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Chapter 1

Overview

Quantum statistics provides a way of understanding the statistical mechanics of particles
whose dynamical evolution is inherently governed by quantum mechanics. The statistics of
all observed particles are covered by the two well known realisations of quantum statistics,
namely, the Bose-Einstein (BE) statistics and the Fermi-Dirac (FD) statistics. Particles that
obey these statistics are called bosons and fermions respectively. While this is true for all el-
ementary particles which can have arbitrarily large momenta and exist in asymptotically free
states, in recent years there has been much interest in the physics of “quasi-particles” obey-
ing fractional statistics. Such quasi-particles may correspond to an elementary excitations
that can only exist in the interior of a many body interacting system.

A way of characteristing the statistics of identical particles is through their properties
under exchange as in the case of ideal fermions and bosons. In arbitrary space dimensions,
we characterise the particles as bosons or fermions if under the exchange of any two particles,
the wave function of the system remains the same or changes sign. Topological considera-
tions allow us to generalise this definition in two space dimensions. In 1977, Leinaas and
Myrheim[1] showed that in two space dimensions it is possible to have particles obeying
intermediate statistics different from the well known BE and FD statistics. Later Goldin,
Menikoff and Sharp[2] obtained similar results following an algebraic approach using the
commutators of particle and current density operators. Wilczek[3, 4, 5] later coined the
name anyons for particles obeying these peculiar statistics and elaborated on the connec-
tion between anyons and charged vortices. The concept of statistical transmutation where
anyons may be regarded as interacting bosons (or fermions) also took root through Wilczek’s
contributions. In the last two decades a lot of work has been done in this field. Many of
these developments have been brought up to date and nicely summarized in the books by
Lerda[6] and Khare[7] as also in the collection of articles on anyon superconductivity[8] and
reviews[9, 10].

Anyons as a research area is now nearly three decades old. These systems have emerged
as being interesting in their own right from the point of view of mathematical physics at
both the classical and the quantum level. These systems also constitute an example of
inequivalent quantizations due to non trivial fundamental group of the configuration space
[11]. Tt is well known that the existence of fractional statistics is intimately connected to
having multivalued wavefunctions, in the Schroedinger picture, which naturally occur in
quantum mechanics on multiply connected spaces [12, 13]. The classification of multivalued
wave functions is provided by one dimensional representations of the fundamental group of
the multiply connected configuration space. The configuration space Q¥ is the d-dimensional
Euclidean space given by RY with all the diagonal points, A, removed. The fundamental
group of @V turns out to be

m(QN) =Sy if d>3

7



8 CHAPTER 1. OVERVIEW

and
T (QN) =By if d=2,

where By is the braid group of N objects which contains the permutation group Sy as a
subgroup. This immediately brings out the difference between two and three dimensions
as far as the statistics of particles is concerned. However, most of the studies on anyons
in two dimensions have been done in the context of many body quantum mechanics[14,
15, 16, 17, 18, 19, 20, 21| using both numerical[22, 23, 24, 25| and perturbative method
26, 27, 28, 29]. Though there have been few attempts at studying the statistical properties
of the system[30, 31, 32, 33, 34, 35, 36, 37|, a general formulation of quantum statistical
mechanics of ideal gas of anyons is still lacking.

Anyons are particles whose many particle wave functions pick up a phase '™ under the
exchange of any two particles. Standard bosons and fermions correspond to the case when
a = 0, 1. However arbitrary values of a are allowed by the configuration topology of the many
particle system in one and two spatial dimensions[1]. The parameter « is called the statistics
of the particle. Here after we refer to o as the fractional exchange statistics parameter. It
is also well known that o = 1, implies that the wave functions are antisymmetric under
exchange which inturn implies the Pauli exclusion principle. For a = 0, the wave function
is symmetric and no restriction operates. The existence of such a principle has nontrivial
consequences for the counting of states in a many body system. The question may then
be raised as to whether this correspondence between statistics and exclusion principle be
exploited to define fractional statistics through a generalised exclusion principle? Indeed the
answer is yes. As we shall demonstrate in the following pages, a general formulation of the
statistical mechanics of ideal gas that interpolates between bosons and fermions also emerges
in the process.

In a seminal paper[38|, Haldane proposed an alternate definition of statistics based on
a generalization of the Pauli exclusion principle. Haldane’s definition was motivated by
physical examples such as quasi-particles in fractional quantum Hall systems and spinon
excitations in one-dimensional antiferromagnetic chains. We follow closely the original paper
where the idea was first introduced. As originally conceived, the definition applies to particles
with finite dimensional Hilbert spaces.

Consider the wave function of a N identical particle system. Let the wave function
be ¥(ry,r, ...,mn) in arbitrary space dimension. Let us fix the coordinates of the N — 1
particles and expand the many body wave function in a basis of of the wave function of the
i-th particle, that is,

Y(ri, e,y iy TN) = ZAV({Tj§j # i}y (ri; {rj; 5 # i), (1.1)

[1e%g

where ¢, span a one dimensional Hilbert space whose dimension is taken to be dy. Since we
have an identical particle system, this dimension is independent of label ¢ but will depend
on the boundary conditions and the size of the system in which it is confined. Thus dy
is extensive and may be finite. It will change depending on the change in the number of
particles, in general, for any interacting system with all the other conditions remaining the
same.

To clarify the definition, consider particles on a lattice (or a set of discrete quantum
states) of dimension d which is kept fixed. If the system contains N identical fermions, then
a single fermion can occupie any of the d — (N — 1) available single particle state due to
Pauli blocking. Thus d& = d — (N — 1) denotes the dimension of available fermionic single
particle state. On the other hand if the particles are boson, then d¥ = d since there is no
Pauli blocking. We may then consider a generalised Pauli blocking by defining a differential



relation

AdN = —gAN, (12)

where AN is the allowed change in the particle number and g is a parameter. Thus the
generalised Pauli principle implies

&% =d— g(N —1), (1.3)

where d% is the number of states accessible to a particle in the presence of N — 1 other
particles. In effect g states are blocked. The crucial point here is that the number of single
particle states given by d%; is not a constant as given by d. It depends on the number of par-
ticles in the system N. This is expected when localised particle states are non-orthogonal.
For conventional bosons ¢ = 0 and fermions ¢ = 1 but in general g may be arbitrary.
Thus the relation (1.2) may be considered as a generalisation of the Pauli principle. For
Thermodynamic limit to exist, g must be independent of the number of particles. While
interactions in general cause changes in the single particle level structure, only some very
special type of interactions leave g independent of the number of particles and such interac-
tions are necessarily statistical interactions. In all such cases we may regard ¢ as a statistical
parameter.

Even before the exclusion statistics was introduced by Haldane, the germ of the concept of
exclusion statistics was already evident in systems of particles interacting by a pair potential
of the form g(g — 1)/r? in one dimension. Here r is the relative distance between particles.
Since the wave function vanishes as 1) — r9 at short distances, we have g = 0 for bosons and
g = 1 for fermions. Interestingly, the spectrum of the interacting case for ¢ = 2 could be
obtained by requiring that the particles neither occupy the same orbital nor neighbouring
orbital in momentum space[39, 40, 41]. This in a sense is generalised Pauli principle, more
exclusive than the exclusion principle for fermions. Infact the one dimensional inverse square
model is a template for an exact realisation of FES.

Notice that we never had an occasion to refer to the dimension of the space in the foregoing
analysis. Thus the generalised Pauli principle, as formulated by Haldane, is valid in arbitrary
space dimensions unlike the fractional exchange statistics of anyons which is realised only
in two dimensions. We refer to the quantum statistics arising from a generalised exclusion
principle as Fractional Exclusion Statistics(FES) to distinguish it from the exchange statistics
formalism.

We now consider the space of N- identical particles based on the generalised exclusion
principle. For fermions the size of the full Hilbert space, that is the number of quantum
states of N identical particles occupying d states, is given by

d! (d5 + N —1)!
Dy = =0 : 1.4
NTUNNd - N)! T NU(d - 1)! (1.4)
Similarly for bosons we have
d+N—-1)! (d§+ N-1)!
DB — ( — N . 1.5
NTUONI(d - 1) N!(dB —1)! (1.5)
A straightforward generalisation for a fixed N of the system invoking FES is
d% + N —1)! d+(1—g)(N—-1))!
D(g) = (dy ) (d+(1—g) ) (1.6)

Ni(d% —1)!  Nld—gN — (1 —g))!

which reduces to (1.4) for g = 1 (fermions) and (1.5) for bosons as it should. The relations
(1.2) and (1.6) are the central relations that provide the basis for developing the statistical
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mechanics of an ideal gas obeying the FES or Haldane statistics. In related development, Ra-
manathan [42] independently proposed a generalised interpolative quantum statistics based
on a certain reordering of phase space achieved through Bose-counting strategy. Though the
aim was to predict the existence of an infinite quantum Boltzmann-Gibbs statistics akin to
the infinite statistics of Greenberg[43], its essential content is similar to the Haldane pro-
posal. Thus the exclusion statistics had its origins in the proposal by Haldane[38| and, rather
less known but equally important proposal by Ramanathan[42].

To demonstrate how such statistics could arise in an interacting model [44] we discuss
the properties of a confined system. Let us, for simplicity, consider particles confined in an
external harmonic potential in one space dimension. The energy of the N-particle system is

then given by
E=ho|> ni+ N
= : it

where w is the oscillator frequency. The occupation numbers n; are ordered set of non-
negative integers. For fermions these integers are atleast one unit apart. Suppose the
interactions modify the spectrum in such a way the new energy is given by

, (1.7)

(1.8)

N(N —1 N
E:M[Zni—l—g%—i—?

Indeed such a body shift of the energy does happen in a class of exactly solvable models in
one dimension which will be considered in some depth later. For now it is sufficient to note
that the total energy can be rewritten as

N
E = hw ni+ —1 1.9
where 7, are the modified excitation numbers given by

We note that the equation (1.9) is identical to the non-interacting energy of N particles but
where excitation quanta are given by n;. Further the distance between excitation quanta is
given by n;,1 —n; > ¢, that is the modified excitation quanta are atleast a distance g apart
resembling the distance between single particle levels as given in eq.(1.3).

We may therefore regard a model which has a spectrum given by eq.(1.8) as a system
of interacting bosons (or fermions) or equivalently, as a system of non-interacting quasi-
particles whose excitation quanta are modified such that they are a distance g apart. Thus
at zero temperature when all levels are occupied up to some Fermi energy, each cell of width
hw has an occupancy of g quasi-particles. Interestingly, removing a particle from one of
these cells, leaves g holes. Thus the particle hole symmetry acquires a new meaning in the
sense that the symmetry also requires changing g to 1/¢ which is often referred to as duality
property in the context of exclusion statistics. We will discuss this in more detail later.

We should mention that there is a rich body of work on FES and its implications. Frac-
tional Quantum Hall Systems (FQHE) are of course an example that is well known. Hal-
dane’s idea was first tested numerically for the Fractional Quantum Hall systems(FQHE)
by Johnson and Canright[45]. The normal state of the cuprate superconductors is also be-
lieved to be a possible system where FES may occur. However the theory of these two
dimensional systems is as yet incomplete and inconclusive. The theory of interacting elec-
tron systems in one dimension is unambigious. Fermi liquid theory does break down and
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such quasiparticles do exist. The concurrence of exclusion statistics and non-Fermi liquid
phases has been stated by Anderson[46] in the context of the normal state of the cuprate
superconductors. Thus we expect FES to occur in quantum wires, if the correlations play an
important role in their physics. The isotropic quantum antiferromagnetic chain is another
physically realisable model. This model can be mapped on to the Luttinger model by the
Jordan-Wigner transformation. The low energy physics is then described by a Luttinger
liquid with radius parameter equal to 1/ V2. Later on we show that the system therefore
would have quasiparticles with the exclusion statistics parameter g = 1/2, that is the quasi
particles are in fact spinons. The overscreened Kondo impurity systems are another class of
models where such quasiparticles are expected to exist. The solution of these models using
conformal field theory (CFT)[47] predict nontrivial quantum numbers for quasiparticles. In
particular, for the spin s = 1/2 which may have a physical realisation[48], where quasiparti-
cles with g = 1/2 are predicted. Experimentally there is also evidence from neutron inelastic
scattering experiment[49] on the compound KCuFj, which is regarded as a one dimensional
Heisenberg antiferromagnet above the temperature 40 K. The observed inelastic scattering
is best fitted by spinon excitations in a spin chain whose pairwise interaction falls off as the
inverse square of the lattice spacing [50]. The dynamic correlation function for such a sys-
tem has been calculated by Haldane and Zirnbauer[51]. The many body states and operator
algebra for exclusion statistics was dealt in detail in [52, 53].

In the following pages we develop the quantum statistics as viewed from the generalised
Pauli principle of Haldane. The central idea of Haldane that such a principle be applied
to elementary excitations that can only exist in the interior of a region of matter is devel-
oped further by deriving the thermodynamic properties of an “ideal gas” consisting of such
quasi-particles. We discuss an earlier work by us[54] in which we had generalized Haldane’s
definition to the case where the Hilbert space of the particles is infinite dimensional. We
showed that the statistics parameter g is determined by the high temperature limit of the sec-
ond virial coefficient. This was then applied to the case of exchange anyons in two dimensions
and to the case of quasiparticles in the Luttinger model. We derive the distribution func-
tion of such quasi-particles based on important contributions from Ramanathan[42], Wu[55]
and Isakov[56] who independently derived the distribution function obeyed by particles with
FES. Earlier in the specific case of particles occupying the lowest Landau level, the same
distribution has been derived by Ouvry[57]. It is now known that the anyons occupying the
lowest Landau level obey ideal FES in the sense it was defined by Haldane.

In most of the cases cited above, the existence of fractional exclusion statistics was as-
sumed and consequences worked out. We look at the microscopic origins of FES and its reali-
sation in some exactly solvable models. It turns out that in one-dimension at least there exist
a class of models of interacting fermions which can be looked upon as a model of noninteract-
ing anyons obeying FES. These are the well known Calogero-Sutherland model (CSM) where
the particles interact via an inverse square interaction in some confining potential[39, 40, 41]
and quasiparticles in Luttinger Model[58, 59]. That the particles of CSM obey FES has
been shown by several authors recently[56, 60, 61, 62]. Furthermore we have argued that
the quasiparticles of the Luttinger model also obey FES[54]. Infact just as the Hamiltonian
of the particle-flux composite describes the anyons in two dimensions, the Hamiltonians in
these one dimensional models provide the framework for fractional statistics particles in one
dimension.

In any interacting many body system, the interaction causes the shift in single particles
levels. However, a crucial property of exclusion statistical interactions is that they should
cause shifts in single particle energies at all scales[54]. This property is realized by a large
class of one dimensional models of interacting fermions where Fermi liquid theory breaks
down [46, 63]. In fact it has been shown exactly that quasiparticles with nontrival exclusion
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statistics exist in a class of models that are solved by the Bethe ansatz [56, 60]. In partic-
ular the quasiparticles of the Calogero-Sutherland model (CSM) behave like ideal exclusion
statistics system [56, 60, 61, 62].

A feature of the exclusion statistics as gleaned from the analysis of various models is that
the exclusion acts across a set of levels unlike in the case of Fermi or Bose statistics where the
exclusion principle is stated with a single level in mind. It is this crucial difference that results
in the occurance of the so called negative probabilities[64, 65]. A microscopic interpretation
of exclusion statistics systems has been discussed by Chaturvedi and Srinivasan[66], where
they show how this problem of negative probabilities may be solved for semions, g = 1/2.
They have also indicated how their method may be generalised to other values of g. We do
precisely that next and show that the particles obeying fractional exclusion statistics can be
characterised by constraints on the sets of occupation numbers|[67]. There are no negative
probabilities if these constraints are obeyed. If these constraints are relaxed then the negative
weights arise in order to compensate for the resulting over counting. Indeed this is the way we
encounter negative probabilities in other systems in physics- for example in gauge theories,
they arise in the ghost sectors. Ghosts come from the Jacobian associated with nonlinear
gauges which essentially ensure the correct counting of states. Another example is that of the
Wigner distribution function in quantum mechanics which is not positive definite precisely
because some constraints are relaxed. A formulation based on the variable number of single
particle states, which depends on the total number of particles in the system, has been
discussed by Isakov[68] as a way to avoid the problem of negative weights.

The discussions in the following pages include many aspects of FES mentioned above and
more. The central ideal of FES, that it provides a frame-work to describe in a rather simple
way a certain class of strongly interacting systems is developed further. There may be many
important contributions which may not be covered in these pages. What is included is partly
based on our understanding of what is important in this field and partly due to our own
work forming the basis of this presentation. Obviously it is almost impossible to cover all
the of work in FES that has followed Haldane’s seminal work. If some work of importance
in the field is left out it is partly due to our ignorance or lack of understanding.



Chapter 2

Statistical mechanics of FES particles

The original definition of g is given in eq.(1.2) interms of the effective single particle di-
mensions embedded in a finite dimensional many particle Hilbert space. While this is a
useful definition for systems in which the many particle spectrum admits an interpretation
in terms of an effective single particle level spectrum, in general it may not be a very useful
definition. Furthermore for a given single particle space d and number of particles N, the
dimension of the many particle space is an integer only for some rational values rational of
g. In this chapter we first generalise the definition given by Haldane to infinite dimensional
spaces. In doing so we show that the statistics parameter g can be related to the second
virial coefficient in the equation of state under certain conditions. The distribution function
of an ideal gas obeying FES and its thermodynamic properties are derived in a manner that
we recover the properties of ideal Bose and Fermi gas at ¢ = 0 and g = 1 respectively. Thus
the average occupancy of a state in the thermodynamic limit can be defined in terms of the
statistical parameter g > 0.

2.1 Partition function in large d-limit

As noted in the introduction, the number of quantum states of an /N identical particle system
occupying d states is given by

T Nd—1—g(N 1)) (2.1)

The FES parameter g ensures that there is smooth and simple interpolation between bosonic
limit D¥ = Dy(g = 0) and the fermionic limit DY = Dy(g = 1). In principle g may
be greater than 1. We note that the above generalisation is a matter of definition for
arbitrary values of g and is consistent with Haldane formulation of FES. Furthermore, the
combinatorial expression introduced above is only a way of realising the original definition
of g given by eq.(1.2) which admits more than one interpretation in terms of the dimension
of the many particle states[65, 69, 70, 71]. An alternative proposal is discussed in Appendix
A.

We now generalise Haldane’s definition of FES as given above to the case where the
Hilbert space of the particles is infinite dimensional[54]. We are therefore interested in the
limit when the single particle dimension d — oo, and the number of particles N is finite such
that N/d — 0. Often this limit may be confused as the zero density limit. To clarify what
this limit implies, assume that the particles are spread on a lattice of size L (per dimension)
with a spacing a. Then d = L/a and the limit d — oo would imply L — oo (infinite
volume) or the lattice spacing a — 0. Since the density is p = N/L", where n is the space

13



14 CHAPTER 2. STATISTICAL MECHANICS OF FES PARTICLES

dimension, it is clear that p — 0 when L — oo or p is finite when @ — 0 (continuum limit).
In what follows we are interested in the continuum limit when the density is finite and seek
a definition of the exclusion statistics in this limit.

Expanding the many particle dimension in powers of single particle dimension d, we have,

Dn(g) = %[dN + N(N — 1)(% —g)d" "+ (2.2)

In the limit d — oo, it is easy to see that

1 ) d N! Dn(g
— —g¢g= lim [ d]\jfv()—l}.

2 d—o0 N(N — 1) (23)

While in the above we have obtained a relation that determines g, it is not yet useful
since Dy(g) is not a meaningful quantity for systems in continuum. However, recall that a
regulated definition of the dimension of the Hilbert space is given by the N-particle partition
function,
Dy = lim Zy = lim Tr(e PH), (2.4)
B—0 B—0

where = 1/kT is the inverse temperature and Hy is the N-particle Hamiltonian. Thus
for dealing with the infinite dimensional Hilbert space for systems in continuum in arbitrary
space dimensions, we propose a definition of g as a generalization of the Haldane’s definition-

1 . 7 Zn
S —g=Clim 2 |NIZN 1. 2.
5 Y Cﬁli%N(N—l)[ Zy } 239)

Physically it is easy to see that at high temperature we are sampling infinitely many states
and is thus equivalent to taking to the continuum limit.

The constant C' is an overall constant of proportionality which should be fixed so as to
have a consistent definition of g. In general C' depends on the system geometry and the
dimension of space but should be independent of statistics . For illustration assume the
particles to be non-interacting fermions or bosons. The canonical partition function for N
particles [36] in arbitrary space dimensions, is given by

28 = 0 S [Tl 20, 26)
P 1 b

where the + signs correspond to bosons or fermions and the sum over P is given as the
number of partitions of N such that Zl]\il nil = N, n and [ being positive integers. Since
we are interested in the high temperature limit, it is sufficient to expand Zy to the next to
leading order in powers of Z;, that is

1

B N(N —1)
NI

Zv* (B) 5

200 £ 220)209) ] (2.7)

A simple derivation of this expansion is given in Appendix B. Notice that the second term
in eq.(2.7) involves Z;(2f3) since the contribution to this term comes when two particles are

in the same energy level. Substituting eq.(2.7) in eq.(2.5) and taking the high temperature
limit we obtain

1 . Z Zyt A)
+-—=C1 NI —1 - (=1 . 2.8
2 VAN 1) | 2N 556 7, (26) (2:8)
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In determining C' we made use of the fact ¢ = F1 for Boson or Fermion. In either case the
constant C' is the same and infact it should be the same for all g for a consistent definition
of the statistics parameter. For example for a particle confined in a box in 7 dimensions
we have Z;(8) = (L/A\)", where A = /27h?/m is the thermal wave length. Therefore the
constant C' = 27/2,

It is easy to see why the g given by the state counting definition, eq.(2.3), and through a
regulated definition involving partition functions, eq.(2.5), should differ by a proportionality
factor C. Notice that the expansion of Dy involves the single particle space dimension d. The
analogous expansion for Zx () should therefore be interms of Z;(/3) since d = limg_,q Z; ().
In actual fact, however, the expansion for Zy(/3) involves, in the next-to-leading-order term
which is relevent here, the factor Z;(20).

2.2 Harmonically confined systems

To test the utility of eq.(2.5), we first consider the case of identical particles in 1 space
dimensions. To be specific consider a system of N particles of mass m confined in an
oscillator potential given by

1 )
V(Fl, FQ, ey FN) = §mw2 Z 7“1-2, (29)
i=1

where w is the oscillator frequency and 7; are single particle coordinates. We emphasise that
the choice of the confining potential is not unique but merely acts as a regulator.
Using the spectrum of a particle moving in an oscillator potential in two dimensions,

E,;=ho2n+ ||+ 1),

where n is the radial quantum number and [ is the angular momentum quantum number in
two-dimensions. The single particle partition function in 7 space dimensions is given by

o~ Bhun/2
Z = 2.10
1(5) (1 —e‘ﬁﬁw)ﬁ ( )
The N-particle partition function is then given by eq.(2.6) as before. Substituting eq.(2.7)
and eq.(2.10) in eq.(2.5) it is easy to show that for the oscillator potential

1 C1
S _g=d2—
9= =5

5 (2.11)

Since g = 0,1 for bosons and fermions once again we have a consistent definition of C given

by
Z
C = lim 1(5) = 2"
B—0 Z1(2/3)

where 7 is the space dimension as noted before. Note that this value of C is different from
the one obtained for particles in a box.

We are now in a position to apply the definition of g to systems of identical interacting
particles in the continuum limit.

(2.12)

Theorem: In the high temperature limit the statistical parameter g is entirely
determined by the second virial coefficient alone provided all the virial coefficients
in the virial expansion of the equation of state are finite.
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Proof: For simplicity we consider all particles to be confined in an oscillator potential as
mentioned before. A glance at the definition of g through eq.(2.5) for two particles (N = 2),
immediately suggests that g in this case is determined by the second virial coefficient in
the virial expansion of the equation of state of the sytem. We will now elaborate on this
connection. To begin with consider a system of interacting particles in two space dimensions
so as to have well defined factors throughout. (The proof can be generalized to arbitrary
space dimensions.) The grand partition function of the system is given by

(z,V,B) = ZZNZN z =P (2.13)
N=0

where z is the fugacity parameter and p is the chemical potential of the system. In the dilute
limit, the equation of state of the system in fugacity expansion may be written as[72]

BP = lim | Lo (Z&)] Zblz

V—>oo

1 8ln ZG

p = Vlgrgo[v —F Zlblz (2.14)
where b;’s are the expansion coefficients determined completely by Z;, Zs, - - -, Z; using eq(2.13)

in eq(2.14) and P, p respectively refer to the pressure and density in the dilute limit. Thus
the general expression for b; can be obtained and is given by

bl:(Zl)HZ 1)oima= Zml—l'H Z/Z . (2.15)

{m:}
The summation over m; is constrained by

l

i=1

Using eq.(2.15) we have, for example

by = 1
AW
by = —(2— —1
VA Lo
by = L(3== —3== +1). 2.16

We may also write the equation of state as an expansion in powers of average density of the
system, p = N/V by eliminating z using eqs.(2.14), as

65 _ b
p >l

=1

1+ i al+1(p)\2)l] , (2.17)

where A\ = \/27wh%(/m is the thermal wave length. The virial coefficients a; are related to the
coefficients by, some times called cluster expansion coefficients|[72], in the fugacity expansion

a; = b1 = ]_, o9 = —bg, a3 = 4b§ - 2b3, etc. (218)
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Thus the high temperature limit of the virial expansion of the equation of state exists if
all the virial coefficients are finite in this limit. In order to proceed with the computation let
us assume that all the a;’s are finite and hence the virial expansion exists in the high tem-
perature limit. To relate these virial coefficients to the statistics parameter g, first consider
an expansion for the factor Zy/Z" which appears in eq.(2.5). In the high temperature, or
£ — 0, limit we may write

A DR ol (e (2.19)
1

where f,iN) are coefficients in the expansion which are as yet undetermined. The superscript
N indicates that these are expansion coefficients corresponding to Zy. They are in general
functions of the interaction strength and may also depend on N. Notice that the high
temperature expansion of Zy/Z¥ involves expansion in powers of (3w)? since we considering
N particles confined in an oscillator potential in two space dimensions. In other dimensions
this factor is appropriately modified while the proof goes through. The leading term is
simply the classical term. Substituting the expression for Zy/ZY in eq.(2.19) in eq.(2.15),
we obtain

b = L 2 1)t 2 2.20

If we now demand that b; ’s are finite, hence all virial coefficients a; are finite, for all [ in the
high temperature limit, all the coefficients in above expansion up to (B3w)?=2 must vanish.

Therefore
=2 ,(l-n)

ZfQ —1)t =0, (2.21)

which is the term of relevence to us. Usmg the above identity it is easy to see that
i =57 1Y = 2= 1712 et (222)

Therefore the general expression for f2

(N) Z

where all fQ(N) are now related to f2(2) corresponding to the two particle partition function.
Substituting eq.(2.23) and eq.(2.19) in eq.(2.5), we find

1

5 9= af?, (2.24)

where we have used the value of C' which is equal to 4 in two space dimensions with har-
monic oscillator potential. In order to calculate f2(2) recall the definition of the second virial
coefficient ay[72, 73, 74]

N—n)
f(

D= = N(N — )J;i/v’ (2.23)

Z1 Zy
a =5 [1 - 222] . (2.25)
Substituting for Z,/Z? we find
as = —by = —4f. (2.26)

We therefore now have a unique relation between the FES parameter g and the second virial
coefficient ay in the high temperature limit,

1
5 9= —4ay. (2.27)
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A few remarks are in order here. Notice that in order to determine fQ(N) in terms of f2(2)
it is sufficient to demand that the coefficient of the leading divergence in b; be zero in the
high temperature limit. This will uniquely fix the statistics parameter g interms of a, and
is a much weaker condition than demanding all b;’s and hence all the virial coefficients a;’s
are finite . Nevertheless, there is no way the weaker condition can be imposed in physical
systems except to demand the stronger condition that all the virial coefficients be finite
in the high temperature limit. The Haldane exclusion statistics parameter g is completely
determined by the high temperature limit of the second virial coefficient of the system of
interacting particles in the continuum which admits a virial expansion in this limit.

Notice that the final result is independent of the oscillator potential that was used as a
regulator since the oscillator parameter w always occurs in combination with g as fw. Thus
the high temperature limit and w — 0 limits can not be separated. In other words, the
dilute limit corresponding to w — 0 is the same as imposing the high temperature limit in
the particular case of oscillator regularisation.

2.3 Distribution function for ideal gas of FES

One of the main difficulties with anyons introduced through exchange statistics is that we
still do not know the statistical mechanics of an anyon gas. The difficulty mainly stems from
the fact that the quantum mechanics of many anyons is still not a completely solved problem.
Unlike the case of anyons, Haldane’s approach of generalising the Pauli exclusion principle
independent of the space dimension, allows us to define the statistical mechanics of an ideal
gas of FES particles. The formulation of statistical mechanics of a gas of particles obeying
fractional exclusion statistics is due to the important contributions by Ramanathan[42],
Wu[55] and Isakov[56]. Indeed the distribution function of particles obeying ideal FES is
also the distribution function of a gas of anyons confined to the lowest Landau level as was
shown earlier by Dasniéres de Veigy and Ouvry[57]. The interpretation of exclusion statistics
for anyons will be discussed later where this connection will be shown explicitly.

In the following we follow closely the derivation of the distribution function as given
by! Wu[55]. We consider a system of non-interacting identical particles with total energy
E confined to a volume V' which is very large. Since both the number of particles and the
volume is very large, we may divide the energy spectrum in to groups of levels or cells each
with an arbitrary number of single particle levels d; >> 1 and an average energy ¢; in the
1th cell. A given distribution of particles may have NN; particles in the ith cell. An ideal gas,
by definition, is such that the distribution conforms to

E=) Ne; > Ni=N, (2.28)

where the energy is simply a sum of the single particle energies.

One may then consider, following the standard procedure[72], the grand canonical en-
semble at a temperature 7" and with chemical potential ;. The grand partition function is
given by

Z =7 DUN}) exp[)_ Nif(u— )], (2.29)
{nvi} i
where 8 = 1/kT and k is the Boltzmann constant,
(di + (1 —g)(N; — 1))!
D({N;}) = 2.30
({N:) HNi!(di_l_g(Ni_l))! (2:30)

i

'The original derivation given by Wu is even more general than the one given here including many species
and accounting for possible mutual statistics.
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is the number of distinct microstates associated with the distribution set {N;}. When d; and
N; are large, we expect the sum in eq.(2.30) to have a sharp peak around the set of most
probable particle numbers {N;}. The average occupation number in the ith cell is defined
n; = N;/d; and using the Stirling formula for evaluating the factorials we have

log D({N;}) =~ Z d;[—n;logn; — (1 — gn;)log(1 — gn;)]
+[1+ (1 = g)ni]log[1 + (1 — g)ni. (2.31)

The most probable distribution is determined by the condition

i, [log D({N:}) + Z diniB3(p — €)] = 0. (2.32)
Thus we have
neexplfle; — )] = [1+ (1~ g)n] (1 — gn.. (2.33)

Following Wu[55], we define the function
! (2.34)
w=—— :
n g

and the statistical distribution for a single species is given by the average occupation number

! (2.35)
n;, = s .
w(eﬁ(fifﬂ)) —+ g

where the function w(z) satisfies the functional equation
w(@)?(1 + w(z)) = & = exp[B(e — p)]. (2.36)

Note that the eq.(2.36) obeyed by the Wu function w is highly non-linear for arbitrary g.
However, it is easy to see that the distribution function reduces to the Bose and Fermi cases
for g = 0 and g = 1 respectively. Boltzmann distribution is recovered when = = exp[f(e— )]
is very large such that w(z) = = and neglecting g compared to w we have

n = exp[—f(e — p)] (2.37)

as to be expected. This is the limit at low densities for any statistics. It is also obvious that
since x is non-negative, so is w and infact w is a monotonically increasing function of x . At
zero temperature, it follows from eq.(2.35) that

n; = 1/g, if ¢ < FEp, (2.38)

where E is the Fermi energy (chemical at zero temperature). In general at arbitrary tem-

peratures
1

< :

n; < p (2.39)
which is an expression of the generalised exclusion principle for exclusion statistics. It is also
quite striking that at T = 0, FES particles exhibit a Fermi surface. This fact dictates the
low temperature thermodynamics of the system when the number of particles is fixed. In
particular it also implies that the system does not condense for any finite value of ¢ however

small it is [75].
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For g = 1/2 it reduces to a simple form

1

VAT 2B ) (240)

n; =

Aoyama[76] has obtained exact solutions for g = 1/m where m > 1 is a positive integer in
terms of hypergeometric function given by

2 m-2 1 2

m’ T m Tm—1"m-—-1"""
_9  _
LN S} (2.41)

m—1"(m— 1)1

It is also interesting to note that there is a duality property[64, 77], reminiscent of the
one that is present in Chern-Simons models. This property relates the statistics with ¢ and
1/g. For example using eq.(2.33) for g and 1/g, it can be shown that

L= gny(Ble — ) = gm/g<—§<e — W) (2.42)

2.4 Properties of a homogeneous gas

Now consider an ideal gas of particles obeying exclusion statistics in 7 space dimensions
confined in a volume V' which is large. The volume element may be written as

d"p = p(e)de, (2.43)

where € = p?/2m and
/2
o(e) = LN s
['(n/2)
denotes the density of states of a free gas of particles with mass m. At zero temperature the
number of particles and the energy are given by

(2.44)

v (2m7r)77/ e”/2
No= / DA

E = _/ Mnenﬂﬂ (2.45)
Ty I'(n/2+2)2 9

where ¢, is the Fermi energy at zero temperature when the statistics parameter is g. In the
above we have used the fact that at zero temperature all levels up the ¢, are occupied with
1/g as the occupancy.

The energy per particle at zero temperature for an ideal gas is therefore given by

E Ui 2/n Ui

Nt

€F (2.46)

which shows the scaling behaviour with g of the energy per particle of fermions at g = 1.
Infact this equation can be used to determine g for gases which differ from the ideal fermion
gas behaviour. We will discuss this situation again in the context of the behaviour of cold
fermionic atoms.
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The main advantage of Wu’s distribution, however, is the calculation of the bulk proper-
ties of the gas as a function of the temperature, and this we proceed to do now. For a given
density of single-particle states p(e€), we have

V= / w+g :/om(eli(iie)' (247)

We may convert the variable of integration from e to w using

1 w4+g

= 0™

(2.48)

Thus after some straight forward algebra we have the set of coupled equations:

n( 1\ >~  dw w\? (1+w\"? v _
2 (BTF) /w w(l +w) 1n{(w_0) <1+wo) I

E  nf1 WAL oo gy w\? [(1+w\"* "
Nep 2 (ﬁTp) /wo w(l 4 w) ln (w_o) (1 +wo) ’ (2.50)

where wy is the value of w when € = 0 and e is the Fermi energy of the system at 7" = 0.
For any choice of g, eq. (2.49) is solved at a given (Ser) for wy numerically, and this wy is
used in Eq.(2.50) next to obtain (E/Ney). It also follows from eq.(2.36) that the chemical
potential p at temperature 1" obeys the relation

—Bu = glogw, + (1 — g)log(1 + wo) (2.51)

In the foregoing discussion we have taken the case of free gas for which the dispersion relation
is of the form e ~ p?. Extension to more general dispersion of the form e ~ p° is achieved
by replacing 1/2 with n/o.

As in the previous section, the grand partition function of an ideal gas with FES, may
be written in the standard form as

Zo = ZGB“NZN; z =P, (2.52)

The canonical partition Zy is given by
Zy =3 g({m e PP s S n = N (2.53)
{nx} k

where g({nx}) denotes the degeneracy of states at a given energy E. For Fermi or Bose gas
g({nx}) = 1 and the summation in eq.(2.52) reduces to a factorised form for these cases.

Zp = H(l + ze P Zp = H(l — ze PRy, (2.54)
k=1 k=1

In the case of FES it is not so obvious that it can be written in a factorised form. We thus
make the product ansatz for FES and show that it is indeed consistent

oo

Za = H(l +w,l); InZg= Zln(l +wit), (2.55)

k=1 k=1
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where wy, = w(ey, g) and w](1+wy)' 79 = e#&~# Furthermore it is also consistent with the
definition of average occupation number defined as

_( )__laanG_ 1
D = T8 06 wlemg) +9

(2.56)

The thermodynamic potential Q(u,T") is obtained by using the expression (0€2/0u) =
—N. Using eq.(2.47) for N and using the fact

ow_ 5 wtg
o Tw(l+w)
we have ) . - .
Qu,T) = ~3 InZg = —EV/O de p(e)In(1 + E) (2.57)

It is easy to see that the thermodynamic potential may also be obtained by replacing the sum-
mation in eq.(2.55) by the corresponding continuum approximation using », = V [ de p(e),
where p(e) is the density of states. and V denotes the volume. At this stage it is not necessary
to specify the dimension of the space which shall remain arbitrary.

We now turn our attention to an important theorem first proved by Robert May [78] way
back in 1964:

Theorem: In two dimensions the specific heat Cy (T, N) for an ideal gas of
Fermions is identical with that for an ideal Bose gas for all 7" and N.

That this is true despite the differences in the distribution functions of the two systems at
low temperatures is surprising at the outset. The fact that the specific heat is independent
of statistics also agrees with the well known fact that bose gas does not condense in two
dimensions. We may now ask the question if this is true for a gas of particles obeying FES,
that is for arbitrary g. Indeed the theorem of May [78] is true for all g provided the density
of states is constant.

We shall now prove this theorem for all g. We assume that the density of states is
constant (as, for example, particles confined in an oscillator trap in one dimension or free
gas in two dimensions). In the continuum limit we have

InZg = V/ deIn[1 +w(e, g)7 '] , (2.58)
0

up to an irrelevant constant factor which is not important for the analysis that follows.

Noting that

g  l—yg
de = (L + —2)a
Bde (w+1—|—w)w

we split the integral in eq.(2.58) into two parts, as

o0 1 _ o 1 _
nZg =V {g/w(o) dwﬁ—wln(“rw(ﬁ,g) H+(-g9) /w(g) dwmln(lﬂLw(E,g) Dl

=V [gfl + (1 — g)IQ] s (259)

and the lower limit w(0) is determined by the eq.(2.51).
We now rewrite the integrals I, Iy as follows: Consider [; first and rewrite

d
W = U)(O)eﬁe — eﬁ(E*NF) = _w = 5d€,
w
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where pp is a parameter that replaces w(0). Substituting this change of variable in the
integral I; we have

L = / deln[1 + e~ Alemmr)] (2.60)
0
Next consider I, and rewrite
dw
1 — w(0)efe = Ple—ns) — 7 _ 34
+w = w(0)e e T Bde

where now up is the parameter that replaces w(0). Substituting this in the integral Iy we
have

= — / deIn[1 — e~ Benm)] (2.61)
0

Substituting eqs.(2.60) and (2.61) back in eq.(2.59) we have
InZg=V [g/ de In(1 + Plemmr)y — (1 — g)/ de In(1 — eflern)y| (2.62)
0 0

If we now identify pp (1) with the chemical potential of a fermionic system (bosonic system)
we have

InZg=gInZr + (1—g) nZp . (2.63)

valid for a system with constant density of states. This was first proved in the context of
a one dimensional exactly solvable model [61] but has a more general validity. We thus
have the important result that, for constant density of states, the grand canonical partition
function of a system of FES particles, in any space dimension, is given by

Za(B, 1) = [(Zp(B, 1ur)(ZB(B, ki)~ (2.64)

where Zr and Zp are the grand canonical partition functions for the fermions and bosons
respectively. Since w(0)9(1 + w(0))179 = e~##, for the chemical potentials we have

p=gur+(1—g)us, (2.65)

where 4 is the chemical potential of the exclusion statistics particles. In the case of systems
with constant density of states it can be computed from the chemical potential pur and g
of Fermi and Bose systems. These in turn are determined by the condition,
N 10In ZF B 10In ZB

B Our B Oup
where N is the average number of particles in the system.

Since the thermodynamic potential, for arbitrary g, is given by ) = —kT'In Z4, using
eq.(2.63) we have

Q=9g0p+(1-9)25 (2.66)

for all g. Now we may use the standard form of the thermodynamic potential for the ideal
Fermi and Bose gas in two dimensions, namely

1V [=
Qprp,T) = (:F)——/ de In[1 F e Flemm)], (2.67)
7 BN Jo
where \? = 27h%3/m is the thermal wavelength. Following May [78], we define Tj as
(Z)l /o ean interparticle separation 1 (2.68)
T N thermal wavelength - A2 '
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where p is the density and Tj is the temperature which divides the classical regime (T > Tp)
from the regime of quantum statistics (7" < Tp). The total energy of the system can be
shown to be

1

where we have made use of the equation for the energy in eq.(2.47). Thus the energy of
the Bose and Fermi systems, in two dimensions, differ by a quantity proportional to N and
independent of T. This result is exact. From the definition of the specific heat we have

Cy(N,T) = (dE/dT) (2.70)
and it immediately follows that
[Cv(N,T)]p = [Cv(N,T)]r = [Cv(N,T)], (2.71)

thus proving the theorem of May for arbitrary values of g.

We may also realise the result in the dilute, low density and high temperature, limit.
The virial expansion in terms of average density p = N/V for a gas in two dimensions for
Fermi and Bose gas is given by

1 1
BQs.p = =N[LF 7(pA") + 3=(pX*)° + -], (2.72)
where except the second term all other terms are independent of statistics of the particles.

Therefore for a gas of particles obeying FES in two dimensions we have

1 1
B8O = —N[1+ Z(2g —1)(pA?) + %(p)\2)2 + -] (2.73)
Except the leading correction all other terms are common to all statistics. Therefore the
specific heat in the dilute limit is given by

BICv], = ~NKL = 2o (oW 41, (274
where the leading term is the classical equipartition value, Nk /2 for each degree of freedom.
Obviously this is a special case since the first order correction vanishes and other terms are
common to all statistics characterised by the statistical parameter g. It is interesting to
note that in the extreme relavistic limit the specific heat is independent of statistics in one
dimension which is the analogue of the non-relativistic particles in two dimensions as the
density of states are constant[78].

Before we leave this section, few remarks are in order. In the above analysis we have
emphasised the thermodynamics of a gas of FES particles with constant density of states
because of its interesting behaviour. More general cases have been dealt in great detail
by many authors. The thermodynamics of an FES gas was first discussed by Nayak and
Wilezek[64] who also pointed out the problem of the existence of negative probabilities.
A detailed analysis of the thermodynamics properties was presented by Isakov etal [79]
(emphasising the low temperature and low density expansions). In particular the fact that
the specific heat with constant density of states is independent of statistics has been noted
in Refs.[76, 79]. A detailed and careful analysis of the quantum statistical mechanics of an
ideal FES gas may also be found in Ref.[80] and more recently in Refs.[81, 82].



Chapter 3

Microscopic interpretation of FES

If we attempt to interpret the distribution function in eq.(2.35) as arising from the statistical
mechanics of a single mode with Boltzmann statistical weight f,, exp(—npe) for the mode
occupied by n particles, then it is easy to show that some of the coefficients f,, are invariably
negative when ¢ is not zero or unity. The problem with such negative probabilities was
first pointed out by Nayak and Wilczek[64] and further elaborated by Polychronokos [65] for
all values of g (except at ¢ = 0,1). This raises the problem of interpreting these negative
probabilities. It has also been speculated that these negative probabilities are an essential
feature of nontrivial exclusion statistics[65]. This also raises the question if indeed exclusion
statistics is fundamentally flawed. We will try to address this question from a microscopic
point of view. In this chapter we first discuss the origin of these negative probabilities and
discuss the resolution which leads to the microscopic interpretation of exclusion statistics.
We formulate the rules of occupancy such that the negative probabilities are avoided.

3.1 Origin of negative probabilities

Following Nayak and Wilczek [64], We illustrate the problem in the simple case of g = 1/2:
Defining f,, exp(—nf(e — p)) as the probability for an n-fold occupancy we may write

5, o esp(—fnle — 1) !
> foexp(=fnle —p)) /174 + exp[2B(e; — p)]

Normalising with f() = 1, we find that f1 = 17f2 = 1/27f3 = 1/8,f4 = 0, f5 = —1/128, <o
Except for g = 0, 1, invariably the coefficients become negative for some n at a given value
of g. Interestingly, in their original paper Nayak and Wilczek correctly point out that the
negative probabilities appear in a natural and meaningful way: For bosons and fermions the
fundamnetal assumption of symmetry or antisymmetry of the wave-function holds rigorously
and locally in momentum space. This is enough to allow one to derive the appropriate
statistical distribution for an ideal gas locally in phase space. However, in the case of exclusion
statistics for non-trivial g, the exclusion principle operates on states of nearby energy. Thus
one can not assign a probability for a single state or cell unless one takes the cell size to
be very large. If we do so by force, it will result in over counting states and the negative
probabilities occur in order to correct for this over counting.

In order to clarify the origin of negative probabilities or weights, we first discuss an
equation and its solution due to the famous mathematician Ramanujan[83]. Ramanujan
considered the following equation:

(3.1)

agX? — X74+1=0, (3.2)

25
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where a may be complex and p, g are positive. This equation can be mapped on to Wu's
equation (2.36) as a particular case.
The most general solution for X is,

- ZCN(p7 q, d)aN7 (33)
N=0
where Cy(p,q,d) =1 and Cy(p,q,d) = d and

N—
Cx(p,q,d Hd+Np—Jq N>2. (3.4)

Now consider Wu’s equation and substitute X =1 + i Then the equation (2.36) reads
e Ble-mxl=9 _ x 1 1= (3.5)

which is the same equation as Ramanujan equation (3.2) with
p=1l-g q=1 a=e’m

We can straight away apply Ramanujam’s solution and obtain

— =) Cy(l—g.1,1)e N, (3.6)
N_
where Cp = C; =1 and
N
gN
Cy(l—g,1,1)= Py = 1—=— 3.7
N( g,1, ) N TIIQ( m) ( )

Note that when g = 0 we have Cy = 1 for all N and therefore

1
1 —exp(—=f(e — p))’

= " exp(—NB(e — ) = (3.8)

Furthermore we have for ¢ =1, Cy = 0 for all N > 2 since m = N at least for the last term
of the product in eq.(3.7). We therefore obtain the solution

1+% =1+ exp(—0f(e — p)). (3.9)

These are indeed the correct solutions for ¢ = 0 and ¢ = 1. There is no problem with
negative probabilities or indeed locality in phase space for these two cases and one can make
the cell size as small as possible.

However, for arbitrary values of g, the probabilities Py become negative when gN > m
as can be seen from eq.(3.7). This is indeed the problem of negative weights pointed out by
Nayak and Wilczek. This problem was further elaborated by Polychronakos[65]. Suppose
we choose p = (1 —¢) and ¢ = 1 in eq.(3.4), we have

(d+(1—g)N —1)!
NI(d — gN)!

Cy(1—g,1,d) = d (3.10)
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which is clearly different from the dimension formula of Haldane. Polychronakos obtained the
above multiplicity of states by placing them on a circle or a periodic lattice and implementing
the minimum distance g rule. This does not alter the statistical behaviour of the system
since it leads to the same statistical distribution as in eq.(2.35). One can also derive the
Haldane dimension, Dy, formula using the above method with the restriction that any two
particles are g sites apart but without the restriction of periodicity. The above formula
also correctly reproduces the bosonic and fermionic dimension formula for ¢ = 0 and g =1
respectively. In the limit d >> 1, however, it is easy to see that

On(1~9,1,d) = Dx(9,d) + O( ).
Recall that d as usual stands for the number of available single particle states. Therefore in
the continuum limit, when d — oo, the Cy and Dy are approximately the same and lead to
the same statistical behaviour although the microscopic interpretations are different. The
problem with negative probabilities however persists in both cases.

The grand canonical partition function of the system may be written as,

Zg = (1+w ) = Y COv(1—g 1,d)e N, (3.11)
N=0

where w satisfies the equation (2.35). We have also assumed that all the energy levels are
degenerate with energy given by €. Note that this is an exact expression and no assumption
is required on the single particle dimension d. The negative weights therefore arise [64, 65],
when one insists on expanding 1 +w™" in powers of e~7¢.

Few remarks are in order here: The negative probabilities arise because of our insistence
on the factorization[66] implied in eq.(3.11). Here we assign a statistical weight to a given
state (or cell) independent of the weights corresponding to other states. The over counting
resulting from this unconstrained sum is compensated by the occurence of negative weights.
This is a feature that arises from the fact that, unlike in the case of Fermi or Bose statistics
where the exclusion principle is stated with a single level in mind, the Haldane exclusion
principle acts across a set of levels. We will show in the subsequent sections that particles
obeying fractional exclusion statistics can be characterised by constraints on the sets of
occupation numbers. Once these constraints are obeyed there are no negative probabilities.
However, if we relax these constraints (as in the case of Wu distribution function where only
maximal occupancy of a state is relevant), the negative weights occur to compensate for the
resulting overcounting.

Indeed this is they way we encounter negative probabilities in other systems in physics:
for example, in gauge theories, they arise in the ghost sectors. Ghosts come from the Jacobian
associated with nonlinear gauges which essentially ensure the correct counting of the states.
Another example is that of the Wigner distribution funciton in quantum mechanics which
is not positive definite precisely because some quantum mechanical constraints are relaxed.
We should mention here that Isakov [68] proposed an alternative formulation based on the
variable number of single particle states, which in turn depend on the total number of
particles, as a way of avoiding the problem of negative probabilities.

3.2 Canonical Partition Function

Chaturvedi and Srinivasan[66] provided an elegent microscopic interpretation of the semion
case where they prove that the factorisation implied in eq.(3.11) is not possible in exclusion
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statistics if the probabilities are to be positive definite. We reproduce their arguement as
originally given in [66] and then consider a realisation of the same in an interacting model.
Consider a system of N identical particles each of which can occupy d states with energies

€1,...,€q. The canonical partition function then has the following structure
ZN(x):Zf(nl,--- ng) 7ty - an‘:N, (3.12)
{ni}

where x denotes the set of all z;;4 = 1,---,d and z; = exp(—f¢;). Thus the set {n;} defines
a partition of N and the sum is over all such allowed partitions of N.
A consistent statistics is defined provided the weight has the following properties:

L. f(ﬂq,"',ﬂd) >0
2. f(ny,---,ng) is a symmetric function of its arguements.

While the first condition is necessary, the second one may be relaxed. The statistics obeyed by
identical particles is defined by the function f(nq,---,ng). Since f(ny,---,ng) is a symmetric
function of its arguements, we may rewrite the sum over all possible combinations of n;
contained in eq.(3.12) in terms of a sum over the partitions of N.

= 00 M) maa) (3.13)

where A = (A, Ao, -+, \g), A1 > Ay > Ag--- > Ay is a partition of N and my(xy, -, z4)
denotes the monomial symmetric function[84] corresponding to the partition which we denote

by A
= ey (3.14)

The sum on the rhs of eq.(3.14) is over all distinct permutations of (A1, ---,Ag). Since we
have written Zy in the form given by eq.(3.13) using the symmetric condition (2) it is clear
that each choice of f(Ay,---, ;) satisfying the positivity condition in (1) above defines the
statistics of identical particles under consideration. For example we have

fs(N) = 1;
1
fus(A) = N ; (3.15)
fr(A) = 1for A= (1") zero otherwise , (3.16)

define Bose, Maxwell-Boltzmann and Fermi statistics respectively. In the case of Fermions
the notation implies that only distinct partitions without repetitions is allowed in the energy
distribution. Thus the N fermions are distributed in d levels such each level contains utmost
one fermion. Setting x; = 9 = -+, 24 = 1 in eq.(3.13) we obtain the formula for the
statistical weights

Dy (d) = Zy(1M) = Zf ma(1%) . (3.17)

The number m,(1¢) is given by

d!

ma(1%) = mylmgl - -

: (3.18)

where mq, ms - - - denote the multiplicities of A;, A9, - -+ in the partition A.
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The problem of negative probabilities can restated in terms of the f(\): Suppose we
demand that
fA, - Aa) = Py, Py, -+ Py, (3.19)

where the weights Py are defined by eq.(3.7). In this case there are no occupancy restrictions
though f(\) are not necessarily positive definite since the weights P, can take both postitive
and negative values. This then violates the assumption (1) required in order to define valid
statistics. Further, in this case the f(\) are factorisable in terms of the weights. Indeed, it
is this last property of the f’s that one has to give up in order to have positive weights and
consistent statistics. Fortuitously it so happens that this problem does not arise in the case
of standard Bose, Fermi and Maxwell-Boltzmann statistics.

The formula expressing Dy (d) in terms of f(A) is used to calculate Dy(d) for a given
statistics, that is for given f(A). Here we would do the reverse and use it to fix f(\) for the
given Dy(d) and hence obtain a detailed specification of the underlying statistics. For the
semion case, this strategy, as we shall see, determines f(\) uniquely.

After these generalities, we now turn our attention to the Dy for exclusion statistics as
given in eq.(1.6): we find that for g = 1/m, Dg\}/m)(d) is an integer for arbitrary d if and
only if m divides N — 1 that is N =pm + 1,p =0,1,2,---. Restricting only to these values
of N, we may rewrite eq.(1.6) for g = 1/m as

a/my, n [ d+(m—1)p
Dypii(d) = < mp + 1 : (3.20)
We may now ask the question whether DS;T%(d) may be written in the following form:
DU A) = 3 fuym() ma(1) (3.21)
A
A1 <m

to determine fl/m()\). Since \; is greater than all other A\’s, the restriction \; < m on the
partitions that contribute to the rhs of eq.(3.21) is to incorporate the fact that the maximum
permissible occupancy when g = 1/m is m.

First let us consider the semion statistics which corresponds to choosing m = 2. Setting
m = 2 in eq.(3.21) and using the explicit expression for ngfl’ (d) given in eq.(3.20) we obtain

( Z:rpl ) = Z fiz(X) ma(1) ) (3.22)

A <2

As an example consider, for simplicity, the case p = 1 or N = 3. In this case the only
permissible partitions are (1) and (2, 1) and hence eq.(3.22) becomes

< d? > = f12(1%) S!(dd—ii%)! + f12(2,1) (d 5!2)! : (3.23)

where we have substituted the values of the m’s using eq.(3.18). Comparing the powers of d
on both sides one obtains

f1/2(13) =1; f1/2(27 1) = % . (3'24)

which are both positive. Let us now consider p to be arbitrary. The permissible partitions
in this case are

(12p+1), (2a 12p—1)’ (227 12p—3)7 Ty (2p’ 1)
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By introducing the notation A(0) = (127+1) | A(q) = (2¢,12=9+1) . ¢ =1,..- p and using
eq.(3.18), eq.(eq3.8) may be written as

d+p \ _ v d!
( o+ 1 ) = qz;fl/z(A(q)) e TS T TS (3.25)

On cancelling the factor d(d — 1)---(d — p) on both sides, eq.(3.25) may be written in the
following form

(43 ) S (2] (23 ) () (55) o

Using the identity
p
n+m n m
= E , 3.27
( p ) ( q ) (p—q ) (3:27)

q=0

and taking n =2p+ 1 and m =d — p — 1, we find that the f’s are uniquely determined:

Fi2(M(q)) = (p) ( p-qtl )1 . (3.28)

q q

The canonical partition function for N = 2p + 1 semions is thus given by

283w -3 ( ij) ( o ) maw (@) - (3.29)

q=0 q

This expression for the canonical partition function for the semion statistics is central to the
microscopic interpretation of the exclusion statistics.
Few comments are in order here:

e It is clear from eq.(3.29) that no negative fs appear and therefore the semion statstics
is as legitimate a statistics as Bose, Maxwell-Boltzmann or Fermi. The main difference
with these well known cases is that, unlike Bose, Fermi, or Maxwell Boltzmann statis-
tics, fi/2(A1, Az, -+, Ag) does not factorise as Py, Py, --- Py, as given by eq.(3.7). As
a consequence the grand-canonical partition function does not have a factorised form.
However while the factorised form is useful, it does not form the basis for defining the
statistics. When the factorised form is imposed, negative probabilities occur.

e From the structure of the canonical partition function it is clear that the semion statis-
tics is characterized by occupancy restrictions-the maximal occupancy of a state is two
particles and if a state is fully occupied the next level can be filled without any restric-
tion. However, a partially filled level puts further restrictions on the subsequent levels
being occupied.

Chaturvedi and Srinivasan[66] have also discussed the the possibility of accomodating the
semion statistics in a generelised scheme based on the permutation group and conclude that
it is not possible.

Until now we have assumed the existence of fractional exclusion statistics as determined
by the interpolating dimension formula given by Haldane. In the next section we consider
an abinitio physical realisation of this statistics in an interacting system where the quasi-
particles behave as ideal exclusion statistics particles. We further show that not only the
weights are positive definite but may also be determined for all other fractions and not just
for semions.
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3.3 Realisation in an interacting system

As emphasised in Chapter 1, it is our view that any realization of fractional exclusion statis-
tics must have its origins in systems of interacting particles. The expectation is that under
certain conditions systems of interacting particles which obey Fermi or Bose statistics may
be described in terms of quasiparticles (or quasiholes) which obey fractional statistics. As
emphasised earlier, a crucial property of exclusion statistical interaction is that it should
cause shifts in single particle energies at all scales[54]. This property is realised in a large
class of one dimensional models of interacting fermions where Fermi liquid theory breaks
down[46, 63]. In fact it has been shown exactly that quasi particles with nontrivial exclu-
sion statistics exist in a class of models that are solved by Bethe ansatz[60]. In particular,
we concentrate on the properties of the quasiparticles of the Calogero-Sutherland model
(CSM)[39, 40, 41]. It has been shown that the quasiparticles of the CSM behave like ideal
exclusion statistics particles [56, 60, 61, 62]. The main feature of CSM is that the total
energy of the many-body system can be written in terms of single quasi-particle energies
which involve shifted momenta and these shifts contain the information about the exclusion
statistics of the quasiparticles. In this section we analyse these shifted momenta and make
explicit connection with the formula in eq.(1.6). We then use them to obtain constraints on
the allowed set of occupation numbers. These are what we refer to as the counting rules that
reproduce the formula in eq.(1.6). The statistical mechanics of the system obeying these
constraints is then the same as that defined by Wu [55] and all statistical weights are shown
to be positive, thus providing a resolution of the problem of negative probabilities[64].

We begin with the trignometric Sutherland model[41] of an N-particle system on a ring
of unit radius. The Hamiltonian is given by,

P I T
2m “ O0x7 m P sin®[(z; — x;)/2]

(3.30)

where ¢ is the interaction parameter. This notatioin is deliberate as we will soon identify this
with the statistical parameter of the exclusion statistics. While the model can be applied to
both interacting bosons and fermions, we choose to work in the fermionic basis here after.
The energy of an N-fermion state may be written in terms of shifted momenta as

[~
E=_-—> kn; (3.31)

where n; = 0,1 and the shifted momenta k; (also called pseudo momenta in Ref.[62]) are
given by
(N = N)
2 Y
where m,; are distinct integers, N, *"’ are the number of particles with shifted momenta less
(greater) than k;. Note that we could have also started with the Calogero-Sutherland model
with harmonic confinement. We discuss this in the next chapter. The results below follow
analogously with the proviso that we have shifted energies instead of shifted momenta. We
choose to work with shifted momenta here since generalizations to higher dimensions may
be easier if one were to derive the constraints in momentum variables instead of assuming
specific form of confinement.
First we establish the relationship between the shifted momenta given above and the
Haldane’s dimension formula eq.(1.6). Consider the above system with an upper and lower
cutoff on the momenta, k,,,, and k,,;, respectively. We divide this range of momenta into

ki = m;—(1—g) (3.32)

()



32 CHAPTER 3. MICROSCOPIC INTERPRETATION OF FES

cells of unit length (the first and last cells could be smaller) and define the occupancy of
the j cell, n; to be the number of particles with momenta k;, such that j +1 > k; > j.
We identify single particle space dimension d with the number of cells in the range, i.e
d = kpaz — kmin, where d may be fractional. If we now denote the range of the m;s by dp,
we have

dp = Mpaz — Mupin = d+ (1 — g)(N — 1), (3.33)
where N is thenumber of particles in the cell. Since there exists an m; for every k;, the total
number of states in the range k0. — kmin is the same as that between m, 4. — Mpin. The

total number of states is then the number of ways N distinct integers can be picked from dg
distinct integers, i.e ¥Cly, as in fermionic description. Substituting for dr from the above
expression we immediately reproduce the Haldane dimension formula in Ref.[54].

In order to obtain the counting rules for occupancy we will first derive three properties
of the set of momenta {k;}. If k; are ordered such that they increase with increasing i, then
we have, ki1 —k; = mj1 —m; — (1—g). If g < 1, then it follows that m;,,; > m;. Further, if
miy1 —m; = 1 then k; 1 — k; = g and if m;yy —m; > 1 then kg — k; > (1+ g) > 1 because
m;’s are integers.

We can then draw the following three conclusions from the properties of the shifted
momenta k;:

1. The ordering in k;s is the same as the ordering in m;s.
2. “Close packed” m;s with unit spacing correspond to “close packed” k;s with spacing g.

3. The gaps between any two non-close packed k;s is greater than 1. Therefore all the k;s
in any cell are close packed.

We now come to the question as to what are the constraints on the sets of occupation
numbers {k;}. For example, if ¢ = 0, there are no constraints as in the bosonic case. If
g = 1 the constraints are n; < 1 as in the case of fermions. For any other g, one obvious
constraint come from the second property derived above, namely the occupancy of the j-th
cell n; < é which specifies the maximum occupancy of a given cell assumed to be of unit
spacing. This is the same constraint one derives from the distribution function of Wu (2.35)
at zero temperature. An important departure from the usual bosonic and fermionic case is
that the cell size is important and cannot be arbitrarily taken to zero as in the case of bosons
and fermions [64].

There are further constraints on the occupancy. To formulate them we use the third
property. Let k;, be the lowest momentum in the j% cell. Then from the second and third
property, it follows that

krp+g(n;—1) <j+1 (3.34)

We can write ky as kp = j + f(kr), where f(kr) denotes the fractional part of ky, that is,
0 < f(kr) < 1. We then have,

flkr) +g(n; —1) < 1. (3.35)
From equation (3.32), we can express f(kr) as a function of the occupation numbers,

flh) = f|~1—g =N~ 2D

(3.36)

where N = 37, ny and NJj = 37, ;. Equations (3.35) and (3.36) then constitute a set
of constraints on the occupation numbers.
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We will now show that these form a complete set of constraints. Namely, given any set of
occupation numbers, {n;}, that satisfies the constraints, there exists a set of momenta, {k;},
that realizes it. To do this, consider a set {n;}, where juin < j < jmaz. The lowest value
of the momentum in the j* cell is uniquely determined by the occupation numbers through
equation(3.36). Because of the third property, all the other momenta are also uniquely
determined. Hence we have shown that there are no more constraints. Equations (3.35) and
(3.36) form a complete set of constraints. Note also that the above logic implies that there
is a one to one correspondence between the sets of occupation numbers, {n;}, that satisfy
the constraints (3.35) and (3.36)and the sets of momenta, {k;}, that satisfy equation (3.32).

We can now remove the scaffolding of the Sutherland Model that we started with and
define exclusion statistics system by the above constraints. The connection to the dimension
formula in eq.(1.6) established earlier implies that

> F({n:}) = Dnl(g.d), (3.37)
{ni}

where N =3 n; and F({n;}) = 1 if {n;} satisfy the constraints and zero otherwise. Note
that the weights now are positive definite. There are no negative weights once the constraints
are imposed.

Next, we construct some simple examples from the above counting rules. For simplicity
we look at occupation numbers for special values of ¢ = 1/m where m is an integer. The
rules formulated above for the occupation number of exclusion particles may be combined
and restated thus:

Let m = 1/g, and let N; be the number of particles in the occupied states below
some ith level, N; = 37, _;n;. Then an occupation n;(n; < m) is allowed iff
(N; mod m) < (m —n;) .

This rule now includes all the three constraints stated above and may be regarded as the
statement of Generalised Pauli principle.

To see how this rule is implemented, consider a system of N-particles spread over d
states. In order that Dy is an integer, we choose N = mp + 1, where p is an integer. Since
N < md, we have p < d. We shall divide these d states into cells. An allowed configuration
may be represented as a string of numbers (ny, ng, ns, ...), where each n; < m denotes the
occupancy of levels ordered from left to right. Instead of dealing with a configuration where
all N particles are spread over d states (some which may be empty), we can simplify the
discussion by considering one cell at a time. Each cell may now have a partition of m. This
allows us to fill the subsequent cells without reference to the previous cell according to the
counting rules since N; mod m = 0. We now fill each cell with a partition of m which is
allowed by the rules given above. This then generates all possible allowed configurations
whose sum is given by Dy.

If, in particular, we are interested in expectation values of symmetric functions of n;,
we can work with symmetrised weights. Consider a symmetric operator O({n;}). The
expectation value of this operator may be written as,

N . Z{ni} FS({nz})O({nz})
< O({n;}) >= SR (3.38)

where

F(nd) = 533 Flon). (3.39)
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Here p stands for all permutations of the allowed configurations. Every allowed configuration
in {n;} may be characterised by the multiplicities ¢,, namely a given allowed configuration
may be written as a string, m? (m — 1)?-1...19 where ¢; + 2¢2 + ... + mq,, = N. We may
now also allow any permutation of these occupancies (with zeros added to make up d-states).
The dimension of the N-particle space may then be written as

Dn(g,d) =Y (@1 q2,-) “Cy, (3.40)
{qn}

where ¢ = > | ¢,. The new weights f are defined as,

Ma(q17 q2, Qm)
Mt(q17 q2; ---, Qm) ’

(a1, @2, ) = (3.41)

where M, are allowed configurations after symmetrising and M; is the total number of
configurations for a given set of ¢’s which define a configuration. We shall clarify this now
with specific examples.

The case of semion: We first consider the case of semion, that is ¢ = 1/2 or equivalently
m = 2. The results obtained here are exactly the same as those obtained from a more general
microscopic interpretation of FES in the previous section by Chaturvedi and Srinivasan[66].
The maximal occupancy of a state in this case is 2. Hence allowed occupancy of a state is 2
or 1. Zeros may occur any where without changing the rules. Let us implement this in the
specific case of d = 4, N = 5, say. In this case the allowed configurations are given by the
strings (2210),(2111),(1121). In the first configuration, zero can be anywhere and therefore
there are four configurations. Notice that a string of the form (1211) or (1112) violates the
counting rules. Therefore counting all the allowed configurations we obtain D5(1/2,4) = 6.
This is exactly what one gets from the Haldane formula.

Further if we symmetrise each of these allowed configurations, then the new weights may
be computed using eq.(3.41). In the specific case of m = 2, we have

Mt(Qla QQ) = Cq2a Ma(Qh qZ) =P qua (342)

where p is defined through the equation N = 2p+ 1. The corresponding f is therefore given
by,
N __ quz

f2 T oqitge CqQ (343>

Note that these weights, whether in the symmetrised form or unsymmetrised form, are pos-
itive definite. Further, this is exactly the formula derived by Chaturvedi and Srinivasan|66]
in their microscopic analysis of Haldane statistics for semions.

It is important to stress the differences in these two approaches- in their analysis Chaturvedi
and Srinivasan start from a formulation of the statistical mechanics of a system by removing
factorizability of the weights as a criterion. They derive the expression for the weights in
eq.(3.43) by imposing the conditions positivity and the requirement of symmetry (all con-
figuratons which are permutations of each other carry the same weight). Our starting point
is the Sutherland model. We derive our rules from the properties of shifted momenta. After
removing this scaffolding, we obtain not only positive definite weights for each configuration
but when symmetrised they reproduce the results of Chaturvedi and Srinivasan.



3.3. REALISATION IN AN INTERACTING SYSTEM 35

The case with ¢ = 1/3 or m = 3: The maximal occupancy of a state in this case is 3.
The allowed configurations for each cell are (3),(21),(12),(111). That is we can form a string
of allowed configuration with any of these cells in any order to make up N particles. Any
number of zeros may be added in between to make up a total of d-states.

As in the semion case we may consider expectation values of symmetric functions of n;.
Following the same procedure we can derive the symmetrized weights fi' defined in eq.(3.41).
Since, m = 3, we have

Mt(q17 q2, Q3) =1tatas C1q3 q1+q20q27 Ma<q17 q2, Q3) = ng p_q3C¢I2 (2)q27 (344)

where p, as before, is defined through the equation N = 3p + 1. The corresponding weight
f is therefore given by,

N _ TCq "BC, (2)*
i = ataeteC, ated,

(3.45)

These weights are again positive definite. Chaturvedi and Srinivasan|[66] also suggest how
their method may be extended beyond the semion case which they considered in detail.
However, this extension requires additional conditions which are not imposed in the semion
case. In contrast, the rules as derived from the point of view of an exactly solvable model are
completely specified independent of the actual value of g (or m). There is an algorithm to
derive fN for arbitrary m though this gets complicated for larger m. A further generalisation
of this approach applicable to g = [/m for all number of particles N and arbitrary number of
states d has been discussed by Bergere[85]. In here all fractional weights over symmetrised
configurations are given in full generality.

To summarise, the origin of the negative probabilities in exclusion statistical system are
well understood. In our approach we have chosen an unusual starting point in an equation
and its solution given by Ramanujan. This starting point makes precise the statements
about the occurrence of negative probabilities. Further, we have formulated a counting
principle which reproduces the Haldane dimension formula. It can therefore be used to
define exclusion statistics purely in terms of state counting. The negative probabilities
discussed in literature[64] can be understood as arising when the system constrained by the
counting rules is replaced by an unconstrained one. The negative weights then compensate
for the introduction of unphysical configurations. This is therefore exactly analogous to
other situations in physics where negative probabilities arise, for example, the ghosts and
negative norm states in gauge theories or as in the case of Wigner distribution in quantum
mechanics.
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Chapter 4

Models of ideal FES in one dimension

In the previous chapter we discussed the microscopic interpretation of exclusion statistics and
its realisation in a one-dimensional exactly solvable model. In fact this not an isolated model
since it has been recognised in general that models with the inverse square law interaction,
like the Calogero-Sutherland Model (CSM)[39, 40, 41], Haldane-Shastry[86, 87] model and
other related models behave very much like ideal gases which obey fractional statistics[88, 89].
In fact, all established models of FES, that is the ones that can be exactly mapped to FES,
are one dimensional or effectively one dimensional like anyons in the lowest landau level.
In this chapter, we concentrate on the CSM, which is a model defined in the continuum
and is exactly solvable. Just as the Hamiltonian of the particle-flux composite describes the
anyons under exchange in two dimensions, the CSM Hamiltonian provides the framework for
discussing fractional statistics particles in one dimension. This is infact a very well studied
model. The spectrum and the thermodynamics of particles described the CSM Hamiltonian
are well known. However the ideal exclusion statistical interpretation of the quasi-particles
of this system was brought out much later[60, 61, 62]. Bernard and Wu[60] showed that the
thermodynamic Bethe ansatz equations for one-dimensional integrable many-body systems
may be reinterpreted so that they code exclusion statistics. Using a completely different
approach, Ha[62] showed the same result by computing the exact dynamical density-density
correlation function. In this chapter we follow yet another approach used by us[61] to
show that the interacting fermions of CSM can be mapped ezactly to a system of “non-
interacting” quasi-particles obeying FES. Though the model, being one dimensional, may
appear “gedanken” but it provides the template for analysing models in higher dimensions
as we shall see subsequently.

In chapter 2, we have already discussed the distribution function, given in eq.(2.35) for
particles obeying FES as derived by Ramanathan[42], Wu[55], Isakov[56] and Ouvry[57].
Wu derived the result for a system with flat dispersion and assuming that Haldane exclusion
principle holds (as in the case of anyons in a magnetic field in two dimensions confined
to the lowest Landau level[57]). Furthermore, Wu also analysed the more general case of
many species with different energies ¢; and had shown that the above distribution holds
when the matrix of statistical parameters g;; is of the form gd;;. If the species index ¢
could be identified with the momentum £k, then indeed it could be the general form for
the ideal exclusion statistics. We will do precisely this in this chapter and demonstrate
[61] by a first principles calculation that this is so for model hamiltonian systems in one
space dimension. In particular we analyse the (CSM)[39, 40, 41] and the quasiparticles in
the Luttinger model[58, 59]. The inverse square interaction can thus be looked upon as a
pure statistical interaction in one dimension where the statistical parameter is related to
the interaction strength. In this chapter we discuss the mapping of interacting particles of
the CSM to a system of non-interacting quasi-particles obeying FES. We follow the method

37
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outlined by us in Ref.[61]. Alternative approaches may be found in [60, 62].

4.1 The Calogero-Sutherland model

The hamiltonian of the system of interacting particles in this model is given by,

N

H = Z{ ;;;; 1 myl} —)\Z : (4.1)

1<j=1

where the particles, whose positions are denoted by y;, are confined in a harmonic well and
the thermodynamic limit is obtaining by taking w — 0. The particles can also be put on a
circle with |y; —y;| replaced by the chord length |sinT (y; —y;)| in the interaction term as was
done in eq.(3.30). At special values of the coupling the model can be mapped on to particular
matrix models[90]. While all these models have fractional exclusion statistics in the sense
defined by Haldane, not all of them may be regarded as ideal in the thermodynamic limit
unlike the CSM. For convenience, here after, we use the dimensionless variable z; = /"= y;.

The two-body problem

In order to determine the relationship between the interaction parameter A and the
statistical parameter g we first consider the two-body problem, the minimum necessary to
bring in statistical nature of the interaction. The hamiltonian can be written as

1
H = hw —_— A——— 4.2
Z|:202+w :|+ ($1—.’L'2)2 ( )
We make the following ansatz for the solution:
= XYV 1y, w5) e~ @1HD/2, (4.3)

where
X =(x; — x2)2, Y = (z1 — x9).

The Gaussian term is the usual factor one encounters in any harmonic potential problem
and arises from the long distance behaviour of the wave function. As we will see below the
Jastrow factors X, Y are necessary to have the correct short distance behaviour or a regular
solution. The reason for keeping both X and Y is that it allows one to switch the basis from
bosonic to fermionic by just setting v appropriately. Substituting this in the Schroedinger
equation

Hy = By

we obtain an equation for the function ¢ after taking out the long and short range parts of

P as

Hyp = E¢

where the reduced hamiltonian Hs is given by
H —_1 8_2+8_2+xi+$a
221022 " 0a2 Yory P 0xy

. {)\—(a+7)(a+’y+1)+(a+7) (i—i)}—l—(a—i—’y—i—l). (4.4)

* X 89{;1 81’2
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It is clear that v (z1,x2) is a solution with well defined eigenvalues provided
A=(a+7y)(a+v+1) (4.5)

in which case the reduced hamiltonian becomes

1[ 02 0? 0 0 Y 0 0
H, = ) |:8_:L’% +8—x%1 + {xla—xl +$28_132] —l—}(@‘i"}/)(_ - _) + (Oz—i—fy—l— 1)' (4'6>

The equation becomes separable if

0 0

G ~ 95,20

This will yield a special class of solutions. However the spectrum obtained therefrom remains
exact [91]. The solution for ¢ is given by

B 2) = w7 S NCon Hon(r) Hy—() (4.7)

m=0

which is a symmetric function of x1,xs and H,, is a Hermite polynomial. The full solution
is therefore given by eq.(4.3) and the energy eigenvalues are given by

Exy=hw(N+a+y+1), (4.8)

where N is the principle quantum number.
Let us consider the fermionic basis first v = 1. The spectrum of bosons and fermions are
then given by

where « is a constant shift in energy and can be calculated in terms of the interaction
strength

200 = —1+ 1+ 4\ (4.10)

For bound states o should be real and we get the condition A > —1/4.

Since the energy spectrum is known we can calculate the second virial coefficient exactly.
We use this approach to relate the interaction parameter A to the statistics parameter g.
The second virial coefficient for a system in one dimension is given by

Z Zy

where 7y, Z5 are single particle and two particle partition functions respectively. In the high

temperature limit we have
a 1
=—+4+- 4.12
@z = 5 + 1 (4.12)
Since it is also well known that the virial coefficients are finite for the CSM system in the
high temperature limit, we can directly apply the definition of the FES parameter g through

the second virial coefficient to the CSM given in eq.(2.27):

1
5-9=-2 =g=a+l=(1=VITi/2 (4.13)
Since A > —1/4, the lower branch gives v < —1/2 while the upper branch gives a@ > 1/2.

Consequently we have g < 1/2 in the lower branch and g > 1/2 in the upper branch.
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08 Fermionic branch

06 -
04 F

02 - Bosonic branch

A

Figure 4.1: Statistics parameter g shown as a function of the interaction parameter A. The
upper and lower branches are identified to include the noninteracting fermion (¢ = 1) and
boson (g = 0) limits withing this variation. A has no upper limit for the fermionic branch.

Therefore the g = 1/2 semion point is somewhat special. If we now demand that the
noninteracting fermionic value of ¢ = 1 be contained in the solution, we should choose the
upper branch for fermions, see Fig.(4.1). Note that the above equations imply that v may be
negative and may even go up to —1 since the wave function is well behaved. However g > 0
for all allowed values of o and we have the relationship between the interaction parameter
A and the statistical parameter g given by

A=g(g—1) (4.14)

Similar considerations apply in the bosonic basis with v = 0 and ¥ = N+a+1. Following
the steps outlined for fermionic basis and using the second virial coefficient we find

1
5~ 9="0 =g=a=(1£v1+4))/2 (4.15)
and the interaction parameter is related to the statistics parameter g through eq.(4.14). The

range of variation of g in the bosonic basis is also shown in Fig.(4.1).

Many-body problem As noted before, the spectrum of CSM hamiltonian in eq.(4.1) is
exactly known. The states can be labelled by a set of occupation numbers {n;}, k =1, ..., c0.
The energy is given by,

El{ni}] =) e + hwaw, (4.16)
k=1

where ¢, = khw, N =3 7~ n,. We have substracted out the zero point energy in the above
expression for the spectrum of the CSM Hamiltonian.

Hereafter we choose to work with the Fermionic basis. Independent of which basis we
are working, it is easy to see that the Hamiltonian may always be written as,

" 1 1, - -
=Y g TR T ele =1 Y (@i—ap) (4.17)
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where we have replaced the interaction parameter A\ by the statistical parameter g as obtained
in the two-body analysis. The spectrum of states may then be written as

Bl = 3 emi — (1 - oMY, (4.18)

where ny are the fermionic occupancies (0,1). Therefore the spectrum as a function of g
remains the same once we correct for the difference in the oscillator energies for bosons and
fermions. For all practical purposes involving only the spectra, one may assume that the
spectra is valid for all g > 0. In the following discussions we work in the fermionic basis with
this proviso.

The energy functional can also be written as,

El{ni}] =) e —hw(l—g) > ngm,. (4.19)

The exact spectrum of the model is thus reproduced by an effective hamiltonian of quasi-
particle with constant density of states and constant Landau parameters[92]. As we had
discussed earlier it is this scale invariant energy shift that is the basic reason for the occur-
rance of nontrivial exclusion statistics.

Thus the particles in the CSM are FES particles in the sense of Haldane with the exclusion
statistics parameter equal to g. We will now show this more directly by deriving the formula
for the N-particle Hilbert space dimension. The approach is similar to the one given in
Chapter 3, where we argued using the trigonometric Sutherland model using shifted moments
due to interaction. To this end, we define N(¢,0) as the number of particles with energy
e <€, ie., N(€,0) = >77, 0(e — e)ny, where 6(z) = 0 for <0 and 1 for z > 0. We may
now define the shifted single particle energies as

ealk,g) = €, — hw(l — g)N (€, 0). (4.20)

We identify this shifted energy with the single particle energy since the total energy can now
be written as

E[{ni}] = ealk.g)n (4.21)

k=1
In Fig.(4.1) we display the single particle energies as a function of g starting from a fermionic
ground state where all the levels up to a given cutoff are occupied (see the figure on the left).

Notice at g = 1, the occupencies are 0 or 1 corresponding to fermionic occupancies and
it can be arbitrary at the bosonic end, g = 0. While for g = 0 or g = 1, we can define these
occupencies without any reference to the cell size, in order to define the possible occupation
numbers for arbitrary g, we choose the oscillator frequency w to provide the size[64]. This
does not alter the results at boson and fermion ends. For simplicity we look at occupation
numbers for special values of g = 1/m where m is an integer. For the ground state spectrum
displayed in Fig.(4.1), the occupation of each cell of size w is maximal, that is, it is equal to m.
However, when one removes particles below the cutoff, as shown in Fig.(4.1) to the right, the
occupation can be less than or equal to m. The position of the holes also changes because of
the spectral flow in g. The rule that emerges for occupation number of quasiparticles follows
the generalised Pauli principle stated in chapter 3.

If we allow arbitrary occupation numbers up to a maximum of m without this restriction,
then one is lead to statistics different from that of Haldane, namely the Gentile statistics[93].
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Figure 4.2: The ground state of many fermions in CSM as a function of statistics parameter
g is shown on the left. The figure on the right shows an excited state configuration with a
hole in the fermionic end. The noninteracting fermion (¢ = 1) and boson (¢ = 0) limits are
also shown.

Now assume that there are some d states up to the cutoff and a total of N particles. Using
rules of occupancy, one can count for each value of m (or g), the total number of states for
the N particle system. Indeed it turns out to be the dimension of the N particle Hilbert
space given by Haldane, namely

@+ (1 =gV -1))
Do) = g = vt

In the next section, it will be shown that even the distribution function is valid for CSM
quasiparticles in the thermodynamic limit.

4.2 The distribution function of CSM particles

The distribution function for exclusion statistics particles is given by eq.(2.35). In deriving
the distribution function, the statistics of the particles was assumed as given by Haldane.
We now show that the interacting particles in CSM may be thought of fractional exclusion
particles with the same distribution function. In this section we first define quasiparticle
number densities and show that their thermal average is exactly given by the distribution
function in eq.(2.35).

The number of particles with energy less than €, from eq.(4.21), is given by

N(€7g) = ZQ(E - EA(k7g))nk'

The quasiparticle number density in the thermodynamic limit is then given by

T . N(e—i—Ae,g)—N(E,g)
rale o) = 1m0 Ac

, (4.22)

where the limit w — 0 is to be taken first.

We will now derive a differential equation for N (e, g), the thermal average of N (e, g) and
solve it to obtain the distribution function of CSM quasiparticles whose dispersion is given
by eq.(4.20). Consider a state with N-particles labelled by {k;},7 = 1,..., N ordered such
that k;,1 > k;. Thus for this state N (e, 0) =i — 1. The " shifted energy is

ea(ki,g) = e, —w(l—g)(i —1).
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Note that e4(kiv1,9) — €a(ki,g) > wg > 0. Thus the quasiparticle energies €4(k;, g) also
increase monotonically with i. We therefore have

To get some feel for the number density, let us consider the ground state of the N particle
system. The set {k;} is (1,2,3,...,N). The corresponding set of shifted energies is (w, (1 +
9w, (1 4+2g9)w, -+, (1 + (N —1)g)w). The number of particles in the interval € to € + w is
then

, e<€ep=4gp

;€2 €p, (4.24)

nA(€7 g) =

SEENSR I

where p = wN . This is the same as the zero temperature limit of the distribution function
in eq.(2.35)( see also Fig.(4.1)).

Next we compute how the quasiparticle density changes with g. From eqgs.(4.22) and
(4.20) we see that as g increases the particles move to the right in e space with a velocity
given by wN (e, g). Thus the number of particles crossing a point € when g increases by Ag,
is given by the velocity at the point of crossing multiplied by the density at that point. We
thus obtain the differential equation for the density flow

dple,g) dp(e, g)
ag - p<67 g) 86 )

(4.25)

where p(e, g) = wN(e,g). Denoting the thermal average of p(e, g) as p(e, g) and using the
fact that in the thermodynamic limit, p2(e, g) = (p(e, g))?, neglecting fluctuations, we obtain
the differential equation

dple,q) dp(e, 9)
8{] - p<67 g) 86 .

(4.26)

The distribution function 714(¢, g) can be obtained from the solution of eq.(4.26) by using

na(e,g) = @ (4.27)

Thus we need the solution to eq.(4.26), with the boundary condition

opleg)| _ 1
de |,_, efet1

(4.28)

so as to match the result at the fermionic end.
We will now show that eq.(4.26) along with the boundary condition (4.28) is satisfied by

¢ 1
ole,q) = | dé———— | 4.29
ple.g) /0 w(e, g)+g (4.29)

where w(e, g) is determined through eq.(2.36) and is consistent with the Wu distribution
function through eq.(4.27). By changing variables from € to w in eq.(4.29) using eq.(2.36),
the integral can be written as

B 1 [ 1
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The integration can be done easily and we get

1 w(e)

. w(0)

S s )

) (4.31)

The condition p(co,g) = p and the fact that lim. . w(e,g) — oo implies that w(0) is
independent of g and
e = w(0)?(1 + w(0)) 7. (4.32)

Furthermore it is easy to verify that

0 ~w(w+1)

a—gw(ﬁ) = mﬁ(@ 9); (4.33)
gw o — w(w+1)
50 (€) ﬁ—(g+w> : (4.34)

Using these results it can be verified that the form of p(e, ¢) in eq.(4.29) does satisfy eq.(4.26).
Thus the CSM quasiparticle distribution function is given by

1

—w(e,g) g (4.35)

77LA(Ev g) =

which is exactly the distribution function derived by Wu [55].

It is important to note that the starting point of the above derivation is a system of
interacting fermions in CSM. We first obtained the total energy of the interacting system
as a sum of single particle, albeit shifted, energies. This allowed us to formulate the basic
differential equation for the number density as a function of g and energy whose solution
is the distribution function of derived by Wu by assuming exclusion statistics from the
beginning. The result indeed proves that the CSM quasi-particles are indeed ideal particles
obeying exclusion statistics.

4.3 Partition function and equation of state

Recall that the grand canonical partition function of a system with flat distribution is given
by eq.(3.11). We first write this in general for a system with arbitrary dispersion before we
apply it to CSM. The grand partition function of an ideal gas with FES, may be written in
the standard form as

Za =Y "NZy. (4.36)
N=0
The canonical partition Zy is given by

Zy =Y g({nih)e?Pimh N T = N (4.37)

{nx}

where g({nx}) denotes the degeneracy of states at a given energy E. For Fermi or Bose gas
g({nx}) = 1 and the summation in eq.(4.36) reduces to a factorised form for these cases. The
additivity property of the quasi particle energies in eq.(7.33) immediately suggests that the
grand partition function of CSM should be expressible in a factorized form. The canonical
partition function for the spectrum in eq.(7.32) is given by

N(N-1)
2

Zy = MU= =5— 71 (4.38)
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where Z} is the N particle fermion partition function. Setting g = 0, the bosonic partition

function is obtained,
N(N Y _p

I8 =" 2%, (4.39)
Combining eqs.(7.35) and (7.36) we may write the canonical partition function for CSM as,
Zy = (Zy)"(Zy)"". (4.40)

The grandpartition function may also be written in the form,

Z N Ty = Z( BueN (ZE))9(eP1mN (Z8))19, (4.41)

N=0

where we have set the chemical potential

p=gur+ (1 —g)us.

In the thermodynamic limit, the sum is saturated at the value of N = N where

N 1 (9an
B o
Neglecting fluctuations, the grand partition function can then be written as,
Za(B, 1) = (2" (B, 1ur))* (27 (B, up))' 2. (4.42)

This is exactly the grand partition function of a system obeying FES at constant density of
states as seen from eq.(2.64) where we showed that the grand canonical partition function
for a gas in two dimensions, that is for constant density of states, can be written in the form
given by eq.(4.42).

We now consider the equation of state of the quasiparticles in CSM. This has already
been done by Sutherland[40] who however chose to work with the fugacity expansion. The
coefficients of terms in the fugacity expansion in general depend on g and appear quite
complicated. However, the coefficients of the virial expansion in average density p, in the
dilute limit, are extremely simple. From the product form of the partition function in eq.
(4.42), the virial coefficients in CSM can be computed exactly using the well known virial
expansion for the Fermi and Bose systems with oscillator regularisation. The pressure is
given by

P =g(Pr)+ (1 - g)(Ps), (4.43)
where . )
BPp=p |4 2mbp Z nﬁ”l (27 8p)" (4.44)
and _
2w f5p = B, n
BPg = [1 -+ n; m(Zﬂﬁp) | (4.45)

Here B,s are the Bernoulli numbers. Notice the difference between Pr and Pg entirely comes
from the second term while all the other virial coefficients are identical. When combined
in eq.(4.43) we have the virial expansion for the system obeying CSM model. Thus the
equation of state in the dilute limit is given by

[e.e]

BP =p |1 4 2mop ) + Z B” (27 Bp)" (4.46)
n=2
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The information about the statistics of the system is entirely given by the second virial
coefficient, ay = (g — 1/2) while all other virial coefficients are independent of g. It is
interesting to note that the interaction affects only the second virial coefficient. As we had
shown [54], it is the second virial coefficient that determines the exclusion statistics. Thus the

L interaction in this system modifies the equation of state in a minimal way. It can therefore
be thought of as a purely statistical interaction in CSM. It also follows that the theorem
of May[78] that the specific heat is independent of statistics is also valid for quasiparticles
of CSM. One should however be careful in interpreting these results in the thermodynamic
limit due to the presence of the confinement potential [94, 95].

The equation of state for gases obeying FES for arbitrary dispersion and arbitrary di-
mension is given by Isakov et al [79]. In particular they also find that the equation of state of
a free gas of particles obeying FES in two dimensions has similar expansion as in eq.(4.46).
The statistical parameter dependence is contained in the second virial coefficient where as
all other virial coefficients are independent of g. In fact they are identical to the virial
coefficients given by eq.(4.46). This should not be surprising since the density of states is
constant in both cases although they refer to two different physical models. As we showed
in the beginning of this section, the product form of the partition function (see eq.(4.42)
follows from the fact that the density of states is constant and it is also true of quasiparticles
of CSM. It is this property that underlies the interesting consequences for the equation of
state.

4.4 Quasiparticles in the Luttinger Model

We will now consider quasiparticles in the Luttingermodel. We note that this spectrum
(eq.(7.32))is identical to the spectrum of quasi-particle states in a gaussian theory of compact
bosons[54, 91] with radius R = 1/4/(g) with the following identification- while & in the above
equation is a state label in CSM, in the gaussian theory of compact bosons k refers to the
box quantized momenta. The discussion in the subsequent sections thus applies to this case
also and we will elaborate on these cases in the next section. As can be seen from eq.(7.32),
the effect of the interaction is that each particle shifts the energy of every other particle by
a constant w(g — 1). The low energy physics of this model maps on to the massless Thirring
model. As is well known[58, 59], the model is exactly solvable. The theory can be written
completely in terms of the left(L) and right(R) currents satisfying the algebra
[y Tl = 1Gnbirs,

n’“m

where n,m = 1,2, ... and r, s = L, R. We also have the zero modes
[0, J5] = 10y

The hamiltonian is
2mUR

H =
L

1 [ee]
o+ > J;;J;;T] . (4.47)
n=1

r

Quasiparticles are created by the action of the vertex operators V.[(z) =: e7@¢"(*) . on the
ground state. The ¢"(x) are the bosonic phase fields given by,

—ZO’r 27 g
96J0r+2( - Jr—i-hc)

¢'(x) = ¢p(x) + 2—ar , (4.48)
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where o7, p = £1. The periodicity properties of the compact zero modes gbg ' constrain the
allowed values of ¢, to be ¢, = (NR + Or%) and R is the radius of the field ¢. It is a
function of the interaction strength. Our convention correspond to R = 1 for the case of
noninteracting fermions. The constraints on ¢, imply that quasiparticles in the left sector
must be created along with quasiparticles in the right sector (except for special values of
R). However because the hamiltonians of the two sectors are completely decoupled, it is
consistent to analyse the spectrum of the two sectors independently. We will therefore focus
on the left sector alone.

We first consider the space of one quasiparticle states which we define to be the space
of the states |z >= V,/()|0 >. These are not a linearly independent set. From the form of
V/(z), it follows that |z + L >= e"|x >, where a = ¢2. Therefore, we have the expansion
lz >= Y7 e "|n >, where k, = 2*(n + %). From the form of VI(z)|0 > it follows

L
that n > 0. It can be easily shown that |n > form an orthogonal set of eigenstates of the

Hamiltonian with eigenvalues EWY = vrk,. The single particle partition function is then
given by, i
—Ba/2 . .9
e T
7, = - = e P2 7E, =~ Bug. 4.4
1 P € 15 ﬁ I BUF ( 9)

Next we come to the N quasiparticle states which we define to be the span of |{z,} >=
[T, V/(2,)|0 >. From the fact that V, (z)V, (y) = eV (y)V}!(x) , it follows that these
many quasiparticle states pick up a phase €™ under the exchange of two of the coordi-

(0%
nates. We normal order the vertex operators to obtain, [{z,} >=[],-,, [sm (M)] ;

Hi:[:l VLT(a:n) : |0 >. Again from the form of the vertex operators it follows that we have the
expansion,

N o
. T \Tn — Tm
o) == I [sin (P2 7220) | S ekt tio it > (450
n>m {kn}
where ¢ ({k,}|{z,}), are symmetrized N particle plane waves with momenta {k,}, where
2m Na
k, = f(n+7), n > 0.

The states |{k, } > can be shown to be eigenstates of the hamiltonian with energy EV ({k,}) =
VR 25:1 k,. This exactly reporduces the spectrum of states one gets in the CSM(see
eq.(4.20)). We can show that |{k,} > are a linearly independent set of states. The states
with the same energy are however not orthogonal.

The N-quasiparticle partition function is then

Zy = e IN278,

where Z¥ is the N-particle bosonic partition function. We can now exactly compute g using
the high temperature expansion for Z% and obtain g = o. Thus the exchange and exclusion
statistics parameters are identical for these models. Note that the exchange statistics in
one dimensions is somewhat arbitary. We could have changed it by multiplying the vertex
operators with suitable cocycle factors. The exclusion statistics parameter is however unam-
bigous and unique. When R = \/Li’ the theory is equivalent to the low energy physics of the
SU(2) symmetric quantum antiferromagnetic chain. We then have the spinon excitations
with o = 1/2. Thus we recover Haldane’s result that g = 1/2 for this case.

The above example gives a clear insight into the mechanism of the phenomenon. What
is happening is that the addition of a quasiparticle causes a phase shift of every other
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quasiparticle, resulting in an energy shift of = per particle . When we count the dimension
of the single particle space with a fixed (smooth) cutoff, there are « states missing. The
important thing here is that the all single particle levels shift up by the same amount however
high the energy. This is why we get g to be well defined and nontrivial in the cutoff going to
infinity limit. We will come back to this intuitive but physical arguement again in the last

section.



Chapter 5

Exchange and Exclusion Statistics

As noted in Chapter 1, a way of characterising the statistics of identical particles is through
their properties under exchange as in the case of ideal fermions and bosons. In general we
characterise the particles as bosons or fermions if under the exchange of any two particles in
an identical particle system, the wave function is either symmetric or antisymmetric. Pauli
exclusion principle naturally follows from the antisymmetry of the fermionic wave function.
In this chapter we look at the inter-relation between exclusion and exchange statistics in
two-space dimensions.

Topological considerations allow us to generalise the definition of exchange in two space
dimensions. In 1977, Leinaas and Myrheim[1] showed that in two space dimensions it is
possible to have particles obeying intermediate statistics different from the well known Bose-
Einstein and Fermi-Dirac statistics. Later, Wilczek[3| coined the name anyons for particles
obeying these peculiar statistics under exchange.

It is beyond the scope of this book to discuss the quantum mechanics and statistical
mechanics of anyons in detail and can be found elsewhere[6, 7, 9]. Recent review on this
topic by Ouvry[10] clarifies a number of issues including a detailed discussion of anyons in
the lowest Landau level which is of relevance here. We first develop the concept of anyons in
two dimensions through multi-valued wave functions. The exchange statistics of anyons then
involves a continuous parameter, a—the so called statistical parameter. It is the peculiarity
of two dimensions that the quantisation does not depend of the particular value of «, unlike
in higher dimensions where we require « to be an integer.

In the following, by anyons we mean a quantum mechanical system of N particles in
two dimensions with wave functions which have a stipulated multi-valuedness to be speci-
fied below. To make this explicit][9], let us denote a generic multi-valued wave function as
(71, ..., 7N ), where 7; denotes the position vector of a particle. Let [P;;], denote the opera-
tion of taking the ith particle coordinate around the jth coordinate along a closed path .
The path v does not enclose any other particle coordinate and is taken in an anti-clockwise
sense, say. Then let us stipulate that under such an operation 1 acquires a phase namely

[Pyl (7, ..7N) = exp(i2ma) (T, ...TN ). (5.1)

If a path v encloses other particle coordinates as well then such a path can be broken into
a set of closed paths each of which encloses exactly one particle. Applying the stipulation
above, one can compute the total phase, for such a path. If the sense of the path is reversed
then a — —a. Clearly the phase acquired depends only on the homotopy class of the path
(i.e., it is the same for two paths 7 and ~' if v and 4/ can be continuously deformed into
each other)- « is then the statistics parameter. Because of the periodicity of the phase in
eq.(5.1), the parameter o may be restricted as 0 < o < 2

49



50 CHAPTER 5. EXCHANGE AND EXCLUSION STATISTICS

Let us introduce the complex notation for particle coordinates: z; = x;+1iy;, z; = x;—1y;.
Clearly z;;, where z;; = z; — z;, has the property that if z; is taken around z;, zf; changes
by exp(i2ma)). This allows us to write any generic wave function satisfying eq.(5.1) as,

(2, 2i) = [H <?)a/2] (2, 7), (5.2)

z
i<j N7V

with the bracketed expression being a phase that encodes the property of the wave function v
under exchange completely. Thus we have the freedom to choose 1;(22, z;) as a single valued
function. In particular we may choose ¢ to be either bosonic (symmetric) or fermionic
(antisymmetric) under exchange.

Clearly,

V(e z) =[] (@)a/2 [sz/;(zi,z-) + Viln (1:[ (z—j) Mz) QZ(zi,Zi)] . (53)

Z..
i<j Y

which can be rewritten as,
zii \ ~ ZX Thi ~
Vih(zi, Z;) = H (_—Z]> Vi (zi, Z) + iaz 5 (2, Z) | - (5.4)
i<y \Fi jan | Thi |

Since 9 is single valued, the right hand side of the above equation has exactly the same
multivaluedness as the left hand side. In other words we have,

S\ /2 N\ 2 N
Vi []] (?) %U(Zz‘,zi)] =11 (?) ] Dy, (5.5)
where 3 o
Dyptp = [V + Agly
and

Ak | T'kj |
The multi-valued wave function 1 can be interchanged with a single valued bosonic (or
fermionic) wave function but at the cost of introducing a singular vector potential.

Thus any higher order differential operators on ¢ can be written in terms of correspond-
ing covariant differential operators on the single-valued wave function 1; In particular a
Hamiltonian operator, typically — ", V74V can be written similarly. An eigenvalue equa-
tion written in terms of ¥ can then be recast as a corresponding equation in terms of 1/;
involving the covariant derivative. Note that the field strength therefore is singular involv-
ing Dirac 6(7). As pointed out by Ouvry|[10], because of the singular nature of the vector
potential, the perturbation theory is not well defined and a renormalisation procedure has
to be implemented by adding a counter term. Equivalently we can define the configuration
space of N particles with all the coincident points removed, that is the configuration space
QN = (Ry)N — A.

Although both formulations—single valued or multi-valued— are equivalent, dealing with
operators on multi-valued wave functions is much less transparent than dealing with opera-
tors on single-valued wave functions. Naive commutation rules, symmetries that one would
expect by looking at an operator on single valued functions are not at all true in general for
the “same” differential operators acting on multi-valued wave function.
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Considering eigenvalue problem in terms of ¢ has other advantages too. Since all the
subtleties of multivaluedness are equivalently transcribed in terms of additional “interac-
tion” terms (the so called statistical interactions), the eigenvalue problem is amenable to
solution in principle. One is also on firmer ground in doing usual algebraic manipulations
with operators. With these in mind we will work with single-valued wave functions with
“statistical interactions”.

As a first step one would like to understand the system of free anyons. However, the
statistical interaction falls off as | r;; |72 as | r;; |[= 0o. So one is not sure whether the
Hamiltonian with only statistical interactions has only discrete eigenvalues. An oscillator
potential ensures discrete spectrum without introducing a finite size. One could take some
other confining potential but in the limit v — 0 one should know the spectrum. One then
has hope of doing at least the perturbative analysis [26, 28]. Since the statistical interaction
depends only on relative separations, the Centre of Mass (CM) dynamics should play a
trivial role and oscillator potential also allows a separation of CM and relative coordinate
dynamics. Bearing these things in mind, we choose the oscillator potential without further
justification as in previous chapters. In order to derive the thermodynamic properties of
a system of anyons there exist well defined methods of eliminating the dependence on the
oscillator frequency [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

The Hamiltonian we consider is — after carrying out the usual scaling of variables — in
terms of dimensionless quantities

—hly Yo+ zrf—az L Ly Tl (56)
=1

j>i=1 U itk 1k

where
iy = (7 — 75) % (P — Pj)-

and all distances have been expressed in units of \/% . Notice that the statistical interaction
is independent of the centre of mass coordinates. In the quantum analysis, the Hamiltonian is
considered to act on wave functions which vanish suitably at the coincident points effectively
removing the diagonal points from the configuration space.

We first briefly summarise the results in the case of two anyons which is exactly solvable
and use the eigenvalue spectrum to derive results that relate exchange statistics of anyons
with their exclusion property.

5.1 Spectrum of two-anyons
The quantum Hamiltonian in the case of two anyons may be written as
H = H., + Hrel7 (57)

where H,, is the Hamiltonian that describes the dynamics of the centre-of-mass coordinate
R= (11 + 7)/2. Since the statistical interaction is translation invariant, the centre-of-mass
part is independent of this. As a result the spectrum of this Hamiltonian is the same as the
spectrum of a two dimensional oscillator. That is,

Ecm - hwcm[2ncm+|lcm‘ +1]7 Nem 2071»27"'710771 :0,:|217Z|22, (58)

Here n.,, and [.,, denote the radial and angular momentum quantum numbers of the centre-
of-mass excitations and w? = 2w?.



52 CHAPTER 5. EXCHANGE AND EXCLUSION STATISTICS

The relative Hamiltonian is given by,
Hrel = hw[pQ +rt = a/’f‘_ + __]7 (59)

where p is the momentum operator and ¥ = 77 — 75 is the relative position vector. The
eigenvalue equation is easily solved by noting that the additional a dependent terms, may
be combined with the centrifugal barrier with [ shifted by [ — «. The spectrum of the
Hamiltonian is then given by,

Eg=hm2n+|l—a|+1]; n=0,1,23,---; 1=0,£1,+2,--- (5.10)

where n and [ denote the radial and angular momentum quantum numbers which label
the state. Together with the spectrum of H,,,, this provides the complete spectrum of two
anyons in an oscillator potential. Indeed this is the only case that can be solved exactly.
When [ is even(odd) the corresponding wave functions are symmetric(antisymmetric) and
therefore the wave function corresponds to a system of two bosons (fermions) interacting via
the statistical interaction.

5.2 Statistical parameters g and «

We now use the spectrum of two anyons to derive the second virial coefficient of anyons and
relate it to the exclusions behaviour of anyons. In order to apply the results, however, we need
to assume that the virial expansion exists for anyon gas. This is a nontrivial assumption
since it is not conclusively proved that all the virial coefficients are finite for anyon gas.
However the second virial coefficient is easily calculated and it has also been proved that the
third virial coefficient is finite[33, 34, 35, 32, 37]. If indeed all virial coefficients are finite,
we can relate the exclusion statistics parameter g to the exchange statistics parameter «
through the second virial coefficient. We do this now.

The spectrum of two anyons confined in an oscillator potential is given by eq.(5.8) and
eq.(5.10) broken into centre of mass and relative parts. The centre of mass contribution does
not depend on « the statistical parameter . This information is sufficient to calculate the
partition function of two anyons and hence relate the statistical parameters in exchange and
exclusion statistics. In chapter 2 we obtained the relationship

1 Z | 2y
——g=41lim — |2— —1 5.11
2] "
where § = 1/kT as before and the factor 4 is due to the regularisation using oscillator
potential. The single particle partition function Z; is given by

0 0 —hwp
- —hwB2n+|l|+1) _ €
Zy=) Y e = A (5.12)

n=0l=—cc0

which is of course independent of the interaction parameter «.
Using the spectrum of two anyons we have

Zy=2,) Y e wpCnrtlizaliy) (5.13)

n=0[l'=—c0

where the prime over [ is used to restrict the summation over [ even or odd depending on
whether the calculation is done in the bosonic or fermionic basis, that is bosons or fermions
interacting through the anyonic potential.
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We now calculate the two-particle partition function in the bosonic basis by restricting [
to be even in eq.(5.13). Carrying out the summations We have

efh/.u,B _hwBa ethBw
Z= 0 t——s S (5.14)
Substituting Z, and Z; in eq.(5.11) and taking the high temperature limit we have
1 1 —4a + 20?2
 _g=—"" " 5.15
59 5 : (5.15)

where we recognise that the rhs is related to the second virial coefficient of anyons. It should
be noted that the high temperature limit is equivalent to letting w — 0 (or the area A — 00)
and the result obtained above is independent of the trap frequency which simply acts as a
regulator. Thus we have for anyons the relationship between the exchange and exclusion
statistical parameters

g=a(2—a). (5.16)

This relation reproduces the correct values of ¢ for bosons and fermions. It is however
interesting that the exchange statistics parameter « is not the same as the exclusion statistics
parameter g, for intermediate values of a.. In fact the relationship is not even linear, unlike
in the one dimensional systems discussed in the last chapter, where it turned out that ¢ = «,
where a refers to the interactions strength.

It is also interesting to note that the exclusion statistical parameter ¢ is related to the
two types of energy shifts produced in the spectrum in the presence of a. For example, for
[ <0, the two anyon energy levels move up by a and for [ > 0, the levels move down by
—a. Equivalently if we add the state [ = 0 for the set of levels with [ > 0, then the shift —«
may be reinterpreted as 2 — a.. Note that all the calculations presented here are done in the
bosonic basis where [ is even including the [ = 0 state. As we argued in the case of CSM, the
parameter g is indeed related to the energy shift when all levels shift up(or down) no matter
where the cutoff lies. In one dimensional systems such a shift immediately gives g in terms
of the shift. In the case of anyons, however, it is not clear why ¢ is a product of the two
types of shifts in the energy spectrum. As has been commented in the literature[64], this
is perhaps due to the fact that anyons may be considered as interacting exclusion statistics
particles.

Next we consider anyons in the presence of a uniform magnetic field B while keeping the
oscillator confinement. We are specifically interested in anyons in the lowest Landau level
(LLL). The single particle spectrum in the presence of a uniform magnetic field is given by

EY = 2n +l] + 1)hQ — lhwe, (5.17)

n,d

where
Q= /w? + w?

and w. = e|B|/2m denotes the cyclotron frequency of the magnetic field and w as usual
denotes the strength of oscillator confinement.
The single particle partition function for a particle moving in a uniform magnetic field is
given by
o—BhO

(1— e Pr)(1 — e PRy’

Zl(ﬁ) =

(5.18)

where Q4 = Q + w..
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In order to compute g we need to know the two particle spectrum. The centre of mass
energy is given by eq.(5.17). The energy spectrum solved in terms of the relative coordinate
is given by

E®) = (2n+ |l — o] + 1)AQ — (I — a)lw,, (5.19)
In particular when o = 0 the above energy corresponds to the spectrum of two bosonic
oscillators in a uniform magnetic field in relative coordinates when [ is even. In calculating
the partition function we use the bosonic basis and hence the sum is confined to even [ only.
The result can be easily translated to the fermionic basis by replacing a by 1 — « which is
equivalent to taken [ odd. The two particle partition function is then given by

e o~ (24a) IR (2-a)
_ —BhQ o
Ly = Z1—1 7 {6 T4 (=T Ton + T G_QﬁhQ:| (5.20)
and the second virial coefficient[7] is given by,
1 . Zz(Oé) - ZQ(O)
=———-21 21
ap = —7 —2lim { 2 : (5.21)

where the first term is the bosonic virial coefficient and the contribution due to anyonic
interaction is given by the second term.

Now consider the high temperature limit, ie 5 — 0. The problem now involves two scales,
namely the oscillator frequency and the cyclotron frequency of the magnetic field. To begin
with we might set both 52, << 1 and fQ2_ << 1. Immediately we see, expanding the
terms in the square brackets to the order 3, as reproduces the second virial coefficient of the
anyon gas, namely

1 —da + 202
R
and the corresponding value of statistical parameter g given in eq.(5.16). In this case both
w and w,. act merely as regulators to produce the anyon gas result at high temperatures.

But the case of interest to us now is when the trace over levels is confined to a single
(lowest) Landau level. This can be achieved by taking the cyclotron frequency w. >> w.
Thus we demand, that g, >> 1, 6Q0_ << 1. Immediately we find that

as(a) = (5.22)

ay = —e P1/2 — a), (5.23)

where we have kept the overall exponential factor as it is. This factor arises from the
contribution of the zero point energy to the partition function. Obviously since fw >> 1,
we get an absurd result for as. It is easy to see why- the existence of the zero point energy
ensures that there is an energy gap and naively taking the limit S >> 1 implies that the
cutoff in energy stays inside the gap. To recover the trace over lowest Landau level, one
should move the cutoff above the gap, or equivalently subtract the zero point energy so the
energy cutoff for the purposes of tracing lies above the LLL. This is achieved by simply
taking out the exponential factor in ay and hence we have the simple result

as = —(1/2 — a). (5.24)
By using the definition of ¢ in eq.(2.5), we immediately obtain

1 C.1

Z_g=—2[Z_ 5.25
S —g9=2l5-al (5.25)
where we have retained the factor C which is given by 2", where 7 is the space dimension.
Although we started with anyons in two space dimensions confined in a magnetic field as well
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as oscillator potential, restricting the trace to LLL is equivalent to treating this system as an
one-dimensional system for the purposes of state counting. Therefore we set n = 1(C' = 2)
and immediately obtain

g = a. (5.26)

We also wish to point out that unlike the case of anyon gas, where we had to assume the
existence of the virial expansion, the above result is exact without requiring any assumption
about the finiteness of the virial coefficients in the high temperature limit. This is so since
the energy of the N-particle bosonic ground state in the presence statistical interaction is
exactly known. Basically in the N-particle sector the angular momentum J in the absence of
the statistical interaction gets shifted to J— uw in the presence of statistical interactions
which also results in energy shifts. The factor v depends on how the wave functions approach
zero as two particle coordinates coincide and is completely determined by «, the strength of
the statistical interaction. The form of the LLL spectrum is then very similar to that of the
Calogero Model ( for details of this mapping see Ref.[57]).

It may be of interest to point out that the result for g given above also depends on
whether the magnetic field is pointing in the positive z-direction or negative z-direction. In
the former case the ground state is degenerate with all the positive angular states populating
the state. The energy shift is given by —« in the presence of the statistical interaction for
all [ > 0. This is equivalent to a shift 2 — « if we count the states in the partition function
by including also the [ = 0 state. In this case therefore g = 2 — . This is exactly the result
proved numerically by Johnson and Canright[45] for FQHE system where they find that for
quasi-particles of statistics -1/3, g = 2 — 1/3. The second case yields ¢ = « as noted above.

It is therefore of interest to study the second virial coefficient and hence ¢ as a function
of temperature since the results for anyons in LLL and the anyon gas can both be obtained
in different limits. We have numerically evaluated the second virial coefficient exactly as
a function of temperature (8) and the results are shown in Fig.(5.2) for fixed values of
w << we. It is easily seen that there exist two clear flat regions corresponding to fw. — 0
(anyon gas) and fQ, >> 1, fQ_ << 1 (anyons in a magnetic field). The value of the second
virial coefficient at the plateau regions correspond to the two cases discussed above.

We would like to stress here that this does not mean that g as defined by us is a tem-
perature dependent property. Nor is it a high temperature property of the system. The
high temperature limit of the partition function is taken in order to count all the states.
All states, at low and high energy, contribute equally to the partition function in this limit.
The Hamiltonian serves the purpose of ordering the states according to energy. To define
finite difference of two divergent series it is necessary to order them. Energy gives us a
physical basis for doing so. Thus g does not depend on the details of the Hamiltonian but
only on the ordering. However g can be scale dependent. This can be seen and understood
in the o = 0 case (free bosons) of the above example (see Fig.(5.2). At high temperatures
(Bw. << 1), the magnetic field is irrelevant and the system behaves like a free Bose gas
in two dimensions. In the range fw << 1, fw. >> 1, the system effectively behaves like a
one dimensional free Bose gas. Thus the second virial coefficient and hence g have the two
corresponding plateaus. Exactly the same thing happens for the non-zero values of « also.
Therefore g can be scale dependent. In fact this is how we expect non-trivial values of ¢
to appear in physical systems of interacting fermions. Though the full Hilbert space may
obey the dimension formula corresponding to fermions (g = 1), the low energy sector could
deviate from it and correspond to some non-trivial value of g.

Before closing, we remark that we have a nontrivial and interesting result for anyon gas,
where ¢ is determined by the exchange parameter o as in other one-d examples. The anyon
gas result is surprising since for lattice anyon gas, Haldane argued that the particles are
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Figure 5.1: The second virial coefficient of anyons as a function of inverse temperature. The
flat regions correspond to the anyon gas and the anyons in LLL limits. In the anyon gas case
we obtain ¢ = a(2 — «) and in the region dominated by anyons in LLL we have g = 2 — a.
We have chosen w = 0.1, €2, = 5.0 for numerical computation of the second virial coefficient.

classified as hard core bosons (hence fermions) since the coupling of the particles to the
Chern-Simons gauge field does not affect the Hilbert space dimension. Obviously the above
result shows that this is not so in the continuum.



Chapter 6

Models of FES in two and higher
dimensions

In chapter 4 we discussed the microscopic interpretation of exclusion statistics and its realisa-
tion in a class of one-dimensional exactly solvable models. While this is so in one dimension,
until now there is no exactly solvable model in higher dimensions where such a mapping can
be realised. However an approximate description may be obtained in two dimensions though
the problem is yet to be solved in three dimensions. Using the Thomas-Fermi approximation,
we show [96] that an interacting two dimensional gas of fermions may be described in terms
of ideal fractional exclusion statistics at zero and finite temperatures when the interaction
has a short-range component.

As pointed out, in principle, the exclusion statistics is applicable to particles in any spatial
dimension but the best known examples are the mathematical models in one dimension
discussed in chapter 4. The first calculation for a two-dimensional realistic system in this
context was done by Johnson and Canright[45], who demonstrated, by exact diagonalisation
of a small number of interacting electrons, that the bulk excitations in FQHE liquids exhibit
Haldane statistics. In this chapter, we show that under certain conditions, a two-dimensional
interacting gas of fermions in its ground state may exhibit this property of exclusion. The
conditions are shown to be favourable for electrons in a quantum dot. In this case, we show
that the dominant effect of the interaction may be incorporated in the fractional statistics of
the gas. If the residual interactions are neglected, then that the system also obeys Haldane
statistics at finite temperature. This opens up the exciting possibility that the bulk properties
of a mesoscopic two-dimensional system may be understood by regarding it as an almost
ideal fractional statistics gas confined in a potential well.

The claims made here are based on the Thomas-Fermi (TF) method[97]. Being a mean-
field method, it cannot reproduce two-body correlations, but is successful in giving a good
estimate of bulk properties like the ground-state energy and the single-particle spatial density.
It has previously been applied with success to atoms[98], nuclei[99], and metal clusters[100].
In two-dimensions, TF yields an accurate approximation to the total energy of a many-anyon
system[101]. For an ideal gas obeying the generalised exclusion statistics, TF calculation has
been shown to yield the exact answer for the energy in the large-N limit[75]. Tt is therefore
reasonable to expect that the method gives meaningful answers.

27
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6.1 Semiclassical approach in 2-d

We start by constructing the energy density functional for the ground state energy of a system
of interacting spin-half fermions. Consider the N-fermion Hamiltonian in two dimensions:

N N
1 S
S v+ Y Valr) + ) Vel = 7il), (6.1)
i=1 i=1

2m ’
i<k

H =

where V] is a one-body confining potential whose specific form is not crucial at present and
V4 is the two body potential which is repulsive. In a mean-field theory, the expression for
the energy at zero-temperature is given by,

B - /d%[hZT(rHvl(r)p(r)

2m
+3lotr) [ ot -7
e / P |o(r, ) PVa(7— 7))} (6.2)

where p(r) is the spatial single-particle density, 7(r) is the kinetic energy density and p(r, r’)
is the density matrix. In the above we have taken into account the effect of both direct
and exchange terms in the interaction energy. For more details see Ref.[102]. The factor
1/2 is the correction due to over-counting of pairs. The constant C' is determined by the
spin polarisation of the gas: for unpolarised electrons, it is 1/2, whereas for a fully polarised
system, it is 1. For arbitrary polarization P = N*;,N* , where V. is the number of up or down
spins, the factor C' = HT'P‘. The spatial density is normalized such that N = [ d*rp(r). In
the Thomas-Fermi method, the kinetic energy density 7(r) is itself expressed in terms of the
density p(r) and its gradients. The energy and the density are determined self-consistently
by a variational principle. In two-dimensions, the TF expression for kinetic energy density
is given by

7(r) = mp(r),

taking into account the spin-degeneracy factor of 2. In this case, there is no gradient cor-
rection in the bulk up to O(h?). However, there are edge corrections when the sample is of
finite size[103].

Next consider the energy due to the two body interactions. The matrix elements of the
direct term is,
S < ilVilis >= [ plrplra)V (7 = s (63

i,J

where the sum (here as well as in what follows) is over the occupied single-particle states
only. The matrix elements of the exchange term is

S <Vl == [ lptrira) V(IR - b (6.4)
2%

where p(ry,m2) = Y. ¥ (r1)yi(r2). At this stage, it is useful to perform the density-matrix

expansion following Skyrme[104]. Defining 77 = 7} — 7 and R = (7 + 73)/2 and expanding

the density up to this order in 7, we obtain

o) = (R +7/2) = p(R) + (FN)p+ S (PPt . (6.5)
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The direct matrix element may then be written as,

 <ijiWlij> = / d*rVa(r) / d’Rp*(R)

2
1
~1 /d27" 7 Vo(r) /CZQR(V,O(R))2 +..., (6.6)
Similarly the density matrix p(77, ) may be expanded up to second order in 7 about é,

p(71,72) Zlﬁ R+T/2 Vi(R __’/2)
- Z[wﬁm(é)

+ %r%w:vwi + (V27 )i — 2V} Wz)}, (6.7)

and the exchange contribution to second order is given by,
> <ilvilii>= [ dva) [ ERiR)
(]
1
=5 [ i) [ @RrRAR 65)

Furthermore, the kinetic energy density is defined as

= 3 ST 00 + (P + 5 STV (69
Often the kinetic energy density is defined either by the first term or by the second term
in the above equation without the over all 1/2. What we naturally get in the expansion is
an average of both these commonly used forms. We have computed each one of these forms
exactly using harmonic oscillator wave functions for a few particles. While the the first and
second terms show oscillations around the smooth TF density, the definition given above
almost precisely coincides with the TF density even with as little as two particles.
We note that the leading terms in both direct and exchange terms are the same (propor-
tional to p?). For spin-half fermions the interaction energy is given by,

D (< ijValig > =6m,m,Om,m, < id|Valji >, (6.10)
2y
where m; is the spin projection. Summing over all particle indices immediately gives a
factor (1 + |P])/2 for the exchange contribution, where P is the spin polarization of the
system. Therefore, if there is no other degree of freedom, or if the spins are all polarized,
the contribution from the leading terms to the interaction energy vanishes as it happens in
FQHE systems. However for the unpolarized 2-D electron systems there is a factor half for
exchange contribution.
Here after we concentrate on the unpolarized case. Combining all the contributions the
total energy of the system is given by,

B = [ e 0) Vi) + )M

%[(w?’(r) — (Vp(r)*]Ma+ .|, (6.11)
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where
M, = /d27’V2(T)r"

are the moments of the two body potential. Note that we obtain an expression similar to
the above if we use an expansion of the form[105]

Va(r) = b7 V6% (), (6.12)
=0
where b is the range of the potential and c; are related to the j-th moment of the potential
Vs as ' .
MQj = 22Jj!Cjb23.
The spatial density is now determined by the variation §(F — uN) = 0, where p is the
chemical potential at zero temperature. The variation immediately gives the equation for
the density

7'("512 m*M() 37TM2 2 MQ 2
1 ] o+ R+ et
= u—Vi(r). (6.13)

In the large-N limit we expect the density in the bulk to be approximately constant. We
can therefore neglect the derivative term in this limit. Further if the potential is extremely
short-ranged, the term proportional to the second moment of the potential may also be
neglected. (We will elaborate on these approximations shortly.) Then the density is given
by

polr) = e (= VA(), T
= 0, r > 10, (6.14)

where 7 is the classical turning point defined by p = Vi(rg) and
m* M,
21 h?
is now the exclusion statistics parameter (same as g in Haldane’s definition) as we show below.
In the effective range expansion (6.12), ¢co = M. The expression for py in Eq.(6.14) may be

interpreted as if the fermions in the one-body confining potential V; are noninteracting, but
that theyobey the generalised exclusion statistics for occupancy at zero temperature:

g=1+

(6.15)

1
ne = —, e<p
€ =3
= 0, €>pu. (6.16)

This may be easily seen as follows. For noninteracting fermions, the Thomas-Fermi density
of states g(e) in an external potential Vi (r) is

o) = 2/% 5 (e _ QP—;* _ V1(7“)> | (6.17)

The over-all factor of two on the right-hand side is due to the spin degeneracy. Using the
new occupancies given by Eq.(6.16), we get

1 [H
N = —/ g(€)de
9 Jo

_ é/Qg%%‘%P_£%“W“”>' (6.18)
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The function 6(y) = 1 for y > 0, and zero otherwise. Now performing the p-integration
immediately yields the total number of particles, with density po(r) given by Eq.(6.14).
Indeed we have now the precise condition under which ideal exclusion statistics is realised
within the framework of the Thomas-Fermi method.

In the more realistic situation, the higher moments may not be neglected, and the system
is a non-ideal fractional statistics gas. In the thermodynamic limit, we may write

3m*M2

p(r) = po(r) |1 — W,og(r) +...], (6.19)

where po(r), given by Eq.(6.14), is the density for the ideal FES case. Note that My = 4c¢;b?
where b is the range of the potential. The typical densities in two dimensional systems of
interest is of the order of 107°/A2. Using the values of m* = 0.067m,, which is the effective
electron mass in GaAs materials, and g > 1 (but not very large), it is easy to estimate that
the second term becomes important only for ranges of the order of 1004 or above. Another
way to view the problem is to regard the short-range part of the two-body interaction, which
dominates My, to alter the statistics only. The long-range part of V5, giving the higher
moments, modifies the self-consistent mean field. Consider for example the electrons in two
dimensional quantum dots. The two body potential is usually taken to be the Coulomb
interaction and the confining potential of the device is modelled by the oscillator potential.
However, it is expected that the effective two-body interaction after averaging over the
probability densities in the direction perpendicular to the plane will be more complicated.
Many qualitative features of the system may be explained by several choices of the potential.
As in the case of FQHE liquids, we assume that the model interaction has a short range
part Vos(r) and a long range part Vo (7). We use the moments expansion for the short-range
part and neglect the effect of higher moments. The self-consistent equation for the density
is then given by,

p(r) = (w=U(r)), r<mo
= 0, T > Ty, (6.20)

where the mean TF potential is defined as
U(r)=Vi(r)+ /dzrp(r’)VQl(W— ). (6.21)

The equation further simplifies for circularly symmetric density. Expanding the potential in
partial waves,

1 [oe)
Va(|7 = 7"]) = = Z U (1, 7") cosm(6 — 6'),
T m=0
the TF potential reduces to,
Ur) = Vi) + [ ' pls o) (6.22)

In the above equation we have ignored the exchange effects which are not important for the
long range potentials. Thus the Eq.(6.22) is the self consistency condition to determine the
density p(r), and in general is not solvable analytically.
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6.2 TF at finite temperature

Finally we consider briefly the finite temperature problem using the Thomas-Fermi method.
We restrict our attention to the case where the two body potential is extremely short-
ranged and regard the system as ideal. The temperature T is expressed in units of the
Boltzmann constant, so that it has the dimensions of energy. The one-body potential is now
temperature-dependent, and is given by

VOT) = Vi) + el T)

= Vi(r) = (1= g)"~ p(r.T). (6.23)

where g is the statistics parameter defined by Eq.(6.15). We have assumed that the external
potential Vi(r) is temperature independent. In the above equation, the density p(r,T") for
the fermions is obtained from the relation (including the spin-degeneracy of 2)

2 d*p
001 = s | e T (624)

and the chemical potential is determined by N = [ d*rp(r,T). The p—integration above
may be done analytically, giving

m*T

p(,T) = 2 In (1 -+ expl—(V = 1)/T]) (6.25)
This is inverted to give
h2
% =[V+ 7;1* pl/T + In (1 —exp(—nh’p/m*T)) . (6.26)

Substituting for V' above from Eq.(6.23), we get

Lo~ (W) +a )
+ In (1 —exp(—7h’p/m*T)) . (6.27)

For a gas in the thermodynamic limit, we set Vi(r) = 0 above. Further, the spatial density
p may be expressed as 2pg, where pg is the density for spin-less partcles. Then Eq.(6.27)
reduces to the form

0 27 h?

T gm*T'OO
Note that this is precisely the equation derived by Wu[55] (see his Eq.(23) ) for a two-
dimensional gas obeying the statistics

+1In (1 —exp(—27h*po/m*T)) . (6.28)

(€) ! (6.29)
n(e) = : .
w(exp(e —p)/T) +9g
with w(z) satisfying the functional equation
w! (14 w) ™9 = exp(e — pu)/T . (6.30)

Here, as in our case, g = 1 corresponds to free fermions.

We have thus shown that in the large-N limit, ideal exclusion statistics may be realised
in a system of spin-half fermions with very short-range interactions. Note that this situation
is peculiar to two dimensions since both the leading term in the moments expansion and the
kinetic energy density have the same dependence on the spatial density.



6.3. BOSONS IN A TRAP 63

6.3 Bosons in a Trap

The results obtained for a gas of fermions may equally well apply to the interacting bosons
in a quasi-two dimensional harmonic trap. Following Bhaduri et al [106] we consider bosons
which are trapped in a two dimensional oscillator potential and interacting via a repulsive
zero-range pair potential of a fixed strength. This is similar to the case of fermions discussed
above, but the interaction is now repulsive instead of being attractive. Obviously there is no
phase transition for such a system, no matter how weak the repulsion is.

Though the traps are usually three dimensional, we consider the limit of the oscillator
frequencies in which w, = w, = w << w,. For low enough temperatures, we may assume
that the excitations are much higher and restrict the Hilbert space by setting the oscillator
quanta in the z— direction to be n, = 0. Then the quantum mechanical behaviour of a
system of IV bososn is determined effectively by a two dimensional Hamiltonian given by

1 & N1 27 h?
_ 2 2 2 S o

i<k

where straightaway we taken the interaction to be a short range repulsive interaction. The
dimensionless coupling constant g may be related to s—wave scattering length a in three
dimensions since the strength of the three dimensional delta function pseeudo-potential is
given by dnl%a  The effective two dimensional interaction given in eq.(6.31) may be written

as "
2
g= \/iﬁ, (6.32)
b,

where b, = \/h/mw, is the length scale of confinement in the z— direction. For realistic
parameters, generally, g << 1. For temperatures well above the temperature Ty', the one
body potential generated by the zero-range interaction is given by

B 2w h?
om

U(p(r)) gp(r). (6.33)

Using the Thomas-Fermi approximation we have the self-consistent equation for the density
at finite temperature given by

1 / ) 1
= — d p 5
2mh [eXp (5(2”—m + gmwr? + 2 gp(r) — u)) - 1]

p(r) : (6.34)

where p is the chemical potential for the bosonic system determined by the condition

N = / d*rp(r,T), (6.35)

and [ is the inverse temperature. The integration in (6.34) can be done analytically and the
number density is given by

m 2

p('r’) = —m In

1 2
(1 — exp[—(§mw2r2 + Zn

gp(r) — mm) | (6.36)

L As there is no phase transition, Ty, denotes the temperature below which there is macroscopic occupation
of the ground state.
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Solving eq.(6.34) and eq.(6.35) self consistently for fixed system size N. For non-zero and
positive values of g the equations can be solved self consistently. Taking 7" — 0 limit of
eq.(6.34), we obtain the spatial density within the classical turning point ry given by

m 1
1= 3 (o b, o)

where rg = /2u/mw? and N = 1% /2g(hw)? which is the same as the result one would obtain
at zero temperature starting from the Gross-Pitaevskii density functional[107]. We note
that this result for the density at zero temperature is the same as that obtained in eq.(6.20)
starting from a system of interacting fermions. Thus the density smoothly interpolates from
g = 1 fermionic limit to g = 0 bosonic limit.

We have thus shown, in the TF limit, a two dimensional Fermi or Bose gas with short
range repulsive interaction has the same number density of an ideal FES gas. A more direct
statistical mechanics derivation based on counting of states has been used by Hansson et al
[108] to prove rigorously the same result.

6.4 FES in arbitrary dimensions

Even before the FES was introduced by Haldane, the germ of the concept of exclusion
statistics was already evident in systems of particles interacting by a pair potential of the
form g(g — 1)/7? in one dimension. Here r is the relative distance between particles. Since
the wave function vanishes as 1) — 79 at short distances, we have ¢ = 0 for bosons and g = 1
for fermions. Interestingly, the spectrum of the interacting case for g = 2 could be obtained
by requiring that the particles neither occupy the same orbital nor neighbouring orbital in
momentum space. This in a sense is generalised Pauli principle, more exclusive than the
exclusion principle for fermions albeit in one dimension. While the proposal of Haldane
has the advantage generalisation to higher dimensions, the introduction of the statistical
parameter is adhoc.

Recently, Sutherland[109, 110] has proposed a microscopic theory of exclusion statistics
based on an analogy with the exactly solvable integrable models in one dimension. A similar
proposal was made by Baskaran[111]. Unlike the semiclassical realisation discussed earlier
in this chapter, here there is no Hamiltonian. The approach relies on the fact that in one
dimension exclusion in momentum space can be achieved by defining momentum shifts on
the asymptotic momentum as realised in the case of a spinless fermion on a ring interacting
with invere-square interaction. We briefly comment on this approach.

To begin with we consider a system of spinless particles (interacting fermions or bosons)
in a n dimensional box of length L in each direction with periodic boundary conditions. The
momenta of non-interacting particles in the box is denoted by

P, i=1,..,N. (6.38)

Let us assume that the effect interaction is to shift these mometa,

~v 2mh . .
P =Py + 2( 7 ) f(5), i=1,..,N. (6.39)

where v is a dimensionless constant. The shifts are such that the translation invariance is
kept intact and are dimension dependent.
In one dimension, we choose the function

Z |pz
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which is merely the sign of the difference in momenta. This corresponds to the solution of
the Sutherland model for particles on a circle interacting via inverse square of the distance
between them. For arbitrary dimensions 17 we may surmise the following general form:

- ) 27rh i
f@) = (=" IZ |p

J#i

— |n (6.40)
J

where the displacement field f is assumed to be given as the sum of displacements due to
all other momenta. The ground state and excitations of such a system as also its thermo-
dynamics in two dimensions has been discussed in detail by Sutherland[109]. Our approach
here is to demonstrate the connection to exclusion statistics, that is the relation between the
interaction parameter v and the exclusion statistics parameter g directly using the method
outlined in chapter 2.

We first consider the case of two particles interacting such that the momentum shifts are
given by eq.(6.40). We therefore have

. v, 2mhy 2
o= P+ E(T) (p1),
ﬁ v 2mhy 2
P2 = Ph+ 5 (=) fp2), (6.41)
where f(7) = —f(7) = f by virtue of eq.(6.40). Define a new set of momenta
- ﬁl +ﬁ2 )
p NG p
- D — 52 - g 2rh,
_ — P4 e , 6.42
= PR T @ (6.42)
where ° = (! + %) /v2, ¢ = (! — p5)/V/2 and
wh 1 q
q = 6.43
fld) = (s (6.43)
Note that the displacement field is a solution of the differential equation
F = (e (6.44)
V2L
analogous to the fundamental equation in electro-statics.
The single-particle partition function is given by
L o L L
Z ——’7/ dp exp(—pp?/2m) = (————)" = (Z)", 6.45
{(0) = ()" [ B explp/om) = (i = () (68)
where A = \/27h?/mkT is the thermal wavelength.
The two-particle partition function in the bosonic basis is given by
1|, L S0 =
20) = 5 | [ 7 eol-p0? + ) 2l 4 2i29)] . (6ao)

where Z;(283) = (L/+/2))". Switching over to shifted momenta in the integral we have

205) = |G [ a5t 7 exol-o? + ) /2ml + 228)|, (6a)
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where the Jacobian of the transformation is given by

7h
V2L

upto order . The integration can be done easily to this order and we obtain

J=1=7(—=-)"0(q) + O(+*) (6.48)

2(8) = 5 | 220~ (5

In order to obtain the relation between the exclusion statistics parameter g and v to first
order in v we use the fundamental equation eq.(2.5) given in chapter 2 for particles in a box.
We have

w+5@m+owﬂ. (6.19)

1 A A
Z o= 1im 22 2Ll |9%2 _
59 Llali% 2 5 {2212 1} . (6.50)

Substituting for Z, from eq.(6.49) and simplifying we obtain

S ==~ (6.51)

and therefore the interaction parameter as defined through momentum shifts is the same as
the exclusion statistics parameter

g=" (6.52)

The interpretation of g as generalised Pauli principle immediately follows from the above
result. A simple interpretation interms of the number of excluded states may be shown as
below:

Note that because of the shifted momentum

0 _ o mh 4
@' =q 7&@L>q”

we have for the modulus the relation,

2
ne |, Tmho, q
(q”) [q /y(x/iz;) qn}
Thus the value of q never approaches zero unlike ¢° which can be zero. As a result, in
the q space a void is created which leads to a certain number of excluded states given by,

y(mh/V2L)"

Number excluded states = ——————— =~y =g,

(wh/ VL)

where we have appropriately scaled the box length using the definition of ¢. Thus the number
of forbidden or excluded states is proportional to the statistics parameter g as it should be.
Thus we have the simple interpretation of the statistics parameter g as a measure of the
number of excluded states indicative of the generalised Pauli principle.



Chapter 7

Fluctuations in Models of FES

In previous chapters we have discussed the basic idea of exclusion statistics and how it
may be realised in models of interacting fermions or bosons. In this chapter we discuss
an interesting application of these ideas to the number fluctuation in canonical and grand
canonical ensembles when the generalised Pauli principle operates. It is well-known that
the number fluctuation in the grand canonical ensemble, which is directly proportional to
the compressibility, diverges for an ideal bose gas as T" — 0 often referred to as fluctuation
catastrophe. In the following we show that this divergence is removed when the gas of
atoms interact in one dimension through an inverse square two-body interaction. In two
dimensions, similar results are obtained using a self-consistent Thomas-Fermi (TF) model
for a repulsive zero-range interaction. As seen before, both models may be mapped on to a
system of non-interacting quasi-particles obeying the Haldane-Wu exclusion statistics.

We also calculate the number fluctuation from the ground state of the gas in these
interacting models, and compare the grand canonical results with those obtained from the
canonical ensemble.

To begin with, consider an ideal bose gas at low temperatures. In the grand canonical
ensemble (GCE), the compressibility and the number fluctuation of this system diverge at
low temperatures. To quote Landau and Lifshitz [112]:

...in a bose gas at temperature T' < T, the pressure is independent of the volume,
i.e. the compressibility becomes infinite. Accordingly...this would imply that
the fluctuations of the number of particles also become infinite. This means
that, in calculating fluctuations in a gas obeying bose statistics, the interactions
between the particles cannot be neglected at low temperatures, however weak this
interaction may be. When the interactions, which must exist in any actual gas,
15 taken into account, the resulting fluctuations are finite.

One purpose of this chapter is to demonstrate the validity of this statement in one
and two dimensional traps for a special class of interactions which may be thought of as
statistical interactions in the sense of exclusion statistics. As shown in Chapter 3 and 4, in one
dimension, the quantum many-body problem of particles in a harmonic oscillator interacting
with an inverse square two-body potential is exactly solvable [39, 40, 41]. Moreover, it is
known that the global properties of these interacting bosons are the same as those of non-
interacting particles obeying the Haldane-Wu generalized exclusion statistics [38, 55, 61, 62].
Using this mapping, we show that the number fluctuation is finite as 7" — 0, no matter how
weak the interaction strength is. In this model, since the exact correlation function is known
for some specific strength parameters of the interaction, it is also possible to verify explicitly
the well-known relation between its integral and the number fluctuation.

67
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In two dimensions, there is no suitable exactly solvable model for our purpose. We
therefore consider the mean-field model of bosons trapped in a harmonic oscillator, and
interacting pair-wise with a zero-range repulsive pseudo-potential [106, 113] discussed earlier
in Chapter 6. In the absence of this interaction, the number fluctuation starts diverging at
T = T.. When the interaction is present, however weak, we show that the compressibility
and hence the number fluctuation of the system is finite right down to 7" = 0. Moreover,
they are shown to be identical to those of a collection of non-interacting particles obeying
exclusion statistics (often called geons or haldons in the literature).

Another quantity of some interest is the number fluctuation of particles from the ground
state of the system, which is present even when the total number of particles in the trap
is fixed. Consider a dilute gas of bosons in a trap at 7" = 0. The system is in its ground
state. When a certain amount of excitation energy is given to the system, it may be ab-
sorbed in many possible ways, so that the number of bosons remaining in the ground state is
not fixed. This number fluctuation for non-interacting bosons in a harmonic trap has been
calculated by a number of authors [114, 115, 116, 117, 118] as a function of the excitation en-
ergy or temperature. Thermodynamic identities and particle number fluctuations in weakly
interacting BEC have also been analysed when the particle number is fixed[119]. For ideal
bosons, the number fluctuation from the ground state diverges at low temperatures in GCE,
but this can be avoided using more careful canonical, or microcanonical treatment. When
the inverse square pair-wise interaction is used in one dimension, this divergence is again re-
moved. Further, in this interacting model, we can also perform the canonical ensemble (CE)
calculations, and compare with the GCE results. We find that even though the ground state
number fluctuation goes to zero as 7' — 0 in both GCE and CE, the very low-temperature
behaviors are rather different. At higher temperatures the results from CE and GCE tend to
coincide. Similar studies can be made for fermionic systems at low temperatures. Since the
interactions that we have used are of statistical character [61, 120], our results interpolate
from bosonic to fermionic behavior with the variation in the strength of the interaction.

In the next section we discuss the total number fluctuation in GCE for interacting models
and how the fluctuation catastrophe may be avoided. We first discuss the fluctuations in one
dimension, and later the fluctuation in two dimensions. Subsequently we discuss the ground
state number fluctuations for the one-dimensional interacting model in GCE and CE and
compare the results. Particular attention is paid to the low temperature behavior (for some
low-temperature expansions see Appendix C).

7.1 Fluctuations in GCE

The number fluctuation in a gas in the GCE formalism is defined by (6N)? = ((N?) — (N)?),
where the angular brackets denote ensemble averaging. For an ideal bose gas,

o0

(GN)? =D (i) () + 1), (7.1)

k=0

where the single particle occupancy (ng) at a given temperature 7" and energy ¢, are given
by the bose distribution function

(ne) = 1 | (72)

exp[f(er — )] — 1

Here f = 1/kgT and kg is the Boltzmann constant, and p denotes the chemical potential.
The isothermal compressibility x, of a gas of density py is related to the number fluctuation
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of the system in GCE : ,

O~ Toox, (7.3)

The problem with the number fluctuation in a bose gas in GCE is obvious from Eq. (7.1).

If there is BEC, then a macroscopic fraction of the particles occupy the ground state for

T < T., so that (6Ny)? ~ N2. Even if there is no BEC, the same is the case as T'— 0. In

the thermodynamic limit, therefore, the fluctuation diverges below the critical temperature,

or in any case at 7" = (0. This is manifestly incorrect, since at 7" = 0, all the bosons are in

the ground state, and the number fluctuation should vanish. In the presence of interactions,

however, this number fluctuation is expected to be finite. We demonstrate this by analyzing
two models in one and two dimensions which are also templates for FES.

7.1.1 Fluctuations in a one dimensional model

We first consider the exactly solvable one dimensional Calogero-Sutherland Model (CSM) of
a system of interacting particles with the Hamiltonian [39, 40, 41]

N N
R0 1 h? glg—1)
H=Y |- ot 4+ = 3 S92 7.4
— [ 2m dx? i 9" xl] * m .= (x; —x)% (74)

with the dimensionless coupling parameter g > 0. The particles are confined in a harmonic
well and the thermodynamic limit is obtained by taking w — 0 as N — oo, with wlN =
constant. In the thermodynamic limit, the properties of the system are translationally
invariant, and would be the same if the particles were on a line, or a circle, instead of a
harmonic confinement. To make the problem well-defined quantum mechanically, we have
to demand that the wave functions go to zero as |z; — z;|? whenever two particles i and j
approach each other. Since the particles cannot cross each other, we may choose the wave
function to be either symmetric (bosonic) or antisymmetric (fermionic). For g = 0 and 1,
the model describes free bosons and free fermions respectively.

Using the relation between the integral of the correlation function and the number fluc-
tuation, we now show that the number fluctuation vanishes at zero temperature in the above
interacting model unlike the ideal boson result in GCE. If v(r) denotes the two-particle
ground state density-density correlation function in the ground state, with r = |z; — x|,
then the number fluctuation is related to the correlation function as [112]

<5]]:][)2 —1=- /_OO v(x)dz. (7.5)

o0

Note that the ground state correlation function v(r) is defined only for » > 0. However, in
computing the above integral it is necessary to assume v(r) to be even function, and extend
the domain of integration to negative values of r[121]. Unlike the one-particle off-diagonal
density matrix, v(r), by definition, is related to the diagonal element of the the two-particle
density matrix, and is the same in CSM for bosons or fermions. In this section we work
in the bosonic basis. The correlation functions are known exactly in the CSM for three
values of ¢ independent of whether the particles are bosons are fermions and are given (in
the thermodynamic limit) by

(e -

wr

g = 1: V(T):s(r)2:|:

g = 1/2:v(r)=s(r)*+ % /TOO dt [s(t)] (7.7)
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g = 2: v(r)=s(2r)?— dsc(lir) /o Tdt [s(t)], (7.8)

where the Fermi momentum kp is set equal to 7 so that the maximum central density is
unity. For all three forms of v(r) given above, explicit calculations show that

/ " () ds = /_ " s(r)2de = 1, (7.9)

—00 [e.9]

independent of the value of g. Substituting this result in Eq.(7.5) it follows that for inter-
acting bosons in CSM the fluctuation vanishes identically at T = 0.

While we cannot obtain the exact v(r) in CSM for all g, the same may be calculated for
all values of g in the harmonic lattice approximation. The correlation function so obtained
compares very well with the exact correlation functions for ¢ = 1/2,1,2 and is given by [122]

2

v(r) = ponzyé0 <m )1/2 exp [ —(Z;O(—T_l’g))] — o, (7.10)

where pg = N/L is the average density and

A, 0) = = [ gy tmees ) 1 . gy Lo () (7.11)

2m y — y*/2nm 21 Jo Y
The above expression is given for completeness and its exact form is not needed for further
calculations. Again integrating over the real line we get a result identical to that obtained
using the exact correlation functions in CSM. Thus the fluctuation vanishes identically for all
¢ in this approximation at zero temperature. However, the result does not give any indication
of the behavior of the fluctuation at finite temperature. To do this we take recourse to the
mapping between the CSM and the exclusion statistics first proposed by Haldane through a
generalized Pauli principle[61, 60].

We recall that a crucial property of exclusion statistical interactions is that they should
cause shifts in single particle energies at all scales[54]. As noted in the introduction this
property is realized by a large class of one dimensional models of interacting fermions where
Fermi liquid theory breaks down[46, 63]. In fact it has been shown exactly that quasiparticles
with nontrivial exclusion statistics exist in a class of models that are solved by the Bethe
ansatz[60]. Thus the result obtained below should be, in principle, valid in a large class
of models with interactions. In particular, as we have demonstrated in chapters 3 and 4,
the interacting particles of CSM may be regarded as ideal exclusion statistics particles[61].
The thermodynamic properties of an ideal gas of exclusion statistics particles have been
investigated widely[64, 79, 123, 76]. The distribution function has is ofcourse given by

1
(n(e)) = CIGET (7.12)
where w(e) is the solution of the equation
w(e)(1+w(e))19 = eflen) (7.13)
At zero temperature we have,
(n) = é, for e, <p (7.14)

and zero otherwise.



7.1. FLUCTUATIONS IN GCE 71

Note that the distribution function reduces to the usual Fermi and Bose distribution func-
tions for ¢ = 1 and g = 0 respectively and in general g is regarded as the exclusion statistics
parameter. Indeed, as demonstrated before the statistical parameter ¢ is precisely the inter-
action strength as given in Eq. (7.4) in one dimension. However, the distribution function as
given above is valid in general and not necessarily restricted to one dimensional models. The
following discussion is therefore used for illustration in the case of one-dimensional model
but not restricted to this case alone.

The number fluctuation at a given energy ¢, is given by,

0
(6n)% = T%. (7.15)
Substituting for (ny) from Eq. (7.12), we have for total number fluctuation[64],
(6N)? = ) w1+ we)(ng)® (7.16)
k=0
= Y () (1= g(ne)) (1 + (1 = g)(ni)).
k=0

The number fluctuation vanishes at 7' — 0 since ny — 1/g below the Fermi energy and zero
otherwise. This result holds no matter how weak the interaction strength is. However, at
g = 0, the bosonic limit, the number fluctuation diverges as noted earlier. In this exactly
solvable model, we have thus shown that interactions do remove the fluctuation catastrophe
encountered in the ideal Bose gas.

While these results have been derived in one dimension, extension to higher dimension
is non-trivial since there is no suitable exactly solvable many body model. However, it has
been shown that models with short range interactions in two dimension may be regarded as
obeying exclusion statistics in the mean-field picture[96]. We discuss the fluctuation in these
models in the next section.

7.1.2 Fluctuations in a two dimensional model

We consider a two-dimensional system of bosons interacting via a zero-range repulsive
pseudo-potential as in chapter 6. The quantum dynamics is then approximated by the
following Hamiltonian

pr1 o2rh? &

i=1 i<j

where the momenta and coordinates are planar vectors. The one-body potential generated
by the above zero-range interaction (including exchange) is

U = g ). g=23. (7.18)

where n(r) is the local number density of the system. In two-dimensions, g > 0 plays the role
of the statistical parameter, with ¢ = 0 for non-interacting bosons. At finite temperature,
for T > T, the Thomas-Fermi approximation yields[106, 113]

(r) — d*p/(27h)?
0=/ [espl(Z+ V() — w8~ 1]

2m

, (7.19)
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where the Thomas-Fermi mean potential V'(r) is given by

2 h?

V(r) = Vo(r) + o/ n(r) . (7.20)

Here Vj(r) is the one-body harmonic trap. Note that Eq.(7.19) is valid only in the absence
of a condensate. It has been shown [106, 113]. however, that for a nonzero positive g, a
self-consistent solution of this equation satisfying [ n(r)d*r = N may be obtained right down
to T=0. This solution has a lower free energy than the one with a condensate [125], so we
may take T, = 0 for g > 0.

The momentum integration may be done analytically:

m
n(r) = —mlﬂ [1 —exp[=(V(r) = w)]] - (7.21)
The local number fluctuation (between r and r + dr) in GCE is given by
on(r)
ON)* =T——+ 7.22
Ny =750, (722

where the coefficient of the temperature 7" on the rhs is related to the compressibility. Taking
the derivative of the local density with respect to the chemical potential we have

m 1
2rh? expl(V(r) —p)Bl = 1+g

Note that p is a function of temperature, and is determined by the condition that
[ n(r)d®>r = N, and in the thermodynamic limit it approaches the lowest energy eigen-
state as the temperature goes to zero. A few remarks on the thermodynamic limit are in
order: The thermodynamic limit is reached when N — oo and w — 0. However, in the
limit of no confinement the density of states becomes a constant and there is no critical
temperature below which condensation takes place. Preserving the density of states as in a
two dimensional oscillator, the condensation temperature of an ideal bose gas is given by

TC(O) — (6/772>1/2 N1/2w.

(6N)?*=T (7.23)

Thus the limit N — oo and w — 0 is obtained keeping T constant. In an ideal bose
gas (g = 0), no self-consistent solution of Eq. (7.21) can be found for a fixed N below this

temperature TC(O). However, when g > 0 no matter how small, the self-consistent solution of
Eq. (7.21) may then be found for all 7" > 0.

In this limit the fluctuation is given by,
m 1

2mh? exp[(ZZgn — p)f) — 1+g

(6N =T (7.24)
where n is the constant density given in the thermodynamic limit. (For the one-dimensional
case, this was denoted by pg earlier.)

In the absence of interaction, g = 0, the chemical potential p goes to zero at T' = T,
and the above expression diverges as expected. However, as in the one dimensional case, the
fluctuation remains finite and approaches zero as T"— 0 when g is finite, however weak the
interaction may be.

The same result may be obtained in the non-interacting exclusion statistics description
in two-dimensions. The local density as a function of the radial coordinate is given by [106],

[ d*p/(2mh)?
n(r) = / g (7.25)
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where the local variable w(p,r) is defined through Wu’s equation within TF approximation

2

w(1+w)' 0 = explB(o— + Volr) — )], (7.26)
and g is the exclusion statistics parameter which we will identify with the interaction strength
in the mean-field picture. We have retained the trap potential Vj as in the interacting picture.
Once again the momentum integration may be done easily and we obtain,

m 1+ wg
n(r) = 2m2d In { ” ] : (7.27)

where the local variable wy(r) is determined through
w (1 + wo)' ™ = exp[B(Vo(r) — p)]. (7.28)

The fluctuation is then found by using Eq. (7.22) and we have

0
SN2 = T g,(f)’ (7.29)
m 1
= T . .
21h% wy + g (7.30)

In the bosonic limit taking g = 0 in Eq. (7.28), we have wy = exp[5(Vp— )] — 1. Substituting
this in the above expression for the fluctuation in the thermodynamic limit it is easy to
see that at T, there is divergence. However, for positive definite g there is no divergence.
Furthermore the equivalence between the non-interacting exclusion statistics picture and the
mean-field description is established using the following relationship

wo(r) = exp[BV(r) — )] — 1, (7.31)

where V(r) is the self consistent mean-field potential. Substituting this in Eq.(7.30), and
taking the thermodynamic limit yields Eq.(7.24). Note that this equivalence allows one to
calculate fluctuations in either the mean field picture or in the non-interacting exclusion
statistics picture. Indeed this holds for the computation of other global thermodynamic
quantities as well.

7.2 Ground state fluctuation in the canonical ensem-
ble

The total number fluctuation defined in the previous section in the GCE is obtained by
summing over all the single particle states. In the canonical ensemble however, the number
of particles is fixed and therefore the fluctuation in particle number has to be defined with
respect to a reference state. One way of defining the fluctuation is to look at the ground
state occupancy as a function of temperature, which is present even when the total number
of particles in the trap is fixed. At T = 0 all the particles are in the ground state. At a
nonzero temperature (or excitation energy), there are many ways of exciting the particles
from the ground state, leading to a fluctuation in the ground state population. This number
fluctuation for non-interacting bosons in a harmonic trap has been calculated by a number
of authors [114, 115, 116, 117, 118] as a function of the excitation energy or temperature.
This has also been calculated for fermions in the CE by us in a previous publication[124].
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Unlike the case of GCE for bosons, the ground state fluctuation in the CE is finite at all
temperatures.

We may extend the analysis of fluctuations in CE to particles interacting via the in-
verse square pair-wise interaction in one dimension. It is more convenient to perform the
calculation in the fermionic basis, although the formulae given here are applicable for both
interacting fermions, or interacting bosons. In this section, quantities like energy and ground
state number fluctuation of the interacting system with interaction strength g will be de-
noted by a bracketed superscript, e.g. £, ((§Ny)?)9). We recall that the spectrum of the
CSM Hamiltonian given in Eq. (7.4) is exactly known. The states may be labeled by a set of
fermionic occupation numbers {ng}, k= 1,...,00, ni = 0,1. The energy E9) of the system
in the fermionic basis is then given by,

G N(N -1
@ {n} = Z exng —w(l — g)%, (7.32)
k=1
where €, = (k — 3fiw) denotes the harmonic oscillator energy levels and N = Y77 ny. As

can be seen from Eq. (7.32), the effect of the interaction is that each particle shifts the energy
of every other particle by a constant hw(g — 1). The energy functional can also be written

as
e

@ L0} = Zeknk —w(l— Z Moy Ty - (7.33)
k=1 k1<ka=1
The exact spectrum of the model is thus reproduced by an effective Hamiltonian of quasi-
particles with constant density of states and constant Landau parameters. As mentioned
before, this scale invariant energy shift is the basic reason for the occurrence of nontrivial
exclusion statistics where g plays the role of exclusion statistics parameter with g = 0,1 for
bosons and fermions.
The general canonical partition function in any basis is written in the occupation number
representation as[61]
ZY =N eI, (7.34)
{ni}
Using the energy spectrum in CSM given in Eq. (7.32), the N-particle partition function in
this one dimensional model is given by

31— )N(N 1)

79 = ¢’ z5, (7.35)

where 3 = Shw and Z% is the N particle fermion partition function. Setting g = 0, the
bosonic partition function is obtained,

ZE=e (7.36)
Combining Eqgs. (7.35) and (7.36) we may write the partition function for CSM as,
2N = 2Rz (7.37)

The canonical partition function given above is exact in CE and may be used for calcu-
lating the thermodynamic properties of the system in CSM within the canonical ensemble
formalism. The moments of the occupation number are related to the partition function by

()9 = L 02y (7.38)

Z N 3Z/k

19 ( ozy
2\(9) —
(np)' = Z](V)ykay ( ) (7.39)

Oy,
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where y = exp(—[¢;). Therefore, it follows that

8<nk>(g)

2\(9) —
((6n))® = =54

(7.40)

Using Egs. (7.37)-(7.39), (nx){g) can be expressed in terms of those of fermions and bosons
via:

()@ = g{ne) " + (1 = g) () ? (7.41)

Unlike (n)9, (n?)9) does not have a simple form as Eq. (7.41). However, the expression
for the fluctuation in the occupation number does:

((1)*)g) = g((5m)*)" + (1 = g)((5n4)*)". (7.42)

Eq. (7.42) gives only the fluctuation in the occupation of a given level k, while the quantity
we are seeking is the ground state number fluctuation. The latter is formally defined in any

ensemble as:
(6No)> = (6me)* = _({(nf) — (m)?) (7.43)

k k

where the sum & runs over only the levels which are completely occupied at zero temperature.
Thus, in an ab initio calculation, one would formally sum over the quasiparticle levels which
are occupied at 7' = 0 to get ((0Ny)?)(g). Fig.(4.1) shows the level flow in CSM as a function
of g obtained from Eq. (7.33) at T'= 0. It can be seen that as ¢g changes from the fermionic
to the bosonic end, the number of levels contributing to the ground state remains constant,
while the Fermi energy decreases accordingly. This means that one may obtain ((6Np)?)9)
by simply substituting the ground state fluctuations for fermions and bosons. ie:

((9N0)*)' = g((6No)*)" + (1 — g)((9No)*)” (7.44)
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Chapter 8

Cold atoms and FES

In previous chapters we have discussed systems, in detail, in one- and two-dimensions where
the interactions may be treated as statistical. This allows us to treat these interacting
many-body systems as systems of quasi-particles which obey fractional exclusion statistics
as proposed by Haldane at least to the leading order. In this chapter we consider a realistic
three-dimensional system which at the outset appear to incorporate features of exclusion
statistics. Main advantage with this system is that it allows comparison with experiments
as well as with realistic many-body calculations.

We first consider a gas of neutral fermionic atoms at ultra-low temperatures, with the at-
tractive interaction tuned to Feshbach resonance. We calculate, the variation of the chemical
potential and the energy per particle as a function of temperature by assuming the system
to be an ideal gas obeying the Haldane-Wu fractional exclusion statistics. The results for
the untrapped gas compare favourably with the recently published Monte Carlo calculations
of two groups. For a harmonically trapped gas, the results agree with experiment, and also
with other published work.

Next We consider a few-particle system of trapped neutral fermionic atoms at ultra-low
temperatures. We calculate the energies and the spatial densities of the few-body systems
using a generalisation of the extended Thomas-Fermi (ETF) method, and assuming the
particles obey the Haldane-Wu fractional exclusion statistics (FES) at unitarity. The semi-
classical FES results are then found to be consistent with the Monte-Carlo calculations of
the above authors, but can hardly be distinguished from their over all scaling of the ETF
result at unitarity.

8.1 Cold fermionic atoms in a trap

There has been a lot of interest in a dilute gas of neutral fermionic atoms at ultra-cold
temperatures both experimentally [126, 127, 128] and theoretically [129, 130, 131, 132]. In
general, the low-energy properties of the gas are determined by the scattering length a, the
number density n, and the temperature 7" of the gas ( the effective range 7o is small, so
that ro/|a] — 0 as a becomes large ). When the attractive interaction between the atoms is
increased continuously by magnetic tuning from weak to strong, the scattering length a goes
from a small negative to a small positive value. In between, there is a zero-energy two-body
bound state, and |a| is infinite. The gas is said to be at unitarity in this situation, and
the only length scale a drops out. The behaviour of the gas is expected to be universal at
unitarity [129, 130, 131, 132].

Experimentally, if the temperature is small enough, a BCS superfluid is observed at the
weak end, and a BEC condensate of dimers at the strong end [126, 127, 128]. This was

7
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predicted long back by Leggett [133], who extended the BCS formalism in a novel fashion to
analyse the physical situation. The BCS to BEC transition is found to be smooth, with no
discontinuity in properties across the unitary point. There has been much interest amongst
theorists to calculate the properties of the gas in the unitary regime (k¢|a| >> 1), where
ki = (37*n)'/? is the Fermi wave number of the noninteracting gas. This is a challenging
task, since there is no small expansion parameter, and a perturbative calculation cannot be
done.

In particular, at T' = 0, the energy per particle of the gas is calculated to be

21.2
E_ 31 o)
N 5 2M
where & ~ 0.44 [134, 135]. The experimental value is about 0.5, but with large error bars [136,
137]. Recently, there have been two Monte Carlo (MC) finite temperature calculations [138,
139] of an untrapped gas at unitarity, where various thermodynamic properties as a function
of temperature have been computed. For a harmonically trapped gas, there are experimental
results [140], as well as theoretical calculations [141].

In the unitary regime, the thermodynamic properties have both bosonic and fermionic
features [138], and it is natural to ask if in this regime the quasi-particles obey a statistics
which is possibly intermediate between Fermi and Bose statistics. In a recent paper[142],
on very general grounds, it was suggested that at unitarity, so far as average properties
of the system are concerned, it should behave like an ideal gas obeying the generalised
exclusion statistics of Haldane [38]. The definition of the statistical parameter, denoted by
g(> 0) as before, is based on the rate at which the number of available states in a system
of fixed size decreases as more and more particles are added to it. As noted earlier, the
statistical parameter g assumes values 0 and 1 for bosons and fermions respectively, because
the addition of one particle reduces the number of available states by g.

At the outset we remark that there is no quantative calculations to provide a microscopic
theory mapping the interacting cold atoms to the quasi-particles obeying excusion statistics.
However we can advance several qualitative arguements to provide the rationale for using
Haldane-Wu statistics at unitarity as follows:

e Asis well known, Haldane-Wu statistics is realised by the Calogero-Sutherland model
in one dimension [61]. The potential and kinetic energy both scale the same way in this
model, and both the energy densities scale as n3. Similarly, fermions in two dimensions
interacting with a zero-range potential have their kinetic and potential energy densities
scale as n?, obeying Haldane-Wu statistics [96].

Likewise, a strong hint that Haldane statistics may be realised for the system under
consideration comes from the observation that the kinetic and potential energies scale
the same way (see Eq.8.1) when there is no length scale left from the interaction at
T = 0. While this scaling behaviour at 7" = 0 is a necessary condition for systems
obeying Haldane statistics, it does not by itself imply that all systems showing scaling
behaviour obey Haldane statistics at finite temperatures.

e In the present case, a compelling evidence comes from the fact that the second virial
coefficient of the gas at unitarity is temperature independent [143]. In exclusion statis-
tics, the scale-invariant interaction between atoms alters the ideal Fermi (Bose) values
of the (exchange) second virial coefficient +(—)27°/2 by adding an interacting part [54].

e The zero temperature calculations with Haldane statistics yields results consistent with
density functional approach of Papenbrock[144].
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The above arguments are heuristic and indicative. A quantitative understanding can be
obtained only when the effective interaction is known fully. In the absence of such a theory,
in here we pursue a phenomenological approach where we assume the validity of exclusion
statistics on the average for quasi-particles which are otherwise non-interacting. The effect
of interaction is entirely subsumed in defining the statistics of the quasi-particles.

The value of the statistical parameter g for the unitary gas is deduced from theory using
Eq.(8.1), fitting the parameter £ = 0.44. The value of g thus determined remains the same
independent of the nature of confinement as it should since the microscopic origin of the
value of g depends only on the interaction between fermions and not on how the system is
prepared experimentally. The application of the finite temperature distribution function [55]
then enables us to calculate the temperature dependence of the energy per particle, and the
chemical potential of the unitary gas. The results for both trapped and untrapped gases are
in good agreement with experiment, and MC calculations.

Let us first estimate the value of the statistical parameter g by using the following con-
siderations: For Haldane-Wu statistics, the distribution function (or occupancy factor) in a
single particle state with energy ¢; is f; = (w; + ¢g) ™', where w; obeys the relation

w1+ w)' 9 = eapl(e; — )] (8.2)

where § = 1/T, T being the temperature in units of the Boltzmann constant. Note from
the above that for ¢ = 0 and 1, the distribution function f; reduces to the familiar bosonic
and fermionic forms. It is also clear that for T = 0, the occupancy factor is

1
i(T=0) = -, <u,

9

Now consider N interacting fermionic atoms mapped to this statistics at 7' = 0 in a large
volume V. The new Fermi momentum £y is determined from the relation

12 (M
N=V-— / Amk*dk (8.4)
g(2m)3 Jo
where we have included a spin degeneracy factor of 2. The modified Fermi momentum k},
from above. is k; = ¢'/3k;, where k; is the fermi momentum of the noninteracting Fermi
gas. It also follows that the energy per particle of the unitary gas is given by

E 5 317K

N9 5am
Comparing with Eq.(8.1), we see that & = ¢?/3, and choosing g = 0.29 gives the generally
accepted value of £ = 0.44. This therefore fixes the only free parameter in the model, namely,

g and it should be valid independent of temperature and the nature of confinement as it is
the parameter which determines the statistics of quasi-particles.

(8.5)

8.2 Homogeneous gas

The main advantage of the phenomenological model, however, is the calculation of the bulk
properties of the gas as a function of the temperature, and this we proceed to do now. We
follow the well known method (see for example the paper by Aoyama [76]) for this purpose.
For a given density of single-particle states D(¢), we have

N:/Ooo Dle)de E:/OooM (8.6)

(w+g) (w+g)
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Figure 8.1: Plot of the energy per particle as a function of temperature. Both the abscissa and
ordinate are in units of the free Fermi energy. The solid line corresponds to our calculations
with ¢ = 0.29. The solid squares (green) with error bars are the MC calculations of [139],
and the triangles (blue) are the MC calculations of [138].

3

For the 3—dimensional gas, D(e) = C'y/e, where the constant C' = %N € /2 Furthermore,

k2 . . . . . . .
€; = 537 is the Fermi energy of the noninteracting Fermi gas. Changing the variable from

de to dw, and using the relation involving w’s given above, one gets after some algebra

O s ) ()Y e e
E O s ) ) e

In the above, wy is the value of w at € = 0. For our choice of g = 0.29, the Eq. (8.14)
is solved at a given (7'/es) for wy numerically, and this wy is used in Eq.(8.15) next to
obtain (E//Ney). From the definition of wy, it also follows that the chemical potential p at
temperature 1" obeys the relation

o L g+ (1= g) (1 + wo) ]. (8.9)
€f €r

The results for the energy per particle and the chemical potential (in units of the noninter-

acting Fermi energy €, ) are plotted in Fig.8.1 and Fig.8.2 respectively.

The results are not sensitive to the fine-tuning of the statistical parameter g. In Fig.
8.1, we also show, for comparison, the recent MC calculated points of Bulgac et al.[138]
and Burovski et al. [139]. Tt will be seen that the agreement is very good, especially for
energy per particle, although the chemical potential i as calculated by us starts to differ
from Burovski et al result for T'/e; > 0.8). The Quantum Monte-Carlo calculations for p
between T'/Tr = 0.8 and 1, despite the large error bars, appear to have a pronounced break
in the slope of the p vs. T curve. The reason for this is not clear. Our results, on the other
hand, smoothly go over to the classical behaviour, as is to be expected.
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Figure 8.2: Same as in Fig.(8.1) for chemical potential plotted as a function of temperature.

8.3 Trapped gas in harmonic oscillator

The finite temperature results are easily generalised for fermions in harmonic trap. Consider
the fermions at 7' = 0. The density of states D(e), including a spin degeneracy factor of
2, is €2/(hw)?, where the oscillator parameter is defined as w = (w,wyw.)3. It follows
immediately that ¢; = (3gN)Y3hw, and the energy E = ¢g'/3(3N)*3/4 hw. These results are
the same as the Thomas-Fermi density functional approach of Papenbrock [144]. We can
easily extend these results to finite temperatures using this density of states in Eq.(8.6).

R A (G G|
v () [t ) )] e

The expression for p remains the same as Eq.(8.9), although the numerical values of wy as a
function of T" are quite different from the unconfined gas. We present the results for average
energy in the trap in Fig.8.3, using the same value of g = 0.29 since the statistical parameter
depends only on the mutual interaction and not on the nature of confinement. It will be
seen that the agreement with experimental data of Kinast et al [140] as well as the many
body calculation of Hu et al [141] is very good.

Other thermodynamic quantities, like the specific heat and the entropy, could be readily
calculated. However we note that the model cannot yield the two- or many-particle corre-
lation functions. In this regard, the situation is similar to the one-dimensional Calogero-
Sutherland model [39, 40, 41], which can be mapped on to a system of quasi-particles which
obey Haldane-Wu statistics [75, 61, 62, 56]. But this does not help in obtaining the correla-
tion functions, for which the full many-body calculation has to be done. Moreover, the ideal
Haldane-Wu gas cannotdescribe super-fluidity. Therefore, the main usefulness of the present
approach is its ability to calculate the temperature-dependence of various bulk properties of
a unitary gas with just one free parameter, namely the statistical parameter g.
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Figure 8.3: Plot of the energy per particle as a function of temperature for the confined
gas. Both the abscissa and ordinate are in units of the free Fermi energy. The solid line
corresponds to our calculations with ¢ = 0.29 and the dashed lines corresponds to the
calculations presented in Ref.[141]. The experimental data is taken from Kinast et al [140].

8.4 Many-particle ground state

Chang and Bertsch [145] have recently presented an ab initio Green’s Function Monte-Carlo
(GFMC) calculation of the energy and density of N = 2 — 22 trapped fermionic atoms in a
harmonic potential. The atoms are interacting via a short range central two-body potential,
with its strength adjusted to yield a zero-energy two-body bound state in free space. The
many-body properties of this system are expected to be independent of the shape of the
two-body interaction in such a set-up.

In the previous sections [142] we obtained the energy per particle and the chemical
potential of a noninteracting gas of atoms at finite temperatures obeying fractional exclusion
statistics (FES). As is clear we assumed that at unitarity, the effect of the interaction could
be simulated by FES for the bulk properties of the system. The results, with the choice of one
free parameter in FES, were found to be in good agreement with theoretical MC calculations
for a free gas [138, 139] and the experimental results in a trap [140, 141]. Since the number
of atoms, NV, was taken to be large, no finite-N corrections were needed in our semiclassical
calculations. This is not the case for the ground state energies, where N is taken to be small.
The purpose of this section is therefore to test whether the FES hypothesis gives improved
results when the finite-N corrections are incorporated in our calculations. The account given
here is taken from Ref.[149]

In the next section, we first summarise the TF and ETF results. Both these have limi-
tations at the classical turning point, where the spatial density behaves discontinuously. To
rectify this, we make use of a modified semiclassical method [146] that gives a continuous
variation of the density across the turning point. Our semiclassical results incorporating FES
are next compared with the Green Function Monte-Carlo (GFMC) calculations of Chang and
Bertsch [145] for fermions trapped in a three dimensional oscillator potential. We find that
FES results are consistent with the many-body GFMC results.
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8.5 Semiclassical Calculations incorporating FES

It also follows from Eq.(8.1) that the scaling factor £ in a Fermi gas is related to the statistical
parameter g by the relation £ = ¢*°. In a three-dimensional isotropic harmonic trap, a
similar scaling of the TF expression gives [144], in units of hw,

51/2
Erp = T(3N)4/3 : (8.12)
In FES, an identical relation is obtained, with £'/2 replaced by ¢'/®. The scaled TF spatial
density is also identical to the FES expression when this replacement is made :

/2
124 s 12\’
( 12) ((39N ) 5 , (8.13)

prr(r) = 3729
where | = /(h/mw). The above expression is valid for r < rq, where 79 = /21(3gN)"/®
is the classical turning point. For r > ry, the TF density is zero. To implement finite-
N corrections, one has to consider ETF [147]. Chang and Bertsch [145] scale the energy
expression for ETF by the same over all factor as in TF (denoted by ETF’), where as FES
yields a different expression [148] (in units of fw):

BN)Y3 (3N)/3

Eprp = €2 (( 4) + ( 8) + ) ; (8.14)
3N)Y/3 3N)/3

Eprr = (91/3% + 9_1/3% + ) ) (8.15)

Although ETF gives a reasonable description of the smooth part of the energy, it fails to do
so for the spatial density. In fact, the ETF density diverges at the turning point. To give a
consistent description of both the energy and the spatial density, we adopt a method where
a selective summation of the higher order gradient terms of the Wigner-Kirkwood series is
made [146]. For a harmonic trapping potential V' (r), retaining terms up to third order in 3,
the Bloch density C(r, 5) incorporating FES is given by

12
) = 3Gy
h2 2 h2
<1— 12fn)exp {—ﬁv+5324m(vvf : (8.16)

The spatial density is obtained by taking the inverse Laplace transform of C(r, 3)/8 with
respect to the chemical potential x4, which we denote by p = E;l[C (r, 8)/B]. Tt is the cubic
term in the exponent that makes the density continuous across the classical turning point.
Similarly, the energy is given by E = uN — 5,;10 (r,3)/B%. The inverse Laplace transfor-
mations are carried out by the saddle-point method. The quality of the approximation is
tested by applying the method to NV noninteracting spin-1/2 fermions (¢ = 1) in a harmonic
potential. The result for the energy is plotted as a function of N is plotted in Fig.8.4. To
facilitate the comparison, the TF energy is subtracted out from the quantum as well as the
semiclassical results for Epppr and E. Note that the shell effects in the energy as well as the
density are not reproduced in the semiclassical calculations.

In Fig.8.5, we compare the GFMC results [145] of the energy for N = 2 — 22 atoms
with the various semiclassical calculations. For the latter, the scaling factor in Eq.(8.14)
is taken to be & = 0.48, that corresponds to g = 1/3 for the ETF Eq.(8.15), and also for
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Figure 8.4: Plot of the energy, F — Epp vs particle number for fermions (i.e., g = 1).
The red (solid) curve corresponds to the exact calculation in a harmonic oscillator while
the green (dashed) and blue (dotted) curves correspond the calculations based on ETF and
resummation methods.

E. Our choice of ¢ = 0.48 is very close to that of [145], and corresponds to a g not too
different from the value of 0.29 chosen earlier [142]. It is seen from Fig.8.5 that all the
semiclassical methods fare well, and it is not possible to distinguish the scaled results from
the FES ones. A clearer comparison is made in the figure on the right in Fig.8.5, where
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Figure 8.5: Left: Plot of the energy vs particle number with g = 1/3. The data points refer
to the GFMC calculation of Chang and Bertsch[145]. The pink(dotted) curve corresponds to
the energy calculation using the resummation method. The green (dashed) and blue(short-
dashed) curves correspond to the standard ETF calculation with FES (see Eq.(8.15)) and
the ETF’ approximation given by Chang and Bertsch (see eq.(8.14)). Figure on the right
shows the energy after subtracting the TF contribution as in Fig.1 but choosing g = 1/3.

the large TF term given by Eq.(8.12) is subtracted out from the energies. Even then, it is
not possible to assert the relative superiority of over all scaling to FES. We suggest that a
distinction may possibly be made if a larger range of N values are spanned by a MC many-
body calculation. An interesting aspect of GFMC results (figure on the right in Fig.2) is
the odd-even oscillations in energy. In Fig.8.6 the calculated density for N = 20 particles
is plotted using the resummation method and is compared with the TF density. Although
there is not much to choose between the ETF and the resummation results for the energy,
the density in the latter case is distinctly superior and appears to agree with the smoothed
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Figure 8.6: Plot of radial density for N = 20 as a function of the scaled distance x. Shown
are the density calculated using resummation method (red-solid) and the TF density (green-
dashed) with g = 1/3. The density of fermions in a harmonic oscillator is also shown for
comparison (blue-dotted).

part of the density calculated by the the GFMC method. It also reproduces the tail beyond
the turning point, which is not possible in TF or ETF approximations.

One may also be tempted to calculate the exact energy of an N particle system using
the harmonic oscillator shells with redefined occupancies according to FES. For example the
L = 0 level then has an occupancy of 6 instead of 2 at ¢ = 1/3. Indeed this gives reasonable
agreement with the energy of the N particle system, for example for N = 22 the GFMC
calculation gives an energy of 49.3 where as the naive calculation with FES occupancies
gives 49 in units of hw. However, the exact density calculated using the corresponding
wavefunctions has the wrong behaviour for shell effects. Thus FES framework can be used
only in an average sense and should not be interpreted literally for all N.

To summarise, We have considered a few particle system of trapped and interacting
neutral fermionic atoms at ultra-low temperatures. The energy and spatial density of this
system is calculated semiclassically assuming the particles obey the Haldane-Wu fractional
exclusion statistics (FES) at unitarity. The semiclassical FES results are consistent with the
Monte-Carlo calculations of Chang and Bertsch [145], but can hardly be distinguished from
the over all scaling of the noninteracting energy that is commonly used at unitarity. However,
it is interesting to note that both at finite temperature [142] and at zero temperature the
FES frame work yields reasonably good results for the smooth parts of the energy and the
spatial density.
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Chapter 9

Discussion

We have thus presented a detailed discussion of the generalized Pauli principle as enunciated
by Haldane in his seminal paper[38]. Much of this presentation is based on our own work
in this area. We have also tried to include discussions of the relevant details from other
important contributions as needed. One of the importants conclusions that emerges is that
we may look upon certain types interactions as giving rise to new types of statistics, where
the word statistics has been used purely in the sense of restrictions on occupation numbers.
Given a cell or unit in the energy space, the number of single particle states in the cell depend
on the nature of the interaction between particles and hence the occupencies. This fact alone
is not sufficient to generalise the occupation probabilities. If however, the occupancies are
independent of where the cell is located in the full energy space, one expects a generalised
Pauli principle to hold. Haldane’s idea realises such a situation. There have also been other
complementary ideas one of which due to Polychronakos is discussed in the appendix A.

We would like to emphasise this crucial property of exclusion statistical interactions it
should cause shifts in single particle energies at all scales[54]. This property is realized by a
large class of one dimensional models of interacting fermions where Fermi liquid theory breaks
down [46, 61]. In fact it has been shown exactly that quasiparticles with nontrival exclusion
statistics exist in a class of models that are solved by the Bethe ansatz. In particular, as we
have demonstrated, the quasiparticles of the Calogero-Sutherland model (CSM) behave like
ideal exclusion statistics system.

One immediate casuality of the exclusion statistics is the fact the now we can not as-
sociate an occupation probability for a single state as the exclusion acts across levels. If
we did this in an unconstrained manner, then some of these probabilities may turn out to
be negative. However, as we have shown the particles obeying fractional exclusion statis-
tics may be characterised by constraints on the sets of occupation numbers. There are
no negative probabilities if these constraints are obeyed. If these constraints are relaxed
then the negative weights arise in order to compensate for the resulting over counting. The
negative probabilities discussed in literature can be understood as arising when the system
constrained by the counting rules is replaced by an unconstrained one. The negative weights
then compensate for the introduction of unphysical configurations. This is therefore exactly
analogous to other situations in physics where negative probablities arise, for example, the
ghosts and negative norm states in gauge theories or as in the case of Wigner distribution
in quantum mechanics.

Before we end the discussion, we would also like to mention other interesting applications
of exclusion statistics, not envisaged in the original suggestion. These refer to the application
of exclusion statistics in real three dimensional space without actually invoking the quantum
statistics for the particles. The residual entropy of ice is thought of as a minifestation of
FES in real three dimensional space [150]. Each hydrogen atom in ice can occupy one of
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the two equvalent bonding sites between neighbouring oxygen atoms. However, there is a
chemical constraint known as the ice rule which reduces the number of allowed configura-
tions. Jisoon Thm[150] proposed that this reduction may be due to fractional statistics. In
yet another interesting application of exclusion statistics in real space, Riccardo et al[151]
have proposed a new description of the theory of adsorption. The experimentally measured
adsorption isotherms agree very well the proposed new theoretical description based on ex-
clusion statistics.
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Appendix A

Other forms exclusion statistics

Haldane proposed the generalisation of Pauli prinicple. As already demonstrated the parti-
cles which obey Fractional Exclusions Statistics may be regarded as the quasi-particles of an
interacting system like CSM. Though the interacting particles may be fermions (or bosons),
the properties of the system may be realised through ideal quasi particles which obey FES.

Polychronakos [152] proposed another form for the exclusion statistics which is appealing
in its simplicity. The starting point of Polychronakos is also the same as Haldane, namely
that there is a change in the single particle space when new particles are added

g=—Ad/AN. (A.1)

However, there are many ways such a generalised principle can be realised through counting
of many body states.

In this appendix we argue that the classical CSM may provide a realisation of exclusion
statistics as proposed by Polychronakos.

A.1 Exclusion statistics of Polychronakos

The combinatorial formula for putting N identical particles in d states as suggested by
Polychronakos is given by

Do) = d(d — «a)(d —;?)...(d—a]\f). (A2)

This can be thought of as follows: The first particles has d states to chose from, the next
has d — a states to choose from and the last particle has d — a/N states to occupy. The
factor N! is introduced to avoid overcounting. Thus the counting is essential classical and
a = 1,0, —1 correspond respectively to Fermi, Boltzmann and Bose statistics. Unlike in the
case of Haldane’s proposal, the classical statistics limit is defined by a = 0. Interestingly,
there are no negative weights as in the case of FES. An important difference with FES
ala Haldane is in the counting method- Haldane’s starting point is the counting of many
body states which is akin to Bose statistics, that is it is essential quantum. However in
Polychronakos method of counting one can start from the Boltzman or classical counting,
when o = 0 and use the blocking to reproduce the quantum statistics.

Most interestingly it can be shown that the distribution function of the system is given
by

- 1
"= B p) Ta (4-3)
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which is the simplest possible generalisation of the Fermi and Bose distribution. This dis-
tribution function was first proposed by Acharya and Narayanaswami[153] in the context of
anyons without any reference to the counting of states or FES. One can also obtain all the
virial coefficients for a gas obeying the Exclusion statistics of Polychronakos (PES).



Appendix B

Boson and Fermion partition
functions

In this appendix we derive two useful identities for bosonic and fermionic partition functions.

Consider first the grand canonical partition function for bosons

(0@
_ N B
—E 2" 2y,
N=0

(B.1)

where z = e’* is the fugacity and Zy is the canonical partition function for N bosons.

Therefore

Z5(8) = 02"

where 0, = (0/0z). If n labels the single particle modes then

oo
n m=0 n

where

X m

S:Zln(l—ze_ﬁE” Zi% _mBE":—Z%Zl(mﬁ).

n m=1 m=1
Therefore we have
oS = —(m — 1)!Z1(mp)
and
S|z:D:O; Z‘z:OZ L.

Using eq.(B.3) we have

0.2% = —70.8
0278 = Z((0.5)* — 929)
B7P = —7((0.5)° —3025(0.5) + 029),
and in general
orzP = (-1)"Z (0. (m)d2S(9.8)™ % 4 -],
We can compute the coefficients a(m) recursively noting that
a;nJrlzB _ -1 m+lzB [( 3 m+1 —a m+ 1)825<8 S)mfl 4. } 7
= (-)"*'z"[(0.8 m“ — (a(m) +m)d2S(2.9)" " + -],
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which gives the recursion relation

alm+1) =a(m)+m = @ +c. (B.9)
The constant ¢ = 0 since a(2) = 1. Thus we have

Using eq.(B.2) and eq.(B.10) we obtain the desired result for the canonical partition
function of bosons
1 N(N -1 _
28 = 57 (@)Y + S @t nes . may

We follow the same steps in the fermionic case: The grand partition function of a system
of fermions is given by

S (B.12)
N=0
Therefore
Z5(8) = 350N 2" o, (B.13)
Furthermore
H Z m fmﬁEn _ H(l 1z e*ﬁEn) — 673, <B14)
n m=0 n
where
~6Tn) Z_ e~ MBEn (1
-l ) = S I R = S S . (819

Making the above changes in the fermionic case and following the steps as in the case of the
bosonic partition function, we obtain the result

1

25 = 3 | -

N(N —1)

@y aes el B



Appendix C

Low temperature expansions in GCE
and CE

The low temperature behaviour of thermodynamic quantities in GCE are well known for
bosonic systems. However, a comparison between GCE and CE calculations at low tem-
peratures is not usually discussed for either Bose or Fermi systems. Further, making use of
some asymptotic expansions, the CE fluctuation for bosons was earlier found to be linear
right down to 7" = 0. However, we give here the expansion of the fluctuation squared at low
temperature in power of x, where = ¢, and show that the CE fluctuation of bosons is in
fact exponential at very low 7. In GCE only expansion for fermions is possible, since the
fluctuation tends to infinity at low temperature for bosons. Both expansions are possible in

CE.

Grand Canonical Ensemble: In GCE the (fermionic) occupation number is:

T 1
x(n—ek) +1 B r(n—k—1/2) +1

(C.1)

<nk>GCE =

for a one dimensional system. The ground state number fluctuation squared is given by:

o pleke1/2)

((0No))oor =)

k=0

C.2
[x(mufkfl/Z) + 1]2 ( )

where kr is the Fermi level. At low temperatures, for the one-dimensional harmonic oscilla-
tor, u ~ g = N. Therefore,

((6No)Daer = VI — 20 4 4% — 42® + 6277 — 82> + 8272 —82*... | N>4. (C3)

Note that the first few terms are independent of V.

Canonical Ensemble: In CE the first and second moments of the occupation number are
known [154]:

N
1
(ng) = Z—Z L) gIr Zy (C.4)
J
1 N
(ni) = Z_Z j—H j:l: 1)].Tj€kZN_j, (C5)
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where the upper and lower signs refer to bosons and fermions respectively. Summing over
the ground states up the Fermi level gives the fermionic ground state number:

N

1 jr1gapl =@
(No)ep = T Z(_n T — 7N, (C.6)
j

where we let ¢, = k — 1/2, with k = 1,2, .... Therefore,

(6No))er = ) (m) =Y (m)?
= :c_—i— 20 + _ , N >4, (C.7)

where we have used (n;) = (n?) and again the first few terms are independent of the system
size N.

For bosons the ground state consists of one single lowest level, the low temperature
expansion of the number fluctuation is given by

(ONo))er = (ng) — (no)?
v+3* +4P+ T2t + .., N >4 (C.8)

Again as in the fermionic case the first few terms in the low temperature expansions are
independent of the system size. Indeed it is interesting to note that in CE, the fluctuations
in both the systems approach zero as T' — 0 in exactly identical fashion.



Appendix D

Fermi golden rule

We generalize the Fermi Golden Rule for quasiparticles obeying the new statistics and apply it
to the calculation of a relaxation time of a nuclear spin in a metal[155]. Both the applications
are qualitative, with a view to explore qualitative changes from the standard results.

We now consider generalization of the well-known Fermi Golden Rule, for particles obey-
ing the fractional exclusion statistics. Consider a two-particle scattering process k + p —
k' + p/, in one dimension. Let the two particles be distinct. We have in mind processes
like the electron-nuclear interactions in metals. According to the Fermi Golden Rule, the
transition probability per unit time for such a process is given by

Wi f = 27T| < Z|Hmt|f > ’25(Ez — Ef),

where H;,; is the interaction Hamiltonian and the delta function ensures energy conservation
between the initial and the final states. Typically in electron-nuclear interactions (as in
magnetic relaxation in solids) one can neglect the nuclear recoil to a very good approximation
and therefore one can replace §(E; — Ey) by 6(Ey, — Ej), k and k' being the initial and final
momenta of the scattered electron. We work in this limit to keep the calculation simple and
also because this is the relevant limit for many physical applications. The total transition
probability per unit time at nonzero temperature is then given by?

Wiey = 2n [ dkd| < ilHual > PS(Ex = Be)p(0p() f(E)P(Ev),

where p(k) denotes the density of states in the momentum space, f(F) is as in (4) and F'(E)
is what was denoted by F(f) earlier, see (6). Performing one of the two integrations by
using the delta function, we obtain

Wiy =20 [ 4| < ilHulf > Po(E) 2 (BYF (D) (D.1)
In order to evaluate the integral in (13), we note that
f(E)F(E) = (f(E))? e BRI, (D.2)
where Ep is the Fermi energy. Notice that in the low-temperature limit we have
f(E)=1/a E < EF,

and zero otherwise. Thus at low enough temperatures, the system for an arbitrary « (except
very close to the Bosonic end) does exhibit a Fermi surface. We will be using this fact later
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in the calculation. Now for reasons that will become clear shortly, we wish to obtain an
expression for the derivative df /dE. Using (4-5), we get

daf 5 dw s w(l+w)

I =B G =~ B e D3
Substituting (f(F))? from (15) into (14), we get
f(EYF(E) = _ﬁM(gw—Ep)/T' (D.4)

dE w(l +w)

We now consider the low-temperature (7' < E) limit of the process under consideration.
In this limit, f(F) ~ 0(Er — E)/a, and hence, df /dE ~ —6(Er — F)/a. Substituting this
in (16), we find
T(o+w(E))
aw(E)(1+w(E))

Substituting (17) in (13) and performing the energy integration we get the Generalized
Fermi Golden Rule:

f(E)F(E) ~ §(Ep — E). (D.5)

T(a+w(EFr))
aw(Er)(1+w(EFr))

Wiy = 27 < il Huwl f > [2(p(Er))’

In the special case when o = 1 (Fermions), we have, from (5), w(Fp) = 1, and we get
VViif = 27| < i|Huu|f > [*(p(Er))*T.
We can therefore, in general, write

a _ F « +W(EF)
= = W B (U + w(Er)

We may now apply this result to specific cases. A straightforward application is to the
calculation of a relaxation time of a nuclear spin in a metal[156]. The relaxation time for
arbitrary « is then given by?)

(o) = 1 ermions o+ wlbr)
T( ) T(F )aw(EF)(l"'w(EF)).

Thus the change due to fractional statistics is simply given by a multiplicative factor which
depends on «a. In particular, at a = 1/2, this multiplicative factor can be explicitly calcu-

lated, and we get
1

l(04) = /5= (Fermions).
T T
Notice that in deriving the Generalized Fermi Golden Rule we have made a number of
simplifying assumptions. Real systems are likely to be more complicated. Nevertheless, the
above derivation probably indicates the correct direction in which the transition rates move

when fractional exclusion statistics particles are involved.



Appendix E

Thomas-Fermi for contact interaction:
Phase space approach

We give below a phase space formalism of TF with delta function interaction in 2-dimensions.
The results are similar to the real space approach given in chapter 6, but is done in such a
way that it can be adopted in higher dimensions also.

Consider a model of two species of fermions (may be spin-half system) in two dimensions
interacting via a delta function interaction. The Hamiltonian is given by,

H= Z—pw+V(xw +uYy Sz —w; 1), (E.1)

2
i,J

where 7,7 = 1,2; 0 =1/2,—1/2. V denotes the one body potential.
Now introduce the phase space density by the following definition:

pa(p7 gj) = (27Th)2 Z 52 (p - pia)52(x - :EiG) (EQ)

The Hamiltonian can then be written as,

H=Hy+ H; (E.3)
where
Hy = 27T /d2p d*x Z p + V(x)|ps(p, x) (E4)
and )
= e [ B0 w0, . ) (£
The interaction Hamiltonian can be rewritten as
H= g [ € U0 (5.
where ) »
Uslp:2) = (2 / d*p up_o (V@) (E.7)
We thus have
H= (s | 0 0l + Uolpsa) + Vo2 (ES)
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We can now define new coordinates on the phase space with shifted momenta as follows:
Pio =0" +2mUs(p,x); Tae =1 (E.9)

Note that this is exactly analogous to the shifted energies that we had defined in the CSM in
one dimension. The above change of variables can now be made in the equation (8) above.
The Jacobian of transformation is easily computed-

dU,(p,
padpa = pdp + m%dp
P
and we have »
p
d*pas = — (E.10)
I+ (227r;~,)2p (p7 x)
We can redefine the density such that,
po(p,x) = zpnfjp’ 2 (E.11)
1+ Gjzp-o(p, @)
Making these change of variables, the original Hamiltonian can be written as
= o | 0 € g+ V0. (B.12)

Thus we have mapped the interacting system to a non-interacting Hamiltonian with the
density redefined as above. The integration over p should be done carefully since there is a
hole at the centre defined by the interaction. To find the ground state density, we have to
minimise the energy as given above subject to the constraint

po(p,z) <1

since the original particles are fermions. Assuming the densities for both spins to be equal,
the solution is

p2.) = 00— (24 via) (£13)
where o
o= (1 2 (E1)

This is exactly like the solution we had for the two-dimensional delta function obtained
in chapter 6. However, the method given above may be carried out for three-dimension also
with some changes.



