Constraining and Un-constraining Supergravities

What you must know about supergravity but do not want to ask string theory?

- A randomly chosen supergravity theory, as it stands, is inconsistent
 - > Restrictions are too few

(notably from anomalies
$$I_d^{(1)}$$
: $I_{d+2} = \mathrm{d}I_{d+1}^{(0)}$, $\delta I_{d+1}^{(0)} = \mathrm{d}I_d^{(1)}$)

- Global surprises

Part I: Discrete anomalies in D=8

Work with Bing Xin Lao

Part II: Quick D=6 review

Work with Peng Cheng and Stefan Theisen

Part III: Exotic backgrounds

Work with Peng Cheng and Ilarion Melnikov

D=10 Super-Poincaré Representations with 16 supercharges:

B.L.G.	representation	multiplet
SO(8)	$8_v \times 2^4 = 35 + 28 + 1 + 8_+ + 56$	gravity - anomalous
	$2^4 = 8_v + 8$	Yang-Mills - anomalous

Gravity + YM ⇔ Anomaly cancelation possible if

*
$$I_{12} = X_4(R,F) \wedge X_8(R,F)$$

- * Gauge group: $E_8 \times E_8$, SO(32) ... but also $U(1)^{496}$, $E_8 \times U(1)^{248}$
- ightharpoonup Anomalous Bl $\mathrm{d} H = X_4(R,F) \sim \operatorname{tr} R \wedge R \operatorname{tr} F \wedge F$
- ightharpoonup GS couplings $\sim B_2 \wedge X_8(R,F)$

D=10 Super-Poincaré Representations with 32 supercharges:

B.L.G.	representation	multiplet
SO(8)	$2^8 = 35 + 28 + 1 + \frac{56}{v} + 8_v + 8_+ + 56 + 8 + 56_+$	(1,1) - IIA
$SO(8) \times SO(2)$	$2^{8} = 35_{0} + 28_{-2} + 1_{-4} + (8_{+})_{-3} + (56_{-})_{-1}$	(0,2) - IIB
	$+(35_{-})_{0}+28_{2}+1_{4}+(8_{+})_{3}+(56_{-})_{1}$	

D=8/9 theories (Circle / T^2 reductions) with 16 suprecharges

For
$$\mathcal{L}_v g_{10} = 0 = \mathcal{L}_v H$$

$$S^1 \longrightarrow X_{10}$$

$$\downarrow^{\pi} \qquad \mathrm{d} e = \pi^* T \qquad (\mathcal{L}_v e = 0)$$

$$X_9$$

$$H = H_3 + H_2 \wedge e$$
, $dH = 0$ \Rightarrow
$$\begin{cases} \bullet & dH_2 = 0 \\ \bullet & dH_3 = -H_2 \wedge T = -F_+^2 + F_-^2 \end{cases}$$

Supergravity in D=9/8 - theory with $SO(1,N,\mathbb{R})$ / $SO(2,N+1,\mathbb{R})$ symmetry

- \star Global anomalies \Rightarrow N odd
- \star Parity acts as an internal symmetry \Rightarrow N = 1, 9, 17
 - > non-orientable manifolds are consistent backgrounds!
- \star String constructions known for N = 1, 9, 17
- ⋆ No parity anomalies

Discrete anomalies

- D=8 theory with maximal supersymmetry (32 supercharges)
 - $ightharpoonup moduli space: rac{SL(2,\mathbb{R})}{U(1)} imes rac{SL(3,\mathbb{R})}{SO(3)}$
 - \circ IIB: au complex structure of \mathbb{T}^2
 - M: $\tau = -2C_{8910} + Vol(\mathbb{T}^3)$
 - $hd S^{(8)}$ invariant under diffs, but not under $SL(2,\mathbb{Z})$
- Ungauged theory has composite U(1) anomalies:

- $> \delta \psi_{\mu} = \left[\nabla_{\mu} + \frac{i}{4} Q_{\mu} \gamma^{9} + \frac{1}{4} Q_{\mu}^{ab} T^{ab} \right] \epsilon$
- > other fermions are also chiral
- ho $F=rac{{
 m d} au\wedge dar au}{4i au_2^2}$ the curvature of the composite connection $Q=-{
 m d} au_1/2 au_2$
- Upon gauge fixing composite U(1) anomaly becomes $SL(2,\mathbb{Z})$ anomaly!
 - $\diamond X_8 = \frac{1}{48} \left(\frac{1}{4} p_1 (TX)^2 p_2 (TX) \right)$ present in D=10/11

Many lives of X_8

Euler density:

 \diamond Curvature two-from $R_{ab} = \frac{1}{2} R_{abcd} e^c \wedge e^d$

Spinor density:

$$\hat{\chi} = \frac{1}{4!(4\pi)^2} \cdot \frac{1}{2^4}$$

$$\epsilon^{i_1 \cdots i_8} R_{a_1 a_2} \left(\Gamma^{a_1 a_2}\right)^{i_1 i_2} R_{a_3 a_4} \left(\Gamma^{a_3 a_4}\right)^{i_3 i_4} R_{a_5 a_6} \left(\Gamma^{a_5 a_6}\right)^{i_5 i_6} R_{a_7 a_8} \left(\Gamma^{a_7 a_8}\right)^{i_7 i_8}$$

Eight-forms:

$$\begin{split} \hat{\chi} &= \frac{1}{16} \left(8 \chi + p_1 (TX)^2 - 4 p_2 (TX) \right) \\ X_8 &= \frac{1}{48} \left(\frac{1}{4} p_1 (TX)^2 - p_2 (TX) \right) \\ &= \frac{1}{(2\pi)^4} \left(-\frac{1}{768} (\operatorname{tr} R^2)^2 + \frac{1}{192} \operatorname{tr} R^4 \right) \end{split}$$

M5 Anomaly & Inflow mechanism

11D supergravity:
$$S_{\text{SUGRA}}=\frac{1}{2\kappa^2}\int \mathcal{R}*1-\frac{1}{2}G_4\wedge *G_4-\frac{1}{6}C_3\wedge G_4\wedge G_4$$

M5:
$$dG_4 = Q\delta_5(M5)$$

(2,0) tensor multiplet on M5:

Woldvolume chiral 2-form

$$\diamond$$
 $I_{\beta} = \frac{1}{5760} \left(16p_1(TW)^2 - 112p_2(TW) \right) \sim L(TW)$

Worldvolume fermions

$$\diamond \qquad I_D = \frac{1}{2}\widehat{A}(TW)\mathsf{ch}S(N)$$

$$\diamond N$$
-trivial: $I_D = 4 \times \frac{1}{2} \widehat{A}(TW) = \frac{1}{5760} \left(14 p_1(TW)^2 - 8 p_2(TW) \right)$

- Total anomaly: $I_{(2,0)} = \frac{1}{48} \left(\frac{1}{4} p_1 (TX)^2 p_2 (TX) \right)$
- Cancelled via inflow from a bulk coupling $\sim C_3 \wedge X_8$

$$G_4 \delta X_7^{(0)} \to \delta_5(M5) X_6^{(1)}(TX) \quad \leftrightarrow \quad d^{-1} \delta d^{-1} I_{(2,0)}$$

• For nontrivial normal bundle: $\delta(C \land G \land G)$ is needed

Consistency of the supergravity theory together with BPS objects

Anomalous variation in the D=8 path integral:

$$-12\int \Sigma X_8(R)$$

with

$$e^{-i\Sigma(M,\tau)} = \left(\frac{c\tau + d}{c\bar{\tau} + d}\right)^{\frac{1}{2}}, \quad M \in \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad M \in SL(2,\mathbb{R}), \quad \tau \in \mathbb{H}$$

can be canceled in quantum theory with $SL(2,\mathbb{Z}) \in SL(2,\mathbb{R})$

Counterterm:

$$\Delta S^{(8)} = 12i \int \arg(\eta^2(\tau)) X_8(R)$$

- ightharpoonup cancels the $SL(2,\mathbb{Z})$ anomaly
- non-trivial phase (multiplier system)

$$\int \left[X_8 + \frac{1}{2}G \wedge G \right] \in \mathbb{Z}$$

- ightharpoonup large volume limit: $\lim_{\mathrm{Im}\tau\to\infty}\mathcal{S}=2\pi\int\tau_1\left[X_8+\frac{1}{2}G\wedge G\right]$
- > subtle contribution from the classical action

D=8 theories with 16 supercharges

Think of \mathbb{T}^2 reductions of Heterotic strings

- $\frac{SO(2,l)}{SO(2)\times SO(l)}$ coset
- Composite U(1) couplings to fermions are chiral
- Anomaly cancellation: $\Delta S^{(8)} = \int f(\mathbf{z}, \overline{\mathbf{z}}) Y_8^G$
 - \diamond for D=8 heterotic string with $U(1)^2 \times G$ (rank G = 16)
 - $ightarrow f(\mathbf{z}, \overline{\mathbf{z}})$ modular function of T and U scalars in U(1) multiplets
 - $Y_8^G = \frac{1}{32(2\pi)^4} \left[(248 + \dim G) \left[\frac{trR^4}{360} + \frac{(trR^2)^2}{288} \right] (trR^2)^2 + \frac{1}{6}trR^2TrF^2 + \frac{2}{3}TrF^4 \right]$
- ullet $\Delta S^{(8)}$ agrees with the string amplitude only for

$$\triangleright G = SO(32)$$

$$\triangleright G = E_8 \times E_8$$

$$S_{\rm amp} = \frac{1}{192(2\pi)^3} \int B_{89} X^{\rm GS} + \frac{1}{4\times 192(2\pi)^4} \int \left[ln \left(\frac{\eta^{24}(U)}{\bar{\eta}^{24}(\bar{U})} \right) + ln \left(\frac{\eta^{24}(T)}{\bar{\eta}^{24}(\bar{T})} \right) \right] \times Y_8^G$$

For other *G*:

$$S_{\mathsf{amp}} = \int \left[N_1 \mathcal{A}_{\mathsf{trivial}} + N_2 \mathcal{A}_{\mathsf{deg.}} + N_3 \mathcal{A}_{\mathsf{non-deg.}} \right]$$

- $\triangleright N_1, N_2, N_3$ normalisations
- \triangleright $\mathcal{A}_{\mathsf{trivial}}$ \mathbb{T}^2 reduction of D=10 GS term
- $ightarrow \mathcal{A}_{ ext{deg}}$ contains Y_8^G
- $\triangleright \mathcal{A}_{\text{non-deg}}$ contains Y_8^G + massive VM contributions

$$\Rightarrow Y_8^{SO(8)^4} = \frac{1}{32(2\pi)^4} \left[\left(trR^4 - \frac{1}{4} (trR^2)^2 \right) + \frac{1}{2} \sum_{i=1}^4 \left(\frac{1}{2} trR^2 + 2trF_i^2 \right)^2 \right]$$

- Can be put on spaces with positive $c_1(TX)$, but ... \mathbb{T}^2 degenerates and massive states can become massless
- For $X=\mathbb{P}^1$ the resulting D=6 (1,0) theories without contribution from D=8 massive states have chiral anomalies
- Supergravity on non-spin, non-orientable, singular spaces

General story:

The compensating U(1) transformation for $SO(2, l; \mathbb{R})$ transformation M:

$$e^{-i\Sigma(M,Z)} = \frac{j(M,Z)}{|j(M,Z)|}$$

(Z - coordinates on the generalized upper half plane)

Conterterm:

$$S = \frac{1}{r} \int \arg \Psi(Z) Y_8^G$$

with

$$\Psi(M\langle Z\rangle) = \chi(M)j(M,Z)^r \Psi(Z)$$

• $\Psi(Z)$ can be constructed as a Borcherds product:

$$f(\tau) = \sum_{\gamma \in L'/L} \sum_{n \in \mathbb{Z} + q(\gamma)} c(\gamma, n) \mathfrak{e}_{\gamma}(n\tau) \quad \text{hol. modular form of weight } k = 1 - l/2$$

$$\Rightarrow \qquad \Psi(Z) = \prod_{\beta \in L'/L} \prod_{\substack{m \in \mathbb{Z} + q(\beta) \\ m < 0}} \Psi_{\beta, m}(Z)^{c(\beta, m)/2}$$

 $\Psi(Z)$ - meromorphic function on \mathbb{H}_l of (rational) weight r=c(0,0)/2 for the modular group $\Gamma(L)$ with character χ (if $c(0,0)\in 2\mathbb{Z}$)

Is the theory well-defined when the counterterm is not?

$$(\Psi) = \frac{1}{2} \sum_{\beta \in L'/L} \sum_{\substack{m \in \mathbb{Z} + q(\beta) \\ m < 0}} c(\beta, m) H(\beta, m).$$

where rational quadratic divisors (RQD):

$$H(\beta, m) = \sum_{\substack{\lambda \in \beta + L \\ q(\lambda) = m}} H_{\lambda} \quad \text{whith} \quad H_{\lambda} = \left\{ [Z_L] \in \mathcal{K}^+ | (Z_L, \lambda) = 0 \right\}$$

Reflective holomorphic modular form for the modular group $\Gamma(L)$ - zeroes are contained in the union of RQDs ℓ^{\perp} associated to roots of L:

The reflection $\sigma_{\ell}: \alpha \longmapsto \alpha - \frac{2(\alpha,\ell)}{(\ell,\ell)}\ell$, $\alpha \in L$ belongs to $O^+(L)$

Reflection symmetry of $L \Rightarrow \text{extra massless states (sym. enhancement)}$

Reflective lattices (admit reflective modular forms):

$$\triangleright \chi = 1$$

- \triangleright finite number with $l \le 26$... mostly classified
- ▶ further constrains (more restricitons? ... 2-reflective, simple?)

D=6 Super-Poincaré Representations with 8 supercharges:

B.L.G.	representation	multiplet
	$(2,3;1) \times 2^2 = (3,3;1) + (1,3;1) + (2,3;1)$	gravity
$SO(4) \times SU(2)$	$(2,1;1) \times 2^2 = (3,1;1) + (1,1;1) + (2,1;1)$	tensor
	$(1,2;1) \times 2^2 = (2,2:1) + (1,2;1)$	Yang-Mills
	$2^2 = (2,1;1) + (1,1;2)$	hyper

Chiral bosonis and fermionic fields ⇒ Anomalies

Anomaly cancelation possible if

$$\star I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta}$$

$$\triangleright \alpha, \beta = 0, 1, ...n_T$$

 $hd \Omega_{lphaeta}$ - symmetric inner product on the space of tensors with $(1,n_T)$ signature

$$\star$$
 GSS couplings $\sim \Omega_{\alpha\beta} B_2^{\alpha} X_4^{\beta}$

$$\star$$
 Anomalous Bl $dH^{\alpha} = X_4^{\alpha}$

Anomaly-free theories:

- Heterotic strings on K3 $\begin{cases} \text{ perturbative: } & n_T=1 \ (c_2=24) \\ \text{ non-perturbative: } & n_T>1 \ (c_2+N_{\rm NS5}=24) \end{cases}$
- Perturbative IIB constructions (K3 orientifolds)
- F-theory
 - □ Geometrisation of the necessary conditions for the anomaly cancellation
- Anomaly-free supergravity models (e.g. $n_T = 9 + 8k$ and $G = (E_8)^k$)

Questions:

- Extra consistency conditions?
 - * YES unitarity of the worldsheet theory of the "supergraity strings" according to H-C.Kim, G. Shiu and C. Vafa
- A (geometric) bound that all consistent theories should satisfy?
 - ⋆ The subject of this talk

A cartoon of the situation that can be imagined

The plan

- Review the unitarity argument in D=6 and ...
 - ★ Explain why we are we look answers to D=6 questions in D=5
- ... re-examine the unitary from D=5 point of view
- Establish a (geometric) bound for consistent theories

Supergravity strings in D=6

Consider an anomaly free D=6 theory with 8 spuercharges with

- n_T tensor multiplets
- Yang-Mills multiplets with a group $G = \prod_i G_i$
- hypermultiplets in different representations of the gauge group.

The anomaly polynomial:

$$\star I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta}$$

$$\triangleright \alpha, \beta = 0, 1, ...n_T$$

ho $\Omega_{\alpha\beta}$ - symmetric inner product on the space of tensors with $(1,n_T)$ signature

$$\star X_4^{\alpha} = \frac{1}{8} a^{\alpha} \operatorname{tr} R^2 + \sum_i b_i^{\alpha} \frac{1}{4h_i^{\vee}} \operatorname{Tr}_{\operatorname{Adj}} F_i^2$$

 $ho \ a,b_i \in \mathbb{R}^{1,n_T}$ — determined by the field content of the theory

Dyonic BPS strings with (0,4) worldsheet supersymmetry:

$$\star dH^{\alpha} = X_4^{\alpha} + Q^{\alpha} \prod_{a=1}^4 \delta(x^a) dx^a$$

 $\triangleright Q^{\alpha}$ - string charges

Anomaly inflow from $\Omega_{\alpha\beta}B_2^{\alpha}X_4^{\beta}$ to the BPS string \Rightarrow (0,4) anomaly:

$$I_{4} = -\Omega_{\alpha\beta} Q^{\alpha} \left(X_{4}^{\beta}(M_{6})|_{W_{2}} + \frac{1}{2} Q^{\beta} \chi(N) \right)$$

$$= -\frac{1}{4} \Omega_{\alpha\beta} Q^{\alpha} \left(a^{\beta} p_{1}(TW_{2}) - 2 \left(Q^{\beta} + a^{\beta} \right) c_{2}(SU(2)_{1}) + 2 \left(Q^{\beta} - a^{\beta} \right) c_{2}(SU(2)_{2}) + ... \right)$$

Need to use:

 $\gt \delta(x^a)\,dx^a$ – a particular representation of the Thom class Φ for $i:W_2\hookrightarrow M_6$

* Thom isomorphism: $i^*\Phi = \chi(N)$

$$ightharpoonup tr R^2|_{TW_2} = -2 p_1(TW_2) - 2 p_1(N)$$

$$ho \chi(N) = c_2(SU(2)_1) - c_2(SU(2)_2)$$
 and $p_1(N) = -2(c_2(SU(2)_1) + c_2(SU(2)_2)$

 $\triangleright SU(2)_2 - \mathcal{R}$ -symmetry of the interacting part of the SCFT

Central charges (with c.o.m contribution):

$$c_L - c_R = -6 \Omega_{\alpha\beta} a^{\alpha} Q^{\beta} \equiv -6Q \cdot a$$

$$c_R = 3 \Omega_{\alpha\beta} Q^{\alpha} Q^{\beta} - 6 \Omega_{\alpha\beta} a^{\alpha} Q^{\beta} + 6 \equiv 3Q \cdot Q - 6Q \cdot a + 6$$

Constraints on charges Q

Well-defined moduli space:

$$\diamond j \cdot j > 0, \quad j \cdot b_i > 0, \quad j \cdot a < 0$$

- $\diamond j \in \mathbb{R}^{1,n_T}$ a $(1,n_T)$ vector on the tensor branch ($SO(1,n_T)/SO(n_T)$ MS)
- Non-negative tension:

$$\diamond j \cdot Q \ge 0$$

• Non-negative levels for $SU(2)_1$ and G_i affine current algebras

$$\diamond k = \frac{1}{2}(Q \cdot Q + Q \cdot a + 2) \ge 0$$
 and $k_i = Q \cdot b_i \ge 0$

Unitarity constraint on the worldsheet theory

 \triangleright Left-moving current algebra for G is bounded by c_L

$$\sum_{i} \frac{k_{i} \cdot \dim G_{i}}{k_{i} + h_{i}^{\vee}} \leq c_{L} - 4 = 3 \, Q \cdot Q - 9 \, Q \cdot a + 2$$

- > Allows to rule out anomaly-free supergravities without string-theoretic realisations
- ▶ Is not directly comparable with geometric bounds

Why is it worthwhile to re-examine the question in D=5?

- Different way of packing the (same) information
 - Consider e.g. reduction on a smooth elliptic CY3
 - D=6: $L_{\text{GS}} \sim b_{\alpha ij} B_2^{\alpha} \wedge F_2^i \wedge F^j \Leftarrow \text{part of CY intersection form}$ D=5: $-\frac{1}{6} C_{IJK} A^I \wedge F^I \wedge F^J \Leftarrow \text{entire CY intersection form}$ ($C_{IJK} = \int \omega_I \wedge \omega_J \wedge \omega_K$; $I = 1, ..., n_T + n_V + 1$)
 - \diamond In the S^1 reduction from D=6 to D=5, a one-loop computation should reveal new info and ... "hide" the anomaly
- Different scaling of central charges w.r.t string charge Q
 - \diamond D=6: $c_L, c_R \sim \# Q \cdot Q + \#'Q \cdot a + \#''$
 - \diamond D=5: $c_L, c_R \sim \tilde{\#} Q \cdot Q \cdot Q + \#'Q \cdot a + \tilde{\#}''$
- General questions about which theories are liftable
 - reductions with Wilson lines
 - reductions with discrete holonomies
- Unitarity constraints for generic minimal D=5 theories...

Anomaly cancellation in D=6 (2n) \Leftrightarrow gauge/diff invariance in D=5 (2n-1)

 \diamond S^1 resuction of the GS terms:

$$\delta(\iota_v L_{\rm GS}) \neq 0$$
 !!!

⋄ no D=5 anomaly to cancel it

Consider the simplest situation - $n_T = 1$ and $M_6 = M_5 \times S^1$ (no curvature):

$$ightharpoonup I_8 = X_4 \wedge \tilde{X}_4; \qquad L_{\text{GS}} = \hat{B}_2 \wedge \tilde{X}_4; \qquad dH = X_4 \ (H = d\hat{B} + X_3^{(0)})$$

ightharpoonup reduction: $\hat{B}_2 \mapsto (B_2, A_1); \qquad X_4 \mapsto (x_4, x_3)$

$$\diamond (dx_4, dx_3) = 0; (x_4 = dx_3^{(0)}, x_3 = dx_2^{(0)}); (\delta dx_3^{(0)} = dx_2^{(2)}, \delta x_2^{(0)} = 0)$$

$$ightharpoonup L_{GS} \mapsto A_1 \wedge x_4 + B_2 \wedge x_3 \longrightarrow dB_2 \wedge x_2^{(0)} \longrightarrow \tilde{F}_2 \sqcup x_2^{(0)} - x_3^{(0)} \wedge x_2^{(0)}$$

- CS-like terms with field dependent coefficients not gauge/diff invariant
- Can be cancelled by integrating out massive KK modes from chiral fields
- ⋄ Conditions for cancellation the same as for the anomaly cancelation in D=6
- many cases worked out by E. Poppitz, M, Unsal, F. Bonetti, T. Grimm, S. Hohenegger, P. Corvilain, D. Regalado

Another (scheme-independent) way to look at the problem

Reduction of the anomaly

$$\int_{2n-1}^{1} I_{2n}^{1}(\epsilon, \hat{\mathcal{A}}, \hat{\mathcal{F}}) = \delta_{\epsilon} \int_{2n-1}^{1} \Phi \cdot X(\mathcal{A}, \mathcal{F}) + \dots$$

$$M_{2n-1} \times S^{1}$$

$$M_{2n-1}$$

- \diamond $\hat{\mathcal{A}}$ / \mathcal{A} and $\hat{\mathcal{F}}$ / \mathcal{F} fields and curvatures in D=2n/2n-1
- \diamond ϵ the variation (gauge or diffeomorphism) parameter,
- \diamond Φ Wilson line along the circle (for gravity Φ graviphoton curvature)
- ⋄ · − trace over group indices
- $> X(\mathcal{A}, \mathcal{F}) = \frac{\partial}{\partial \mathcal{F}} I^0_{2n+1}(\hat{\mathcal{A}}, \hat{\mathcal{F}})$ Bardeen-Zumino polynomial
 - \diamond ... indicate correction terms when $G \longrightarrow G'$ or $\mathsf{Diff}(M_{2n}) \longrightarrow \mathsf{Diff}(M_{2n-1})$
- ► Local counterterm $-\Phi \cdot X$ is *always* possible but can *never* be lifted to D=2n
- Liftability ⇒ different counterterm

Obstruction to liftability

New CS couplings in D=5

involve reduced D=6 YM fields, and the graviphoton

$$\mathcal{L}_{\text{CS}} = -\frac{k_0}{6} A^{\text{KK}} \wedge F^{\text{KK}} \wedge F^{\text{KK}} + \frac{k_R}{96} A^{\text{KK}} \wedge \text{tr} R^2$$

- \diamond $k_0 = 2(9 n_T)$ and $k_R = 8(12 n_T)$
- Anomaly inflow

$$c_R = k_0 Q_{ ext{KK}}^3 + rac{k_R}{2} Q_{ ext{KK}}$$
 and $c_L = k_0 \, Q_{ ext{KK}}^3 + k_R \, Q_{ ext{KK}}$

- \diamond The string source: $dF = d\rho(r)e_2/2$
 - $\mathrm{d} \rho(r) e_2/2$ smooth representative of Thom class
 - \bullet e_2 global angular form
 - $\int_{S^2} e_2 \wedge e_2 \wedge e_2 = 2p_1(N)$
- $\diamond \operatorname{tr} R^2|_{TW_2} = -2 \, p_1(TW_2) 2 \, p_1(N)$
- > All strings with cubic central charges carry some magnetic KK charge

Central charges for D=5 BPS strings

$$c_R = C_{IJK}Q^IQ^JQ^K + \frac{1}{2}a_IQ^I$$
 and $c_L = C_{IJK}Q^IQ^JQ^K + a_IQ^I$

- \diamond $I = 1, ..., n_T + n_V + 1$
- \triangleright BPS strings in D=6 with transverse S^1 (normal bundle $\mathbb{R}^3 \times S^1$)
 - Recall

$$I_4 \sim \Omega_{\alpha\beta} Q^{\alpha} \left(a^{\beta} p_1(TW_2) - 2 \left(Q^{\beta} + a^{\beta} \right) c_2(SU(2)_1) + 2 \left(Q^{\beta} - a^{\beta} \right) c_2(SU(2)_2) + \ldots \right)$$

 \diamond Take $c_2(SU(2)_1) = c_2(SU(2)_2) = c_2(N)$,

$$c_L = 2 c_R = -12 \Omega_{\alpha\beta} a^{\alpha} Q^{\beta} \equiv -12Q \cdot a$$

The interacting part of SCFT

$$c_R^{int} = -6\,Q\cdot a - 6 \qquad \text{and} \qquad c_L^{int} = -12\,Q\cdot a - 3$$

The unitarity condition for linear strings

$$\sum_{i} \frac{(Q \cdot b_i) \cdot \dim G_i}{Q \cdot b_i + h_i^{\vee}} \le c_L^{int} = -12 Q \cdot a - 3$$

Kodaira positivity and F-theory models

In all F-theory models the following bound holds:

$$j \cdot (-12a - \sum_{i} x_i b_i) \ge 0$$

- $\triangleright j \in \mathbb{R}^{1,n_T}$ a $(1,n_T)$ vector on the tensor branch
- $\triangleright a, b_i \in \mathbb{R}^{1,n_T}$ determined by the field content of the theory
- $\triangleright x_i$ number of D7 needed for G_i (multiplicity of respective singularity)
- \triangleright Follows from the Kodaira condition requirement that elliptic fibration over base B with singularities over divisors S_i is CY:

$$-12K = \sum_{i} x_i S_i + Y$$

- $\triangleright Y$ residual divisor which must be *effective*
- ightharpoonup For any nef divisor $D: D \cdot Y = D \cdot (-12K \sum_i x_i S_i) \geq 0$
- Arr KPC $(j \cdot (-12a \sum_i x_i b_i) \ge 0)$ is not expected to be satisfied in any consistent D=6 theory

The unitarity bound should hold in all consistent D=6 theories

> The strongest for of the constraint:

$$Q \cdot (-12a - \sum_{i} b_{i}(\frac{\dim G_{i}}{1 + h_{i}^{\vee}})) \ge Q \cdot (-12a - \sum_{i} b_{i}(\frac{\dim G_{i}}{Q \cdot b_{i} + h_{i}^{\vee}})) \ge 3$$

- \diamond If the strong form is satisfied, it will hold also for $Q \cdot b_1 > 1$
- \diamond If it fails, need to check if $Q \cdot b_i = 1$ is possible
- \diamond Impose: $Q \cdot Q + Q \cdot a + 2 \ge 0$, $k_i = Q \cdot b_i \ge 0$ and $-Q \cdot a > 0$

$$D \cdot (-12K - \sum_{i} y_i S_i) \ge 3$$
 with $y_i = \frac{\dim G^i}{1 + h_i^{\vee}}$

 \triangleright x is always larger than y:

Type of gauge algebra	$x_i - y_i$	Gauge algebra
K_1	< 2	su(m), $sp(1)$, $sp(2)$, $sp(3)$ in Kodaira type I
K_2	≥ 2	All other groups

Comparing UC and KPC

$$D \cdot Y \ge 3 - \sum_{i} (x_i - y_i) D \cdot S_i$$

- In most of the cases the bound is automatic given KPC (KPC is stronger than UC)
 - \triangleright At least 3 gauge group factors (gauge divisors $S_{1,2,3}$ ($D \cdot S_{1,2,3} > 0$ holds))
 - ightharpoonup At least 2 gauge groups and at least 1 is type K_2 ($x_i \frac{\dim G_i}{D \cdot S_i + h_i^{\vee}} \ge x_i y_i \ge 2$)
- In other cases, KPC may be satisfied while UC is violated if

$$12 n - 3 < \sum_{i} \mu_{i} D \cdot S_{i} \le 12 n - \sum_{i} (x_{i} - \mu_{i}) D \cdot S_{i}$$

- $\triangleright Y = -12K \sum_i x_i S_i \text{NOT}$ numerically 0 (GDs S_i do not sweep -12K)
- 3 cases when UC imposes stronger constraints
 - $ightharpoonup \exists S_1 \in \{S_i\} \text{ and nef } D: \ D \cdot S_1 = 1, \ D \cdot S_i = 0 \ (i \neq 1) \ \& \ -D \cdot K \in \mathbb{Z}_+ \ \Rightarrow D \cdot Y \geq 1 \text{ for } SU(12n) \quad \text{and} \quad D \cdot Y \geq 2 \text{ for } SU(12n-1)$
 - $ightharpoonup \exists S_1 \in \{S_i\} \text{ for } D \cdot Y \geq 1 \Rightarrow SO(24n-5), SO(24n-4) \text{ or } Sp(6n) \text{ (} I_{12n} \text{ type)}$
 - $ightharpoonup \exists S_1, S_2 \in \{S_i\} \text{ for } D \cdot Y \geq 1 \ \Rightarrow SU(a) \times SU(12n-a), Sp(1) \times SU(12n-2), \\ Sp(2) \times SU(12n-4) \text{ or } SU(12n-6) \times Sp(3) \text{ (} I_2, I_4 \text{ and } I_6 \text{ type)}$

Example: $SU(N) \times SU(N)$, $n_H = 2$ (bifundamentals) and $n_T = 9$

$$\Omega = \text{diag}(+1, (-1)^9),$$
 $a = (-3, (+1)^9)$
 $b_1 = (1, -1, -1, -1, 0^6),$ $b_2 = (2, 0, 0, 0, (-1)^6)$

- \triangleright Q = (1, 0, 0, 0, -1, 0..., 0)
- $\triangleright Q \cdot Q = 0$, $Q \cdot a = -2$ and $Q \cdot b_1 = Q \cdot b_2 = 1$
- \triangleright UC: $2(N-1) \le 24-3 \Rightarrow N \le 11$ (stronger bound in D6 UC)
- ightharpoonup KPC: $2N \le 24 \rightarrow N \le 12$
- \triangleright Assuming F-theoretic realisation: $-12K = NS_1 + NS_2 + Y$
- ightharpoonup For $N \ge 4$, the singular divisors are of type I_N
 - $\diamond S_1 \cdot K = S_2 \cdot K = 0$
 - \diamond 2 bifundamental hypers: $S_1 \cdot S_1 = -2 = S_2 \cdot S_2$ and $S_1 \cdot S_2 = 2$
 - $n_T = 9$ translates into $K \cdot K = 0.$
- \triangleright Can verify that $Y=-12K-12S_1-12S_2$ has to be numerically non-trivial $(-12K=12S_1+12S_2$ cannot be realised on the base B of an elliptic Calabi-Yau threefold with the required singularity structure)

A refined cartoon of the space of D=6 theories

... and much left to be understood about consistency of quantum gravity

Exotic (sugra) backgrounds

D=6 anomalies - [AG-W]

$$I_{3/2} - 21I_{1/2} - 8I_{SD} = 0$$

- $\diamond 0 \times 2 + 5I_{SD} 5I_{SD} \Rightarrow \text{anomaly-free } (0,2) \text{ theory with 21 TM}$
 - ightharpoonup IIB compactified on K3
- $\diamond 0 \times 1 + I_{\rm SD} I_{\rm SD}$ \Rightarrow anomaly-free (0,1) theory with 9 TM & 12 HM
 - The origin of this theory?
- $\circ (0,2)$ theory: $\mathcal{M} = O(5,21)/O(5) \times O(21)$
- Freely-acting \mathbb{Z}_2 involution (Enriques) σ :
 - $\diamond \ USp(4) \ \longrightarrow \ USp(2) \times USp(2)$
 - \triangleright gravitini: $4 \longrightarrow (2,1)^+ + (1,2)^-$
 - \triangleright tensors in GM: $5 \longrightarrow (1,1)^+ + (2,2)^-$
 - $\triangleright \sigma$ has -1 eigenvalues acting on $H^{(2,0)}$ and $H^{(0,2)}$, +1 on $H^{(1,1)+}$
 - $\triangleright \sigma$ has $[(+1)^9, (-1)^{10}]$ eigenvalues acting on $H^{(1,1)}$
- Enriques is not a spin manifold!

Duality action on fermions:

- (bosonic) duality symmetry $SL(2,\mathbb{Z}) \Rightarrow pin^+GL(2,\mathbb{Z})$
- Lorentz symmetry SO(1,9) + duality group \Rightarrow faithful action on the fermions by ${\sf Spin_d}(1,9)$

$$1 \longrightarrow \mathbb{Z}_2 \stackrel{f}{\longrightarrow} \operatorname{Spin_d}(1,9) \longrightarrow SO(1,9) \times GL(2,\mathbb{Z}) \longrightarrow 1$$

- Duality group $pin^+GL(2,\mathbb{Z})$ includes the spacetime fermion number $e^{i\pi F}$
- map f sends the \mathbb{Z}_2 generator to $(-\mathbb{I}_{16}, e^{i\pi F}) \in Spin(1,9) \times pin^+GL(2,\mathbb{Z})$
- Generic $SL(2,\mathbb{Z}) \Rightarrow \text{axion-dilaton dependent tranformation of fermions}$

Perturbative backgrounds (constant axion-dilaton):

• Perturbative duality symmetries $\mathcal{G}_{per} \subset pin^+GL(2,\mathbb{Z})$

$$\mathcal{G}_{per} \simeq D_8 = \langle r, s \mid r^4 = s^2 = (rs)^2 = 1 \rangle$$

- $\diamond \ r = e^{i\pi F_{\rm L}} \ {\rm and} \ s = \Pi \ {\rm worldsheet} \ {\rm parity}$
- $\diamond \mathbb{Z}_2 \times \mathbb{Z}_2$ analogue of bosonic $SL(2,\mathbb{Z})$

$$1 \longrightarrow \mathbb{Z}_2 \stackrel{f}{\longrightarrow} \operatorname{Spin'_d}(1,9) \longrightarrow SO(1,9) \times \mathbb{Z}_2 \times \mathbb{Z}_2 \longrightarrow 1$$

- Fermions on 10D oriented spacetime X sections of $\mathcal{F} \otimes T_X$ transition functions in Spin'_d(1,9).
- For $X=\mathbb{R}^{1,5}\times Y$, $\mathcal{F}\Rightarrow\mathcal{F}_+\oplus\mathcal{F}_-$ (16 \Rightarrow (4,1,2) \oplus (4',2,1))
- Existence of fermions in $\mathcal{F}_+ \Rightarrow \text{chiral Spin'}_{p}(4)$ structure on Y
- Y/G_E \Rightarrow Enriques surface **no** spinors (on sections of \mathcal{F}_+ : $U_E \cdot \mathcal{S} = i\sigma_3 \mathcal{S}$)
- \mathbb{Z}_2 symmetry, with generator

$$\tilde{U}_E = (g, e^{i\pi \mathbf{F}_{\mathsf{L}}}\Pi) \in SO(4) \times \mathcal{G}_{\mathsf{p}}$$
.

- lift to Spin'_p(4): $\tilde{U}_E \cdot \mathcal{S} = -\sigma_3 \mathcal{S} \sigma_2$
- Inv. fermions solving $S = -\sigma_s S \sigma_2 \Rightarrow (1/2)$ susy *on non-spin* background

Flat F-theory

- FHSV CY (holonomy $SU(2) \rtimes \mathbb{Z}_2 \subset SU(3)$)
- Other examples:

$$\diamond O_2^3 \times S^1$$
 - $U_E \cdot (x_1, x_2, x_3, x_4) = (x_1 + 1/2, -x_2, -x_3, x_4)$

- \diamond Non-pertutrbative relatives O_k^3 for \mathbb{Z}_3 , \mathbb{Z}_4 and \mathbb{Z}_6
- \diamond Smooth non-spin 7 manifolds as Seifert bundles over singular CY_3/Γ

Non-orientable IIA backgrounds

- Circle T-duality on $\operatorname{Enr} \times S^1$
 - no orientifold by WS parity
 - \diamond additional circle action on NS fields: T_{L} ($T_{\mathsf{L}}^2 = \mathsf{id}$):

$$X_{\mathsf{L}}^5 \mapsto -X_{\mathsf{L}}^5 \qquad \& \qquad \mathcal{X}_{\mathsf{L}}^5 \mapsto -\mathcal{X}_{\mathsf{L}}^5$$

- ullet IIA symmetry: $ilde{U}_{\mathsf{IIA}} = T_{\mathsf{L}}^{-1} ilde{U}_E T_{\mathsf{L}} = T_{\mathsf{L}}^{-1} U_E e^{i\pi oldsymbol{F}_{\mathsf{L}}} \, \Pi \, T_{\mathsf{L}}$
 - \diamond $\Pi T_{\mathsf{L}} = T_{\mathsf{R}} \Pi$
 - \diamond $R_5 = T_L T_R$ spacetime reflection
- IIA symmetry: $ilde{U}_{\mathsf{IIA}} = R_5 U_E e^{i\pi F_{\mathsf{L}}} \Pi$
 - $\diamond \ R_5 U_E$ is free on Enr $\times S^1$
 - \diamond Volume projected out! $\tilde{X}=(Y\times S^1)/\mathbb{Z}_2$ with $\mathbb{Z}_2=(\sigma,\rho)$
- Perturbative string description of nonoreinted background with a sugra limit
- ullet massless spectrum agrees with IIB on ${\rm Enr} imes S^1$
 - 11 vectors, 58 scalars
 - can be obtained from M-theory

M-theory lift, pinors & spacetime supersymmetry

- IIA on Enr \times S^1 lifts to M-theory on FHSV CY $Z=(Y\times S^1\times S^1)/\mathbb{Z}_2$
 - $\diamond \ e^{i\pi F_{\perp}}$ in IIA $\ \Leftrightarrow$ Reflection on M-theory circle
 - ♦ IIA GSO 10D spacetime reflection + WS parity

• IIA geometry:

- $\diamond \ \tilde{X} = (Y \times S^1)/\mathbb{Z}_2$ a circle bundle over Enr.
 - projection $p_1: \tilde{X} \rightarrow X$ forgets the circle direction
 - section $i_1: X \to \tilde{X}$ given by $i_1(x) = (x,0)$ $(i_1p_1 = \mathrm{id}_{\tilde{X}})$ and $p_1i_1 = \mathrm{id}_X$
- $\diamond \ Z$ circle bundle over $ilde{X}$
 - o projection $p_2:Z{
 ightarrow} \tilde{X}$ & section $i_2:\tilde{X}{
 ightarrow} Z$

Stiefel-Whitney classes:

- Pin⁻ structure
- lift to the **pinor bundle** of $\operatorname{Hol}(\tilde{X})$ ($SU(2) \rtimes \mathbb{Z}_2 \in O(5)$ (not SO(5)!))
 - → non-zero covariantly constant sections
 - ⇒ spacetime susy

Global future

- dual descriptions (e.g. heterotic strings)
- M-theory on **non-spin** manifolds (cf. m_c structure based on sugra description)
- situation when the WS description is not possible
- (lower-dimensional) spacetime physics with discrete (gauge) symmetries

•