
Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 147 –

What about Linear Logic in Computer Science?

Daniel Mihályi, Valerie Novitzká

Department of Computers and Informatics, Technical University of Košice

Košice, Slovakia

E-mail: Daniel.Mihalyi@tuke.sk, Valerie.Novitzka@tuke.sk

Abstract: In this paper we discuss several useful features of linear logic especially from the

viewpoint of computing science. We start with a short overview of linear logic with an

emphasis on the special properties of linear implication and exponential operators. We

present our idea of the possible fragmentation of linear logic and the usefulness of

particular fragments in various areas of computing science. Finally, we consider possible

extensions of linear logic and we illustrate how an extension with epistemic operators can

serve for obtaining knowledge and belief about an intrusion attempt.

Keywords: linear logic; type theory; behavioral theory; modal logics

1 Introduction

Linear logic was introduced by J. Y. Girard in 1987 [6] as a non-classical logic of

actions and resources enabling one to describe dynamics of processes and resource

handling. This logic can be considered as a suitable interface between logic and

computing science because it can manipulate with the events of real world in

natural way. Linear logic is a new logic, but the whole classical logic can be

translated into linear formulae [3].

From the computing science’s point of view, for intuitionistic fragment of linear

logic the Curry-Howard correspondence [21] is valid, i.e. the formulae of linear

logic correspond with the types of data structures. Similarly, the proof trees of the

sequent calculus of linear logic correspond with programs [7]. If we consider

formulae as resources, within the realization of a proof they are distributed in time

and space [5] in some model of the real world, e.g. a computer machine in a

precise and controlled manner. During our research, we have recognized several

interesting properties and possibilities of linear logic:

 We have used an intuitionistic fragment of linear logic to formally

describe program execution [17], [20], [22], [24];

 We have used linear logic to define linear type theory [15];

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 148 –

 In the sense of Curry-Howard correspondence, functional programming

can be regarded as logical reasoning in linear logic. Linear proofs enable

us to anticipate computability and correctness of computing [18], [19];

 Formulae are equivalent with some paterns of Petri nets [8], [9], [15];

 Extending linear logic with modal operators of necessity and possibility

we have used modal linear logic for reasoning about the observable

behavior of programs [13];

 Extending linear logic with epistemic operators of knowledge and belief

we obtained epistemic linear logic useful for achieving experiences about

incomming network intrusions based on a natural manner of causalities

[13], [14].

The aim of this paper is to discuss several interesting features of linear logic and

the possible applications of linear logic in several areas of computing science. We

consider propositional linear logic. The second section contains a short

introduction to linear logic with special emphasis on its modal operators and on

the static and dynamic nature of linear implication. In the third section, we present

our view of linear logic fragmentation that can serve for different purposes in

various areas of computing science. In the fourth section, we show how classical

logic can be expressed by linear logic. The fifth section shows the correspondence

between linear logic and linear type theory. In the sixth section, we show how an

extension of linear logic with epistemic modalities of knowledge and belief can

provide useful information about the behaviour of programs.

2 Linear Logic Overview

In this section we introduce the basic notions of linear logic. Let Props={p1, p2…}

be a countable set of atomic propositions denoted by the letters p1,p2…. Any

proposition can be considered in two ways: as an action or as a resource. A linear

formula  can be of the form defined by the following BNF rule:

212121 |&|||||?||!||1|0|::   Τnp (1)

21

|
21

|  

Linear logic has two conjunction operators and two disjunction operators. We

describe an informal meaning of linear connectives:

 Linear implication 1  2 is causal; - it expresses that an action

described by 1 is a cause of the (re)action described by 2. If we

consider resources, a resource 1 is consumed after linear implication, i.e.

it becomes a linear negation 1

;

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 149 –

 Multiplicative conjunction (“times”) 1  2 has the neutral element 1.

It expresses that both actions 1 and 2 will be performed simultaneously

or that we have both resources 1 and 2 at once.

 Additive conjunction (“with”) 1 & 2 has the neutral element T. It

expresses that only one of the actions described by 1 and 2 will be

performed. But we can deduce or anticipate from an environment which

of them will be performed. This formula can be considered as an analogy

with the statements if-then-else and case in programming languages.

Somethimes it is called external nondeterminism (dependent choice);

 Additive disjunction (“plus”) 1  2 has the neutral element 0. It

expresses that only one of the actions described by 1 and 2 will be

performed (or only one of these resources is available), but we cannot

anticipate which one. It can be considered internal nondeterminism (free

choice);

 Multiplicative disjunction (“par”) 1  2 has the neutral element  and

its meaning can be expressed as follows: if an action 1 is not performed,

then an action 2 is done or vice versa; if an action 2 is not performed,

then an action 1 is done. Multiplicative disjunction can be regarded as

an allegory of the well-known construct xor in programming;

 Linear negation  
 denotes a reaction of an action  or a consumption of

a resource . Linear negation is involutive, i.e.

 
 (2)

2.2 Linear Exponentials

Another special property of linear logic represents two unary operators called

exponentials. These operators can be considered from two points of view:

concerning resources or concerning modalities. If we consider resources, then

 the operator “!” expresses potential resource inexhaustibility and

 the operator “?” expresses the actuality of potential resource

inexhaustibility. .

Exponentials are dual, i.e.

   
  ?! (3)

Duality between exponentials can be considered as the difference between actual

and potentional infinity [26]. The formula (!) expresses an unexhausted store of a

resource  and the formula ?(
) expresses potentional replenishment of

exhausted resources. For instance, if we consider a resource  to be a part of

computer memory, we can indicate the potentional need to extend it. The resource

character of exponentials are in the Table 1.

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 150 –

Table 1

Linear exponentials dealing with resources

Operator Resource view Modal view

! unexhaustibility of course

?
potential unexhaustibility (depending on

actual replenishment)

why not

In terms of modality:

 the operator “!” (“of course”) expresses obviousity and

 the operator “?” (“why not”) expresses polemic.

Linear exponentials can be considered as linear alternatives of traditional

modalities of necessity (“”) and possibility (“”), respectively, as is shown in the

Table 2.

Table 2

Modal nomenclature in linear logic manner

 1 2

Modal

logic

 

Possibility Necessity

Linear

logic

? !

Polemic Obviousity

Linear exponentials are necessary also for translating classical propositional logic

into linear logic. We consider this translation in the Section 4. The exponential “of

course” can also serve for expressing the repeating of some actions [14].

2.3 Static and Dynamic Nature of Implication

Classical logic has an obvious implication 1  2 with a static character.

Ituitionistic propositional logic knows also weaker implication called partial

implication 1 p  corresponding with linear partial functions under the Curry-

Howard correspondence [4]. Both these implications can be translated to linear

formulae !1  2 and 1  ?2, respectively, thanks to exponentials, as we

show in Table 3. Traditional linear implication 1  2 has a dynamic character;

its premise 1 is consumed after performing the linear implication. If we consider

formulae as actions, we can say that an action 2 follows an action 1. From Table

3 we can see that linear logic has more forms of implication, and so linear logic

has greater expressive power. In addition, if we combine translated forms we can

get a generalized form of linear implication !1  ?2 that can be particularly

useful for programming languages with recursion [4].

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 151 –

Table 3

Forms of linear implications

Classical view Linear view Kinds of linearity

 1  2 Linear implication

   !1  2 Unrestricted linear implication

 p  1  ?2 Partial linear implication

 !1  ?2 Generalized linear implication

In linear logic we can choose whether we would like to work in static mode or in

dynamic mode. If we translate classical implication 1   into !1  2, we

work in static mode. We also note that classical implication 1  2 is equivalent

with disjunction:

2121   (4)

Translating the left and right parts of the previous formula into linear logic, we get

the following equivalence:

2121  


 (5)

but this is not valid by [6] because there exist two proof trees for the linear

formula on the right side.

If we would like to consider dynamically, linear implication 1  2 can be

understood that an action 2 follows an action 1 , i.e. an action 2 starts after an

action 1 . In contrast to the previous case, the following equivalence of linear

formulae is valid:

2121  


 (6)

3 Linear Logic Fragmentation

Linear logic can be used as a whole, but in some cases it is appropriate to consider

only a fragment of linear logic. In this section, we present an overview of how

linear logic can be fragmented into several blocks according to the a nature of the

particular fragments [12]. We illustrate our ideas of possible fragmentations in

Figure 1.

First, we consider the vertical ellipses. The left one contains the multiplicative

fragment of linear logic, and the right one contains the additive fragment of linear

logic together with the corresponding constants. Linear implication and linear

negation are neutral, they play important role in both fragments.

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 152 –

Figure 1

Linear logic fragmentation

From the semantic point of view we can consider the left ellipse as the intensional

frangment and the right one as the extensional frangment. This arises from the

semantical notions of extension and intension [2]. Whereas the extension of a

given concept is its subject or the family of subjects included within it, the

intension is the content of it. The extension of a given action is a truth value in the

Tarski tradition; – the intension is an idea (sense) expressing it, – in the Heyting

tradition. Extension we understand as a denotation and intension we identify as a

sense. Traditionally, atomic propositions in (the Tarski tradition) are assertions

that have exactly true or false truth values. In the extensional fragment of linear

logic we assign to linear formulae the truth values (1 or ). But in the intensional

fragment we consider their sense or nonsense (T or 0). For instance, if we have

atomic proposition Snowing, it can be valid (1) and it has also sense (T). But the

atomic proposition Spowing has no sense () and neither can it be valid (0). This

also demonstrates the greather expressive power of linear logic, which is able to

diferentiate between denotation and sense already at the syntactic level.

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 153 –

Vertical fragments play their role also in linear type theory. The left fragment

contains the tensor product and sum while the right fragment contains the direct

product and sum.

Now we consider the diagonal ellipses, which reflect another kind of

fragmentation based on the idea of polarity. All logical connectives and neutral

elements can be split into the following groups with:

1 Positive polarities: 0, 1, , ,!;

2 Negative polarities: , T, &, ,?;

3 Dependent polarity: ;

4 Turn over polarity: (.)

;

These fragments can be considered from algebraic/logical point of view: the

connectives with positive polarities correspond with the algebraic style and the

connectives with negative polarities correspond with the logical style.

Linear negation causes the polarity to be turned over. This means that if an action

is positive, its negation becomes negative, and vice versa. Linear implication is

neutral again with respect to polarity; it causes the polarity of implication premise

to be changed. An action (formula) of linear logic is positive if its outermost

logical connective is positive; it is negative if its outermost logical connective is

negative.

Finally, we consider the horizontal fragments of linear logic. If we work with the

translation of propositional logic into linear logic, the upper fragment contains two

linear conjunctions corresponding with classical conjunction and the lower

fragment contains two linear disjunctions corresponding with classical disjunction.

From the point of view of linear type theory we can regarded the upper fragment

as the product type’s constructors and the lower fragment as the sum type’s

constructors.

4 From Classical Logic to Linear Logic

As we mentioned above, linear logic can be considered as a generalization of

classical logic. Every formula of classical logic can be unambiguously translated

into linear formula. The static character of classical implication in linear logic

ensures the exponential “!”:

2121 !   (7)

Table 4 consists of the corresponding connectives for translating propositional

logic into linear logic.

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 154 –

Table 4

Aristotelian logic to linear logic translation overview

CL to LL     True False

 &   (.) T 0

Aristotelian logic based on the Tarski semantical tradition can be translated into

the fragment of linear logic in the sense of Table 4. In this fragment the linear

additive conjunction (&) is a generalized classical conjunction (), the linear

additive disjunction () is a generalization of classical the disjunction (), the

linear implication () is a generalized classical implication () and classical

negation () is expressed by linear negation ((.)). Aristotelian truth values,

True/False, correspond to neutral elements, T/ 0 of additive conjunction and

disjunction, respectively.

Table 5

Intuitionistic logic to linear logic translation overview

CL to LL
   

&   !_  0

When we come out from the Heyting semantical tradition, such generalization

leads to intuitionistic linear logic (Table 5). For example, intuitionistic formulae

can be translated into linear formulae using the following equivalences:

2121

2121

2121

!

&













 (8)

5 From Linear Logic to Linear Type Theory

Due to the Curry-Howard correspondence between intuitionistic linear logic and

type theory [1], any formula  of linear logic can be interpreted as a linear type

denoted e.g. by A. Using linear connectives we can formulate a linear type theory

in the sense of Table 6. According to the selected fragment of linear logic we can

work with tensor fragment and/or direct fragment.

Table 6

Type theory nomenclature in Linear logic manner

Linear type theory Linear logic

Tfrag
Tensor product  Multiplicative conjunction

Mfrag
Tensor sum  Multiplicative disjunction

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 155 –

Linear type theory Linear logic

Dfrag
Direct product & Additive conjunction

Afrag
Direct sum  Additive disjunction

Every programming language has a collection of predefined types. These types

can be considered as basic types forming a set Btypes={X, Y,...}. Let I be a unit

type. We can construct linear Church’s types over basic types and unit type using

type operators corresponding with linear logic connectives. Then the syntax of the

linear types can be defined as:

2121212121 |&|||||:: AAAAAAAAAAXIA   (9)

In this grammar, I denotes a linear unit type and X denotes a linear basic type. The

following constructions are linear Church’s types:

 A1  A2 is product linear type;

 A1  A2 is coproduct (sum) linear type, and

 A1  A2 is function linear type as a set of functions from type A1 to a

type A2.

Binary product/coproduct linear types can be generalized to

 Finite product linear types of the form A1  A2  …  An together with

the projections i: A1 & A2 & … & An  Ai, i=1,…,n;

 Coproduct linear types of the form A1  A2  …  An together with the

coprojections (injections) i: Ai  A1  A2  …  An, i=1,…,n.

Correspondence between traditional type theory and linear type theory is shown in

Table 7. In linear type theory, any variable can appear in a term only once [1].

Product types () together with projections (&) are illustrated in the upper

horizontal ellipse in Figure 1. Coproduct types () together with coprojections

() are illustrated in the lower horizontal ellipse in Figure 1.

Table 7

Traditional and linear Type theory

Type

manipulation

Type theory

Traditional Linear Comment

Product 
 constructor

& selector

Coproduct +
 deconstructor

 integrator

Function type   constructor

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 156 –

6 Behavior, Knowledge and Belief

The expressive power of linear logic can be increased by various extensions, for

instance with modal operators. If we consider the vertical fragments in Figure 1,

we can construct various modal extensions of linear logic that enable additional

useful applications in computing science.

Firstly, consider the intensional fragment of linear logic (left vertical ellipse). If

we extend this fragment with modal operators for necessity and possibility (, ),

we achieve a new logical system constructed over coalgebra [10], [11] as a

resource oriented modal coalgebraic linear logic suitable for describing the

observable behavior of running programs [12].

Now we consider the extensional fragment of linear logic (right vertical ellipse).

We extend this fragment by epistemic objective knowledge operator K and by

epistemic rational belief operator B. Assuming an agent c a formula Kc expresses

that an agent c has a knowledge  and a formula Bc expresses that an agent c

has belief about  . This fusion between epistemic and linear logic we have used

to construct a Kripke model for acquiring knowledge and empirical belief about

incoming network intrusions [12], [13] based on [25]. We shortly describe the

main ideas of our approach. We use the following extensional fragment of linear

logic extended with epistemic operators:

 ccn BKp |||!|||&|:: 212121

  (10)

Assume a signature based Intrusion Detection System and three possible types of

intrusions: A, B and C. Every type of intrusion attempt has several symptoms that

can be described as elementary propositions.

Let 007 be an rational agent, e.g. some program. Let the symptoms of an intrusion

attempt of a type A be denoted by elementary propositions a1, a2, a3 and a4. The

symptoms of an intrusion of a type B are b1, b2 and b3 and the ones of a type C are

c1, c2 and c3. An intrusion attempt of a particular type occurs only if all its

symptoms have occurred. Using additive conjunction we can describe the

knowledge about all mentioned types of intrusion attempts by the following

formulae:

300720071007007

300720071007007

4007300720071007007

&&

&&

&&&

cKcKcKK

bKbKbKK

aKaKaKaKK













 (11)

Let K007τ be a formula describing the knowledge about a sender, e.g. its IP

address. A formula

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 157 –

 007

300

007007 &&& KKK














  
 (12)

describes that we have the knowledge that an intrusion attempt of type A occurred

three hundred times from the same sender. The following epistemic linear formula

   007007007007

300

007007007 &&&&& KKKKKKK 
  

 













 (13)

expresses the situation when after three hundred attempts of type A the attempts of

types B and C follow immediately. The same situation exists in real IDS, e.g.

vertical portscan [23]. If this situation repeats, we can state that our agent 007 has

achieved a rational belief about the intrusion attempt expressed by the formula

   007007! BK  (14)

and we can realise some protective actions. Exponential ! enable us to describe the

repetition of attempts, i.e. a real behavior of intrusions by the principle “Repetitio

est mater studiorum”.

In [16] we explained our approach in detail together with a construction of a

Kripke model and a definition of the semantics of our epistemic linear logic.

Conclusions

In our paper we presented a few inventions regarding possible areas of applying

linear logic in various disciplines of computing science. We considered several

criteria for the fragmentation of linear logic and we discussed the known

applications of these fragments in type theory and behavioral theory. We also

discussed the special properties of linear connectives and exponentials. The static

and dynamic properties of linear logic we illustrated in various forms of linear

implication. Classical and intuitionistic logic can be translated into linear logic

using exponentials. The dynamic character of linear logic enables it to definine

linear type theory. Linear logic can be extended by new operators, e.g. modal

operators, epistemic operators, etc. These extensions allow for increasing of the

expressive power of linear logic and for opening new application domains. The

modal intensional fragment of linear logic can be useful for describing the

observable behavior of programs, and the epistemic extensional fragment enables

us to obtain knowledge and beliefs about intrusion attempts.

The dynamic/static resource oriented character of linear logic destines it for wide

usage in computing science. In this paper, we presented only a few possible

applications of it based mainly on our research results. We believe that the

presented inventions can lead to the discovery of further applications in computing

science.

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 158 –

Acknowledgement

This work was supported by the Slovak Research and Development Agency under

the contract No. APVV-0008-10 "Modelling, simulation and implementation of

GPGPU-enabled architectures of high-throughput

network security tools."

This work is the result of the project implementation:

Center of Information and Communication

Technologies for Knowledge Systems (ITMS project

code: 26220120030) supported by the Research & Development Operational

Program funded by the ERDF.

References

[1] Ambler S. J.: First Order Linear Logic in Symmetric Monoidal Closed

Categories, PhD. Thesis, University of Edinburgh, 1991

[2] Avron A.: The Semantics and Proof Theory of Linear Logic, Theoretical

Computer Science, Vol. 57, 1988, pp. 161-184

[3] Braüner T.: Introduction to Linear Logic, BRICS LS-96-6, Aarhus, 1996

[4] Chang, E. B.-Y., Chaudhuri, K., Pfenning, F.: A Judgmental Analysis of

Linear Logic, Carnegie Mellon University, Report CMU-CS-03-131R,

2003

[5] Girard, J.-Y. From foundations to ludics. Bulletin of Symbolic Logic 9, 2

(2003), 131-168

[6] Girard J.-Y.: Linear Logic, Theoretical Computer Science, Vol. 50, 1987,

pp. 1-102

[7] Girard J.-Y.: P. Taylor, Y. Lafont, Proofs and Types, Cambridge University

Press, New York, NY, USA, 1989

[8] Korečko Š, Sobota B.: Using Coloured Petri Nets for Design of Parallel

Raytracing Environment, Acta Universitatis Sapientiae. Vol. 2, No. 1,

2010, pp. 28-39

[9] Korečko Š, Sobota B., Szabó Cs.: Performance Analysis of Processes by

Automated Simulation of Coloured Petri Nets, Intelligent Systems Design

and Applications: Proceedings of the 10
th

 international conference: 29

Nov.-1 Dec. 2010, Cairo, Egypt

[10] Kurz A.: Coalgebras and Modal Logic, CWI, Amsterdam, Netherlands,

2001

[11] Mihályi D.: Duality Between Formal Description of Program Construction

and Program Behaviour, Information Sciences and Technologies Bulletin

of the ACM Slovakia, Vol. 1, No. 2, 2010, pp. 1-5

Acta Polytechnica Hungarica Vol. 10, No. 4, 2013

 – 159 –

[12] Mihályi D., Jenčík M.: Few Inventions about Utilising Linear Logic in

Computer Science, ICTIC 2012 - Information and Communication

Technologies – International Conference, Žilina, 19. – 23. 3. 2012, 2012

[13] Mihályi D., Novitzká V., Ľaľová M.: Intrusion Detection System Epistème,

Central European Journal of Computer Science, Vol. 2, No. 3, 2012, pp.

214-221

[14] Mihályi D., Novitzká V., Ľaľová M.: Intrusion Detection System Epistème,

Proceedings of the International Scientific Conference Informatics'2011,

Rožňava, 16.-18.11.2011, Košice, Equilibria, 2011, 11., pp. 61-65

[15] Mihályi D., Novitzká V., Slodičák V.: From Petri Nets to Linear Logic,

CSE'2008, Fifth International Scientific Conference on Electronic

Computers and Informatics, Vysoké Tatry - Stará Lesná, 24. - 26. 9. 2008,

Košice, 2008, pp. 48-56

[16] Mihályi D., Novitzká V.: Towards to the Knowledge in Coalgebraic Model

of IDS, Computing and Informatics, 2012 (accepted)

[17] Novitzká V., Mihályi D., Slodičák V.: Categorical Models of Logical

Systems in the Mathematical Theory of Programming, Journal of Pure

Mathematics and Applications, 17, 3-4, 2006, pp. 367-378

[18] Novitzká V., Mihályi D., Slodičák V.: How to Combine Church's and

Linear Types, ECI'2006 - Seventh International Scientific Conference on

Electronic Computers and Informatics, Košice - Herľany, 20.-22.9.2006,

Košice, 2006, pp. 128-133

[19] Novitzká V., Mihályi D., Slodičák V.: Linear Logical Reasoning on

Programming, Acta Electrotechnica et Informatica, Vol. 6, No. 3, 2006, pp.

34-39

[20] Novitzká V.: Logical Reasoning about Programming of Mathematical

Machines, Acta Electrotechnica et Informatica, Vol. 3, No. 3, 2005, pp. 50-

55

[21] Sørensen M. H., Urzyczyn P.: Lectures on the Curry-Howard isomorphism,

DIKU Rapport 98/14, 1998

[22] Slodičák, V.: Some Useful Structures for Categorical Approach for

Program Behavior, Journal of Information and Organizational Sciences,

Vol. 35, No. 1, 2011, pp. 99-109

[23] Snort web site. Availaible on: http://www.snort.org

[24] Szabó Cs., Slodičák V.: Software Engineering Tasks Instrumentation by

Category Theory, Proceedings of the 9
th

 IEEE International Symposium on

Applied Machine Intelligence and Informatics SAMI 2011, 27-29.1.2011,

Košice, Elfa s.r.o., 2011, pp. 195-199

D. Mihályi et al. What about Linear Logic in Computer Science?

 – 160 –

[25] Vokorokos L. Baláž A.: Distributed Detection System of Security

Intrusions Based on Partially Ordered Events and Patterns, Towards

Intelligent Engineering and Information Technology, Studies in

Computational Intelligence, Vol. 243, Springer, 2009, pp. 389-403

[26] Zlatoš P.: Ani matematika si nemôže byť istá sama sebou, Iris, Bratislava,

1995

