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Abstract: In this paper we discuss several useful features of linear logic especially from the 

viewpoint of computing science. We start with a short overview of linear logic with an 

emphasis on the special properties of linear implication and exponential operators. We 

present our idea of the possible fragmentation of linear logic and the usefulness of 

particular fragments in various areas of computing science. Finally, we consider possible 

extensions of linear logic and we illustrate how an extension with epistemic operators can 

serve for obtaining knowledge and belief about an intrusion attempt. 
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1 Introduction 

Linear logic was introduced by J. Y. Girard in 1987 [6] as a non-classical logic of 

actions and resources enabling one to describe dynamics of processes and resource 

handling. This logic can be considered as a suitable interface between logic and 

computing science because it can manipulate with the events of real world in 

natural way. Linear logic is a new logic, but the whole classical logic can be 

translated into linear formulae [3]. 

From the computing science’s point of view, for intuitionistic fragment of linear 

logic the Curry-Howard correspondence [21] is valid, i.e. the formulae of linear 

logic correspond with the types of data structures. Similarly, the proof trees of the 

sequent calculus of linear logic correspond with programs [7]. If we consider 

formulae as resources, within the realization of a proof they are distributed in time 

and space [5] in some model of the real world, e.g. a computer machine in a 

precise and controlled manner. During our research, we have recognized several 

interesting properties and possibilities of linear logic: 

 We have used an intuitionistic fragment of linear logic to formally 

describe program execution [17], [20], [22], [24]; 

 We have used linear logic to define linear type theory [15]; 
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 In the sense of Curry-Howard correspondence, functional programming 

can be regarded as logical reasoning in linear logic. Linear proofs enable 

us to anticipate computability and correctness of  computing [18], [19]; 

 Formulae are equivalent with some paterns of Petri nets [8], [9], [15]; 

 Extending linear logic with modal operators of necessity and possibility 

we have used modal linear logic for reasoning about the observable 

behavior of programs [13]; 

 Extending linear logic with epistemic operators of knowledge and belief 

we obtained epistemic linear logic useful for achieving experiences about 

incomming network intrusions based on a natural manner of causalities 

[13], [14]. 

The aim of this paper is to discuss several interesting features of linear logic and 

the possible applications of linear logic in several areas of computing science. We 

consider propositional linear logic. The second section contains a short 

introduction to linear logic with special emphasis on its modal operators and on 

the static and dynamic nature of linear implication. In the third section, we present 

our view of linear logic fragmentation that can serve for different purposes in 

various areas of computing science. In the fourth section, we show how classical 

logic can be expressed by linear logic. The fifth section shows the correspondence 

between linear logic and linear type theory. In the sixth section, we show how an 

extension of linear logic with epistemic modalities of knowledge and belief can 

provide useful information about the behaviour of programs. 

2 Linear Logic Overview 

In this section we introduce the basic notions of linear logic. Let  Props={p1, p2…} 

be a countable set of atomic propositions denoted by the letters p1,p2…. Any 

proposition can be considered in two ways: as an action or as a resource. A linear 

formula  can be of the form defined by the following BNF rule: 

212121 |&|||||?||!||1|0|::   Τnp  (1) 

              
21

|
21

|    

Linear logic has two conjunction operators and two disjunction operators. We 

describe an informal meaning of linear connectives: 

 Linear implication 1  2 is causal; - it expresses that an action 

described by 1 is a cause of the (re)action described by 2. If we 

consider resources, a resource 1 is consumed after linear implication, i.e.  

it becomes a linear negation 1

; 
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 Multiplicative conjunction  (“times”)  1  2 has the neutral element 1. 

It expresses that both actions 1 and 2 will be performed simultaneously 

or that we have both resources 1 and 2 at once. 

 Additive conjunction (“with”) 1 & 2 has the neutral element T. It 

expresses that only one of the actions described by 1 and 2 will be 

performed. But we can deduce or anticipate from an environment which 

of them will be performed. This formula can be considered as an analogy 

with the statements if-then-else and case in programming languages. 

Somethimes it is called external nondeterminism (dependent choice); 

 Additive disjunction (“plus”) 1  2 has the neutral element 0. It 

expresses that only one of the actions described by 1 and 2 will be 

performed (or only one of these resources is available), but we cannot 

anticipate which one. It can be considered internal nondeterminism (free 

choice); 

 Multiplicative disjunction (“par”) 1  2 has the neutral element  and 

its meaning can be expressed as follows: if an action 1 is not performed, 

then an action 2 is done or vice versa; if an action 2 is not performed, 

then an action 1 is done. Multiplicative disjunction can be regarded as 

an allegory of the well-known construct xor in programming; 

 Linear negation  
 denotes a reaction of an action  or a consumption of 

a resource . Linear negation is involutive, i.e. 

 
 (2) 

2.2 Linear Exponentials 

Another special property of linear logic represents two unary operators called 

exponentials. These operators can be considered from two points of view: 

concerning resources or concerning modalities. If we consider resources, then 

 the operator “!” expresses  potential resource inexhaustibility and 

 the operator “?” expresses the actuality of potential resource 

inexhaustibility.  . 

Exponentials are dual, i.e. 

   
  ?!  (3) 

Duality between exponentials can be considered as the difference between actual 

and potentional infinity [26]. The formula (!) expresses an unexhausted store of a 

resource  and the formula ?(
) expresses potentional replenishment of 

exhausted resources. For instance, if we consider a resource  to be a part of 

computer memory, we can indicate the potentional need to extend it. The resource 

character of exponentials are in the Table 1. 
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Table 1 

Linear exponentials dealing with resources 

Operator Resource view Modal view 

! unexhaustibility of course 

? 
potential unexhaustibility (depending on 

actual replenishment) 

why not 

In terms of modality: 

 the operator “!”  (“of course”) expresses obviousity and 

 the operator “?” (“why not”) expresses polemic. 

Linear exponentials can be considered as linear alternatives of traditional 

modalities of necessity (“”) and possibility (“”), respectively, as is shown in the 

Table 2. 

Table 2 

Modal nomenclature in linear logic manner 

 1 2 

Modal 

logic 

  

Possibility Necessity 

Linear 

logic 

? ! 

Polemic Obviousity 

Linear exponentials are necessary also for translating classical propositional logic 

into linear logic. We consider this translation in the Section 4. The exponential “of 

course” can also serve for expressing the repeating of some actions [14]. 

2.3 Static and Dynamic Nature of Implication 

Classical logic has an obvious implication 1  2 with a static character. 

Ituitionistic propositional logic knows also weaker implication called partial 

implication 1 p  corresponding with linear partial functions under the Curry-

Howard correspondence [4]. Both these implications can be translated to linear 

formulae !1  2 and 1  ?2, respectively, thanks to exponentials, as we 

show in Table 3. Traditional linear implication 1  2 has a dynamic character; 

its premise 1 is consumed after performing the linear implication. If we consider 

formulae as actions, we can say that an action 2 follows an action 1.  From Table 

3 we can see that linear logic has more forms of implication, and so linear logic 

has greater expressive power.  In addition, if we combine translated forms we can 

get a generalized form of linear implication !1  ?2 that can be particularly 

useful for programming languages with recursion [4]. 
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Table 3 

Forms of linear implications 

Classical view Linear view Kinds of linearity 

 1  2 Linear implication 

   !1  2 Unrestricted linear implication 

 p  1  ?2 Partial linear implication 

 !1  ?2 Generalized linear implication 

In linear logic we can choose whether we would like to work in static mode or in 

dynamic mode. If we translate classical implication 1   into !1  2, we 

work in static mode. We also note that classical implication 1  2 is equivalent 

with disjunction: 

2121    (4) 

Translating the left and right parts of the previous formula into linear logic, we get 

the following equivalence: 

2121  


  (5) 

but this is not valid by [6] because there exist two proof trees for the linear 

formula on the right side. 

If we would like to consider dynamically, linear implication 1  2 can be 

understood that an action 2 follows an action 1 , i.e. an action 2 starts after an 

action 1 . In contrast to the previous case, the following equivalence of linear 

formulae is valid: 

2121  


  (6) 

3 Linear Logic Fragmentation 

Linear logic can be used as a whole, but in some cases it is appropriate to consider 

only a fragment of linear logic. In this section, we present an overview of how 

linear logic can be fragmented into several blocks according to the a nature of the 

particular fragments [12]. We illustrate our ideas of possible fragmentations in 

Figure 1. 

First, we consider the vertical ellipses. The left one contains the multiplicative 

fragment of linear logic, and the right one contains the additive fragment of linear 

logic together with the corresponding constants. Linear implication and linear 

negation are neutral, they play important role in both fragments. 
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Figure 1 

Linear logic fragmentation 

From the semantic point of view we can consider the left ellipse as the intensional 

frangment and the right one as the extensional frangment. This arises from the 

semantical notions of extension and intension [2]. Whereas the extension of a 

given concept is its subject or the family of subjects included within it, the 

intension is the content of it. The extension of a given action is a truth value in the 

Tarski tradition; – the intension is an idea (sense) expressing it, – in the Heyting 

tradition. Extension we understand as a denotation and intension we identify as a 

sense. Traditionally, atomic propositions in (the Tarski tradition) are assertions 

that have exactly true or false truth values. In the extensional fragment of linear 

logic we assign to linear formulae the truth values (1 or ). But in the intensional 

fragment we consider their sense or nonsense (T or 0). For instance, if we have 

atomic proposition Snowing, it can be valid (1) and it has also sense (T). But the 

atomic proposition Spowing has no sense () and neither can it be valid (0). This 

also demonstrates the greather expressive power of linear logic, which is able to 

diferentiate between denotation and sense already at the syntactic level. 
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Vertical fragments play their role also in linear type theory. The left fragment 

contains the tensor product and sum while the right fragment contains the direct 

product and sum. 

Now we consider the diagonal ellipses, which reflect another kind of 

fragmentation based on the idea of polarity. All logical connectives and neutral 

elements can be split into the following groups with: 

1 Positive polarities: 0, 1, , ,!; 

2 Negative polarities: , T, &, ,?; 

3 Dependent polarity: ; 

4 Turn over polarity: (.)

; 

These fragments can be considered from algebraic/logical point of view: the 

connectives with positive polarities correspond with the algebraic style and the 

connectives with negative polarities correspond with the logical style. 

Linear negation causes the polarity to be turned over. This means that if an action 

is positive, its negation becomes negative, and vice versa. Linear implication is 

neutral again with respect to polarity; it causes the polarity of implication premise 

to be changed. An action (formula) of linear logic is positive if its outermost 

logical connective is positive; it is negative if its outermost logical connective is 

negative. 

Finally, we consider the horizontal fragments of linear logic. If we work with the 

translation of propositional logic into linear logic, the upper fragment contains two 

linear conjunctions corresponding with classical conjunction and the lower 

fragment contains two linear disjunctions corresponding with classical disjunction. 

From the point of view of linear type theory we can regarded the upper fragment 

as the product type’s constructors and the lower fragment as the sum type’s 

constructors. 

4 From Classical Logic to Linear Logic 

As we mentioned above, linear logic can be considered as a generalization of 

classical logic. Every formula of classical logic can be unambiguously translated 

into linear formula. The static character of classical implication in linear logic 

ensures the exponential “!”: 

2121 !    (7) 

Table 4 consists of the corresponding connectives for translating propositional 

logic into linear logic. 
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Table 4 

Aristotelian logic to linear logic translation overview 

CL to LL     True False 

 &   (.) T 0 

Aristotelian logic based on the Tarski semantical tradition can be translated into 

the fragment of linear logic in the sense of Table 4. In this fragment the linear 

additive conjunction (&) is a generalized classical conjunction (), the linear 

additive disjunction () is a generalization of classical the disjunction (), the 

linear implication () is a generalized classical implication () and classical 

negation () is expressed by linear negation ((.)). Aristotelian truth values, 

True/False, correspond to neutral elements, T/ 0 of additive conjunction and 

disjunction, respectively. 

Table 5 

Intuitionistic logic to linear logic translation overview 

CL to LL 
    

&   !_  0 

When we come out from the Heyting semantical tradition, such generalization 

leads to intuitionistic linear logic (Table 5). For example, intuitionistic formulae 

can be translated into linear formulae using the following equivalences: 

2121

2121

2121

!

&













 (8) 

5 From Linear Logic to Linear Type Theory 

Due to the Curry-Howard correspondence between intuitionistic linear logic and 

type theory [1], any formula  of linear logic can be interpreted as a linear type 

denoted e.g. by A. Using linear connectives we can formulate a linear type theory 

in the sense of Table 6. According to the selected fragment of linear logic we can 

work with tensor fragment  and/or direct fragment. 

Table 6 

Type theory nomenclature in Linear logic manner 

Linear type theory  Linear logic 

Tfrag 
Tensor product  Multiplicative conjunction 

Mfrag 
Tensor sum  Multiplicative disjunction 
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Linear type theory  Linear logic 

Dfrag 
Direct product & Additive conjunction 

Afrag 
Direct sum  Additive disjunction 

Every programming language has a collection of predefined types. These types 

can be considered as basic types forming a set Btypes={X, Y,...}. Let I be a unit 

type. We can construct linear Church’s types over basic types and unit type using 

type operators corresponding with linear logic connectives. Then the syntax of the 

linear types can be defined as: 

2121212121 |&|||||:: AAAAAAAAAAXIA     (9) 

In this grammar, I denotes a linear unit type and X denotes a linear basic type. The 

following constructions are linear Church’s types: 

 A1  A2 is product linear type; 

 A1  A2 is coproduct (sum) linear type, and 

 A1  A2 is function linear type as a set of functions from type A1 to a 

type A2. 

Binary product/coproduct linear types can be generalized to 

 Finite product linear types of the form A1  A2  …  An together with 

the projections i: A1 & A2 & … & An  Ai, i=1,…,n; 

 Coproduct linear types of the form A1  A2  …  An together with the 

coprojections (injections) i: Ai  A1  A2  …  An, i=1,…,n. 

Correspondence between traditional type theory and linear type theory is shown in 

Table 7. In linear type theory, any variable can appear in a term only once [1]. 

Product types () together with projections (&) are illustrated in the upper 

horizontal ellipse in Figure 1. Coproduct types () together with coprojections 

() are illustrated in the lower horizontal ellipse in Figure 1. 

Table 7 

Traditional and linear Type theory 

Type 

manipulation 

Type theory 

Traditional  Linear  Comment 

Product  
 constructor 

& selector 

Coproduct + 
 deconstructor 

 integrator 

Function type   constructor 
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6 Behavior, Knowledge and Belief 

The expressive power of linear logic can be increased by various extensions, for 

instance with modal operators. If we consider the vertical fragments in Figure 1, 

we can construct various modal extensions of linear logic that enable additional 

useful applications in computing science. 

Firstly, consider the intensional fragment of linear logic (left vertical ellipse). If 

we extend this fragment with modal operators for necessity and possibility (, ), 

we achieve a new logical system constructed over coalgebra [10], [11] as a 

resource oriented modal coalgebraic linear logic suitable for describing the 

observable behavior of running programs [12]. 

Now we consider the extensional fragment of linear logic (right vertical ellipse).  

We extend this fragment by epistemic objective knowledge operator K and by 

epistemic rational belief operator B. Assuming an agent c a formula Kc expresses 

that an agent c has a knowledge   and a formula Bc expresses that an agent c  

has belief about  . This fusion between epistemic and linear logic we have used 

to construct a Kripke model for acquiring knowledge and empirical belief about 

incoming network intrusions [12], [13] based on [25]. We shortly describe the 

main ideas of our approach. We use the following extensional fragment of linear 

logic extended with epistemic operators: 

 ccn BKp |||!|||&|:: 212121

      (10) 

Assume a signature based Intrusion Detection System and three possible types of 

intrusions: A, B and C. Every type of intrusion attempt has several symptoms that 

can be described as elementary propositions. 

Let 007 be an rational agent, e.g. some program. Let the symptoms of an intrusion 

attempt of a type A be denoted by elementary propositions a1, a2, a3 and a4. The 

symptoms of an intrusion of a type B are b1, b2 and b3 and the ones of a type C are 

c1, c2 and c3. An intrusion attempt of a particular type occurs only if all its 

symptoms have occurred. Using additive conjunction we can describe the 

knowledge about all mentioned types of intrusion attempts by the following 

formulae: 

300720071007007

300720071007007

4007300720071007007

&&

&&

&&&

cKcKcKK

bKbKbKK

aKaKaKaKK













 (11) 

Let K007τ be a formula describing the knowledge about a sender, e.g. its IP 

address. A formula 
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 007

300

007007 &&& KKK














  
  (12) 

describes that we have the knowledge that an intrusion attempt of type A occurred 

three hundred times from the same sender. The following epistemic linear formula 

   007007007007

300

007007007 &&&&& KKKKKKK 
  

 













  (13) 

expresses the situation when after three hundred attempts of type A the attempts of 

types B and C follow immediately. The same situation exists in real IDS, e.g. 

vertical portscan [23]. If this situation repeats, we can state that our agent 007 has 

achieved a rational belief about the intrusion attempt expressed by the formula 

   007007! BK   (14) 

and we can realise some protective actions. Exponential ! enable us to describe the 

repetition of attempts, i.e. a real behavior of intrusions by the principle “Repetitio 

est mater studiorum”. 

In [16] we explained our approach in detail together with a construction of a 

Kripke model and a definition of the  semantics of our epistemic linear logic. 

Conclusions 

In our paper we presented a few inventions regarding possible areas of applying 

linear logic in various disciplines of computing science. We considered several 

criteria for the fragmentation of linear logic and we discussed the known 

applications of these fragments in type theory and behavioral theory. We also 

discussed the special properties of linear connectives and exponentials. The static 

and dynamic properties of linear logic we illustrated in various forms of linear 

implication. Classical and intuitionistic logic can be translated into linear logic 

using exponentials. The dynamic character of linear logic enables it to definine 

linear type theory. Linear logic can be extended by new operators, e.g. modal 

operators, epistemic operators, etc. These extensions allow for increasing of the 

expressive power of linear logic and for opening new application domains. The 

modal intensional fragment of linear logic can be useful for describing the 

observable behavior of programs, and the epistemic extensional fragment enables 

us to obtain knowledge and beliefs about intrusion attempts. 

The dynamic/static resource oriented character of linear logic destines it for wide 

usage in computing science. In this paper, we presented only a few possible 

applications of it based mainly on our research results. We believe that the 

presented inventions can lead to the discovery of further applications in computing 

science. 
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