
Lectures on Supersymmetry andSupergravity in 2+1 Dimensions andRegularization of SuspersymmetricGauge TheoriesF. Ruiz Ruiza;b and P. van NieuwenhuizencaInstitut f�ur Theoretische Physik, Universit�at Heidelberg,Philosophenweg 16, D-69120 Heidelberg, Germany,e-mail: ferruiz@eucmos.sim.ucm.esbDepartamento de Fisica Te�orica I, Facultad de Fisicas,Universidad Complutense de Madrid, 28040 Madrid, Spain.cInstitute for Theoretical Physics, State University of New York State atStony Brook,Stony Brook, NY 11794-3840, USAe-mail: vannieu@insti.physics.sunysb.eduAbstractThese notes are intended to provide an introduction in both x-spaceand superspace toN = 1; d = 2+1 rigid supersymmetry and supergravity.We give a detailed discussion at the classical level of various super-symmetric models, namely the Wess-Zumino model, Yang-Mills theory,Chern-Simons theory and supergravity. We also consider rigidly su-persymmetric Yang-Mill-Chern-Simons theory at the quantum level andprove that the theory is ultraviolet �nite to all loops. At the one, twoand three-loop level in x-space, and at the one and two-loop level in su-perspace, certain diagrams are power-counting divergent. This raises thepossibility that di�erent regularization schemes may give �nite but dif-ferent results for the e�ective action. We consider the two most usedschemes: ordinary dimensional regularization with d > 3 in x-space, anddimensional reduction with d < 3 in superspace. The well-known incon-sistency of dimensional reduction (an ambiguity in the evaluation of theproduct of three epsilon tensors) is multiplied by d�3, so that it vanishesat d = 3. Using BRST Ward identities, supersymmetry Ward identitiesand general theorems of quantum �eld theory, we show that both schemesyield the same e�ective action. Hence, for this model at least, the su-perspace approach respects gauge invariance.Recent Developments in Gravitation and Mathematical Physics.1



Edited by A. Garcia, C. L�ammerzahl, A. Macias, T. Matos, D. Nu~nez; ISBN 3-9805735-0-8.Science Network Publishing 1998

2



Contents1 Classical rigid supersymmetry 41.1 When and why supersymmetry? . . . . . . . . . . . . . . . . . . 41.2 General properties of supersymmetric �eld theories . . . . . . . 41.3 Spinors and Dirac matrices in three dimensions . . . . . . . . . . 61.4 The simplest case: the Wess-Zumino model in x-space . . . . . . 91.5 Supersymmetric Yang-Mills theory in x-space . . . . . . . . . . 101.6 Supersymmetric Chern-Simons theory in x-space . . . . . . . . . 131.7 Three-dimensional rigid superspace . . . . . . . . . . . . . . . . 151.8 The Wess-Zumino model in superspace . . . . . . . . . . . . . . 191.9 The covariant approach to Yang-Mills theory . . . . . . . . . . . 201.10 The covariant approach to Chern-Simons theory . . . . . . . . . 261.11 Higher N models and gauge couplings to matter . . . . . . . . . 282 Quantum rigid supersymmetry: Yang-Mills-Chern-Simons the-ory 312.1 Supersymmetric regularization of gauge theories . . . . . . . . . 312.2 Supersymmetric Yang-Mills-Chern-Simons theory . . . . . . . . 332.3 Ward identities, dimensional regularization and regularization bydimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . 362.4 Perturbative �niteness . . . . . . . . . . . . . . . . . . . . . . . . 402.5 A BRST invariant and supersymmetric e�ective action . . . . . . 413 Classical supergravity 443.1 Supergravity in (2 + 1)-dimensional x-space . . . . . . . . . . . . 443.2 Closure on the gravitino, the auxiliary �eld S . . . . . . . . . . . 513.3 Supergravity in superspace . . . . . . . . . . . . . . . . . . . . . 533.3.1 Covariant derivatives . . . . . . . . . . . . . . . . . . . . . 543.3.2 A new basis for the gauge �elds leading to vielbeins . . . 563.4 Constraints and Bianchi identities . . . . . . . . . . . . . . . . . 583.5 Action and �eld equations . . . . . . . . . . . . . . . . . . . . . . 63References 68

3



1 Classical rigid supersymmetry1.1 When and why supersymmetry?The assumption that �eld theories have a Fermi-Bose symmetry leads to predic-tions which will be tested in the next decade, certainly at the LHC at CERN,and possibly earlier at the Tevatron at Fermilab. For example, in the mini-mal supersymmetric extension of the standard model, one needs two (insteadof one) Higgs doublets, with one of the Higgs scalars classically lighter than theZ boson and quantum corrections being able to lift its mass at most to about150 GeV. For some of the predicted suspersymmetric partners, upper and lowerlimits on their masses can be given, so that not �nding these suspersymmetricparticles will be a serious problem for SUSY. On the other hand, discovery of su-persymmetric particles will rank, with quantum mechanics, special and generalrelativity and gauge theories, among the most important physical discoveries ofour century.It is sometimes stated that there is not the slightest indication that natureis supersymmetric. This is not the whole story, though. The standard modelbecomes probably inconsistent at very high energies, of the order of 1015 GeV,due to what is called \triviality". This means that some extension or modi�ca-tion of the Standard Model is needed. SUSY is one such modi�cation, perhapsthe most consistent one available today. When combined with string theory,SUSY produces a theory of quantum gravity without in�nities. In addition,supersymmetric quantum gauge �eld theories have duality symmetries whichgive detailed information on the nonperturbative sector of the correspondinge�ective actions, the hope being that also nonsupersymmetric gauge theorieshave similar features.In these notes we �rst give an introduction to SUSY, both in x-space and insuperspace. Then we discuss a fundamental problem with SUSY that has beenaround since its beginning: a regularization scheme that respects both SUSYand gauge invariance. In 2+1 dimensions we have found such a scheme, butwe make no claims concerning 3+1 dimensions. We conclude with a detaileddiscussion of 2 + 1 classical supergravity. Rather than giving a full account ofthe subject and the literature on it, something which would require much morespace, we have opted for a more direct presentation which hardly requires anybackground on supersymmetry.1.2 General properties of supersymmetric �eld theoriesSUSY is a symmetry of certain actions with an anticommuting spinorial pa-rameter, such that in the (anti)commutator of two supersymmetries one �nds atranslation. There are other symmetries with anticommuting parameters, BRSTsymmetry for example, which has an anticommuting constant parameter, butthis parameter is a scalar instead of a spinor under Lorentz transformations.Suppose one has an action with some bosonic �elds b(x) and fermionic �eldsf(x) which satisfy the usual spin-statistics connection. A crucial property from4



which SUSY springs is their mass dimension. Actions for bosonic �elds con-tain two derivatives. Examples are the Maxwell and the Klein-Gordon actions,and also the spin 2 action of Fierz and Pauli which is the linearized limit ofthe Einstein-Hilbert action of general relativity. On the other hand, actions forfermions contain only one derivative. Quite familiar is the spin 1/2 Dirac action;but also the spin 3/2 Rarita-Schwinger action for \gravitinos", the supersym-metric partners of gravitons, has only one derivative. It follows that the sumof the mass dimensions of two bosonic �elds and two derivatives is equal to thesum of the dimensions of two fermionic �elds and one derivative. Equivalently,the dimensions of a Fermi and a Bose �eld di�er by one half the mass dimensionof a derivative. If we de�ne the latter to be unity, [@�] = 1, we �nd[f ]� [b] = 1=2 : (1)This leads to SUSY as we now show.Suppose that there are SUSY transformation rules which transform a bosoninto a fermion and vice-versa and which leave the action invariant. Then1�b � f� and �f � b�, with � a Fermi �eld. However, if �b � f� contains noderivative, it follows from eq. (1) that [�] = �1=2, so that in �f � b� there is agap of one unit of mass dimension. If there are no masses in the theory and wethere are no dimensionful coupling constants, the only object that can �ll thisgap is a derivative. Hence �b � f� �f � @b� : (2)(1) It is clear from the statistics of Bose and Fermi �elds that � must beanticommuting. Usually one chooses Grassmann variables which anti-commute, so �1�2 + �2�1 = 0. Recently, another choice for � has beenstudied, namely Cli�ord variables Bouwknegt, McCarthy, and Nieuwen-huizen (1997). This seems to lead to quantum groups, and could lead toa completely di�erent quantum superspace.(2) From the conservation of angular momenta and the integer/half-integerspin of bosons/fermions it follows that � has half-integer spin. The sim-plest case is clearly spin 1/2. Spin 3/2 for � leads to �eld theories whichhave no positive de�nite Hilbert space in 
at spacetime. Thus, by angu-lar momentum theory, bosons transform into fermions and fermions intobosons whose spins di�er by 1/2. This means that the basic buildingblocks are Fermi-Bose doublets.(3) The commutator of SUSY transformations of b(x) leads indeed to a trans-lation: �1 ( �2b ) � �1(f�2) � (@b�1) �2 � �1�2 @b (3)1To keep the notation simple, we denote SUSY variations by the letter � without anysubscript. 5



The translation @� of b(x) is over a distance �1�2 which is the same ev-erywhere, since in rigid SUSY the �'s are x-independent. For the fermionf(x) one �nds a similar result�1 ( �2f ) � �1 (@b�2) � @ (�1f) �2 � �1�2 @f : (4)(4) We shall see that matters are a bit more complicated than in point 3)above. In general, there are also \auxiliary �elds" F which do not corre-spond to physical particles. Often they appear in the action as F 2 andhave �eld equations F = 0. In 2+1 dimensions they have mass dimension[F ] = 3=2, so that now one can �ll the mass dimension gap also with anauxiliary �eld �f � @�b �+ F� : (5)With auxiliary �elds, the SUSY algebra \closes", meaning that the com-mutator of two supersymmetries leads to a sum of symmetries, namelya translation and sometimes a gauge transformation. Without auxil-iary �elds, the SUSY commutator of a fermionic �eld contains in generalfermionic �eld equations. Their origin is clear: because F = 0 is a bosonic�eld equation and, in general, �eld equations rotate into �eld equationsunder SUSY, the SUSY variation of F (x) is a fermionic �eld equation.Hence, if the SUSY commutator in the theory with F closes, omitting Ffrom the theory will introduce fermionic �eld equations.1.3 Spinors and Dirac matrices in three dimensionsBefore discussing the WZ model in 2+1 dimensions, we recall �rst some simplefacts about spinors and Dirac matrices in 3 dimensions.We shall exclusively discuss Minkowski spacetime and, in Section 1.7, its su-perspace. In Euclidean space, the treatment of spinors is di�erent; for example,no real spinors exist in three-dimensional Euclidean space while in Minkowskispacetime they exist. One can go from Minkowski spacetime to Euclidean spaceby a Wick rotation, and construct in this way supersymmetric theories in Eu-clidean space from supersymmetric theories in Minkowski spacetime Nieuwen-huizen and Waldron (1996).We take the metric in 
at (2+1)-dimensional Minkowski spacetime to be��� = diag (�1; 1; 1) � = 0; 1; 2 ; (6)while for the epsilon symbol ���� we take �012 = +1. A spinor  a(x) has twocomponents (� = 1; 2) since the Dirac matricesf
�; 
�g = 2 ��� (7)6



are 2�2 matrices. If we choose the real representation2(
0)�� = �i�2 (
1)�� = �1 (
2)a� = �3 ; (8)where �1 = � 0 11 0 � �2 = � 0 �ii 0 � �3 = � 1 00 �1 � (9)are the Pauli matrices, the Dirac operator @= is real and we can take  �(x) to bereal. Then  �(x) describes one physical state. Compare with four dimensions,where one can also choose a real representation of the Dirac matrices, andwhere a real 4-component spinor describes 2 physical states, namely particleswith helicities �1=2 which are their own antiparticles. An important di�erencewith four dimensions is that in three dimensions, and more generally in any oddnumber of dimensions, there is no 
5 and hence no chiral spinors exist. This isdue to the fact that in an odd number 2n+ 1 of dimensions the product of allthe Dirac matrices 
0
1 : : : 
2n+1 is proportional to the unit matrix. In threedimensions, the matrices f1l; 
�g form a basis of the Cli�ord algebra, so thatany 2�2 matrix will be a linear combination of them. These observations willbe important when considering supersymmetric extensions of purely bosonicmodels.The real spinors we consider are a special case of Majorana spinors. In anarbitrary representation of the Dirac matrices, a Majorana spinor is a spinorfor which its Dirac conjugate � =  yi
0 is equal to its Majorana conjugate� =  TC, where C is the charge conjugation matrix, C
�C�1 = �(
�)T . Forour real spinors, C equals i
0.By de�nition, we raise and lower spinor indices with the epsilon symbols ���and ��� and the northwest-southeast convention: �� = ����� and �� = �����.W= e de�ne �12 = +1. Raising the indices of ��� as stated, ��� = ���0���0��0�0 ,shows that also �12 = 1. The Dirac matrices with both spinor indices down aregiven by 
��� = (
�)�0� ��0�. It is straightforward to check that ��� =�(
0)�� ,so that (
�)�� = (
0
�)��, which leads to(
�)�� = f�1l;��3; �1g : (10)The Dirac matrices with both indices up are obtained analogously(
�)�� = f1l; �3;��1g : (11)From these equations it follows that(
�)�� (
�)�� = �2 ���(
�)�� (
�)
� = � ( ��
��� + �����
 ) : (12)2In Euclidean space, one of the Dirac matrices is necessarily complex and no real spinorscan be de�ned. 7



Lowering spinor indices with ��� in the last equation, we obtain(
�)��(
�)
� = � ( ��
��� + �����
 ) : (13)It is useful to write vectors as bispinorsv�� = (
�)�� v�v� = �12 (
�)�� v�� (14)v�� = 0 :In this way both spinors and vectors can be described with one formalism (spinorformalism). In 4 dimensions one can distinguish between \dotted" and \undot-ted" indices, for spinors can be decomposed into left- and right-handed parts,but (again) in odd dimensions there exists no matrix 
5 and hence no chiralspinors exist.The normalization of the action for real spinors is as usualL = � 12 �� @=� ; (15)and is chosen such that the hamiltonian is positive de�niteH = Z dx1dx2H= 12 Z dx1dx2 ��
k@k�= �12 Z dx1dx2 ��
0@0�= i2 Z dx1dx2�T _�= X~k E(~k) � cy(~k) c(~k)� 12� : (16)Two identities that the Dirac matrices satisfy in three dimensions and thatwill be used in the sequel are ����
� = �
[�
�] (17)and 
�
�
� = 
[�
�
�] + ���
� + ���
� � ���
�: (18)It is instructive to check them by taking particular values for �; � and �. An-other two identities for real spinors  and � that we will repeatedly use are� � = �� � 
�� = ���
� : (19)To prove them, it is enough to use the de�nition of � : � =  T�2. Note thatthe second equation in (19) ensures that the lagrangian L in (15) is not a totalderivative. 8



1.4 The simplest case: the Wess-Zumino model in x-spaceSuppose that we begin with a real scalar �eld '(x) in (2+1)-dimensionalMinkowski spacetime, and choose as its action the Klein-Gordon actionS = Z d3x ��12 ��� @�'@�'� : (20)To make the system supersymmetric, we introduce a spin 1/2 fermion. We havealready said that in 2+1 dimensions a spinor  �(x) has two components anddescribes one physical state. This gives equal numbers of states but not yetequal numbers of bosonic and fermionic �eld components, since we have onebosonic �eld component '(x) and two fermionic �eld components  �(x). Thuswe expect that we must add a bosonic auxiliary �eld F (x). This suggests thefree �eld actionSWZ = Z d3x ��12 @�'@�'� 12 � @= + �2 F 2 � : (21)At this point it is not clear what the sign of the F 2 term is going to be, so wehave introduced a coe�cient �. From the previous section we are motivated toconsider �' = �� �F = ��@= (22)� = � @=' �+ 
 F� ;with � and 
 constant coe�cients to be determined. We have scaled � and Fsuch that �' and �F are normalized to �� and ��@= , respectively. Note that,since �� and ��@= are real, the coe�cients � and 
 are real. We recall that inthree dimensions there is no 
5 and that the matrices f1l; 
�g form a basis of theCli�ord algebra. This accounts for the two terms in the SUSY transformationlaw for � above, Lorentz covariance requiring the 
� matrices in the �rst termto be contracted with @�. Invariance of the action under the transformations(22) �xes � = 1 and � = 
. Indeed, the variation of the Klein Gordon actiongives �� (�'), while the Dirac action varies into �� � � (�')� 
 � @=F� and theF 2 term into �F��@= , the identities (19) implying then the thesis.Exercise 1: Show that the mass termSm = Z d3xm �F'� 12 �  � (23)is supersymmetric provided � = 1 and 
 = 1. Hence, invariance ofboth SWZ and Sm requires that the F 2 term in (21) has positive sign,i.e. � = 1. This has important consequences for SUSY breaking thatwe do not discuss in these notes. 9



Exercise 2: Show that the self-interaction termSg = Z d3x g (F'2 � �  ') (24)is supersymmetric provided � = 1 and 
 = 1. To do this, notethat the ( �  ) (�� ) vanishes by itself, since ( �  ) is completelyantisymmetric in all 3  's while there are only two independent 's. Thus, one can also use SUSY invariance of SWZ and Sg to �x� = � = 
 = 1, so that �' = �� �F = ��@= (25)� = @=' �+ F� : (26)Exercise 3: Using eq. (22), derive the SUSY commutator[�1; �2]' = � ��2@=' �1 + 
 ��2�1F � (1$ 2)= 2� (��2
��1) @�' (27)and show that exactly the same result holds for  �(x) and F (x)provided 
 = �.The �elds '(x);  �(x) and F (x) �ll up a real scalar super�eld �(x; �) livingin superspace, �(x; �) = '(x) + i �� �(x) + i2 �������F (x) ; (28)as we shall discuss in more detail in Section 1.6.1.5 Supersymmetric Yang-Mills theory in x-spaceNext we consider Yang-Mills �elds Aa�; with a a gauge, Lie algebra index. SinceAa� describes one degree of freedom for �xed index a, we add a real spinor�eld �a�. Counting �eld components shows that there are 2 fermionic �eldcomponents and 2 (and not 3) bosonic �eld components. The reason is thatgauge invariance can be used to gauge away one of the components of Aa�, forexample Aa0 or any other combination. Hence, we do not need an auxiliary �eldthis time, and the action readsSYM = 1mg2 Z d3x �� 14 F a��F a�� � 12 ��a(D= �)a � ; (29)wherem is a parameter with dimensions of mass, g is the dimensionless couplingconstant, F a�� = @�Aa� � @�Aa� + fabcAb�Ac� is the �eld strength and D�ac =@��ac + fabcAb� is the covariant derivative. The gauge transformations are�g Aa� = (D��)a �g �a = fabc �b�c : (30)10



It is straightforward to check that the gauge transforms of F a�� and (D��)aare �gF a�� = fabc F b�� �c and �g(D��)a = fabc (D��)b �c, from which the gaugeinvariance of the action follows.By writing in eq. (29) the overall factor 1=m, we have taken the couplingconstant g to be dimensionless. In the literature one also �nds the action (29)written without the factor 1=m. This corresponds to taking for g mass dimen-sion [g] = 1=2. In either case, there is always a dimensionful parameter, whichin our conventions is m.The parameterm can be used to �ll the mass dimension gap between �f andf� discussed in Section 1.2, so that the SUSY transformation law for �a may inprinciple have more terms than those given in eq. (2) for �f . The most generalSUSY transformation rules which are Lorentz covariant read�Aa� = � �� 
��a ��a = � F a��
�
��+ 
 @�Aa� �+ � mA= a� : (31)Note that a term ����F a��
�� in ��a is not independent because of the identity(17). The variation of the action (29) under (31) is given by�SYM = 1mg2 Z d3x ��F a�� (D��A�)a � �� (D= ��)a � 12 fabc ��a(�A= b)�c � :(32)We have used that (���a)(D= �)a is equal to ��a(D= ��)a, as can easily be shown bypartially integrating. The �rst two terms in (32) are linear in � and must canceleach other, while the last one is cubic in � and must separately cancel. For the�rst two, one �nds after partial integration�m (D�F��)a �� 
��a � 1m ��a [� (D=F��)a 
�
��� 
 (D= @ �A)a�� � m (D=A�)a 
�� ] :(33)From this we already see that 
 = � = 0. We now use the identity (18). Theterm that arises with 
[�
�
�] does not contribute due to the Bianchi identity�D[�F��]�a = 0 ; (34)the term with ��� does not contribute since F�� is antisymmetric, and the tworemaining terms give each the same contribution �� (D�F��) ��
��. Recallingthat �� 
�� = ���
��, we �nd �+ 2� = 0. Hence,�Aa� = � �� 
�� ��a = ��2 F��
�
�� : (35)We still have to show that the third term in (14) cancels by itself. The sameterm appears in 4-, 6- and 10-dimensional supersymmetric theories, and alwaysvanishes. In our case we must show thatfabc (��a
��b) (��
��c) = 0 : (36)11



Using that ��a = �T i
0, that (
0
�)�� = (
�)�� and eq. (13), we have for theleft-hand side �fabc �a� �b� �
 �c� ( ��
��� + �����
 ) ; (37)which vanishes by (anti)symmetrization.For the SUSY commutator acting on Aa� we �nd[�1; �2]Aa� = ��22 ��2
�
�
��1 F a�� � (1$ 2) : (38)We now use the identities (18) and (19), and obtain for the right-hand side�2�2��2
��1F a�� . Hence[�1; �2]Aa� = �2�2 (��2
��1) �@�Aa� � @�Aa� + fabcAb�Ac�� : (39)The SUSY commutator acting on the gauge �eld gives thus a covariant trans-lation. To interpret its meaning we split o� the ordinary translation term with@�A�a and write the two remaining terms as a covariant derivative[�1; �2]Aa� = 2�2 (��2
��1) @�Aa� � 2�2 (��2
��1) (D�A� )a : (40)We have found a translation and a gauge transformation, the latter with parame-ter �a=�2�2(��2
��1)Aa� . Thus, the algebra closes, but not only on translations:it also produces gauge transformations. To �nd the same translation as for theWZ model we need �2 = 1, which we assume from now on. Thus, � = �1. Wechoose the sign of �a such that � = 1. In other words, if � = �1, we rede�ne�a as ��a and get the same action and SUSY transformation laws as for � = 1.Hence �Aa� = ��
�� ��a = �12 F��
�
�� : (41)Note that one can not set � = 1 by rescaling �, since one could put together theWZ model and supersymmetric Yang-Mills theory and � was already rescaledto normalize the SUSY transformation �' of the scalar �led ' in the WZ modelto �� .Coming back to eq. (40), in superspace one �nds only a translation. How-ever, if one chooses a so-called Wess-Zumino gauge, one needs to add compen-sating gauge transformations to the ordinary SUSY transformations in order tostay in this gauge, and these produce then the terms with gauge transformationsin the SUSY commutator.Exercise 4: Check that for �a one �nds the same result as in (25),namely a covariant translation with (D��)a.Exercise 5: Suppose one were to add a mass termSm = Z d3x � c1m (Aa�)2 + c2��a�a � (42)12



to the action SYM. Show by counting states that one would needanother real physical spinor �eld. Counting �eld components, showthat one would need one real auxiliary bosonic �eld. All these �elds�ll up a real spinor super�eldAa�(x; �) = �a�(x) + ��Ha(x) + ��V a��(x) + i �2 � 12 @���a�(x) � �a�(x) � ;(43)where �� is essentially �� and V a� is essentially Aa�, as we shall seein Sections 1.9 and 1.10.The mass term (42) breaks gauge invariance, since (Aa�)2 is not gauge invari-ant. In three dimensions, however, it is possible to give a mass to Yang-Mills�elds without breaking invariance under in�nitesimal gauge transformations byadding to the Yang-Mills action a Chern-Simons term Jackiw and Templeton(1981), Schonfeld (1981). We see this in the next section.1.6 Supersymmetric Chern-Simons theory in x-spaceIn three dimensions, out of the gauge �eld Aa�, the derivatives @� and a di-mensionless coupling constant g, one can construct the following local actioninvariant under gauge transformations (30)SCS = 1g2 Z d3x ���� �12 Aa�@�Aa� + 16 fabcAa�Ab�Ac�� : (44)Here, as is usual in quantum �eld theory, local means polynomial in the �eldAa� and its derivatives. This action is known as the Chern-Simons action andhas �eld equation F a�� = 0 : (45)As opposed to the Yang-Mills action, the Chern-Simons action is only in-variant under in�nitesimal gauge transformations (30). Suppose that thegauge group is SU(N) and consider �nite gauge transformations A� ! Ah� =h�1@�h + g h�1A�h, where A� = Aa�T a; with T a antihermitean generators ofthe gauge Lie algebra. Then SCS is not invariant under large gauge transforma-tions. Only the quantity eSCS is invariant, provided 4�=g2 is an integer Deser,Jackiw, and Templeton (1982). In these notes, however, we are concerned withperturbative quantization, so that we are only interested in in�nitesimal gaugetransformations, for which there is no restriction on g. In what follows, unlessstated otherwise, we will refer to in�nitesimal gauge transformations as gaugetransformations.The same counting of states and components as for Yang-Mills theory impliesthat the supersymmetric extension of the Chern-Simons action will involve the13



�eld Aa� and the spinor �eld �a. In this case, it is straightforward to verify thatthe actionSCS = 1g2 Z d3x � ����� 12 Aa�@�Aa� + 16 fabcAa�Ab�Ac��� 12 ��a�a � ; (46)is gauge invariant and supersymmetric. Absence of dimensionful parameters andlocality imply that the fermion �a can only enter the action as a term ��a�a, butdoes not �x the coe�cient. Invariance under the SUSY transformations (41)�xes the value of the coe�cient.Exercise 6: Show that indeed SUSY requires the coe�cient of theterm ��a�a to be -1/2.One can combine the Yang-Mills and Chern-Simons actions into one singleaction SYMCS = SYM + SCS : (47)The resulting theory is called Yang-Mills-Chern-Simons theory or topologicallymassive Yang-Mills theory. The action SYMCS is gauge invariant and gives,after gauge �xing, a massive propagator for the �eld Aa�. To see this, let usconsider the nonsupersymmetric theory and work in the ordinary Landau gauge@�Aa� = 0. The Faddeev-Popov procedure gives then for the gauge-�xed classicalaction S = SYM + SCS + SGF ; (48)where the gauge-�xing term SGF readsSGF = Z d3x [�ba@�Aa� � (@�ĉa) (D�c)a] ; (49)ba is a Lagrange multiplier �eld imposing the condition @�Aa� = 0, and ĉa and caare the Faddeev-Popov antighost and ghost �elds. The part of the gauge-�xedaction quadratic in Aa� and ba has in momentum space the form� 12 Z d3p(2�)3 hAa�(p)K��(p)Aa�(�p) + ba(p) p� Aa�(�p) i ; (50)where K��(p) = ����� p� + im � p2��� � p�p� � : (51)This de�nes the kinetic matrix of Aa� and ba asT (p) = �K��(p) �p�p� 0 � : (52)14



The propagator matrix �(p) = ����(p) ��(p)��(�p) 0 � (53)is the result of inverting T (p):T (p)�(p) = � ��� 00 1� : (54)To �nd �(p), we write for ���(p) and ��(p) the most general expressionscompatible with Lorentz covariance,���(p) = f1 ����p� + f2 ��� + f3 p�p� ��(p) = f4 p� ; (55)with f1; : : : ; f4 functions of p2 and m to be determined, and impose eq. (54).One thus �nds���(p) = � mg2p2 (p2+m2�io) �m���� p� + i p2��� � i p�p� � (56)and ��(p) = p�p2 : (57)We see that the propagator (56) has a pole at p2 = �m2, which shows that thegauge �eld has a mass. In Section 2.1 we will consider a supersymmetric gaugein which the propagator of the gauge �eld is the same as in (56).The propagator (56) has been obtained in three dimensions. When we de�nedimensional regularization, we will use the original 't Hooft-Veltman prescrip-tion, Hooft and Veltman (1972) and Breitenlohner and Maison (1977), for ����in n dimensions, which is the only algebraically consistent one known to date.We will see that this prescription introduces in the n-dimensional propagatorextra terms which vanish for n=3 and which loosely speaking can be regardedas proportional to n�3.1.7 Three-dimensional rigid superspaceHaving a symmetry between bosonic and fermionic �elds suggests also to con-sider a symmetry between bosonic coordinates x� and new fermionic coordi-nates. The simplest choice are \spin 1/2 coordinates" ��, with � = 1; 2. Sincex� are real, we take �� also real. According to eqs. (1) and (2), under SUSY,x� should vary into ��
��. Hence [�] = �1=2, just as [�] = �1=2. The reverselaw would be �� � @�x�(q1��� + q2
�
�)�, with q1 and q2 constants, but since@�x� = ��� , this simpli�es to ��� � ��. Hence�x� = p ��
�� ��� = q �� ; (58)with p and q real constants. 15



We denote the derivative with respect to �� by @� : @� � @=@�� . Notingthat @� satis�es f@�; ��g = ��� , it is clear that (@�)y = @�. Similarly, from[@�; x� ] = ��� it follows that (@�)y = �@�. Since both x� and @� can be writtenas bispinors by means of eq. (14), x�� = (
�)��x� and @�� = (
�)��@�, andsince the matrices (
�)�� are real, we also have (@��)y =�@��.Fields �(x; �) de�ned on superspace are called super�elds and are functionsof both coordinates x� and ��. A super�eld will have an expansion in powersof ��, with terms of order 0, 1 and 2 in ��. This is so since the coordinates�� anticommute and there are two such coordinates (� = 1; 2), so that one canhave at most products ������� =�2�1�2 of two �'s. For example, for a scalarsuper�eld �(x; �), one has�(x; �) = '(x) + i �� �(x) + i2 ������� F (x) ; (59)where the coe�cients '; �� and F are �elds de�ned on x-space, usually calledcomponent �elds.The SUSY transformations (58) can be viewed as a translation in superspace.Super�elds �(x; �) will then transform with respect to SUSY as scalars, i.e. onlywith orbital parts but not with spin parts. In other words, �0(x0; �0) = �(x; �),where x0� = x� + p ��
�� and �0� = �� + q��. The SUSY generator Q�, calledsupercharge, will therefore be such that��(x; �) = ��Q��(x; �) : (60)Note that Q� must be a spinor operator, for SUSY transformations are lin-ear in ��. In order that the commutator of two SUSY transformation gives atranslation, we claim that we needQ� = @� � i ��@�� : (61)To see this, let us take a scalar super�eld �(x; �). Using the expansion (59) andacting with � on it, we get on the one hand��(x; �) = �� ( @� � i ��@�� )�(x; �)= i �� � � i ����@��'(x) + i ���� F (x)� 12 �2��@�� � ; (62)and on the other ��(x; �) = �'(x) + i ��� �(x) + i2 �2�F (x) : (63)In deriving (62), we have used that ���� =� 12 ����2, where �2 denotes �2 �����. Comparing eqs. (62) and (63), we have�' = i �� � = ��(�i���) � = �� (64)� � = @��' �� + F�� , � = @='�+ F� (65)�F = �i�a@�� � = ��@= = ; (66)16



in accordance with eq. (25). From these transformation laws, and using eqs.(19), the SUSY commutators[�1; �2] 8<: ' F 9=; = 2 (��2
��1) @�8<: ' F 9=; (67)follow. The observant reader may notice that[ ��1Q� ; ��2Q� ] = ��2 ��1 fQ�; Q�g = ��2 ��1 (�2i@��) = �2 ��2
��1@� (68)has opposite sign. The reason is that eq. (61) gives a representation for thesupercharge Q� as a Lie derivative and the generator P� of translations is rep-resented also by the Lie derivative @�, and minus the Lie derivatives form (ongeneral coset manifolds) a representation of the algebra. For example,f@�� i ��@�� ; @�� i �
@
�g = 2i (
�)�� (�@�): (69)From either (68) or (69) it follows that in superspace the commutator of twoSUSY transformations yields only a translation and no gauge transformation.As always in �eld theory, it is useful to introduce the notion of covari-ant derivatives. Here this means derivatives, denoted by D� and D�, which(anti)commute with the Lie derivatives Q� and @�. It is very easy to �nd thatthey are given by D� = @� + i ��@�� D� = @� : (70)[The theory of coset manifolds can be applied to the coset (P + Q +M)=M ,where M is the Lorentz subalgebra, �nding that the Lorentz connections onQ�; P�; D� and D� all vanish].Summarizing so far: Superspace is parameterized by coordinates x� and��, super�elds �(x; �) transform as ��(x; �) = ��Q��(x; �), where Q�= @� �i ��@�� is the supercharge, and there exist covariant derivatives D� = @� +i ��@�� and D� such that fD�; Q�g = 0 : (71)Hence �D�� = ��Q� (D��) = D�(��Q��). Furthermore, since (�a)y = ��,(@�)y = @� and (@��)y =�@��, one has (D�)y = D�. It is clear thatfD�; D�g = 2i@�� [D�; D�] = ����D2 [D�; @�
 ] = 0 ; (72)where D2 � D�D�.Three-dimensional N=1 superspace is much simpler than four-dimensionalN=1 superspace. There are no chiral super�elds, and hence no representation\preserving constraints". We recall that, as already mentioned, the notion ofchirality does not exist in an odd number of dimensions. Imagine one werenevertheless to de�ne a chiral super�eld � by the condition D1� = 0. Then17



D1D1� = i@11� = 0, where @11 = 
�11@� = �(@0 + @1)�. This restricts thex-dependence of �, which is inadmissible. Another simpli�cation in three di-mensions is due to the simple fact that objects with three spinor indices whichare totally antisymmetric vanish. Namely, for any object O��
 one has theidentity O��
 +O�
� +O
�� �O
�� �O��
 � O�
� = 0 : (73)Although this follows trivially from the observation that spinors in three dimen-sion have only two indices, it leads to many simpli�cations. For example, takingO��
 = D�D�D
 and contracting with ��
 , we �ndD�D�D� +D�D�D� +D�D�D� = 0 : (74)If one next writes D�D� = �D�D� + fD�; D�g in the �rst term and D�D� =�D�D� + fD� ; D�g in the second term, the two terms with an anticom-mutator cancel each other, fD�; D�gD� + D�fD�; D�g = [fD�; D�g; D�] =2i [@��; D�] = 0, and one is left with �D�D�D� � D�D�D� + D�D�D� =3D�D�D� = 0. Hence D�D�D� = 0 : (75)From this fundamental identity, others follow; e.g.D�D2 +D2D� = 0 : (76)The measure in superspace is d3xd2�, where d3x is real and has mass dimen-sion [d3x] = �3 while d2� � �2d�1d�2 is imaginary and has mass dimension[d2�] = 1. The normalization factor �2 in the de�nition of d2� has been in-troduced for convenience (see below). Integration over Grassmann variables isde�ned by Z d� = 0 Z d� � = 1 : (77)In the case we are considering here of two Grassmann coordinates, we haveZ d�a = 0 Z d�a �� = ��� ) Z d2� ���� = 2��� : (78)Thus, in an integral Z d3x d2� F (x; �), integration over d2� picks the term inF (x; �) quadratic in �'s. This coincides precisely with the result of acting withD2 on F (x; �) and taking afterwards �� = 0, the reason for this being thatD2(����) = 2���. Hence one hasZ d3x d2� F (x; �) = Z d3x D2F (x; �) ��� ; (79)18



where the vertical bar denotes restriction to �� = 0. With another choice ofnormalization for d2�, this identity would have to be modi�ed accordingly.Let us consider the actionS = Z d3x d2�L(�; D��; D�D��; : : : ) ; (80)with L a lagrangian that does not depend explicitly on coordinates. Under aSUSY transformation, the variation of L is �L = ��Q�L. The term ��@�L thatarises from taking @� in Q� is made of terms which are order zero and one in�� and which, therefore, vanish upon integration over d2�. Similarly, the termi����@��L that arises from taking i��@�� in Q� gives rise to a total spacetimederivative which can be ignored. Having �L = 0, one concludes that the actionS is supersymmetric: �S = 0.1.8 The Wess-Zumino model in superspaceSince actions are dimensionless (we set ~ = 1) and d3x d2� has mass dimension�2, to obtain the superspace action for the WZ multiplet, we need a lagrangianLWZ with mass dimension 2. The scalar super�eld �(x; �) in eq. (59) has twoscalars, ' and F , and one spinor,  �. In three dimensions, and assuming thatthere are no dimensionful parameters, a scalar �eld has mass dimension 1/2,and a spinor �eld has mass dimension 1. This and the fact that [��] = 1=2forces us to take ' as the scalar with mass dimension 1/2, since only then  ahas mass dimension 1. Thus [�] = ['] = 1=2. Recalling tha= t [D�] = 1=2,we see that LWZ = (D��)(D��) has the correct mass dimension. Furthermore,because LWZ is a function of � and D��, the argument given at the end of thelast section implies thatSWZ = 18 Z d3x d2� (D��) (D��) (81)is supersymmetric, where the factor 1/8 has been introduced for convenience.We can also add a mass term Lm = m�2 and a self-coupling Lg = g�3. Notethat [m] = 1 but [g] = 12 .To obtain the component action from the super�eld action (81), we use eq.(79): SWZ = 14 Z d3x �(D��) (D2D��)� (D�D��) (D�D��)� : (82)If we write D2D� in the �rst term as D2D� = D�(�D�D� + fD�; D�g) =2iD�@��, recast D�D� in the second term as D�D� = 12 fD�; D�g +12 [D�; D�] = i @�� � 12 ���D2 and note that' = � ���  � = �iD�� ��� F = i2 D2� ��� ; (83)19



we obtainSWZ = Z d3x ��14 (@�� ') (@�� ')� i2  a@�� � + 12 F 2� : (84)This is precisely the WZ action (21). Note that the F 2 term comes out indeedwith a positive sign.1.9 The covariant approach to Yang-Mills theoryTo describe Yang-Mills theory in superspace, we need a super�eld with a spin1 �eld. The real scalar super�eld �(x; �) in (59) can therefore not be used. Thespinor super�eldA(x; �) = ��(x) + ��H(x) + ��V��(x) + i �2 � 12 @����(x)� ��(x) � ; (85)contains a vector V a�� and hence can be taken as starting point. Because wewant to construct covariant derivatives for @� and D�, we consider A� as thespinor part of a vector superconnectionAM = fA�;A��g A�� = (
�)��A� : (86)The connections are Lie algebra valuedAM = AaM T a ; (87)with T a the antihermitean generators of the gauge Lie algebraT cy = �T c [Ta; Tb] = fabcT c : (88)A� = A� ��� : (89)In order that the vector �eld V a�� be real, Aa� must be real. Then also �a�; Haand �a� are real �elds. Once we have a superconnection, we de�ne a gaugecovariant superderivative and use it to construct gauge transformations. SinceD� is real, as we already saw, we de�ne the spinor partr� of the gauge covariantsuperderivative rM by r� � D� + iA� : (90)Note that the i in front of A� is needed because A� is Lie algebra valued andthe generators Ta are antihermitean. We de�ne the vector part of the gaugecovariant superderivative by r�� � @�� +A�� : (91)20



Because @�� is imaginary, Aa�� imaginary; note that there is no i in front ofA�� . Gauge transformations are de�ned by�g (iA�) = r�
 = D�
 + i [A�;
] (92)�gA�� = r��
 = @��
+ [A�� ;
] ; (93)where 
 = 
aT a with 
a real. The covariant derivatives themselves transformcovariantly �gr� = [r�;
] �gr�� = [r�� ;
] : (94)In general, given a covariant derivative rM , the supertorsion TMNP and thegroup supercurvature FMN are de�ned by[rM ;rNg = TMNP rP +FMN ; (95)where [a; bg is the graded commutator, equal to fa; bg if both a and b arefermionic, and equal to [a; b] otherwise. Explicit evaluation gives that onlyT�;�
� is nonvanishing and yieldsfr�;r�g = 2ir�� +F�� ; (96)with F�� = iD�A� + iD�A� � fiA�;A�g � 2iA�� : (97)The unusual term �2iA�� ensures that F�� transforms covariantly under gaugetransformations. Indeed, under a gauge transformation (92)-(93), some straight-forward algebra shows that �g F��= [F��;
] . The presence of A�� in A�� canbe understood by noting that rigid superspace, though 
at, has a nontrivialspin connection. The inverse rigid vielbeins E(0)�M and E(0)�M follow fromD� = E(0)�M @M ; D� = E(0)�M @M , and readE(0)�M = n��� ; i ��0(
�)�0�o E(0)�M = f0 ; ���g : (98)If one changes the basis from fAMg to f ~AMg, with A� = E(0)�M ~AM andA�� = E(0)��M ~AM , the curvature takes on the usual Yang-Mills form, as onemay check.The connection in r�� is A�� , but one may always add a tensor O�� thattransforms covariantly under gauge transformations, since the new connectionA0�� = A�� + O�� will also transform as �gA0�� = r0��
. If we go back tothe beginning and start with the modi�ed connection A0�� = A�� + 12iF��, wethen end up with fr�;r�g = 2 = ir0��. Thus, by a rede�nition of the vectorconnection we have obtained F�� = 0, and from F�� = 0 we have th= atA0�� = 12 hD�A� +D�A� + i fA�;A�g i : (99)21



Hence we have imposed the conventional constraint F�� = 0, which is simplyan allowed rede�nition of A�� . From now on we drop primes. Only A� is leftas an independent �eld, while A�� is expressed in terms of A� byA�� = 12 hD�A� +D�A� + i fA�;A�g i : (100)Clearly, Aa�� is real.Next we study the Bianchi identities[rM ; [rN ;rL g g+ cyclic = 0 : (101)We �rst look at the identity[r�; fr� ;r
g ] + cyclic = 0 : (102)From this equation, the anticommutator fr�;r�g = 2ir�� and [r�;r�
 ] =F�; �
 , we get F�;�
 +F
;�� +F�;
� = 0 : (103)This, the decompositionF�; �
 = 13 h (F�; �
 +F
;�� +F�;
� ) + (F�; �
 �F�;
� ) + (F�; �
 �F
;�� ) i(104)and F�;�
 �F�;
� = ��� ���F�;�
 (105)implies that F�; �
 = 13 h ��� (�F� ;�
) + ��
 (�F� ;��) i : (106)The object F� ;�
 is the basic super�eld strength in the theory. For reasons tobecome clear, we normalize it as[r�;r�� ] = F�;�� = � 32 W� : (107)Then we have [r�;r�
 ] = F�; �
 = 12 ���W
 + 12 ��
W� : (108)The �eld strength is thus given by a (graded) commutator of two covariantderivatives, as in ordinary Yang-Mills theory, but not by fr�;r�g, which onlyyields a torsion term, but rather by [r�;r�
 ]. The third commutator that canbe formed with the covariant derivatives, namely [r�� ;r
�], gives the derivativeof the �eld strength, as we show below. Note that W� is real because r� is real22



and r�� is imaginary. Hence W a� is imaginary. Explicit evaluation using (107)and the relation in eq. (100) yieldsW� = �D�D�A� � i [A�; D�A� ] + 13 [A�; fA�;A�g] : (109)Another expression for W� is W� = ir�r�r� : (110)To derive it, apply eq. (73) to O��
 = r�r�r
 to �ndr�r�r� +r�r�r� +r�r�r� = 0 ; (111)and use this in the de�nition of W�W� = i3 [r�; fr�;r�g] : (112)Note that the right-hand side in eq. (110) de�nes a function in superspace, notan operator. This is so since, as a result of the basic identity D�D�D� = 0, nofree derivatives are left in r�r�r�. The easiest way to check this is to �rst actwith r�r�r� on a function 
, and then show that the expression r�r�r�
contains no derivatives of 
. From eq. (94) it follows that W� is covariant sinceit transforms covariantly under gauge transformations�gW� = [W� ;
] : (113)In x-space, the variation (any variation, not necessarily a gauge variation) ofa curvature is the covariant derivative of the variation: �F�� = D�(�A�) �D�(�A�). The same holds in superspace: �W a� = �r�r�(�A�). This followseasily from (107) if one uses that �A�� = 12 (r� �A� +r� �A�), which in turnarises from (100).The next Bianchi identity we study isfr�; [r� ;r
�]g+ [r
�; fr�;r�g]� fr� ; [r
�;r�]g = 0 : (114)It can be used to expressF��;
� � 12i [fr�;r�g;r
�]= (
�)�� (
�)
� ( @�A� � @�A� + [A�;A� ] ) (115)in terms of W�. We begin by decomposing the curvature F��;
� into the sum ofterms symmetric in �; 
 and terms antisymmetric in �; 
. From the de�nitionof F��;
� in eq. (115) it follows that F��;
� = cf��;
� = �F
�;��, which inturn implies that the terms in F��;
� symmetric (respectively antisymmetric)in �; 
 are antisymmetric (respectively symmetric) in �; �. This allows us towrite without loss of generalityF��;
� = ��
f�� + ���f�
 ; (116)23



with f�� symmetric in its indices. We could have decomposed F��;
� usingother pairs of indices, with the �rst index in f�; �g and the second index inf
; �g. For example, we could have decomposed in �; � and writtenF��;
� = ���f�
 + ��
f�� : (117)Tracing eq. (114) with �
� and using eq. (116) yieldsfr�; [r
 ;r
�]g � fr
 ; [r
�;r�]g = �4if�� : (118)Recalling now eq. (108) we �nd�2r�W� + 12 ���r
W
 = �4if�� : (119)Hence r�W� = 0 f�� = 12i r(�W�) : (120)Exercise 7: Verify that the remaining Bianchi identities[r�; [r�
 ;r��] ] + cyclic = 0[r�� ; [r
�;r�� ] ] + cyclic = 0 (121)give no further information. Hint: substitute (116) and (108) andthen use that r�W� = 2if��.Let us now obtain the gauge action. Recalling that g is in our conventionsdimensionless and that W a� has mass dimension 1/2, an action which is gaugeand super Poincar�e invariant and has the correct mass dimension is given byGates Jr., Grisaru, Ro�cek, and Siegel (1983) and Siegel (1979b)SYM = cg2 Z d3x d2�W a�W a� ; (122)with c a constant. Using �W� = �r�r��A� and integrating by parts, the �eldequations are found to be given byr�r�W� = 2ir��W� = 0 : (123)To �nd the component content of SYM, we use again d2� = D2, but we mayreplace D2 by r2 = r�r� since the action is gauge invariant. In other words,for a gauge invariant action,Z d3x d2�L = Z d3xD2 L��� = Z d3x r2L ��� : (124)We obtain thenSYM = 2c Z d3x �W a�r2W a� � (r�W a�) (r�W a� )� ��� : (125)24



Using r�W� = 0 and the identity (73), one gets for r2W a� in the �rst termr2W� + 2ir��W � = 0 : (126)From this and eq. (120) it followsSYM = 2c Z d3x ��2iW a�r��W a� + 4fa��fa��� ��� : (127)Noting the relations in eq. (13) for (
�)�� , we obtainF��;
� F��;
� = (
�)�� (
�)
� F�� (
�)�� (
�)
� F�� = 4F��F��= (��
f�� + ���f�
) (��
f�� + ���f�
) = 4 f��f�� : (128)Recalling that W a� is imaginary and noting eq. (115), we de�ne�a� = i2 W a� ��� Aa� = Aa� ��� : (129)Finally, using that i�a� (
�)���b� = ��a
��b and making the choice c =�1=32 g2, we obtainSYM = 1mg2 Z d3x �� 14 F a��F a�� � 12 ��a(D= �)a � : (130)This is indeed the component action of eq. (29).The last subject we wish to study in Yang-Mills theory are the SUSY trans-formation laws. The fact that fa�� and W a� transform covariantly under gaugetransformations suggests to use covariant derivatives r� for the SUSY trans-formations. Thus we write �0 = ��r�. The result of acting with �SUSY on anygauge covariant quantity consists of the sum of the usual SUSY transformation �going with D� (whose commutator yields an ordinary translation) plus a gaugetransformation (which leads to terms quadratic in super�elds). The invarianceof the action SYM in eq. (122) under �0 follows from its gauge invariance andthe fact that (�0 � �)W a� = �gW a� . Using �0 we have�0�a� = i2 ��r�W a� ��� = �i��fa�� ��� ; (131)or in vector notation �0�a = �12F a�� 
�
�� : (132)To �nd the SUSY transformation law for the �eld Aa�� we note that the actionof �A�� on any super�eld �, with � an arbitrary variation, is given by [�A�� ; �].This and the identities[�A�� ; �] = �(r���)�r��(��)�
r
r����r���
r
� = �
 [r
 ;r�� ]� = 12 (��W� + ��W�)� (133)25



implies that �0Aa� = �12 (
�)�� �0Aa�� ��� = i�� (
�)���a� = ��
��a : (134)Eqs. (132) and (134) are the x-space transformation rules of (41).1.10 The covariant approach to Chern-Simons theoryThe non-supersymmetric Chern-Simons action (44) can also be written asSCS = 14 Z d3x ����Aa� �F a�� � 13 fabcAb�Ac�� : (135)In superspace we therefore expect an action of the formSCS = ig2 Z d3x d2�Aa� �c1W a� + ic2fabcAb�(D�Ac�) + c3fabcfcdeAb�Ad�Ae�� ;(136)with c1; c2 and c3 real coe�cients. Invariance under gauge transformations�g(iAa�) = (r�
)a requires c2 = c1=3 and c3 = �c1=6, which gives Gates Jr.et al. (1983), Siegel (1979b)SCS = ic1g2 Z d3x d2� � (D�Aa�)(D�Aa�) + 2i3 fabcAa�Ab�(D�Ac�)� 16 fabcfcdeAa�Ab�Ad�Ae� � : (137)Another way to obtain this expression is the following. We expect the �eldequation F a�� = 0 for the nonsupersymmetric theory to generalize to W a� = 0.Any action which under an arbitrary variation yields�SCS � Z d3x d2� W a� �Aa� (138)will be gauge invariant, since �g(iAa�) = (r�
)a and r�W a� = 0. Hence it isenough to construct an action of the form (136) whose variation is (138). Theanswer is eq. (137).To �nd the component expression for the action (137),we make use of thefact that the action is gauge invariant to setA�j = 0 D�Aa�j = 0 ; (139)which de�nes a Wess-Zumino gauge. The point is that these two conditionscan be imposed by suitably choosing the components D�
aj and D2
aj of thesuper�eld 
a in �g(iA�) = ra
, while leaving the component 
aj arbitrary,which is the only one that enters the gauge transformation laws of the physical�elds Aa� and �a�. Indeed, from �g(iAa�)j = D�
aj+ifabcAb�
cj it follows that it26



is enough to takeD�
aj = 0 in order to haveAa�j = 0. Similarly, onc= e we haveAa�j = 0 andD�
aj = 0, it follows from �g(iD�Aa�)j = D2
aj+ifabcD�(Ab�
c) jthat, to have D�Aa�j = 0, it is enough to take D2
aj = 0. Note, however, thatno restriction has been imposed on 
aj, which according to eqs. (93) and (113)is the only component of 
a that enters in �gAa� and �g�a. Then, in the Wess-Zumino gauge (139),Aa�� = Aa�� ��� = D(�Aa�) ��� �a� = i2 W a� ��� = � i2 D�D�Aa� ��� (140)and the action becomesSCS = 2ic1g2 Z d3x � (D2D�Aa�) (D�Aa�) + (D
D�Aa�) (D
D�Aa�)� 2i3 fabc(D
Aa�) (D
Ab�) (D�Aa�) � ���� : (141)Furthermore, using eqs. (75) and (76) to deriveD2D�A� = 2i@�
D
A� D2A� = 2D
D�A
 � 2i @�
A
 ; (142)and notingD
D�A� = i@
�A� � 12 �
�D2A� D�A� = D(�A�) � 12 ��� D
A
 ;(143)we haveSCS = 2ic1g2 Z d3x � 2i (@�
Aa
�)Aa�� + (D
D�Aa
) (D�D�Aa�)+ 2i3 fabcAa�
 Ab
� Ac�� � ���� : (144)Finally, recalling eq. (140) and taking c1 = 1=16, we arrive atSCS = 1g2 Z d3x � ����� 12 Aa�@�Aa� + 16 fabcAa�Ab�Ac� �� 12 ��a�a � : (145)This is the component action of eq. (46). Here we have used the Wess-Zuminogauge (139) to derive the component form of action from the super�eld form(137). We must emphasize, though, that the same component action is obtainedif one does not make assumptions about the components of the super�eldAa�. Toprove this, one directly integrates (137) over d2� using d2� = D2j and expresseseverything in terms of A�� and W a� . It is very important to keep this in mindsince in Section 2.2 we will work in a supersymmetric gauge which imposesdi�erent conditions on Aa�j and DaAa�j.One may de�ne the components of the super�eld Aa� by�a� = Aa� ��� V a�� = D(�Aa�) ��� Ha = 12 D�Aa� ��� �a = i2 D�D�Aa� ��� :(146)27



Note that up to this moment we have not used any explicit form for the spinorsuper�eld Aa� as an expansion in powers of �a, but only the fact that it containsa vector V a�� . The de�nition of the components given here reproduces the �-expansion in eq. (85). Using the expressions of Aa�� and W a� in eqs. (100) and(109), the physical �elds Aa� and �a� can be written in terms of �a�; Ha; V a� and�a� asAa� = V a� + 14fabc ��b
��c (147)�a = �a � @=�a + 12 fabcHb�c � 12 fabcA= b�c + 124fabcfcde
��b (��d
��e)(148)The transformation laws of �a; Ha; V a� and �a� under SUSY as given by� = ��Q� are linear in �elds and read��a = V= a��Ha��Ha = ����a�V a� = ��
�(�a � @=�a) + ��@��a��a = @�V a��� @=Ha� : (149)From these and the expressions in eqs. (147) and (148), we get the transforma-tions rules �Aa� = ��
��a + ��(D��)a��a = �12
�
�F a���+ fabc�b(���c) (150)By subtracting a gauge transformation with parameter ���a, we obtain the usualx-space rules (41) for Aa� and �a. The same result is obtained in superspace ifone adds a compensating gauge transformation which keeps one in the Wess-Zumino gauge �a = Ha = 0.1.11 Higher N models and gauge couplings to matterOne can construct rigidly supersymmetric models with N � 8 SUSY. One wayto obtain them is by dimensional reduction from the d = 3 + 1 models whererigid SUSY exists for N � 4. For example, the N = 2 Wess-Zumino model ind = 2 + 1 corresponds to the N =1 model in d = 3 + 1 and contains two realspinors, two real scalars and two auxiliary �elds. It can clearly be written incomplex notation as a model with one complex scalar, one complex spinor andone complex auxiliary �eld. The reader may check thatSWZ = Z d3x ��(@�'y) (@�')� � @= + F yF � (151)is invariant under�' = �� � = @='�+ F� �F = ��@= : (152)28



One may consider � and �� as independent parameters, and consider separatelythe variations of the action with � and ��. For example, for the variation with �,one �nds (�') � �� � @=(@='�+ F�)� F (@� � )
�� ; (153)which clearly cancels after partial integration.Similarly, one can write the action for the N = 2 Yang-Mills and Chern-Simons models. In this case, the N=2 multiplet consists of the gauge �eld Aa�;two real spinors �ai (i = 1; 2) and two real auxiliary �elds Ca and Da, and theactions have the formSYM = 1mg2 Z d3x � � 14 F a��F a�� � 12 ��a1(D= �i)a�12 (D�C)a(D�C)a + 12 (Da)2 � 12fabc�ij��ai �bjCc�(154)andSCS = 1g2 Z d3x ����� �12 Aa�@�Aa� + 16 fabcAa�Ab�Ac��� 12 ��a�a + CaDa� ;(155)where �12 = 1. The SUSY transformation rules that leave these action invariantare �Aa� = ��i
��ai��ai = �12 
�
�F a���i + �ijDa�j + �ijD=Ca�j�Ca = ��ij��i�aj�Da = ��ij��iD= �aj + fabc��i�biCc : (156)It is also possible to set a super�eld formalism for N=2 SUSY, Aragone (1983)and Ivanov (1991), but we will not discuss this here. The N =2 actions SYMand SCS can also be obtained from a truncation of corresponding N=3 actionsin 2+1 dimensions Kao, Lee, and Lee (1996).Exercise 8: Verify that SYM and SCS in (154) and (155) are in-variant under the transformations (156).So far we have discussed supersymmetric models for scalar �elds and forgauge �elds. It possible to construct supersymmetric models for matter �eldscoupled to gauge �elds. Although this subject lies outside the scope of thesenotes, let us brie
y mention how to couple the N =1 Wess-Zumino model forscalars to gauge �elds while preserving SUSY. To do this, one puts the scalarsin a particular representation R with generators (T a)ij and replaces in x-space29



the ordinary derivatives in the action and the SUSY transformation rules bygauge-covariant derivatives. This takes care of minimal coupling to Aa�, butsince Aa� and �a form a SUSY multiplet, one also needs a \minimal" couplingof �a to the scalar multiplet. This leads to additional Yukawa couplings of theform �� '. The complete model readsS = Z d3x ��12 (D�')i(D�')i � 12 � iD= i + 12F 2 � ��a'i(Ta)ij j� (157)where D�'i = @�'i + gAa�(T a)ij 'j . For simplicity we consider the case thatthe representation (Ta)ij is real; otherwise one must consider complex �elds,i.e. an N =2 model. Then one �nds from the variations of �rst three terms inthe action the following extra terms�12 ( � i
�
��)F a�� (T a)ij'j � (�Ab�) � g(D�'i) (Ta)ij'j + 12 g � i(Ta)ij j � :(158)The Yukawa coupling, in turn, yields the following variations12 � j (T a)jk 
�
�� F a��'k + : : : (159)Exercise 9: Check that all variations indeed cancel.In superspace this coupling is given by Gates Jr. et al. (1983), Siegel (1979b)S = 18 Z d3x d2� (r��i) (r��i) (160)To �nd the component action, one may again use d2� = D2j. However, since wealready have covariant derivatives r�, it is more convenient to use d2� = r2j.As we have discussed earlier, this gives the same result because the action isgauge invariant. The SUSY rules �� = ��Q�� leave the action invariant ifone also uses �Aa� = ��Q�Aa�, but we already saw that it was simpler to use�0Aa� = ��r�Aa�. Hence, also for matter we use �SUSY� = ��r��, whichcontains now also gauge transformations, and which becomes now nonlinear in�elds, namely it contains Yang-Mills covariant derivatives.As a last topic, we discuss Euclidean SUSY. Since the Dirac operator 
�E@�in Euclidean space is complex, we need complex spinors. Clearly we also needthen a complex scalar and a complex auxiliary �eld. The actionS = Z d3x ����� (@�'y) (@�')� i y@=E + F yF �is then hermitean and invariant under�' = �i�y � = @=ssE'�+ F� �F = i�y@= : (161)30



The variation of the action contains the termsi (�') ( y�)� i  y@=E(@=E �+ F�)� i F (@� y) 
��+ h:c: (162)The construction of a hermitian action in Euclidean space is due to Schwinger,and hermitian SUSY actions in Euclidean space were studied by Zumino. Onecan also abandon hermiticity and introduce two independent complex spinors.This is the approach of Osterwalder-Schrader. Let us consider, extending thework of Nieuwenhuizen and Waldron (1996), the following continuous Wickrotation for complex spinors in d = 2 + 1 dimensions (or any odd dimension): (~x; t) !  �(~x; t�) � S(�) (~x; t�)(�) = e� 12
0� t� = e�i�t (163)Performing this substitution in Minkowski theory yields the Euclidean theory.2 Quantum rigid supersymmetry: Yang-Mills-Chern-Simons theory2.1 Supersymmetric regularization of gauge theoriesSupersymmetric gauge theories contain two symmetries: rigid SUSY and Yang-Mills gauge invariance. If one covariantly quantizes these theories, one mustadd to the classical action gauge �xing terms and a ghost terms. Then gaugeinvariance is replaced with a rigid BRST symmetry. In principle, one can useany gauge �xing term to �x the gauge invariance. The usual Lorentz gauge�xing term � 12� (@�Aa�)2 for supersymmetric gauge theories in four dimensionshas been used in Capper, Jones, and Nieuwenhuizen (1980). It breaks SUSYbut one can still derive Ward identities and study whether they are satis�ed atthe quantum level. Here, we shall use gauge �xing terms which are themselvesinvariant under rigid SUSY, so that the corresponding ghost terms are alsoSUSY invariant. The resulting gauge-�xed classical action will then have tworigid symmetries: SUSY and BRST symmetry. To compute the e�ective actionperturbatively, one must evaluate Feynman graphs, and one must regulate thedivergences which many of these graphs possess.We shall study the two most used regularization schemes: ordinary 't Hooft-Veltman dimensional regularization (DReG), Hooft and Veltman (1972), andSiegel's regularization by dimensional reduction (DReD), Siegel (1979a).The DReG scheme is formulated in d > 3 dimensions and treats �-tensors���� as essentially three-dimensional objects. This leads to two kinds of indices,three-dimensional and (d � 3)-dimensional, and the SO(d � 1; 1) symmetry ofthe action is broken down to SO(2; 1)�SO(d�3). Since in d > 3 the number ofbosons and fermions is no longer equal, one may violate SUSY and one cannotuse super�elds. We must then use a component action in x-space. We showbelow that this prescription for ���� yields a consistent regularization which31



manifestly preserves BRST invariance. The DReD scheme is formulated ford < 3. One works at all times with super�elds and one performs �rst all �-integrals. The �nal momentum integrals are then treated as in DReG. Becausethe algebra of the Feynman superdiagrams is performed with super�elds, DReDmanifestly preserves SUSY. However, as we shall see later, it may violate BRST.Thus DReG may violate SUSY but it preserves BRST. On the other hand,DReD preserves SUSY but it may violate BRST. Our main result is that forsupersymmetric Yang-Mills-Chern-Simons theory, both schemes give the samee�ective action, hence each scheme preserves both SUSY and BRST. In otherwords, for this model at least, the super�eld approach preserves \gauge invari-ance", rather BRST symmetry, at the quantum level.Let us describe in more detail 't Hooft-Veltman's prescription for ����. Fol-lowing Breitenlohner and Maison (1977), we consider n-dimensional Minkowskispacetime IMn with metric ��� and decompose it as IMn = IM3 
 IRn�3. Heren � 3. We call ~��� and �̂�� to the metric on IM3 and IRn�3, respectively.Any vector v� will have a projection ~v� = ~���v� onto IM3 and a projectionv̂� = �̂��v� onto IRn�3. One may de�ne ���� in n dimensions as a completelyantisymmetric object in its indices which satis�es�������
 = f(n) (��� ��� ��
 + 5 terms) ; (164)where f(n) is a function of n such that f(3) = �1 and ��� is n-dimensional.Consider now three �-tensors contracted in two di�erent ways:(��������) ���
 and ���� (�������
) : (165)The result should be the same for consistency. It is easy to check that for the�rst contraction eq. (164) yields f(n)(n � 1)(n � 2)���
 , while for the secondcontraction it gives 2f(n)���
. Clearly, for n 6= 3, both contractions disagree.This shows that the de�nition of ���� provided by eq. (164) is not algebraicallyconsistent, and suggests to treat ���� as a three-dimensional object. Thus wereplace eq. (164) with�������
 = �~��� ~��� ~��
 + 5 terms� ����v̂� = 0 : (166)Then the inconsistency above is no longer present. This is the 't Hooft-Veltmanprescription, Hooft and Veltman (1972) and Breitenlohner and Maison (1977),and amounts to treating ���� as three-dimensional. Quantities with a caretvanish at n=3 and are called evanescent.A similar result holds for 
5 in four dimensions. Suppose one were to considerin n dimensions the existence of n Dirac matrices 
� satisfying f
�; 
�g = 2���and f
5; 
�g = 0, with ��� the n-dimensional Minkowski metric. Then one �ndsfor n 6= 4 again an inconsistency. The proof proceeds by evaluating traces of one
5 and a set of Dirac matrices in two ways: one by commuting a Dirac matrixthrough the others, and one by using cyclicity of the trace. For tr (
5
�
�) and32



tr (
5
�
�
�), these two ways to compute traces givetr (
5
�
�) = n tr 
5= tr (
�
5
�) = �tr (
5
�
�) = �n tr 
5 (167)and tr (
5
�
�
�) = �tr (
5
�
�
�) + 2 tr (
5
�) = (2� n) tr (
5
�)= tr (
�
5
�
�) = �n tr (
5
�) : (168)Hence tr 
5 = tr (
5
�) = 0 in n dimensions. Proceeding in the same way fortr (
5
�
�1
�2
�3
�4
�) and using tr 
5 = tr (
5
�) = 0, one �nds that(2n� 8) tr; (
5
�1
�2
�3
�4) = 0 : (169)This implies that tr (
5
�1 : : : 
�4) = 0 for n 6= 4, but at n = 4 the resultis nonzero, so the limit n ! 4 would be discontinuous. Since the only twoassumptions made are f
�; 
�g = 2��� and f
5; 
�g = 0, and one wants tokeep f
�; 
�g = 2��� , one is led to give up a fully anticommuting 
5. Theprescription of 't Hooft and Veltman, Hooft and Veltman (1972), studied indetail by Breitenlohner and Maison Breitenlohner and Maison (1977), takesf
5; ~
�g = 0 but [
5; ~
�] = 0, where ~
� denotes the �rst four Dirac matrices,while 
̂� denotes the extra n� 4 Dirac matrices. So 
5 is the usual product ofthe �rst four Dirac matrices, even in n dimensions.2.2 Supersymmetric Yang-Mills-Chern-Simons theoryWe consider now the following gauge-�xed action in three dimensions Ruiz Ruizand Nieuwenhuizen (1997):�0 = SCS + SYM + SGF + SES : (170)where SGF is the gauge �xing term in the action and SES contains the nonlinearBRST transforms. We work in the Landau gauge, characterized by the conditionD�Aa� = 0. In this gauge the gauge-�xing action isSGF = Z d3x d2� hBa(D�Aa�)� i Ĉa(D�r�C)ai ; (171)where Ba(x; �) is a real super�eld Lagrange multiplier imposing the Landaucondition, and Ĉa(x; �) and Ca(x; �) are real antighost and ghost super�elds.We have already said that after gauge �xing gauge invariance is replaced byBRST invariance. The BRST transformation laws are given bys (iAa�) = (r�C)a sBa = 0 sĈa = Ba sCa = 12 fabcCbCc : (172)33



The expression for sAa� is as usual obtained by replacing the gauge parameter
a in a gauge transformation by the corresponding ghost �eld�g(iAaA) = (r�
)a ! s(iAa�) = (r�C)a : (173)The result for sCa follows from using the expression for sAa� and requiringthat s2Aa� vanishes. As a check of the expression above, one may verify thatnilpotency on the ghosts, s2Ca = 0, follows from the Jacobi identities for thestructure constants. We may de�ne the components of the super�elds Ba; Ĉaand Ca byba = Ba ��� ca = Ca ��� ĉa = Ĉa����a� = iD�Ba ��� 'a� = D�Ca ��� '̂a� = D�Ĉa ���ha = � i2 D2Ba ��� !a = � i2 D2Ca ��� !̂a = � i2 D2Ĉa ��� : (174)After using d2� = D2j to integrate over d2�, the gauge-�xing action takes thenthe formSGF = Z d3x �� ba@�V a� � (@�ĉa) �@�ca + fabc V b� cc � i2 fabc ��b
�'c����a�a � �̂'a �@='a + fabc � i�bcc + i2 
��b @�cc+12 V= b'c � 12 Hb'c + i2 �b!c���haHa + !̂a �!a + fabcHbcc � i2 fabc ��b'c �� : (175)The BRST transformation laws for the components are obtained from those forthe super�elds and the de�nition of the components as projections. They reads�a = �i'a + fabc�bcc sba = 0sAa� = �(D�c)a s�a = 0sHa = �!a � fabcHbcc + i2 fabc ��b'c sha = 0s�a = fabc�bccsĉa = ba sca = 12 fabccbccs'̂a = i�a s'a = �fabc'bccs!̂a = ha s!a = fabc!bcc + 12 fabc �'b'c :(176)The supersymmetry transformations for the components are obtained similarlyfrom � = ��Q� and the de�nition of components as projections. For the com-ponents of the gauge supermultiplet they are given in eqs. (149) and (150); for34



the components of Ba; Ĉa and Ca they take the form�ba = � ��a���a = ha�� @= ba��ha = �� @= �a (177)and �ĉa = i �̂'a� �ca = i �'a��'̂a = �i @= ĉa�+ i !̂a� �'a = �i @= ca�+ i !a��!̂a = i �� @= '̂a �!a = i �� @= 'a : (178)Exercise 10: Since our starting point was the super�eld gauge-�xing term (171) and this is supersymmetric, the component action(175) is supersymmetric. Verify that indeed the SUSY transforma-tions for the components leave SGF invariant.Exercise 11: Check that the operators s and � generating theBRST and SUSY transformations in above commute:[s; �] = 0: (179)Exercise 12: Verify that SGF can also be written asSGF = Z d3x s�� ĉa @�V a� + i �̂'a�a � !̂aHa� : (180)We thus see that the gauge-�xing condition D�Aa� = 0 is equivalentto the the conditions Ha = 0; @�V a� = 0 and �a = 0. Check thatthese conditions remain invariant under SUSY transformations.The term SESSES = i2 Z d3x d2� � 12 Ka�A sAa� +KaC sCa� : (181)couples the nonlinear BRST variations sAa� and sCa to external sources Ka�Aand KaC . We may de�ne the components of the latter by�a� = Ka�S ��� `a = KaC ���Ga = � i2 D�Ka�S ��� �a� = iD�KaC ���Ka�� = iD(�Ka� )A ��� La = � i2 D2KaC ��� :�a� = � i2 D�D�Ka�A ��� (182)
35



The component expression of SES is thenSES = Z d3x h i��as�a +Ka�sV a� +GasHa + i��as�a + `as!a + i��as'a + Lasca i :(183)The SUSY transformations for the components of Ka�A and KaC are obtainedagain from the de�nition of components as projections and the action of � =��Q� on the supersources. They have the form��a = iK= a�+ i Ga� �`a = ���adGa = i �� @= �a + i ���a ��a = i @= `a�� i La��Ka� = i ��@��a + i ��
��a �La = �� @= �a :��a = i2 
�
�� ( @�Ka� � @�Ka� ) (184)Power counting for �0 shows that there is only a �nite number of super�ciallydivergent diagrams, thus proving that the theory is superrenormalizable. Atone loop there are quadratic, linear and logarithmic divergences; at two loopsthere are linear and logarithmic divergences; and at three loops only logarithmicdivergences survive. Furthermore, quadratically divergent one-loop diagrams donot have internal gauge lines and the only primitively divergent one-, two- andthree-loop 1PI diagrams are those in Table 1, where �! denotes the super�cialUV degree of divergence of the diagram.external lines 1 loop 2 loops 3 loops��� �! = 2 �! = 1 �! = 0��� A2 AH H2 �! = 1 �! = 0���A ���H (���)2��� ĉc '̂ �' � �����A ���H A3 A2H AH2 H3 �! = 0(���) (���) ���A2 ���AH ���H2(���)2A (���)2H (���)3Table 1: Power counting for component �elds2.3 Ward identities, dimensional regularization and regu-larization by dimensional reductionThe BRST identity for the full renormalized e�ective action � takes the formZ d3x � X� ���� ���K� + b ���ĉ + i�� ��� �̂' + h ���!̂ � = 0 ; (185)where the sum is extended over �a = �a; V a� ; Ha; �a; ca; 'a; !a: In whatfollows, we will write this equation as(�;�) = 0 (186)36



and use the notation � for the Slavnov-Taylor operator:� = (�0; ) : (187)It is very important to note that the operator � commutes with the supersym-metry generator �: [�; �] = 0 : (188)If we write for � a loop expansion� = 1Xk=0 ~k �k (189)and substitute it into eq. (186), we obtain at one, two and three loops��1 = 0��2 + (�1;�1) = 0��3 + (�1;�2) + (�2;�1) = 0 : (190)The SUSY Ward identity for the e�ective action is�� = 0 : (191)We remark that � generates 1PI Green functions for the �elds V a� and �a and notfor the elementary �elds Aa� and �a: This is due to the fact that SES introducesexternal sources for the BRST variations of V a� and �a; and not for those of Aa�and �a: To compute �, we use the Feynman rules for Aa� and �a and treat V a�and � as composite �elds de�ned by (146). It is not di�cult to see that, givena 1PI diagram with super�cial degree of divergence �!, all the diagrams thatresult from replacing one or more of the external Aa� and/or �a-lines with anyof the composite �elds have super�cial degree of divergence strictly less than �!.Regarding then V a� and �a as composite �elds does not worsen power counting.To de�ne DReG, we follow Giavarini, Martin, and Ruiz Ruiz (1992) and usefor ���� the de�nition in eq. (166). Since the terms in the action �0 which arelinear and quadratic in the gauge �eld Aa� are the same as in the nonsupersym-metric Landau gauge of Section 1.6, the kinetic matrix is the same as in eq.(52). The propagator matrix is then given by its inverse and has the structurein (53), but now ���(p) and ��(p) have the form���(p) = f1 ����p� + f2 ��� + f3�̂�� + f4p�p� + f5p�p̂� + f6p̂�p� + f7p̂�p̂���(p) = f8 p� + f9 ~p� : (192)The distinction between n-dimensional objects and (n�3)-dimensional objects,or equivalently between 3-dimensional and (n � 3)-dimensional arises from the37



fact that the de�nition of ���� in eq. (166) is not SO(n � 1; 1)-covariant butrather SO(2; 1)�SO(n�1). After substituting (192) in (53) and imposing (54),we �nd���(p) = � g2m(p2�io)2 +m2~p2 �m���� p� + i p2��� � i p�p�+ im2p2�io �~p2�̂�� + p̂2p2 p�p� � p�p̂� � p̂�p� + p̂�p̂��� : (193)Because, by construction, the propagator is the inverse of the kinetic term in then�3 dimensions and the BRST transformation for the gauge �eld is the same asin the unregularized theory, DReG preserves BRST invariance, Giavarini et al.(1992) and Breitenlohner and Maison (1977). Hence, the DReG regularizede�ective action �DReG satis�es the BRST identity(�DReG;�DReG) = 0 : (194)The complicated propagator for the gauge �eld is the price for having aconsistent treatment of ���� while manifestly preserving BRST invariance. Asregards supersymmetry, we have already explained that DReG does not mani-festly preserve it. The propagator ���(p) can be decomposed into the sum���(p) = D��(p) +R��(p) ; (195)of the naive covariant generalizationD��(p) = � g2m m���� p� + i p2��� � i p�p�p2 (p2+m2�io) (196)to n dimensions of the three-dimensional propagator plus an evanescent termR��(p) = � g2m3(p2�io)2 +m2 ~p2 � 1p2+m2�io� p̂2p2 �m���� p� + i p2��� + im2p2�io p�p��+ ip2�io � ~p2�̂�� � p�p̂� � p̂�p� + p̂�p̂��� : (197)Note that R��(p) is more UV convergent than ���(p), but less IR convergent:���(p) � 1p2 R��(p) � 1p4 for large p���(p) � 1p R��(p) � 1p2 for small p : (198)This will be important in the sequel.DReD can also be formulated in terms of components. In DReD, all the �eldsand matrices are kept three-dimensional and the momenta are continued in the38



sense of ordinary DReG to d < 3: Because the Dirac algebra is performed inthree dimensions, DReD manifestly preserves supersymmetry. The regularizedaction c�DReD computed with DReD satis�es then��DReD = 0 : (199)The BRST transformation for the gauge �eld in DReD, however, is not the sameas in the unregularized theory. Indeed, whereas the �rst d < 3 components ofthe gauge �eld have the same BRST transformation law as the gauge �eld in theunregularized theory, the last 3�d components transform as sAa� = fabcAb�cc:Hence one has to introduce two external sources, one for the �rst d componentsof V a� and one for the last 3 � d, which in turns yields a regularized BRSTidentity di�erent from that in eq. (186). It may happen that at the end of allcalculations, once the limit d! 3 has been taken, all e�ects due to the splittingof the gauge �eld into d and 3�d components go away, but this is not whatis meant by manifest BRST invariance. Concerning the well known algebraicinconsistency Siegel (1980) that occurs in products of three or more epsilons inDReD, we mention that it disappears in the limit d ! 3; since contributionswith three or more epsilons are �nite by power counting at d=3:Our goal is to prove that DReG and DReD preserve both supersymmetry andBRST invariance and de�ne the same Green functions Ruiz Ruiz and Nieuwen-huizen (1997). Our strategy is to �rst prove that the theory is �nite to allloop orders, so that the regularized e�ective actions �DReG and �DReD are alsorenormalized e�ective actions and the di�erence �� = �DReG � �DReD is thedi�erence of two renormalized e�ective actions. Next we show that this di�er-ence vanishes. This, together with the observations that DReG preserves at allstages the BRST identities of local gauge invariance and that DReD preservessupersymmetry, implies the thesis.One may try to de�ne DReG for pure Chern-Simons theory in a way analo-gous to the way de�ned here for Yang-Mills-Chern-Simons theory. In this case,the kinetic matrix has the same form as in eq. (52) with K��(p) now given byK��CS(p) = ����p� : (200)To invert the kinetic matrix in n � 3 dimensions, one has to use the same���(p) and �� as in eq. (192), since these are the most general expressionsfor ���(p) and �� in the propagator matrix allowed by SO(2; 1)� SO(2 � 3)covariance. It happens, however, that the equation (54) has then as only solutionn=3; f1 = �g2=p2 and f8 = 1=p2. = In other words, the propagator only existsin three dimensions Martin (1990). This can be understood by noting that, since���� is essentially three-dimensional, in n>3 dimensions the kinetic matrix hasrows and a columns with all zeros and hence does not have an inverse. Todimensionally regularize Chern-Simons theory, one then has to add a term tothe action such that in n> 3 dimensions it has nontrivial projection onto the(n�3)-sector. If, in addition one want to preserve BRST invariance, the addedterm must be BRST invariant. An obvious candidate is a Yang-Mills term SYMGiavarini et al. (1992), but other higher covariant derivative terms can also be39



considered, Giavarini, Martin, and Ruiz Ruiz (1993a), Giavarini, Martin, andRuiz Ruiz (1993b), and Giavarini, Martin, and Ruiz Ruiz (1994). In case oneadds a Yang-Mills term, the complete regularization method consists of tworegulators: the mass m in SYM and the � from DReG. They should be removedin a very speci�c order: one must �rst take the limit � ! 0 and then takem ! 1. Because the limit � ! 0 is �nite to all orders in perturbation theory(see next section), it then makes sense to take m!1 in the result.2.4 Perturbative �nitenessTo prove perturbative �niteness at one loop, we consider a one-loop 1PI diagramand denote by D(d) its value in DReG. According to eq. (195), if the diagramhas an internal gauge line, D(d) is the sum of two contributions: D(d) = DD(d)+DR(d). The contribution DD(d) contains the SO(d) covariant part D�� of allthe gauge propagators3. The contribution DR(d) contains at least one R�� andcan be easily seen to be both UV and IR �nite at d=3 by power counting. Recallthat diagrams with an internal gauge �eld are at most linearly UV divergent.Being �nite at d=3 and being at least linear in �̂�� ; DR(d) vanishes as d ! 3.We are thus left with only the SO(d) covariant contribution DD(d). If thediagram has no internal gauge line, D(d) is already SO(d) covariant. The one-loop SO(d)-covariant dimensionally integrals we have are of the formI�1:::�N (pe;m; d) = Z ddq(2�)d q�1 � � � q�NQr;s (Q2r)nr (Q2s+m2)ns ; (201)where Q�r and Q�s are linear combinations of the loop momentum q� and theexternal momenta p�e ; and nr and ns are nonnegative integers. These integralsdo not produce poles when d is analytically continued to a an odd integer, Speer(1974) and Speer (1975). This completes the proof of perturbative �niteness atone loop and shows the result is independent of the number of dimensions inwhich the Lorentz algebra of the diagrams is performed, which in turn impliesthat in the limit d! 3 1PI Green functions at one loop are identical in DReGand in DReD.At two loops we proceed di�erently, since two-loop SO(d)-covariant integralshave poles in an odd number of dimensions. Let us assume that the two-loopcorrection �DReG2 to the e�ective action consists in the limit d! 3 of a divergentpart �DReG2;div and a �nite part �DReG2;�n : Since DReG manifestly preserves BRSTinvariance, �DReG2 satis�es the BRST identity at two loops��DReG2 + (�DReG1 ;�DReG1 ) = 0 : (202)Recalling that �DReG1 is �nite, we have that the divergent part �DReG2;div satis�es��DReG2;div = 0: Because 1PI Feynman diagrams with external sources as externallines are �nite by power counting and there are no one-loop subdivergences,3In DReD, and also in DReD, to compute dimensionally regularized integrals, a Wickrotation is performed. This transforms SO(d� 1; 1) covariance in SO(d) covariance.40



�DReG2;div does not depend on the external sources and ��DReG2;div = 0 reduces tos�DReG2;div = 0: Using the power counting in Table 1 and that contributions totwo-loop 1PI diagrams from R�� are �nite, we have that the most general formof �DReG2;div is �DReG2;div = 1d�3P�!2 , whereP�!2 = mZ d3x h�1m ��a�a + �2 ��a@=�a + �3 ��a�a + �4AaAa + �5HaHa+�6 fabc ��aA= b�c + �7 fabcfcde(��a
��b) (��d
��e) i (203)and �1; : : : ; �7 are numerical coe�cients. The terms in P�!2 correspond to alltwo-loop Lorentz invariant divergences that can be constructed from Table 1with �!2 derivatives. The equation s�DReG2;div = 0 is an equation in the coe�cients�i whose only solution is �i = 0. This completes the proof at two loops.The proof at three loops is analogous. Now the only three-loop Lorentzinvariant divergence is �DReG3;div = 1d�3P�!3 , withP�!3 = �m2 Z d3x ��a�a ; (204)but P�!3 is not BRST invariant. At higher loops, �niteness follows from powercounting and from absence of subdivergences.2.5 A BRST invariant and supersymmetric e�ective ac-tionSince the theory is �nite, every regularization method de�nes a renormalizationscheme. We consider two renormalization schemes: scheme one uses DReG asregulator and performs no subtractions, scheme two uses DReD and performsno subtractions. We want to prove that the di�erence �� = �DReG � �DReDbetween the corresponding renormalized e�ective actions is zero. We have seenin Section 2.4 that this is the case at one loop. So let us consider the two-loopcase.There is a general theorem in quantum �eld theory, Hepp (1971) and Ep-stein and Glasser (1973), that states that if two di�erent renormalization (notregularization) schemes yield the same Green functions up to k�1 loops, thenat k loops they give Green functions that can di�er at most by a local �nitepolynomial in the external momenta of degree equal to the super�cial overallUV degree of divergence �!k at k loops. This, and the power counting in Table1, implies that the di�erence ��2 at two loops can at most be of the form�DReG2 � �DReD2 = P�!2 ; (205)with P�!2 as in eq. (203). We recall that �DReG2 satis�es eq. (202) and observethat, since DReD preserves supersymmetry, �DReD2 satis�es��DReD2 = 0 : (206)41



(a) (b) (c)(d) (e) (f)Figure 1: Two-loop topologies for hHHi1PIActing with � on eq. (202), using eqs. (205) and (206), and recalling that[�; �] = 0 and that ��1 = 0, we obtain that ��P�!2 = 0. Since P�!2 does notdepend on the external sources, �P�!2 is independent of the external sourcesand ��P�!2 = 0 reduces to s�P�!2 = 0; which is an equation in the coe�cients�=86; : : : ; �7 in P�!2 . Because �P�!2 depends polynomially on the componentsof the gauge multiplet and their derivatives and has an overall factor of m; anynontrivial �P�!2 satisfying s�P�!2 = 0 must be m times a BRST invariant of massdimension two. However, there are no such invariants. Hence, �P�!2 = 0: Theonly supersymmetry invariant that can be formed from P�!2 isP susy�!2 = �m Z d3x � 12 ��a@=�a + ��a�a +AaAa �HaHa� 148 fabcfcde(��a
��b) (��d
��e) � : (207)At this point we have exhausted all the information given by BRST symmetryand supersymmetry. We determine the value of the coe�cient � in P susy�!2 bymeans of an explicit calculation (see below) and �nd �=0:At three loops, the di�erence is ��3 = �P�!3 . Since ��3 is not BRSTinvariant, nor supersymmetric, the same arguments as used at the two-looplevel are now powerful enough to conclude that �=0 without the need of anyexplicit computation. At higher loops, the di�erence �� vanishes since at one,two and three loops it vanishes and there are no overall divergences by powercounting.We now compute � in P susy�!2 : To do this, we evaluate the di�erence betweenthe contributions from DReG and DReD to the selfenergy of the �eld Ha: Thevertices with an H are H��; H'̂'; H!̂c and H'̂�c [see eq. (175)]. Usingthem, one can construct two-loop 1PI diagrams with the six topologies in Fig.1.42



In fact, since '̂ only propagates in ' and c into ĉ; and there is no four-pointvertex containing the �elds H; ' and ĉ; no graphs with the topology of Fig.1acan be constructed. The topologies in Figs.1b and 1c, being products of one-loop topologies, give the same contributions in DReG as in DReD, hence theydo not contribute to �: We are thus left with the topologies in Figs.1d, 1e and1f. Because one-loop subdiagrams give the same contributions in DReG as inDReD, only the overall divergent part of the corresponding two-loop diagramscontribute to �: Since the two-loop diagrams are logarithmically divergent, con-tributions to � come from setting in the numerators the external momentum p�and the mass m equal to zero, except, of course, for the overall factor m: Theoverall divergent part of every diagram then readsm Z ddk(2�)d ddq(2�)d N(k; q)D(k; q; p;m) : (208)Due to the di�erent propagators that DReG and DReD use for the gauge �eld,the diagrams with internal gauge lines may give di�erent contributions to �. Ithappens, however, that such diagrams only occur in topology 1e and that theircontributions separately cancel, so that their net contribution in both DReGand DReD is zero.The other source for di�erent results is the di�erent way in which DReG andDReD treat the Dirac matrices. In fact, the numeratorN(k; q) always contains atrace over a fermion loop. This is obvious for those diagrams in which H couplesto fermions. The only vertex where H does not couple to fermions is the vertexH!̂c; but in this case !̂ propagates into ! and now ! couples to fermions; infact, closer inspection reveals that no two-loop diagram with this structure canbe constructed. It then follows that the overall divergence in DReG and DReDis the same except for the trace over the fermions. Now, the trace of a sumof products of q= and k= can always be written as d-dimensional scalar productsk2; kq and q2 times an overall trace of the unit matrix. So, after summing overdiagrams, � can be written as� = ( trDReG 1l� trDReD 1l ) Z ddk(2�)d ddq(2�)d f(k2; kq; q2)D(k; q; p;m) ; (209)where f(k2; kq; q2) is a polynomial of its arguments. Because the theory is �nite,the integral is �nite and therefore the di�erence due to the trace vanishes in thelimit d! 3: Hence � = 0:The equality of �DReG and �DReD is not explained by local quantum �eldtheory. One possible explanation might be that there exists a third, as yetunknown, symmetry of the model. Another explanation might be that theexisting theorems of local quantum �eld theory, Hepp (1971) and Epstein andGlasser (1973), concerning the di�erence between the renormalized expressionsfor the same Green function computed in two di�erent renormalization schemescan be sharpened for �nite models which are superrenormalizable by powercounting and which have symmetries. 43



Our analysis relies on the fact that our model is superrenormalizable bypower counting and �nite. There exist several all-loop �nite supersymmetricmodels in four dimensions, Ermushev, Kazakov, and Tarasov (1987), Kazakov(1986), Lucchesi, Piguet, and Sibold (1988b), and Lucchesi, Piguet, and Sibold(1988a), and N =4 Yang-Mills theory is also all-loop �nite. It would be inter-esting to apply the methods developed here to these models. See Capper et al.(1980) for a partial comparison of DReG and DReD in 4-dimensional N = 1Yang-Mills theory in a non-supersymmetric gauge.3 Classical supergravity3.1 Supergravity in (2 + 1)-dimensional x-spaceWe discuss N=1 (simple) supergravity in 2+1 dimensions, �rst in x-space andthen in superspace. Euclidean supergravity di�ers at some essential points fromMinkowski supergravity, having to do with the di�erent way in which real spinorsare described in Euclidean space. Superspace supergravity in 2+1 dimensions isperhaps a bit too easy as compared with the (3+1)-dimensional case, since thereare no N=1 chiral super�elds and as a consequence there are no representationpreserving constraints and no prepotentials, but it is an excellent introductionto the subject, and the student who has understood it, can always afterwardstackle the (3+1)-dimensional case.The gravitational �eld is described by the vielbein4 �eld e�m, with � = 0; 1; 2andm = 0; 1; 2, which satis�es e�me�n�mn = ��� , with �mn = diag (�1;+1;+1)the Minkowski metric. In 
at spacetime e�m = ��m. One can use a local Lorentztransformation to make e�m symmetric, and then it is transversal and tracelesson-shell. This shows that on-shell e�m contains no degrees of freedom. Thesame argument shows that in 3+1 dimensions there are two graviton states.As the fermionic partner of e�m we choose the gravitino �eld  ��, with� = 1; 2. It is the gauge �eld for local supersymmetry, so it transforms as� � = @��+ : : : This, in fact, is the best reason for choosing  �� and not, forexample,  ��
 which also contains a spin 3/2 part.As gravitational action we take the Hilbert actionI2 = � 18�2 Z d3x eR ; (210)where �2 is the gravitational constant, with mass dimension [�2] = �1 in 3dimensions, e = det (e�m) = p�g,R = R��mn(!) em�en� (211)is the the Ricci scalar andR��mn(!) = @� !�mn + !�mk !�kn � (�$ �) ; (212)4In three dimensions the name \dreibein" is also used, drei means three in German.44



is the Riemann tensor. We choose the normalization factor 1/8 in order toobtain, for constant �'s, the same SUSY algebra as for the matter �elds. In units~ = 1, the action is dimensionless. It is also Einstein, or general coordinate,and local Lorentz invariant, the corresponding transformation being�Ee�m = ��@�e�m + (@���) e�m�Le�m = �mn e�n�E!�mn = �� @�!�mn + (@���)!�mn�L!�mn = �@��mn � !�mk �kn � !�nk �mk � �(D��)mn : (213)Exercise 13: Check thatD�e�m = @�e�m + !�mk e�k � ����e�m (214)is Einstein and local Lorentz covariant. Therefore one may set itequal to zero (\the vielbein postulate"). As a result, one can alwaysexpress !�mn in terms of ����, and vice-versa. We shall exclusivelywork with !�mn and never use ����.As action for the gravitino in curved space we takeI3=2 = � 12 Z d3x e � �
[�
�
�]D�(!) � ; (215)with D�(!) � = @� � + 14 !�mn 
m
n � (216)and 
� = 
mem� 
m = 
�e�m : (217)A term with ���� in (215) cancels due to (anti)symmetry. For the Dirac matrices
m we choose the same real representation as in eq. (8). Then the operator
�
�
�D� is also real and hence we can take  � to be real. The action I3=2 ishermitian. It is also the unique action without ghosts in any dimension. By thelatter statement we mean the following: if one adds a source term �J� � = � �J�to the most general 
at-space free-�eld expression for I3=2,I3=2 = � 12 Z d3x � �O���@� � ; (218)where O��� depends on Dirac matrices, Minkowski metrics and ���� tensors,to couple the couple the gravitino to an external real vector-spinor source J��,and one completes squares, one �nds the propagator termZ d3x �J� P��J� (219)45



The source J�� is supposed to satisfy those constraints (and only those) whichfollow from the linearized �eld equationsO���@� � � J� = 0 (220)In general O��� is singular, so it has no inverse. However, the parts which areambiguous, due to the singularity of O��� , cancel in the propagator term (219)due to the constraints on J�. Requiring then that at the poles k2 = 0 theresidue is non-negative de�nite, singles out O��� = 
[�
�
�] in any dimension.The physical meaning of this requirement is tree unitarity, a necessary but notsu�cient condition for unitarity. Since the free �eld action withZ d3x � � 
[�
�
�] @� � (221)has the gauge invariance � � = @��, which will later become local SUSY, wehave deduced the interesting result that gauge invariance follows from unitarity.The same holds for the actions with spin 1 and spin 2. We can in 2+1 dimensionssimplify the gravitino action by using����
� = �
[�
�] ; (222)where the indices are curved indices. ThenI3=2 = 12 Z d3x ���� � �D�(!) � : (223)Note that, since ���� is a density, we do not need a factor e in the integrand in(223)). The spin 3/2 action is also Einstein and local Lorentz invariant,�E �� = �� @� �� + (@���) ���L �� = 14 �mn 
m
n  �� : (224)Let us do the usual counting of states and �eld components. We already sawthat e�m contains no states. The �eld  � satis�es the linearized �eld equation����@� � = 0, so locally  � = @� , with  a spin 1/2 �eld. Local SUSY, � � =@��+ : : : , can then be used to gauge away  , so also  �� contains no states on-shell. However, the number of bosonic and fermionic �eld components does notmatch. The dreibein e�m has 3�3 components, but 3 components can be gaugedaway by local Lorentz symmetry (for example, by making e�m symmetric), andanother 3 components can be gauged away by Einstein symmetry (for example,by setting e01 = e02 = e00 = 0). Thus, in total, there are 3 bosonic �eldcomponents left in e�m. The gravitino �eld has 3�2 components, but localSUSY can be used to gauge away 2 components (for example, by setting  0� =0). Hence there are 4 fermionic components left. Because the operator P� isnonsingular and fQ�; Q�g � (
�)��P�; Q� is nonsingular. Thus the numberof bosonic and fermionic �eld components must be the same and we need at46



least one bosonic auxiliary �eld S. This suggests the following action for N=1supergravityIsugra = Z d3x �� 18�2 eR(e; !) + 12 ���� � �D�(!) � � 12 eS2� : (225)It is at this point not clear that the sign of the term with S2 is negative, andthus opposite to the sign of the auxiliary �eld in the Wess-Zumino model. Weshall see that local SUSY requires this sign. This has important consequencesfor the super-Higgs e�ect: the auxiliary �elds yield the cosmological term and insupergravity one can obtain vanishing cosmological constant due to cancelationsbetween the matter and gauge sectors. Taking�ES = ��@�S�LS = 0 ; (226)the action (225) is still Einstein and local Lorentz invariant. We must now showthat it is locally supersymmetric. First we must specify whether we take thespin connection !�mn as an independent �eld or as a composite expression. Insome sense we shall do both, as we next explain.The spin connection !�mn we do not take as an independent �eld, butwe assume that it is expressed in terms of e�m and  �� by solving its ownnonpropagating �eld equation:!�mn = !�mn(e;  ) : (227)However, we do not expand !�mn(e;  ) in terms of  �; rather, we keep it as acomposite object in the action. The reason is that whenever we vary !�mn, itis multiplied by its own �eld equation �I=�!�mn(x), which vanishes identicallywhen we substitute !�mn(e;  ) for !�mn. So we need not vary !�mn atall! Taking !�mn as an independent �eld is known as the �rst-order formalism,expressing !�mn in terms of e�m and  �� receives the names of second-orderformalism or Palatini formalism, and doing the latter but not expanding !�mnin terms of  � goes under the name of 1.5 order formalism.To study the invariance of the action under local SUSY, we recall that weonly need to vary the explicit e�m and  �, but not those e�m and  � which arecontained in !�mn(e;  ). For the transformation law of  �, we take� � = 1� D�(!) � = 1� � @��+ 14 !�mn 
m
n�� ; (228)with !�mn = !�mn(e;  ). This is the gravitational covariantization of � � =1� @��. The factor 1=� is needed in order that the dimensions match: [ �] =[@�] = 1 and [�] = �1=2, so we need 1=�, since [1=�] = 1=2. Of course, [!�mn] =1, since it contains one derivative [see eq. (214)]. A further term � S
�� willbe added later to (228). We shall not postulate �e�m, but rather derive it by47



requiring SUSY invariance of the action. Noting that �e = em��e�m, we havefor the variation of the �rst term in the action (225)�I2 = � 18�2 Z d3xR��mn(!) �[eem�en�]� 14�2 Z d3x e �R�m � 12 e�mR� �em� :(229)Using that the two gravitinos in I3=2 give the same variation (see exercise below)and [D�(!); D�(!)] � = 14 R��mn(!) 
m
n � ; (230)we �nd�I3=2 = 1� Z d3x ���� � �D�(!)D�(!) � = 18� Z d3x ���� � �R��mn(!) 
m
n � :(231)We simplify �I3=2 by using the identities
[m
n] = ��mnr
r (232)�����mnr = �6 e e[m�en�er]� : (233)Then, using that the scalar curvature R is de�ned by R�m em� and introducingthe notation  m = em� � �, we get�I3=2 = 12� Z d3x e �R�m � 12 e�mR� � m
�� (234)From eqs. (229) and (234) we see that if we choose�em� = 2� � m
�� ; (235)the variations of I2 and I3=2 under local SUSY cancel each other. We can obtain�e�m from this result by using that� (e�mem�) = (�e�m) em� + e�m (�em�) = 0 : (236)Using also that � m
�� =���
� m, we �nd�e�m = 2� ��
m � (237)One may check that the factor � is again needed for dimensions: [e�m] = 0; [�] =�1=2; [ � ] = 1 and [�] = �1=2.Exercise 14: Show that for any � �,Z d3x ���� � �D�(!) � � = Z d3x ���� � � �D�(!) � : (238)48



Before moving on to the auxiliary �eld S, let us evaluate the local SUSYcommutator on the dreibein:[�1; �2] e�m = 2��2
mD��1 � (1$ 2)= 2 @�(��2
m�1) + 2 � 14 !�rs ��2
m
r
s�1 � (1$ 2) � : (239)Setting �� � 2��2
��1 ; (240)we can rewrite this as[�1; �2] e�m = (@���) e�m + �� (@�e�m) + 2 [: : : ] : (241)Recasting [�1; �2] e�m as the expected Einstein transformation of e�m plus otherterms, we �nd[�1; �2] e�m = (@���) e�m + �� (@�e�m) + ��(@�e�m � @�e�m) + 2 [: : : ] (242)Because, in ordinary general relativity with Riemannian connection !�mn(e),the vielbein satis�es the vielbein postulate@�e�m + !�mn(e) e�n � ����(g) e�m = 0 ; (243)we can replace the curl @�e�m � @�e�m by@�e�m � @�e�m = �!�mn(e) e�n + !�mn(e) e�n (244)Hence, the extra terms in the SUSY commutator are�!�mn(e) �n + ��!�mn(e) e�n + 2 [: : : ] ; (245)where we have used the notation �n = ��e�n. The terms in 2 [: : : ], de�nedin (239), depend on !�mn(e;  ), not on !�mn(e). We can simplify them byusing the identity (18) for \
at" Dirac matrices 
m; 
r; 
s. Since 
[m
r
s] isproportional to the unit matrix, and ��2�1 = ��1�2, the terms ��2
[m
r
s]�1 and���1
[m
r
s]�2 that arise from using this identity cancel each other, and we �nd2 [: : : ] = 2!�ms(e;  ) ��2
s�1 = !�ms(e;  )�s : (246)Thus we have[�1; �2] e�m = �gc(��) e�m + [�� !�mn(e)] e�n + [!�ms(e;  )� !�ms(e)] �s :(247)The �rst term is the Einstein or general coordinate transformation of e�m, thelocal equivalent of the usual translation in fQ;Qg = P , while the second term isa local Lorentz transformation with composite parameter �� !�mn(e). The lastterm is quadratic in  � and is a sum of a local Lorentz transformation, which can49



be added to the local Lorentz transformation with �� !�mn(e) to yield a localLorentz transformation with �� !�mn(e;  ), and a local SUSY transformationwith composite parameter � � �� � , as we now show. The super-uninterestedreader may skip the details and go directly to the next section.In �rst{order formalism with an independent spin connection !�mn, thevariation of the sum I2 + I3=2 with respect to the spin connection reads�!(I2 + I3=2) = Z d3x(� e4�2 �D�(!) �!�mn � em�en�+18 ���� � � �!�mn 
m
n  �) : (248)Using eqs. (232) and (233), we obtain, after partial integration, the �eld equa-tion for !�mn1�2 D�(!) (e e[m�en]�) + 3 ( � �
r �) (e e[m�en�er]�) = 0 (249)From this equation we must �nd the solution !�mn(e;  ). To do this, we split!�mn(e;  ) into the torsionless part !�mn(e) and a torsion piece !�mn( ):!�mn(e;  ) = !�mn(e) + !�mn( ) : (250)The tensionless part!���(e) = 12 h � em�(@�e�m � @�e�m)+em�(@�e�m � @�e�m)� em�(@�e�m � @�e�m) i (251)follows from the vielbein postulate (243) and is computed in many textbooks ongeneral relativity. As a check, one may verify that the transformation law for!�mn, as given by (251), under a local Lorentz transformation �e�m = �mne�nagrees with that in eq. (213). Substituting eqs. (250) and (251) in (249), we�nd1�2 !�mk( ) ek [�en�] � (m$ n) = �� � m 
 � en� + � n
� m + � �
  n em� � :(252)The left-hand side yields four terms12�2 h!nm�( )� !kmk( ) en� � !mn�( ) + !knk( ) em� i (253)Tracing with e�n shows that !kmk( ) = 2�2 � m
 � and then the terms withen� and em� match. The solution is!�mn( ) = �2 � � �
m n � � �
n m + � m
� n ) : (254)50



So indeed the last term in eq. (247) is quadratic in  �. Adding a subtracting aterm �� !�mn( ) e�n, we �nd[�1; �2] e�m = �gc(��) e�m + �L[��!�mn(e;  )]e�m + h!�ms( )� !sm�( ) i�s :(255)The second term is, as anticipated, a local Lorentz transformation with param-eter ��
�mn(e;  ), while the last term is equal to 2�2�s � �
m s and is a localSUSY transformation with composite parameter � =�� �s s. The reason forthe negative sign is that we de�ned � � = 1� @�� + : : : in eq. (228). We canwrite the result in a uniform way as[�1; �2] = �gc(��) + �L[��!�mn(e;  )] + �susy(���� �) : (256)Thus we have shown that the local SUSY commutator on e�m closes: it is equalto a sum of local gauge transformations of the dreibein.Exercise 15: Show that in the limit of rigid SUSY, constant �s,the term linear in the �elds h�m � e�m � ��m and  � reduce to[�1; �2]h�m = 12 ��@�(h�m + hm�) + 12 ��@�(hm� + h�m)� 12 ��@m(h�� + h��) :(257)Interpret this result.3.2 Closure on the gravitino, the auxiliary �eld SLet us now add the auxiliary �eld S to our considerations. Since the variationof the last term in the action (225) yields� Z d3x ��12 eS2� = Z d3x �����
 � S2 � eS�S � ; (258)we add a term �(S) � = cS
�� to the gravitino law with c a constant to bedetermined. This yields the following new contribution to the variation of thegravitino action �(S)I3=2 = c Z d3xS ���� [��
�D�(!) � ] : (259)Clearly, the variation of S must be chosen such that the sum of the three S-dependent variations cancels. This leads to�S = ����
 � S � ce ������ 
�D�(!) � : (260)The constant c is still free at this point; the two variations proportional to cconstitute an \equation of motion symmetry". The equation of motion for S isS = 0). 51



The extra term � �= cS
�� in the local SUSY law leads to an extra localLorentz transformation of parameter 2c�S��2(
m
n�
n
m)�1 in the local SUSYcommutator on e�m[�1; ; �2] e�m = as before + 2c�S��2
m
��1 � (1$ 2)= as before + 2c�S ��2(
m
n � 
n
m)�1 e�n : (261)Consider now the local SUSY commutator on  �. We obtain[�1; �2] � = 14� h �1!�mn(e;  ) ig
m
n�2 + c (�1S) 
��2 � (1$ 2) : (262)After a long and tedious calculation, we obtain �!�mn(e;  ), and using thiswe �nd that the local SUSY commutator also closes on the gravitino. In�!�mn(e;  ) we only �nd undi�erentiated local SUSY parameters, and no termswith @��. This shows that the terms �  in !�mn(e;  ) are \super covariantiza-tions" of !�mn(e).Note that �S is proportional to the �eld equations of both the gravitino andthe auxiliary �eld, and that the extra term � � = cS
�� in the local SUSY lawfor the gravitino is linear in S. Not having an auxiliary �eld in the theory willtherefore lead to terms proportional to the  � �eld equation in the local SUSYcommutator on the gravitino.Exercise 16: Show that in �!�mn(e;  ) all terms with @�� cancel.This is one way of �xing the relative sign of the transformation rulesof of the vielbein and the gravitino, and hence of the Einstein andRarita-Schwinger actions. Closure of the algebra is another way.Note that SUSY of the action does not �x this sign, since one canalways adjust the sign of �e�m.Exercise 17: Consider the local SUSY commutator [�1; �2]S on S.Locate where the Einstein transformation comes from. Show thatin order that the algebra closes on S, there should be no terms with@��1 or @��2 on the right-hand side (super covariantization). Showthat this �xes c2. Note in this regard that, in fact, the law �S itselfis supercovariant. Do and should the S2 terms cancel? For the verybrave: evaluate this commutator explicitly to the bitter end.Exercise 18: Show that there exists a locally supersymmetric cos-mological constant termIcosm = � Z d3x e (S + � � �
�� �) (263)and �x �. The SUSY of Icosm also �xes c, which con�rms the resultfor c obtained by requiring closure of the gauge algebra in the pre-vious exercise. Note that by eliminating S from Isugra + Icosm one�nds a cosmological constant. 52



3.3 Supergravity in superspaceThe treatment of 2 + 1 dimensional N = 1 supergravity in superspace followsin most respects the treatment of Yang-Mills theory, but there is one majordi�erence: the internal symmetry generators (the Lorentz generators) act nowon the 
at indices of the covariant derivatives. In ordinary general relativity,this amounts to the well-known fact that the inverse vielbeins em� transformunder local Lorentz transformations as �Lem� = �mnen�, but that should nowcome out of the formalism and not be put in by hand.We begin by introducing the superalgebra and its generators, then introducecorresponding gauge �elds and parameters (all super�elds), and de�ne gaugetransformations by requiring that covariant derivatives transform covariantly,as in Yang-Mills theory. The gauge �elds with a 
at bosonic supervector indexare again expressed in terms of the gauge �elds with a 
at fermionic supervectorindex by the conventional constraint that fra;rbg = 2irab, where a; b are 
atfermionic indices; curved fermionic indices will be denoted by �; �. Further-more, we also impose another conventional constraint which eliminates the spinsuperconnection as an independent �eld (second order or Palatini formalism insuperspace). This is the analogue of the \no torsion" constraint in ordinarygeneral relativity. The di�erence is that in general relativity the no torsion con-straint is also a �eld equation, namely the �eld equation of the spin connection,whereas in superspace it is not a �eld equation. At least, until now nobody hasbeen able to construct an action in superspace with these constraints as �eldequations. There are several reasons why one imposes general constraints onthe supertorsions and/or on the supercurvatures:(i) To eliminate as many super�elds as possible, so as to simplify the for-malism. In three dimensions all constraints are algebraic, whereas in fourdimensions some are di�erential constraints Nieuwenhuizen (1981).(ii) The particular constraints we adopt below lead to a formalism in which,in a suitable gauge, the � = 0 part of the fermionic superconnection van-ishes while the bosonic superconnection at � = 0 become the usual spinconnection !�mn(e;  ) of the x-space theory.(iii) To remove ghosts and higher-spin �elds from the spectrum.Substituting the constraints into the Bianchi identities shows that all su-pertorsions and supercurvatures depend only on two super�elds R and Gabc.Finally we construct a superspace action whose component form reproduces thex-space action (225). It readsZ d3x d2� [ sdet (EMA) ] R ; (264)where EMA is the supervielbein, which is constructed from the gauge �eldshAM (x; �) which gauge the bosonic and fermionic translation generators P�53



and Q�. The �eld equations for this action readGabc = R = 0 ; (265)and show that there is no gravitational dynamics of the usual kind in threedimensions. Below we see all this in more detail.3.3.1 Covariant derivativesAs superalgebra we take the super Poincar�e algebra, given by[Pm; Pn] = 0[Mmn;Mrs] = ��mrMns + �nrMms � �nsMmr + �msMnr[Pm;Mrs] = �mrPs � �msPrfQ�; Q�g = �2i (
m)�� Pm[Q�; Pm] = 0[Q�;Mrs] = �12 (
[r
s])�� Q� : (266)
The minus sign in [Q�;Mrs] is needed for the Jacobi identities, since(
[m
n])�� (
[r
s])�
 = �(
[m
n])�� (
[r
s])�
 : (267)The Lorentz generators are represented on spinors by 12 
[r
s], and often weshall use the notation� 12 �rsMrs� � = 14 �rs (
r
s)��  � � ���  � : (268)Note that for vectors we have� 12 �rsMrs� vm = ��mn vn ; (269)in order that the commutator of two Lorentz transformations[�(�1); �(�2)] = � [ (�1;mk �2;kn � (1$ 2) ] (270)holds both for spinors and for vectors.We denote the set of generators of the super Poincar�e algebra collectively byTI , so TI = fQ�; P�;Mrsg : (271)We take Q� to be hermitian, and P� and Mrs antihermitian. The gauge pa-rameters 
I and gauge �elds HAI , with A a 
at superindex, A = fa;mg, are54



then given by 
I = fK�;K�; LrsgHAI =  Ha� Ha� �arsHm� Hm� �mrs ! : (272)All �elds and parameters depend on the real coordinates x� and ��.We consider now the coset fTIg=fMrsg, with coset generators Q� and P�.Then we have the usual covariant derivatives and Lie derivatives of rigid super-space. We de�ne covariant derivatives of local superspace as in the Yang Millscase by rA = DA +HAI TI : (273)The derivatives DA are the covariant derivatives of rigid superspace, containingin general also a rigid connection term for the subalgebra generators, but in thesuper Poincar�e case this rigid connection vanishes. The gauge �elds HAI arearbitrary local deviations around the rigid vielbeins and rigid connections. Wemust now distinguish two kind of indices:(i) Flat supervector indices A = fa;mg. In the inverse supervielbein that wewill construct, they appear as EAM . The supervielbein itself if EMA.(ii) Curved supervector indices M = f�; �g. Later we shall go from curvedto 
at and vice-versa by using the supervielbein, as vM = EMAvA andvA = EAMvM . This is the standard practice in general relativity, but notethe order of contractions: from left-upper to right-lower. For fermionicobjects the order will not matter.The gauge �elds consist now of the square supermatrix HAM and a Lorentzsuperconnection �Ars. The complete gauge transformation rules are as usualrA ! r0A = e�
rAe
 ; (274)where 
 = 
ITI (275)and the generators TI satisfy [TI ; TJ ] = fIJKTK (276)Note that 
 is antihermitian and commuting because the termK�Q� is antiher-mitian when bothK� andQ� are hermitian and anticommuting. In�nitesimally,�grA = (�gHAI)TI = (DA
I)TI + [HAITI ;
JTJ ] : (277)55



The covariant derivatives rA = DA +HAITI read more explicitlyra = Da +Ha�Q� +Ha�P� + 12 �arsMrsrm = Dm +Hm�Q� +Hm�P� + 12 �mrsMrs : (278)The factor 1/2 ensures that the generators Mrs are not counted twice. SinceDa = @a + i�b@ba is hermitian, Dm = @m; P� and Mrs are antihermitian, whileit is natural to require that the diagonal parts Ha� and Hm� are also hermitian,we see that Q�; �mrs and Hm� are also hermitian. The terms in ra with thePoincar�e generators show then that Ha� and �ars are imaginary. In the Yang-Mills case we therefore introduced an extra factor of i as r� = D� + iA�, buthere we will work without any extra factors of i because this actually simpli�esmatters. Thus, all gauge �elds except Ha� and �ars are now real.From eq. (277) it follows that �gHa� = DaK�+ : : : and �gHm� = @mK�+: : : . Since DaK� = fDa;K�g and @mK� = [@m;K�], w= e must take K�real if Ha� is real, and then Hm� is also real as we already saw. Similarly,from �gHm� = [@m;K�] + : : : and the reality of Hm� we �nd that K� is real,and then �gHa� = [Da;K�] con�rms that Ha� is imaginary. Finally, �g�mrs =[@m; Lrs]+: : : and �g�ars = [Da; Lrs] show that Lrs is real but �ars is imaginary,as already seen. So all gauge parameters are real.3.3.2 A new basis for the gauge �elds leading to vielbeinsWe can now go on as usual for coset manifolds. We replace the generators TIby minus the covariant Lie derivatives LI = fLM ;Lrsg, de�ned byL� = @� � i�� (
�)�� @�L� = @�12 LrsLrs = L�� x�@� + 14 Lrs (
r
s)�� ��@� + 12 LrsMrs (279)and which form a representation of the generators of the superalgebra. Herethe Mrs is the spin part of the covariant Lie derivative Lrs which acts on theLorentz indices of matter �elds and by de�nition also on the indices A ofthe gauge �elds HAM :12 LrsMrs = [ �(Lrs)L HAI ] @@HAI : (280)Since it follows from coset theory that LM does act on the indices of DN , and�AM+HAM is going to be the vielbein �eld, the de�nition thatMrs acts onHAMis natural, but it is an extra de�nition. From the knowledge of how covariantLie derivatives and the covariant derivatives DM (anti)commute, we could thendeduce the gauge transformation rules for HAI . However, we want to makecontact with general relativity, and introduce (super)vielbeins. To this purpose,56



we rewrite the covariant Lie derivatives LM corresponding to the generators P�and Q� as a linear combination of the covariant derivatives of rigid superspace:HAITI � hAMDM + 12 �ArsMrs : (281)This amounts to a linear combination of components of H . Note that HAMand hAM transform in the same way under local Lorentz transformations. Fur-ther, since neither LM nor HN contain terms with Mrs, the connections areunchanged. One could also expand HAITI on a basis of ordinary derivatives, as~hA�@� + ~hA�@� + 12 ~hArsMrs. Using the basis with DM is useful as a startingpoint for the background �eld formalism. From (281) we obtainrA = DA + hAMDM + 12 �ArsMrs : (282)This suggests to de�ne the supervielbein byDA + hAMDM = EAMDM EAM = �AM + hAM : (283)The limit of rigid superspace corresponds then to EAM = �AM and hAM = 0.From now on rA = EAMDM + 12 �ArsMrs (284)These covariant derivativesrA have no de�nite reality properties, because underhermitian conjugation the order of EAM and DM is reversed and DM acts thenon EAM . Gauge transformations still readr0A = e�
rAe
 ; (285)but we also expand 
 on the basis with DM
 = k�D� + k�@� + 12 LrsMrs : (286)In the covariant approach to Yang-Mills theory, we consistently worked withcurved superindices M = f�; �g: coordinates x� and ��, and rigidly covari-ant derivatives DM = fD�; D�g, where D� was D� = @� + i(
�)�� ��@� andD� = @�. In gravitational superspace, on the other hand, we want to interpretthe index A of hAM as a 
at index, like the index m of the usual inverse vielbein�eld em� of general relativity. In order to be consistent, we should then rewritethe DA in rA as �AMDM . We shall keep writing DA, though, but it should beunderstood that we mean �AMDM . The relation of DM to the ordinary deriva-tives @M = f@�; @�g is via the rigid inverse supervielbein: DM = E(0)MN@N .One could introduce yet another type of index for these @N in order to dis-tinguish between the two indices of E(0)MN . Therefore one sometimes writesDM = E(0)M�@� where @� are equal to the ordinary derivatives @� and @�.Then DA = �AME(0)M�@�. We shall not introduce the indices �, so for us DMand @M have the same kind of indices: curved indices in local superspace.57



3.4 Constraints and Bianchi identitiesHaving de�ned covariant superderivatives, we de�ne supertorsions and super-curvatures as usual: [rA;rBg = TABC rC + 12 RABrsMrs : (287)As in the case of Yang-Mills theory, we impose the conventional constraintfra;rbg = 2irab : (288)This constraint states thatTa;bcd = 2i �a(c�bd) Ta;bc = 0 Ra;brs = 0 : (289)We shall later see that by rede�ning the bosonic connection �abrs one mayreplace the constraint Ra;brs = 0 by the more familiar constraint Tab;cdef = 0,or equivalently Tm;nr = 0. In four dimensions one uses Tmnr = 0 to expressthe bosonic part of the spin connection in terms of supervielbeins, but in threedimensions we prefer to work with Ra;brs = 0.Using (284), we havefra;rbg = hEaMDM + 12 �arsMrs; EbNDN + 12 �atuMtu i= hEaM (DMEbN )DN + 14 �ars (
r
s)bcEcMDM+12 EaM (DM�brs)Mrs + (a$ b) i+ 2i Ea�Eb� D�� + �art �bt0s �tt0Mrs : (290)It is clear from this that the constraint (288) expresses both EabM and �abrs inrab in terms of EaM and �ars. For later purposes we record Ta;bC and Ra;brs:Ta;bC = EaM (DMEbN )ENC + �abC + (a$ b) + T(0) abCRa;brs = EaM (DM�brs) + �art �bts + (a$ b)� Ta;bC�Crs ; (291)where T(0) abC is the torsion in rigid superspace.Since the constraint (288) has the same form as in Yang-Mills theory, al-though here we have also supervielbeins, we obtain from the Jacobi identitiesthe same relation as in (108):[ra;rbc] = 12 �abWc + 12 �acWb ; (292)with anticommuting Wb, but instead of W� =W�aT a (recall that here a was agauge Lie algebra index) we now haveWa =Wabrb + Ŵabcrbc + 12 WarsMrs : (293)58



Because we are going to use this result in other Bianchi identities, we haveexpanded Wa in terms of rA and not in terms of DM . We then again deducefrom the Bianchi identity for fra; [rb;rcd]g thatraWa = 0 fab = 12i r(aWb) (294)and that[rab;rcd] = Tab;cdArA + 12 Rab;cdrsMrs = �bcfad + �adfbc : (295)In four dimensions one �nds r�W� + r _�W _� = 0 as constraint, but in threedimensions there is no di�erence between dotted and undotted spinor indices.To reduce the number of independent super�elds, we impose a further con-straint on the supertorsions which expresses also the connections �ars in termsof supervielbeins. In Yang-Mills theory this is, of course, not possible. Theconstraint is Ta;bcde = 0; or equivalently Tamn = 0 : (296)One can solve this constraint by expressing the fermionic connection �ars interms of fermionic inverse supervielbeins EaM . Let us see how. Since Ta;bcde isthe coe�cient of rde in [ra;rbc] and rbc � frb;rcg, we begin by droppingall terms with Mrs in [ra;rbc]. Then one �nds in terms of Ea � EaMDM and�a � 12 �amsMms12i [ra;rab] = hEa + �a; fEb + �b; Ec + �cg i= hEa + �a; fEb; Ecg+ �b;cdEd + �c; bdEd + �bc i= hEa; fEb; Ecg i+ �a;bd fEd; Ecg+ �a;cd fEb; Edg+ (Ea�b;cd)Ed+ (Ea�c;bd)Ed + �a;bb0�b0;cdEd + �a;cc0�c0;bdEd� �b;cd fEd; Eag � �c;bd fEd; Eag � �bc;adEd +M -terms : (297)From this expression we must now project out the term with rde. Since theleading term in rde is fEd; Eeg, while the terms with Ed appear in Ta;bcd andthose with Mrs also appear in Ra;bcrs, it is su�cient and easiest to collect onlyall terms proportional to fEd; Eeg. This yields0 = Ta;bcde = Ca;bcde + �a;b(d �ce) + �a;c(d �be) � �b;c(d �ae) � �c;b(d �ae) ;(298)where Ca;bcde is de�ned byCa;bcde @de = [Ea; fEb; Ecg] (299)59



and reads explicitlyCa;bc;de = EaMfDM [EbN (DNEcP ) ]gEP de� EbM (DMEcN ) (DNEaP )EP de + (b$ c) : (300)Note that Ca;bcde depends only on EaM because EP de depends on EaM andEabM and we have already expressed EabM in terms of EaM . Pairs of termswith �'s in eq. (300) combine into terms with an �-symbolCa;bcde � �ab�(ecd) � �ac�(ebd) = 0 : (301)Contraction with �ba yields Cbbcde + 3�(ecd) = 0 (302)We can now express �d;ec in terms of �(d;e)c by using that 2�[a;b] c =��ab�ddcand that � is traceless, that is �d;ee = 0,�d;ec = �(d;e) c + �[d;e] c = �(d;e) c + 12 �de �f;cf = �(d;e) c + �de �(f;c)f : (303)We then �nd�a;bc = �13 Cddc;ab � 13 �ab�feCdde;fc = 13 Cdda;bc � 23 Cdd(b;c) a ; (304)where we have used that 2Cdd[a; b]c = ��ab �fe Cdde;fc:From eqs. (287), (292) and (293) it follows that the constraint (296) impliesthat Ŵa;bc = 0. Then raWa = fra;Wag = 0 reduces to0 = nra;Wabrb + 12 WarsMrs o= (raWab)rb +Wab fra;rbg+ 12 (raWars)Mrs �Waacrc ; (305)where Wa;bc = 14 Wars (
r
s)bc : (306)Using that fra;rbg is symmetric in a; b, and that fr�;rab;Mrsg is a basis,we �nd that raWab +Waab = 0 (307)W(ab) = 0 (308)raWars = 0 : (309)Eq. (308) implies that Wab = �abR, with R a new real commuting super�eld.Then, eq. (307) simpli�es to rbR+Waab = 0 : (310)60



Since the same decomposition as in (104) yieldsWa;bc =W(a;bc) + 13 �abWddc + 13 �acWddb ; (311)we �nd a new totally symmetric real commuting super�eldGabc �W(a;bc) : (312)The condition (309) becomes in a spinor basisraWabc= 0 and leads toraGabc=13 frb;rcgR = 2i3 rbcR: Hence we have found that the solution to raWa = 0reads Wab = �abRŴabc = 0Wa;bc = Gabc � 13 �abrcR� 13 �acrbRraGabc = 2i3 rbcR : (313)and depends on two real commuting super�elds R and Gabc.Since we know now the solution for Wa and [ra;rbc] and [rab;rcd] aregiven in terms of Wa, we know now Ta;bcA and Ra;bcrs, and also Tab;cdef andRab;cdrs. We shall quote them below. First we note that we could have rede�nedthe connection �ab by adding any covariant term ��ab to it: �0ab = �ab+��ab.Then rbc = r0bc � 12 ��bcrsMrs (314)andfrb;rcg = 2i�r0bc � 12 ��bcrsMrs�[ra;r0bc] = 12 �abWc + 12 �acWb + 12 [ra;��bcrsMrs][r0ab;r0cd] = Tab;cdArA + 12 Rab;cdrsMrs+ 12 [rab;��cdrsMrs]� 12 [rcd;��abrsMrs] + ��abrt��cd;tsMrs(315)We can choose a suitable ��ab to make Tab;cdef vanish, i.e. Tmnr= 0. This is aconstraint one usually imposes in four dimensions. Note that, since we already�xed �ab by the constraint fra;rbg = 2irab, we cannot further constrain thegeometry by imposing Tab;cdef = 0 in the same way as we imposed Ta;bcde= 0.What we can do is, by adding a term��ab to �ab, relax the constraintRa;brs= 0,which followed from fra;rbg = 2irab and, instead of Ra;brs = 0, impose61



Tab;cdef = 0. To �nd this ��ab, we �rst evaluate Tab;cdef from [rab;rcd] byusing the results for Wa. From (295) we know that[rab;rcd] = �bcfad + �adfbc ; (316)and from (294) we have fab = 12i r(aWb) : (317)Expressing raWb as the anticommutator fra;Wbg, we obtainraWb = (raWbc)rc +Wbc frc;rag+ 12 (raWbcd)Mcd +Wb;acrc : (318)According to (313), in raWb there is only one term with rab, namelyWbc fra;rcg = R fra;rbg = 2iRrab : (319)Hence Tab;cdefref = R (�bcrad + �adrbc) : (320)Clearly, by rede�ning �abrs = �0abrs + � (
rs)abR ; (321)with � a constant, we obtain in [r0ab;r0cd] as given in (315) extra terms of theform R [Mab;rcd] � R (�bcrad + �bdrac) ; (322)and by choosing � appropriately, we can obtain that Tab;cdef = 0. Then, ofcourse, fra;rbg = 2i �r0ab � �2 R (
rs)abMrs � : (323)At this point the remaining independent super�eld is the inverse fermionicsupervielbein EaM . The supertorsions and supercurvatures only depend on Rand Gabc which themselves depend on EaM . For completeness we record all
62



TABC and RABrs: Tabcd = 2i �a(c�bd) (324)Tabc = 0 (325)Tamn = 0 (326)Ta;bcd = 12 R h �ab �cd + (b$ c) i (327)Tab;cdef = R h �bc �a(e�df) + �ad �b(e�cf) i (328)Tab;cde = 12i ��bc hGade + 23 r(aR�d)e i+23 �ad hGbce +r(bR�c)e i� (329)Rabrs = 0 (330)Ra;bcde = 12 �abWcde + (b$ c) (331)Rab;cdef = 12i h �bcr(aWd)ef + �adr(bWc)ef i (332)Waef = Gaef � 23 �a(erf)R : (333)There is a large symmetry group acting on EAM , namely super-Einsteintransformations with superparameters k� and k�, and local Lorentz transfor-mations with superparameters Lrs [see eqs. (285) and (286)]. As we shall show,one can gauge away all of EAM except the antisymmetric part of Ea�, namelyEa� = �a� , and the totally symmetric part of Ea�� , denoted by E(a��). Thesupergravity action should be gauge invariant, hence it should at most dependon  and E(a��). Variation of the action with respect to E(a��) and  shouldthen yield the �eld equations Gabc = 0 and R = 0 (or R = � if there is asupercosmological term). In what follows we see this.3.5 Action and �eld equationsWe shall now �rst derive the �eld equations in superspace, and then �nd anaction in superspace which reproduces these �eld equations.To deduce the �eld equations in superspace, we use a dimensional argument.We recall that on-shell the �eld content of N = 1 x-space supergravity is e�mand  ��, since the auxiliary �eld S vanishes on shell. Furthermore, the �eldequation of the spin connection is that the supercovariantized curl of the vielbeinvanishes, and the gravitino �eld equation is that the supercovariantized curl ofthe gravitino vanishes. We note that both the supercovariantized curl of thevielbein and the supercovariantized curl of the gravitino have mass dimension2. From this and the observation that the only covariant objects in x-space are ofthe form @@e and @ , or more precisely, supercovariantized Riemann curvaturesor gravitino curls, we see that on-shell there exist only covariant objects of mass63



dimension 2. Supertorsions and supercurvatures5 with mass dimensions equalto 1/2, 1 or 3/2 must therefore vanish on-shell. From the de�nition (287) we�nd the following table of dimensionsdim 0 : Tabmdim 1=2 : Tabc; Tamndim 1 : Tamb; Tmnr; Rabrsdim 3=2 : Tmna; Ramrsdim 2 : Rmnrs : (334)In the approach with fra;rbg = 2irab we imposed the o�-shell constraints(289) and (296), which we repeat for convenience:o� shell : Ta;bcd = 2i �a(c�bd) Ta;bc = Tamn = Ra;brs = 0 : (335)To this set we now add the constraints that all covariant objects with dimensionsbelow 2 should vanish on-shellon shell : Tamb = Tmnr = Tmna = Ramrs = 0 : (336)Note that in the approach where we replaced Rabrs = 0 by Tmnr = 0 o�-shell,one �nds the same total set of on-shell constraints. From the on-shell conditionTamb = 0 and (327) it follows that R = 0 on shell. Similarly, from Ramrs = 0and (331) we get Wabc = 0, which togethe= r with (313) and R = 0 yieldsGabc = 0. We thus have found that on-shellon shell : R = Gabc = 0 : (337)Since this implies that all supertorsions and supercurvatures vanish on-shell,we see that in 2+1 dimensions there is no (super)gravitational dynamics, awell-known result.In 3+1 dimensions, not all supertorsions and supercurvatures vanish on-shell. O�-shell they can all be expressed in terms of three super�elds R (chiral),Gm (real) and Wabc (chiral). Then one can use the Bianchi identities and boththe o�-shell and on-shell constraints to deduce that certain combinations ofmass dimension 3/2 and 2 supertorsions and supercurvatures vanish on-shell.By explicitly evaluating the � = 0 parts of these combinations, one �nds thenthe vielbein and gravitino �eld equations. On-shell one has R = Gm = 0, butWabc = 0 needs not vanish, which leads to nontrivial dynamics.Exercise 19: Show that in 2 + 1 dimensions the curvature Rmnrsalso vanishes on-shell by analyzing the terms withMrs in [rab;rcd].5The supertorsions and supercurvatures are supercoordinate and local Lorentz covarianttensors. Hence, also their � = 0 parts should be supercovariant and Einstein and local Lorentzcovariant; in particular, they are Einstein scalars. As a result, supertorsions and supercur-vatures can only be nonvanishing on-shell if they contain covariant Riemann curvatures orgravitino curls. 64



Hint: use (316) and (318). Evaluate R��rs at � = 0 and relate it toRmnrs by using a gauge in which at � = 0 one hasEMA = � e�m  �a0 ��a � �ars = 0 : (338)Show that one obtains the supercovariantized Ricci tensor, and showthat this is indeed the spin 2 �eld equation.If there is a cosmological constant � with dimension [�] = 1 in 2+1 dimen-sions, the supertorsions and supercurvatures with mass dimensions 1 in (334)may not vanish:Tmnr = � �mnr Tamb = �(
m)ab Rabrs = �(
rs)ab : (339)Then R = � is possible on-shell, instead of R = 0. In 3+1, one has [�] = 2and then Rmnrs = � �[mr�n]s is possible. Again this leads to R = �, but stillGm = 0 and Wabc = not vanishing.We must now �nd an action in superspace which is invariant under localsymmetries (general supercoordinate transformations and local Lorentz trans-formations) and which reproduces the �eld equations R = Gabc = 0. If we wantan action integrand which is a scalar density, the only candidates isI = 1�2 Z d3x d2� sdet(EMA) (c1R+ c2�) : (340)We need the gravitational constant (�2)�1 with [�2] = �1 since after integratingover � we should �nd the Einstein-Hilbert in three dimensions and the Ricciscalar has mass dimension 2. Since [d3xd2�] = �2, only the super�eld R and� are possible since [R] = [�] = 1. An integrand GabcGabc has too high massdimension, but it yields an action if one deletes the factor 1=�2; it leads then toconformal supergravity in 2 + 1.It is easy to see that the action (340) (re)produces N = 1 supergravity.Integration over � yields a term raraR j and a term with �, while using thesolution for Rab;cdef in (333) one getsraraR = �( 4i Rmnmn +raGbab ) : (341)Using that Rmnmnj is the usual scalar Riemann curvature, one recovers theEinstein-Hilbert action. The term raGbabj gives the gravitino action.Of course, having found a unique candidate for a covariant action does notyet prove it does indeed yield the correct �eld equations. There are at leastthree approaches to obtaining the �eld equations from an action:(i) One writes the action in terms of the unconstrained super�elds EaM , interms of which EMA; TABC and RABrs all can be expressed. Then onevaries with respect to EaM . 65



(ii) One chooses a gauge in which EaM is restricted to Ea� = �a� and E(a�b).If one varies then  and E(a��), one should in principle add compensatinggauge transformations to stay in this gauge, but since the action is gaugeindependent, this is not necessary.(iii) One �rst deduces which variations ofEAM andEMA and �Amn are allowedby requiring that the variations of constraints on the supertorsion andsupercurvatures remain zero. Then one parameterizes the variations ofthe action in terms of these allowed variations.In 3+1 dimensions the last method is the easiest because there the action isI � 1�2 Z d4x d4� sdet (EMA) ; (342)leading to the variation�I � 1�2 Z d4x d4� (�)B EBN �ENB sdet (EMA) : (343)One can then �nd the general form of HAB = EAM �EMB by varying thesupertorsions which are constrained to be zero or constant,�TABC = TABDHDC � �HADTDBC +rAHBC�12 EAM ��Mrs(
r
s)BC + (�)AB (A$ B) � (344)and requiring that these variations all cancel. Crucial in this approach is thattotal derivatives in (�)AHAA vanish upon superintegration. In our case of 2+1dimensions, these total derivatives are still multiplied by R, so they do notvanish. We shall therefore �rst choose the gauge in (ii), and then vary as in(iii).To gauge away as many parts of EAM as possible while not breaking rigidSUSY, i.e. while still ending up with unconstrained super�elds, we �rst de-duce how EAM transforms and then look for �eld-independent terms in thesetransformation laws. The transformation law of EAM can be obtained straight-forwardly from (285) and (286):r0A = �EAMDM + 12 �ArsMrs�0 = �rA ; kMDM + 12 LrsMrs � : (345)One �nds�EAM = EAN (DNkM )� kN (DNEAM )�EANkP T (0)PNM � LABEBM ; (346)where6 LAB = �12 �Lrs(
r
s)ab ; Lmn	 (347)6Recall from eq. (268) that on a spinor  a the Lorentz group acts as � 12 �mn(
m
n)ab b,so on  a one gets an extra minus sign. 66



and T (0)MNP is the torsion of rigid superspace, due to [DM ; DNg and only nonzerofor fD�; D�g = 2i
���@�. The �eld-independent terms in (346) are�Ea� = Ea�D�k� � LabEb� + : : :�Ea� = Ea�D�k� � 2i Ea�k�(
�)�� + : : : : (348)We can use a Lorentz transformation with Lab = � 12 Lrs(
r
s)ab to make theEa� antisymmetric. Then the most general expression for Ea� idEa� = �a�  (x; �) : (349)This is similar to the practice of making the vielbein in x-space symmetric bya suitable local Lorentz transformation. We can then use k� to remove someparts of Ea�. Indeed, for Ea;bc � �aa0Ea0� (
�)bc we �nd�Ea;bc = 2i �aa0Ea0� k� ( ��b��c + ��c��b ) + : : := 2i (Eackb +Eabkc ) + : : :' 2i (�ackb + �abkc) +O (Eac � �ac) ; (350)and since one can decompose Ea;bc into a totally symmetric part and traceterms, just as F�;�
 in (104), we can use k� to gauge away the trace parts andthus make Ea;bc totally symmetric:Ea;bc = E(a;bc) Eaac = 0 : (351)Note that the parameter k�(x; �), or equivalently k�� is still left. In spinornotation, its � expansion readsk��(x; �) = ���(x) + �(���)(x) + i �
�(��
)(x) + i�2���(x) : (352)We shall identify ��� as the general coordinate parameter and �� as the localSUSY parameter.The symmetry group is restricted by this gauge choice. To stay in this gaugeone must satisfy �E(a���b) � �E(ab) = 0 and �Ea����a��b � �Eaab = 0. From�E(ab) = 0 one �nds  D(akb) � Lab �E(a�@�kb) = 0 ; (353)and from �Eaab = 0 Dakab � 6i  kb +Ea�@�kab � LadEdab = 0 : (354)One can solve these equations for Lab and ka, respectively. Then the remainingtransformations of  and E(abc) read� = 12 Ea�@�ka + 12  D�k� � k�D� � k�@� = 112 @��k�� + �eld-dependent -terms (355)�Eabc =  Dakbc � 4i  �a(bkc) + : : :=  D(akbc) + �eld{dependent terms (356)67



If desired, one can go on and use the parameters ���
 and ��� in k�� in(352) to remove the �rst two terms in E(abc), a so-called Wess-Zumino gauge.One is then left with  (x; �) = h(x) + i �� �(x) + i �2S(x)E(abc)(x; �) = �d h(abcd)(x) + i �2 (abc)(x) : (357)We recognize in h and h(abcd) the trace and the traceless part of the symmetricdreibein e�m + em�, while  � and  (abc) constitute the \gamma trace" 
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