-loop finite supersymmetric
models in four dimensions, Ermushev, Kazakov, and Tarasov (1987), Kazakov
(1986), Lucchesi, Piguet, and Sibold (1988b), and Lucchesi, Piguet, and Sibold
(1988a), and N =4 Yang-Mills theory is also all-loop finite. It would be inter-
esting to apply the methods developed here to these models. See Capper et al.
(1980) for a partial comparison of DReG and DReD in 4-dimensional N =1
Yang-Mills theory in a non-supersymmetric gauge.

3 Classical supergravity

3.1 Supergravity in (2 + 1)-dimensional z-space

We discuss N =1 (simple) supergravity in 2+1 dimensions, first in z-space and
then in superspace. Euclidean supergravity differs at some essential points from
Minkowski supergravity, having to do with the different way in which real spinors
are described in Euclidean space. Superspace supergravity in 2+1 dimensions is
perhaps a bit too easy as compared with the (3+1)-dimensional case, since there
are no N =1 chiral superfields and as a consequence there are no representation
preserving constraints and no prepotentials, but it is an excellent introduction
to the subject, and the student who has understood it, can always afterwards
tackle the (3+1)-dimensional case.

The gravitational field is described by the vielbein? field e,™, with p = 0,1, 2
and m = 0,1, 2, which satisfies e, €, ymn = Muv, With 9y, = diag (-1, +1,+1)
the Minkowski metric. In flat spacetime e,”™ = §,™. One can use a local Lorentz
transformation to make e,,, symmetric, and then it is transversal and traceless
on-shell. This shows that on-shell e,™ contains no degrees of freedom. The
same argument shows that in 341 dimensions there are two graviton states.

As the fermionic partner of e,™ we choose the gravitino field ,*, with
a = 1,2. Tt is the gauge field for local supersymmetry, so it transforms as
01, = Oue+ ... This, in fact, is the best reason for choosing ¢,“ and not, for
example, ¢,3, which also contains a spin 3/2 part.

As gravitational action we take the Hilbert action

1 3
where x? is the gravitational constant, with mass dimension [k?] = —1 in 3

dimensions, e = det (e,") = /=g,
R=R,,™(w)en" et (211)
is the the Ricci scalar and

Ruumn(w) = au w, ™ 4+ ‘Uumk wukn - (N & V) ) (212)

4In three dimensions the name “dreibein” is also used, drei means three in German.
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is the Riemann tensor. We choose the normalization factor 1/8 in order to
obtain, for constant €’s, the same SUSY algebra as for the matter fields. In units
h = 1, the action is dimensionless. It is also Einstein, or general coordinate,
and local Lorentz invariant, the corresponding transformation being

dpe,™ = 0,6, + (0u€") e,™

ore, = A", e,

(213)
6Ewumn — é‘l/ aywumn + (augl/)w’/mn
Ow, ™ = =0, A™" —w, ™y, A wy" g Ak = — (D)™™ .
Exercise 13: Check that
Dye, =0,e,™ +w,™ e,k — ?fwepm (214)

is Finstein and local Lorentz covariant. Therefore one may set it
equal to zero (“the vielbein postulate”). As a result, one can always
express w,™" in terms of 7 ,,”, and vice-versa. We shall exclusively
work with w,™" and never use 7 ,,”.

As action for the gravitino in curved space we take

1 -
hys == [sedntr D) v (215)
with
1 mn
D)o = Bybo + 5 9™ Am it (216
and
Y =7"em" 7" =9"e,™ . (217)

A term with ? ), 7 in (215) cancels due to (anti)symmetry. For the Dirac matrices
4™ we choose the same real representation as in eq. (8). Then the operator
YvPy7 D, is also real and hence we can take 1, to be real. The action I3/, is
hermitian. It is also the unique action without ghosts in any dimension. By the
latter statement we mean the following: if one adds a source term j”zf)u = ’(ZJN JH
to the most general flat-space free-field expression for I3/,

1 _
Iy =—35 /d% L R (218)

where O#?? depends on Dirac matrices, Minkowski metrics and e**? tensors,
to couple the couple the gravitino to an external real vector-spinor source J*<,
and one completes squares, one finds the propagator term

/ &’z J) Py T} (219)
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The source JH* is supposed to satisfy those constraints (and only those) which
follow from the linearized field equations

O"07 9 1py — JH =0 (220)

In general O#*7 is singular, so it has no inverse. However, the parts which are
ambiguous, due to the singularity of O*#?  cancel in the propagator term (219)
due to the constraints on .J,. Requiring then that at the poles k? = 0 the
residue is non-negative definite, singles out O#?? = ~t~y?~7] in any dimension.
The physical meaning of this requirement is tree unitarity, a necessary but not
sufficient condition for unitarity. Since the free field action with

/d393 R O R (221)

has the gauge invariance 61, = Jd,€, which will later become local SUSY, we
have deduced the interesting result that gauge invariance follows from unitarity.
The same holds for the actions with spin 1 and spin 2. We can in 2+1 dimensions
simplify the gravitino action by using

Py, = —yliatl (222)

where the indices are curved indices. Then
1 _
Ly = / & 407 G, D () o (223)

Note that, since €?” is a density, we do not need a factor e in the integrand in
(223)). The spin 3/2 action is also Einstein and local Lorentz invariant,

5E¢ua = fy 8”/)“& + (8;15”) 1/)'/a

1
6L¢ua = Z Amn WmWn ’l/},ua .

(224)

Let us do the usual counting of states and field components. We already saw
that e,™ contains no states. The field v, satisfies the linearized field equation
"7 0,1, = 0, so locally ¥, = 0,4, with ¢ a spin 1/2 field. Local SUSY, é¢, =
Ou€ + ..., can then be used to gauge away v, so also 1} contains no states on-
shell. However, the number of bosonic and fermionic field components does not
match. The dreibein e, has 3x3 components, but 3 components can be gauged
away by local Lorentz symmetry (for example, by making e, symmetric), and
another 3 components can be gauged away by Einstein symmetry (for example,
by setting ep; = eg2 = egp = 0). Thus, in total, there are 3 bosonic field
components left in e,,,. The gravitino field has 3 x 2 components, but local
SUSY can be used to gauge away 2 components (for example, by setting ¢y® =
0). Hence there are 4 fermionic components left. Because the operator P, is
nonsingular and {Qa, @3} ~ (Y")apPyu, Qa is nonsingular. Thus the number
of bosonic and fermionic field components must be the same and we need at
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least one bosonic auxiliary field S. This suggests the following action for N =1
supergravity

1 1 - 1
Lsugra = /dBw [—@ eR(e,w) + 3 €'’ Dy(w) e — B eS?| . (225)

It is at this point not clear that the sign of the term with S? is negative, and
thus opposite to the sign of the auxiliary field in the Wess-Zumino model. We
shall see that local SUSY requires this sign. This has important consequences
for the super-Higgs effect: the auxiliary fields yield the cosmological term and in
supergravity one can obtain vanishing cosmological constant due to cancelations
between the matter and gauge sectors. Taking

opS =¢£Y0,5

(226)
0SS =0,
the action (225) is still Einstein and local Lorentz invariant. We must now show
that it is locally supersymmetric. First we must specify whether we take the
spin connection w,™" as an independent field or as a composite expression. In
some sense we shall do both, as we next explain.
The spin connection w,™" we do not take as an independent field, but
we assume that it is expressed in terms of e, and ,* by solving its own
nonpropagating field equation:

wy™" = w,"" (e, ) (227)

However, we do not expand w,™" (e, ) in terms of ¢,; rather, we keep it as a
composite object in the action. The reason is that whenever we vary w,”", it
is multiplied by its own field equation 01/0w,™"(z), which vanishes identically
when we substitute w,™"(e, ) for w,™". So we need not vary w,”” at
all! Taking w,™" as an independent, field is known as the first-order formalism,
expressing w,™" in terms of e, and v ,a receives the names of second-order
formalism or Palatini formalism, and doing the latter but not expanding w,,™"
in terms of ¢, goes under the name of 1.5 order formalism.

To study the invariance of the action under local SUSY, we recall that we
only need to vary the explicit e,™ and ¢, but not those e,™ and 1, which are
contained in w, " (e,4). For the transformation law of ¢, we take

1

1 1
(W’u = ; Du(w) € = ; <8u6 + Z wumn ’7m’7n5> ; (228)

with w,™” = w,™"(e,4). This is the gravitational covariantization of d¢, =
L 9ue. The factor 1/k is needed in order that the dimensions match: [1,] =
[0,] = 1 and [e] = —1/2, so we need 1/k, since [1/k] = 1/2. Of course, [w,™"] =
1, since it contains one derivative [see eq. (214)]. A further term ~ Sv,e will
be added later to (228). We shall not postulate de,”, but rather derive it by
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requiring SUSY invariance of the action. Noting that de = e,,”de,”, we have
for the variation of the first term in the action (225)

1 1 1
0l = 32 '/d3.7: R, (w)dleem " en”] — ywel '/d3me <R,,m 3 e,,mR) dem” .
(229)

Using that the two gravitinos in I3/, give the same variation (see exercise below)
and

1

[Dp (W), Dy(w)]e= 1 Rpamn(w) TmIn €, (230)
we find
1 3 [ 1 3 o, mn
013, = p A’z ", D,(w)Dy(w) e = 8 Az e"?? v, Rpe™" (W) YmYn € -

(231)

We simplify 613/, by using the identities
W[m')/n] - _emnr'yr (232)
"7 €mnr = —6e eyt e, e . (233)

Then, using that the scalar curvature R is defined by R, e,,” and introducing
the notation ¢, = ey* ¢, we get

1 3, m 1 m " o
a3, = o '/dme (R(, 5 Co R) Yy € (234)
From egs. (229) and (234) we see that if we choose
Sem” = 2k my"e (235)

the variations of I and I3/, under local SUSY cancel each other. We can obtain
de,™ from this result by using that

d(e,"en”) = (de,™)em” + e, (dey,”) =0 . (236)
Using also that ¥,,7"e = —éy“1,,, we find
de," =2k ey, (237)

One may check that the factor & is again needed for dimensions: [e,™] = 0, [¢] =
—1/2, [¢,] =1 and [k] = —1/2.

Exercise 14: Show that for any d1,,

/ d*r €"°7 1p, D, (w) 61, = / d*x e"°7 §p, D, (w) b, (238)

48



Before moving on to the auxiliary field S, let us evaluate the local SUSY
commutator on the dreibein:

[(5]762] eum = QEQ’YmDNC] — (1 <« 2)

1 (239)
=20, (E7™e) + 2 g e e — (14 2)
Setting
§" =276, (240)
we can rewrite this as
[01,02] e, = (0,€") e™ + € (Oues™) +2[...] . (241)

Recasting [d1,d2] e, as the expected Einstein transformation of e,™ plus other
terms, we find

[01,02] €™ = (9u€”) e,™ + £ (Duen™) + £ (Oues™ = Bue,™) +2[..] (242)

Because, in ordinary general relativity with Riemannian connection w,™"(e),
the vielbein satisfies the vielbein postulate

ope,™ +w, " n(e) e, =7, (g)e,™ =0, (243)
we can replace the curl d,e,” — d,e,™ by
ope,™ —0ve,™ = —w,™n(e) e, +w,"n(e) e, (244)
Hence, the extra terms in the SUSY commutator are
—wy"(e) €'+ wy M n(e) e + 2], (245)

where we have used the notation £" = £”e,™. The terms in 2[...], defined
in (239), depend on w,™"(e, 1), not on w,™"(e). We can simplify them by
using the identity (18) for “flat” Dirac matrices 7™, 7", 7*. Since [, 7r7s is
proportional to the unit matrix, and éxe; = €j€o, the terms €2Y[m VrYs) €1 and

—€1YmVrVs €2 that arise from using this identity cancel each other, and we find

20 ] =2w, ™ (e, ) Exyse1 = w, " (e, )5 . (246)

Thus we have

[01,02] €™ = dge(€§7) €™ + [€" w, ™ n(e)] ey + [wu ™% (e, ¥) —w, " (e)] &s -
(247)

The first term is the Einstein or general coordinate transformation of e,”, the
local equivalent of the usual translation in {@Q, @} = P, while the second term is
a local Lorentz transformation with composite parameter £” w,” ,,(e). The last
term is quadratic in 1), and is a sum of a local Lorentz transformation, which can
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be added to the local Lorentz transformation with £” w,™,,(e) to yield a local
Lorentz transformation with £ w,™,(e,¢), and a local SUSY transformation
with composite parameter € ~ £, as we now show. The super-uninterested
reader may skip the details and go directly to the next section.

In first order formalism with an independent spin connection w,™"”, the
variation of the sum I + I3/, with respect to the spin connection reads

e v
Ou(la + I35) = /dSw {—m [Du(w) 6wym”] en’ et
1 _
+§ elre Yy 0wy, Y Yn @Z}p} . (248)

Using egs. (232) and (233), we obtain, after partial integration, the field equa-
tion for w,™"

1

—5 Dulw) (eepm”en) + 3 (9,7%)) (eepm’en”en”) = 0 (249)

From this equation we must find the solution w,™"(e, ). To do this, we split
w, ™" (e, 1) into the torsionless part w,™"(e) and a torsion piece w,™"(¢):

w,"" (e, ) = w,""(e) + w, " (Y) - (250)

The tensionless part

N =

wuvple) = — emu(Ove,™ — 0,e,™)

+emu(Open™ — Oue,™) — emp(Ore,™ — Ope,™) | (251)

follows from the vielbein postulate (243) and is computed in many textbooks on
general relativity. As a check, one may verify that the transformation law for
w,™", as given by (251), under a local Lorentz transformation de,™ = A™,e,"”
agrees with that in eq. (213). Substituting eqs. (250) and (251) in (249), we
find

1 v n v n v n v
E wumk(¢) ek[ enN] - (m A n) = _(wm Y ey + Yy hm + Yy Yy e ) .
(252)
The left-hand side yields four terms
1
57 | (8) = Win () en” = wnn” () + win W) ew” | (253)

Tracing with e,” shows that wg,,* (1)) = 2k%1,y-1 and then the terms with
e,” and e,,” match. The solution is

Wumn(d)) =K’ ('J’u’)’m"ﬁn - 117”7"¢m + Zﬂm%ﬂﬁ") . (254)
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So indeed the last term in eq. (247) is quadratic in ¢,. Adding a subtracting a
term & w, ™, () e,", we find

[61,02] e, = 5gC(§V) ey + o[ w, ™ (e, )]en™ + | wu s () —ws™ () | €7
(255)

The second term is, as anticipated, a local Lorentz transformation with param-
eter £7Q,™,(e,9), while the last term is equal to 2k2£%1), 715 and is a local
SUSY transformation with composite parameter ¢ = —k £°Ys. The reason for
the negative sign is that we defined dip, = L d,€e+ ... in eq. (228). We can
write the result in a uniform way as

[61,82] = 0ge(£7) + OLIE wy ™" (€, )] + dsusy (—KE"0) - (256)

Thus we have shown that the local SUSY commutator on e,™ closes: it is equal
to a sum of local gauge transformations of the dreibein.

Exercise 15: Show that in the limit of rigid SUSY, constant £°,
the term linear in the fields h,™ =¢,™ — §,™ and 1, reduce to

1 1 1
01, 2] ™ = 5 €70, (1™ + B™) + 5 €0, (W™ + hy™) — = €70 (e +
(257)

Interpret this result.

3.2 Closure on the gravitino, the auxiliary field S

Let us now add the auxiliary field S to our considerations. Since the variation
of the last term in the action (225) yields

5/d333 (—% €S2> = /dBw (—rey-S* —eSsS) (258)

we add a term 5(5)1/)u = cSv,€e to the gravitino law with ¢ a constant to be
determined. This yields the following new contribution to the variation of the
gravitino action

8, = c / d*z S €7 [ev, D, (w) ¥,] - (259)

Clearly, the variation of S must be chosen such that the sum of the three S-
dependent variations cancels. This leads to

c
0S = —key-pS — — €"P7€y, D, (w)hs . (260)
e
The constant c is still free at this point; the two variations proportional to ¢

constitute an “equation of motion symmetry”. The equation of motion for S is
S =0).
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The extra term 6§, = ¢Sy e in the local SUSY law leads to an extra local
Lorentz transformation of parameter 2cxSea (™, —vny™ )€1 in the local SUSY
commutator on e, ™

[01,,02] €, = as before + 2ckSexy" y,e1 — (1 > 2) (261)
= as before + 2ckS & (V" vn — Y Y™)e1 €, .

Consider now the local SUSY commutator on 1,. We obtain

[51;52]1/]# = 51%'””(6,111) }7m7n52 +c ((SIS) Yu€2 — (1 A 2) : (262)

1
45
After a long and tedious calculation, we obtain dw, ™" (e, ), and using this
we find that the local SUSY commutator also closes on the gravitino. In
dw, ™" (e,1) we only find undifferentiated local SUSY parameters, and no terms
with d,e. This shows that the terms Y1) in w,™" (e, 1)) are “super covariantiza-
tions” of w,™" (e).

Note that 4.5 is proportional to the field equations of both the gravitino and
the auxiliary field, and that the extra term dt, = ¢Sv,e in the local SUSY law
for the gravitino is linear in S. Not having an auxiliary field in the theory will
therefore lead to terms proportional to the ¢, field equation in the local SUSY
commutator on the gravitino.

Exercise 16: Show that in dw,™" (e, ) all terms with J,¢ cancel.
This is one way of fixing the relative sign of the transformation rules
of of the vielbein and the gravitino, and hence of the Einstein and
Rarita-Schwinger actions. Closure of the algebra is another way.
Note that SUSY of the action does not fix this sign, since one can
always adjust the sign of de,™.

Exercise 17: Consider the local SUSY commutator [d1,d2].S on S.
Locate where the Einstein transformation comes from. Show that
in order that the algebra closes on S, there should be no terms with
Ou€1 or J,€ex on the right-hand side (super covariantization). Show
that this fixes ¢2. Note in this regard that, in fact, the law §S itself
is supercovariant. Do and should the S? terms cancel? For the very
brave: evaluate this commutator explicitly to the bitter end.

Exercise 18: Show that there exists a locally supersymmetric cos-
mological constant term

Icosm =« /dee (S + /31/3“7“”1/)”) (263)

and fix 8. The SUSY of I.qsm also fixes ¢, which confirms the result
for ¢ obtained by requiring closure of the gauge algebra in the pre-
vious exercise. Note that by eliminating S from Isugra + lcosm One
finds a cosmological constant.
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3.3 Supergravity in superspace

The treatment of 2 + 1 dimensional N =1 supergravity in superspace follows
in most respects the treatment of Yang-Mills theory, but there is one major
difference: the internal symmetry generators (the Lorentz generators) act now
on the flat indices of the covariant derivatives. In ordinary general relativity,
this amounts to the well-known fact that the inverse vielbeins e,,* transform
under local Lorentz transformations as dpen” = Ay, ™e,”, but that should now
come out, of the formalism and not be put in by hand.

We begin by introducing the superalgebra and its generators, then introduce
corresponding gauge fields and parameters (all superfields), and define gauge
transformations by requiring that covariant derivatives transform covariantly,
as in Yang-Mills theory. The gauge fields with a flat bosonic supervector index
are again expressed in terms of the gauge fields with a flat fermionic supervector
index by the conventional constraint that {V,, V,} = 2iV,;, where a, b are flat
fermionic indices; curved fermionic indices will be denoted by «, 3. Further-
more, we also impose another conventional constraint which eliminates the spin
superconnection as an independent field (second order or Palatini formalism in
superspace). This is the analogue of the “no torsion” constraint in ordinary
general relativity. The difference is that in general relativity the no torsion con-
straint is also a field equation, namely the field equation of the spin connection,
whereas in superspace it is not a field equation. At least, until now nobody has
been able to construct an action in superspace with these constraints as field
equations. There are several reasons why one imposes general constraints on
the supertorsions and/or on the supercurvatures:

(i) To eliminate as many superfields as possible, so as to simplify the for-
malism. In three dimensions all constraints are algebraic, whereas in four
dimensions some are differential constraints Nieuwenhuizen (1981).

(ii) The particular constraints we adopt below lead to a formalism in which,
in a suitable gauge, the § = 0 part of the fermionic superconnection van-
ishes while the bosonic superconnection at 8 = 0 become the usual spin
connection w,™" (e, ) of the z-space theory.

(iii) To remove ghosts and higher-spin fields from the spectrum.

Substituting the constraints into the Bianchi identities shows that all su-
pertorsions and supercurvatures depend only on two superfields R and G-
Finally we construct a superspace action whose component form reproduces the
z-space action (225). It reads

/ d*c d* [sdet (Ey™) ] R, (264)

where Ej 4 is the supervielbein, which is constructed from the gauge fields
ha™(x,0) which gauge the bosonic and fermionic translation generators P,
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and .. The field equations for this action read
Gape =R=0, (265)

and show that there is no gravitational dynamics of the usual kind in three
dimensions. Below we see all this in more detail.
3.3.1 Covariant derivatives
As superalgebra we take the super Poincaré algebra, given by

[P, P, =0

[an: Mrs] = *nmrMns + nnrMms - nnstr + nmsMnr

[Pm: Mrs] = nmrPs - nmsPr

{Qur @5} = =20 (") P 260
[Qo; Pm] =0
Qa0 Myl = 5 ()’ Qs
The minus sign in [Qq, M, ;] is needed for the Jacobi identities, since
m¥na’ (rve)s” = = Vm¥nl)as (76) 77 (267)

r

The Lorentz generators are represented on spinors by %7[ 7%, and often we

shall use the notation
1 rs 1 rs 153 B8
5 A 'Mrs wm = Z A (’Yr’}/s)a wﬁ = )\(1 wﬁ . (268)
Note that for vectors we have
1
(5 /\”M,,s> Vm = —Am" Up (269)
in order that the commutator of two Lorentz transformations
[6(A1),6(A2)] = 6 [ (A" Aapn — (1 45 2) ] (270)
holds both for spinors and for vectors.

We denote the set of generators of the super Poincaré algebra collectively by
Ty, so

TI = {Qa:Pu:Mrs} - (271)

We take ), to be hermitian, and P, and M, antihermitian. The gauge pa-
rameters Q! and gauge fields H4!, with A a flat superindex, A = {a,m}, are
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then given by

Of = {K°, K", L")}

oo H,?  H* ¢, (272)
Yo\ ELS H 0 )

All fields and parameters depend on the real coordinates z# and 6°.

We consider now the coset {T7}/{M,s}, with coset generators (), and P,.
Then we have the usual covariant derivatives and Lie derivatives of rigid super-
space. We define covariant derivatives of local superspace as in the Yang Mills
case by

Va=Da+Hy' Ty . (273)

The derivatives D 4 are the covariant derivatives of rigid superspace, containing
in general also a rigid connection term for the subalgebra generators, but in the
super Poincaré case this rigid connection vanishes. The gauge fields H! are
arbitrary local deviations around the rigid vielbeins and rigid connections. We
must now distinguish two kind of indices:

(i) Flat supervector indices A = {a, m}. In the inverse supervielbein that we
will construct, they appear as E4™. The supervielbein itself if Fp 4.

(ii) Curved supervector indices M = {a, u}. Later we shall go from curved
to flat and vice-versa by using the supervielbein, as vy, = Ea?v4 and
va = E4Muy,. This is the standard practice in general relativity, but note
the order of contractions: from left-upper to right-lower. For fermionic
objects the order will not matter.

The gauge fields consist now of the square supermatrix H,™ and a Lorentz
superconnection ¢4"%. The complete gauge transformation rules are as usual

Vi = Vi =e V4", (274)
where
Q=0'T; (275)
and the generators T satisty
[T1,Ts) = f1," Tk (276)

Note that 2 is antihermitian and commuting because the term K@), is antiher-
mitian when both K and @, are hermitian and anticommuting. Infinitesimally,

0gVa = (5gHA’) Tr = (DAQ[) Tr+ [Ha [ThQJTJ] . (277)
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The covariant derivatives V4 = D4 + H4'T; read more explicitly

1
Vo.=D, + HaBQﬁ + Haupu + 3 d)arsMrs
2 (278)
1
Vi =Dy, + HmBQB + Hmupu + 5 ¢mrsMrs .

The factor 1/2 ensures that the generators M, are not counted twice. Since
D, = 0, + 160y, is hermitian, D,, = O, P, and M,, are antihermitian, while
it is natural to require that the diagonal parts H,? and H,,* are also hermitian,
we see that Qg, ¢,,"° and H,,? are also hermitian. The terms in V, with the
Poincaré generators show then that H,* and ¢,"® are imaginary. In the Yang-
Mills case we therefore introduced an extra factor of i as V, = D, +i4,, but
here we will work without any extra factors of ¢ because this actually simplifies
matters. Thus, all gauge fields except H,* and ¢,"® are now real.
From eq. (277) it follows that 6, H,* = D K* +... and §;H,,* = 0, K* +
Since D, K* = {D,,K*} and 9,,K* = [0),, K%], w= e must take K¢
real if H,” is real, and then H,,” is also real as we already saw. Similarly,
from 6gHpm" = [0, K*] + ... and the reality of H,," we find that K* is real,
and then 0,H," = [D,, K*] confirms that H," is imaginary. Finally, dg¢,"° =
[Om, L™]+. .. and d;0,"° = [D,, L"*] show that L"* is real but ¢,"* is imaginary,
as already seen. So all gauge parameters are real.

3.3.2 A new basis for the gauge fields leading to vielbeins

We can now go on as usual for coset manifolds. We replace the generators 17
by minus the covariant Lie derivatives £; = {Ls, L5}, defined by

Lo =00 —i0° (v") 50 0,
Ly =0, (279)
1 1 1
3 L™L,s = L*, 2”0, + 1 L™ (7,75)% 5 0% 00 + 3 L™ M,
and which form a representation of the generators of the superalgebra. Here
the M, is the spin part of the covariant Lie derivative £,.s which acts on the

Lorentz indices of matter fields and by definition also on the indices A of
the gauge fields H,":

1 vs
5 LMy, = (o Ha

I] 0

SHT (280)

Since it follows from coset theory that £, does act on the indices of Dy, and
SaM+H M is going to be the vielbein field, the definition that M, ¢ acts on HaM
is natural, but it is an extra definition. From the knowledge of how covariant
Lie derivatives and the covariant derivatives Dy, (anti)commute, we could then
deduce the gauge transformation rules for H4'. However, we want to make
contact with general relativity, and introduce (super)vielbeins. To this purpose,
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we rewrite the covariant Lie derivatives £y corresponding to the generators P,
and ), as a linear combination of the covariant derivatives of rigid superspace:

1
HA'Ty = haMDy + 3 GA" M, . (281)

This amounts to a linear combination of components of H. Note that HaM
and ha™ transform in the same way under local Lorentz transformations. Fur-
ther, since neither £3; nor Hy contain terms with M,s, the connections are
unchanged. One could also expand H 4 T, on a basis of ordinary derivatives, as
ha®8, + ﬁAuau + %lNLA”MTS. Using the basis with Dy, is useful as a starting
point for the background field formalism. From (281) we obtain

1
Va=Da+ha" Dy + 564" My, . (282)
This suggests to define the supervielbein by
Da+haMDy = ExMDy EaM = 6™ 4 hpa™ . (283)

The limit of rigid superspace corresponds then to E4™ = §,4™ and ha™ = 0.
From now on

1
VA = EAMDM + 5 ¢ATSM’I‘S (284)

These covariant derivatives V 4 have no definite reality properties, because under
hermitian conjugation the order of EAM and D,y is reversed and D, acts then
on E4M. Gauge transformations still read

V) =e P Vue? (285)

but we also expand €2 on the basis with D,
1
Q=kD, + k"0, + 3 L™ M, . (286)

In the covariant approach to Yang-Mills theory, we consistently worked with
curved superindices M = {a, pu}: coordinates z* and 6%, and rigidly covari-
ant derivatives Dy = {D,,D,}, where D, was Dy = 04 + i(7")ap 96(‘3“ and
D, = 0,. In gravitational superspace, on the other hand, we want to interpret
the index A of ha™ as a flat index, like the index m of the usual inverse vielbein
field e,,* of general relativity. In order to be consistent, we should then rewrite
the D4 in V4 as 64 Dy;. We shall keep writing D 4, though, but it should be
understood that we mean § 4™ D ;. The relation of Dy to the ordinary deriva-
tives Oy = {0a,0,} is via the rigid inverse supervielbein: Dy = E(q) vNON.
One could introduce yet another type of index for these dn in order to dis-
tinguish between the two indices of E(g) umY. Therefore one sometimes writes
Dy = EOMAJ, where ) are equal to the ordinary derivatives 8, and Op-
Then D4 = .M E© MAH, . We shall not introduce the indices A, so for us Dy
and J); have the same kind of indices: curved indices in local superspace.
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3.4 Constraints and Bianchi identities

Having defined covariant superderivatives, we define supertorsions and super-
curvatures as usual:

[Va, Ve} = Tag” Ve + % Rap" My . (287)
As in the case of Yang-Mills theory, we impose the conventional constraint
{Va,Vi} =2V . (288)
This constraint states that

Ta7b6d - 92 5a(06bd) Ta,bc -0 Ra7brs —0. (289)

We shall later see that by redefining the bosonic connection ¢4;"® one may

replace the constraint R, ;" = 0 by the more familiar constraint Tab,c,ff =0,
or equivalently T}, ,” = 0. In four dimensions one uses 1},," = 0 to express
the bosonic part of the spin connection in terms of supervielbeins, but in three
dimensions we prefer to work with R, ;"* = 0.

Using (284), we have

1 1
{va:vb} = [ErLMDM + 5 d)arsMrs:EbNDN + 5 d)atthu

1
[EaM(DMEbN) Dy + 1 ba" (V7s)0" B Dy

1
+§ EaM(DM(f)brs) M5 + (a <> b)

(290)

+ 2 Eaa E‘b/8 Daﬁ + ¢art (Zsbtls Nt Mrs .

It is clear from this that the constraint (288) expresses both E,,™ and ¢,;"* in
Vs in terms of E,M and ¢,"*. For later purposes we record Ta,bc and R, "°:

Tup® = EM(DuEN) ENC + ¢ + (a ¢ ) + T(oy

(291)
Rap™ = E,M (Darés™) + ¢t o6t + (a < b) — TayC o™

where T(g) ¢ is the torsion in rigid superspace.

Since the constraint (288) has the same form as in Yang-Mills theory, al-
though here we have also supervielbeins, we obtain from the Jacobi identities
the same relation as in (108):

1 1
[vm vbc] = 5 6abVVc + 5 6acI/Vb 3 (292)
with anticommuting Wp, but instead of W, = W,*T* (recall that here a was a
gauge Lie algebra index) we now have

. 1
Wo =W,V + W, Vi + 3 W,"*M,, . (293)
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Because we are going to use this result in other Bianchi identities, we have
expanded W, in terms of V4 and not in terms of Dj;. We then again deduce
from the Bianchi identity for {V,, [V, V.q]} that

a 1
VW, =0 Jab = Z v(aVVb) (294)
and that
1
[valn vccl] = Tab,chvA + 5 Rab,cdrsMrs = 6bcfacl + 6Lu‘lfbc . (295)

In four dimensions one finds V*W, + V*W4; = 0 as constraint, but in three
dimensions there is no difference between dotted and undotted spinor indices.

To reduce the number of independent superfields, we impose a further con-
straint on the supertorsions which expresses also the connections ¢,"® in terms
of supervielbeins. In Yang-Mills theory this is, of course, not possible. The
constraint is

Ta,bcde =0, orequivalently T,,," =0. (296)

One can solve this constraint by expressing the fermionic connection ¢,”* in
terms of fermionic inverse supervielbeins E,". Let us see how. Since Taybcde is
the coefficient of Vg in [V,, V] and Vi ~ {V,, V.}, we begin by dropping
all terms with M, in [V,, Vj.]. Then one finds in terms of E, = E,™ Dy and

o = %d)amsts
1
% [va;vab] = ErL + d)a: {Eb + d)b:EC + d)(‘}

= | Ba + 60, {Bo, Be} + 60,9 Ba + 6,6 B + e
= [Ea: {Eb: Ec} + d)a,bd {Ed: Ec} + ¢a,cd {Eb: Ed} + (Ea¢b,cd) Ed

+ (Ead)c,bd) Ed + d)a,bbl ¢b’,cd Ed + ¢rz,cc' ¢c’,bd Ed

- d)b,cd {Ed: Ea} - d)c,bd {Ed: Ea} - ¢bc,ad E;+ M-terms .
(297)

From this expression we must now project out the term with V4. Since the
leading term in Vg is {Ey, E,}, while the terms with E, appear in T, ;.¢ and
those with M, also appear in R, ;."®, it is sufficient and easiest to collect only
all terms proportional to {Ey, E.}. This yields

0= Ta7bcde = C’a7bcde + ¢a7b(d 606) + ¢a,c(d 6be) - ¢b7c(d 60,6) - ¢c7b(d 6ae) 3
(298)

where Cavbcde is defined by

Cva,bcd(’3 8de - [Ea: {Eb7 Ec}] (299)
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and reads explicitly
Cape™ = EM{ Dy [EyN (DN ECF) 1} Epe

(300)
— EyM(DyEN) (DNEP)Ep® + (b ¢) .

Note that, Cavbcde depends only on E,™ because Ep? depends on E,™ and
E.+M and we have already expressed Eq.,™ in terms of E,™. Pairs of terms
with ¢’s in eq. (300) combine into terms with an e-symbol

C’a7bcde - 6ab¢(ecd) - 6ac(ls(ebd) =0. (301)
Contraction with €*® yields
Ol + 3¢ =0 (302)

We can now express ¢q,. in terms of ¢(4.). by using that 2¢y, ;. = —€ap 0% ac
and that ¢ is traceless, that is ¢4.¢ = 0,

1
d)d,ec = ¢(d,e) ¢t ¢[d7e] c= ¢(d7e) ¢t 5 €de ¢f,cf = ¢(d,e) ¢t €de ¢(f,c)f : (303)

We then find

1 1 1 2
¢a7bc = _5 Cddgab - g 6abcfecﬂicle,fc - 5 Cdda,bc - 5 Cdd(b,c) a s (304)
where we have used that 2C%d[a, blc = —e,p ef® C”ide,fc.

From eqgs. (287), (292) and (293) it follows that the constraint (296) implies

that VAVQ,”C = 0. Then V*W, = {V* W,} = 0 reduces to

1

0= { VWLV + = WM, }
2 (305)

1

= (VW' Vy + WP {V*, V}} + 3 (VOW,") My — W,"VE |

where

1 rs
Z Wa ) ('%"'Ys)bc - (306)

Using that {V?®, V;} is symmetric in a,b, and that {V,, V.5, M} is a basis,
we find that

Wa7bc =

VW + W% =0 (307)
Wiapy =0 (308)
VW,"™ =0 . (309)

Eq. (308) implies that W,, = €, R, with R a new real commuting superfield.
Then, eq. (307) simplifies to

VoR+W,% =0 . (310)
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Since the same decomposition as in (104) yields

1 1
Wa,bc = W(a7bc) + § 6rLl’)VVddc + § 6n,(:VVridl’) ’ (311)

we find a new totally symmetric real commuting superfield
Gape = W(a7bc) . (312)

The condition (309) becomes in a spinor basis VW ;. = 0 and leads to VG gpe =
% {Viy,V.}R = % Vi R. Hence we have found that the solution to VW, = 0
reads

W{zb = 6rLI’)R
Webe =0
1 1 313
Wa7bc = Gabc - g eabch - 5 6acvb-R ( )

21
vaGabc = évbCR .

and depends on two real commuting superfields R and G-

Since we know now the solution for W, and [V,, Vs.] and [V, V4] are
given in terms of W,, we know now Ta7bcA and R, "%, and also Tab,cdef and
Rap,ca”®. We shall quote them below. First we note that we could have redefined
the connection ¢4p by adding any covariant term A¢gp to it: ¢, = dap + Aap.
Then

1
Ve = Vi — 3 Agy."* M, (314)

and

1
(e -3 (i L swn.)

1 1 1
[va: v;)('] - 5 5(1,ch + 5 E(z(:VVI’) + 5 [va: Ad)bcrsMrs]

1
[v;[ﬁ v;d] = Tab,chvA + 5 Rab,cdrsMrs

1 1
+ = [vab: Ad)cdrsMrs] -3 [v(;d, A¢abrsMrs] + A¢abrt Ad)cd,ts Mrs

2 2
(315)

We can choose a suitable A¢,, to make Tab,c,ff vanish, i.e. Ty,,," = 0. This is a
constraint one usually imposes in four dimensions. Note that, since we already
fixed ¢,p by the constraint {V,, V,} = 2iV,;, we cannot further constrain the
geometry by imposing Tab7cdef = 0 in the same way as we imposed Ta7bcde =0.
What we can do is, by adding a term A@,p, to ¢qp, relax the constraint R, ;" = 0,
which followed from {V,,V,} = 2iV, and, instead of R,;"® = 0, impose
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Tab’cdef = 0. To find this A¢,,, we first evaluate Tab,cdef from [V,p, Vea] by
using the results for W,. From (295) we know that

[Vab: Veal = €vefaa + €ad foc (316)
and from (294) we have
fab = 2% ViaWe - (317)
Expressing V, W, as the anticommutator {V,, Wy}, we obtain
VW = (VW) Ve + Wil (Ve V) + 3 (VW) Mg + WiV (318)
According to (313), in V,W, there is only one term with V;, namely
Wy{V., Vet = R{V,,Vy} =2iRV . (319)
Hence
Tubcd"Ver = R(€6:Vad + €adVie) - (320)
Clearly, by redefining
bab"™ = dap" +a (Y )ar R, (321)

with « a constant, we obtain in [V!,, V/ ] as given in (315) extra terms of the
form

R [Mab7 vccl] ~R (ebcvad + 6bdvac) 3 (322)

and by choosing o appropriately, we can obtain that T,; .4/ = 0. Then, of
course,

N @ rs
{Va, Vo} =20 | Vg, — b) R(Y")ap Mys | - (323)

At this point the remaining independent superfield is the inverse fermionic
supervielbein E,™. The supertorsions and supercurvatures only depend on R
and Ggpe which themselves depend on E,™. For completeness we record all
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Tag® and Rup"s:

Tt = 2i6,5,7 (324)
Tu® = 0 (325)
Tom” = 0 (326)
Tase = 3 R [cand+ (b6 0)] (327)
Topcd™ = R [ﬂm 62047 + €4a 6b(66cf):| (328)
Tapca® = % {ﬂm [Gade + % V(aR(Sd)e]
+§ €ad [Gbce + V(bR(Sc)e} } (329)
Ru™ =0 (330)
Rap = % €a We + (b ¢) (331)
Rapca®l = % [ﬂm VWa + €ad V(ch)ef} (332)
W, = @, — % 6, VIR . (333)

There is a large symmetry group acting on E4™, namely super-Einstein
transformations with superparameters k* and k%, and local Lorentz transfor-
mations with superparameters L"® [see eqs. (285) and (286)]. As we shall show,
one can gauge away all of F4™ except the antisymmetric part of E,®, namely
E,® = 6,1, and the totally symmetric part of E,*?, denoted by E(®®5)  The
supergravity action should be gauge invariant, hence it should at most depend
on ¢ and E(*®®) Variation of the action with respect to E@*#) and ) should
then yield the field equations G = 0 and R = 0 (or R = A if there is a
supercosmological term). In what follows we see this.

3.5 Action and field equations

We shall now first derive the field equations in superspace, and then find an
action in superspace which reproduces these field equations.

To deduce the field equations in superspace, we use a dimensional argument.
We recall that on-shell the field content of N =1 z-space supergravity is e,™
and ,“, since the auxiliary field S vanishes on shell. Furthermore, the field
equation of the spin connection is that the supercovariantized curl of the vielbein
vanishes, and the gravitino field equation is that the supercovariantized curl of
the gravitino vanishes. We note that both the supercovariantized curl of the
vielbein and the supercovariantized curl of the gravitino have mass dimension
2. From this and the observation that the only covariant objects in x-space are of
the form 0de and 0v, or more precisely, supercovariantized Riemann curvatures
or gravitino curls, we see that on-shell there exist only covariant objects of mass
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dimension 2. Supertorsions and supercurvatures® with mass dimensions equal
to 1/2, 1 or 3/2 must therefore vanish on-shell. From the definition (287) we
find the following table of dimensions

dim0:  T,,™
dim 1/2: Ty, Top™

dim 1: Tom®, Tonn”, Rap™ (334)
dim 3/2: T,,,%, Ram"®
dim 2 : Ryn’ .

In the approach with {V,,V;} = 2iV,, we imposed the off-shell constraints
(289) and (296), which we repeat for convenience:

off shell : T, %% =2i6,°0,Y  Top® = To™ = Rap”* =0 . (335)

To this set we now add the constraints that all covariant objects with dimensions
below 2 should vanish on-shell

onshell : Tyl =T = Tpin® = Ra"* =0 . (336)

Note that in the approach where we replaced R,;"® = 0 by T),," = 0 off-shell,
one finds the same total set of on-shell constraints. From the on-shell condition
Toum® = 0 and (327) it follows that R = 0 on shell. Similarly, from R,,,"* = 0
and (331) we get Wype = 0, which togethe= r with (313) and R = 0 yields
G e = 0. We thus have found that on-shell

onshell: R=Gu.=0. (337)

Since this implies that all supertorsions and supercurvatures vanish on-shell,
we see that in 2+1 dimensions there is no (super)gravitational dynamics, a
well-known result.

In 341 dimensions, not all supertorsions and supercurvatures vanish on-
shell. Off-shell they can all be expressed in terms of three superfields R (chiral),
Gy, (real) and Wy, (chiral). Then one can use the Bianchi identities and both
the off-shell and on-shell constraints to deduce that certain combinations of
mass dimension 3/2 and 2 supertorsions and supercurvatures vanish on-shell.
By explicitly evaluating the 8 = 0 parts of these combinations, one finds then
the vielbein and gravitino field equations. On-shell one has R = G, = 0, but
Wabe = 0 needs not vanish, which leads to nontrivial dynamics.

Exercise 19: Show that in 2 + 1 dimensions the curvature R,,,,"*
also vanishes on-shell by analyzing the terms with M, in [Vap, Ved].

5The supertorsions and supercurvatures are supercoordinate and local T.orentz covariant
tensors. Hence, also their § = 0 parts should be supercovariant and Einstein and local Lorentz
covariant; in particular, they are Einstein scalars. As a result, supertorsions and supercur-
vatures can only be nonvanishing on-shell if they contain covariant Riemann curvatures or
gravitino curls.
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Hint: use (316) and (318). Evaluate R,,"® at # = 0 and relate it to
R,,»,"® by using a gauge in which at § = 0 one has

Ep? = < euo g}"a > 6" =0. (338)

Show that one obtains the supercovariantized Ricci tensor, and show
that this is indeed the spin 2 field equation.

If there is a cosmological constant A with dimension [A] =1 in 2+1 dimen-
sions, the supertorsions and supercurvatures with mass dimensions 1 in (334)
may not vanish:

Tmnr - Aﬁmnr Tamb =A (’Ym)ab Rabrs =A ('yrs)ab . (339)

Then R = A is possible on-shell, instead of R = 0. In 341, one has [A] = 2
and then R,,,"* = Ad},,"0,)° is possible. Again this leads to R = A, but still
G = 0 and Wy, = not vanishing.

We must now find an action in superspace which is invariant under local
symmetries (general supercoordinate transformations and local Lorentz trans-
formations) and which reproduces the field equations R = G = 0. If we want
an action integrand which is a scalar density, the only candidates is

1 .
1= / @r a9 sdet(En™) (e R + csA) . (340)

K

We need the gravitational constant (k%) ! with [k?] = —1 since after integrating
over  we should find the Einstein-Hilbert in three dimensions and the Ricci
scalar has mass dimension 2. Since [d*zd*¥] = —2, only the superfield R and
A are possible since [R] = [A] = 1. An integrand GG has too high mass
dimension, but it yields an action if one deletes the factor 1/2; it leads then to
conformal supergravity in 2 4 1.

It is easy to see that the action (340) (re)produces N = 1 supergravity.
Integration over 6 yields a term V°V,R| and a term with A, while using the
solution for Rab7cde'f in (333) one gets

VOV.R = —(4i Rpp™ 4+ VoG . (341)

Using that R,,,™"| is the usual scalar Riemann curvature, one recovers the
Einstein-Hilbert action. The term V,G,**| gives the gravitino action.

Of course, having found a unique candidate for a covariant action does not
yet prove it does indeed yield the correct field equations. There are at least
three approaches to obtaining the field equations from an action:

(i) One writes the action in terms of the unconstrained superfields E,", in
terms of which EMA7 Tas€ and Rap™ all can be expressed. Then one
varies with respect to E,M.
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(ii) One chooses a gauge in which E,™ is restricted to E,* = §,%¢ and E(@*?)
If one varies then ¢ and E(*®5) one should in principle add compensating
gauge transformations to stay in this gauge, but since the action is gauge
independent, this is not necessary.

(iii) One first deduces which variations of F 4 M and Ep? and ¢ 4™ are allowed
by requiring that the variations of constraints on the supertorsion and
supercurvatures remain zero. Then one parameterizes the variations of
the action in terms of these allowed variations.

In 3+1 dimensions the last method is the easiest because there the action is
1
I~ — / d*z d*9 sdet (Ep ™) | (342)
leading to the variation
1
6T ~ = / d'z d*9 ()8 EgN 6 En® sdet (Ep?) . (343)
K

One can then find the general form of HsB = EAMSE,B by varying the
supertorsions which are constrained to be zero or constant,

6Tap® = Tap”Hp® — {HA”TDBC + VaHRC
1
-5 Ex™ 560" (v75) 87 + (—)*P (A & B) (344)

and requiring that these variations all cancel. Crucial in this approach is that
total derivatives in (—=)* H4* vanish upon superintegration. In our case of 241
dimensions, these total derivatives are still multiplied by R, so they do not
vanish. We shall therefore first choose the gauge in (ii), and then vary as in
(iii).

To gauge away as many parts of E4™ as possible while not breaking rigid
SUSY, i.e. while still ending up with unconstrained superfields, we first de-
duce how E4M transforms and then look for field-independent terms in these
transformation laws. The transformation law of E4™ can be obtained straight-
forwardly from (285) and (286):

1 ’ 1
v£4 = <EAMDM + 5 ¢ATSMTS> = |:VA ) kMDM + ELTSMTS . (345)

One finds
SEAM = EoN(DNEM) — KN (DN EAM) — ExNKP T — LaPE5™ | (346)
where®

1
LAB = _5 {Lrs(’}/r’}/s)ab: Lmn} (347)

6Recall from eq. (268) that on a spinor ¢* the Lorentz group acts as f% A (Y Y )% 20,
S0 on 1, one gets an extra minus sign.

66



and T,(V(,)BVP is the torsion of rigid superspace, due to [Dys, Dy } and only nonzero
for {Dg, Do} = 2i7},0,. The field-independent terms in (346) are

SE,* = E,Dgk® — L,"Ey™ + ...
(348)
0E,F = E,*D,kV — 2i Ea“kﬁ(vl‘)ga + ...
We can use a Lorentz transformation with L,? = —% L”(%%)ab to make the
E, antisymmetric. Then the most general expression for E,“ id
E,* =6§,%Y(x,0) . (349)

This is similar to the practice of making the vielbein in z-space symmetric by
a suitable local Lorentz transformation. We can then use k° to remove some
parts of E,*. Indeed, for E®* = €*® E, /" (v,)" we find
SEYY = 2i € Ep® kP (65°00° + 05°6,°) + . ..
= 2i (Ek" + E°k°) + ...
~ 2i ("’ + €"k°) + O (E,° = 6,°) | (350)
and since one can decompose E*' into a totally symmetric part and trace

terms, just as F, g, in (104), we can use k” to gauge away the trace parts and
thus make E®’¢ totally symmetric:

E* = E(q.p0) E,*“=0. (351)

Note that the parameter k*(z,6), or equivalently k% is still left. In spinor
notation, its # expansion reads

kP (x,0) = €9 (x) + 0@ (z) + i 0, (z) +i62¢5 (z) . (352)

We shall identify £*7 as the general coordinate parameter and €’ as the local
SUSY parameter.

The symmetry group is restricted by this gauge choice. To stay in this gauge
one must satisfy 6F(,%€qp) = 0E(4p) = 0 and 0E,*%6,65° = §E,** = 0. From
dFE 4 = 0 one finds

D (oky) — Lapt) — E(,"0ukyy = 0, (353)
and from §E," =0
YDk — 6ipk® + F," 0,k — L, B, =0 . (354)

One can solve these equations for Ly, and k%, respectively. Then the remaining
transformations of ¢ and E(**¢) read

1 1
0 = 5 BulOuk" + 5 Dak® — k* Dot — k19,0

1
12 Dapk®® + field-dependent -terms (355)

8B, = D k" — 4i 5, k) + ...
= D, k") + field dependent terms (356)
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If desired, one can go on and use the parameters 797 and ¢*% in k% in
(352) to remove the first two terms in E(%*¢) a so-called Wess-Zumino gauge.
One is then left with

¥(z,0) = h(x) +i 0%y (z) +1i6%S(x)

(357)
E(@%) (g, 0) = g h(@bed) (z) 4 4 24p(ab) (z)

We recognize in h and h(?*°? the trace and the traceless part of the symmetric

dreibein e, + €5, while ¥ and ¥(909) constitute the “gamma trace” yHp,,
and the gamma-traceless part of the gravitino ,%, and S is the auxiliary field.
However, we shall not choose this gauge, as it is broken by the supersymmetry
generated by €*Q.. For example, €*Q,E(") produces a term h(***D¢; in
the § = 0 entry of E(**) and to remove it one would need to add to €*Q,
further compensating gauge transformations with k2 which maintain the gauge
E,* =6, and E,* = 0.
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