Under consideration for publication in Math. Struct. in Comp. Science

The parametric continuation monad

Paul-André Melliest

Received

Dedicated to Corrado Bohm, on the occasion of his 90th birthday.

Every dialogue category comes equipped with a continuation monad defined by applying
the negation functor twice. In this paper, we advocate that this double negation monad
should be understood as part of a larger parametric monad (or a lax action) with parameter
taken in the opposite of the dialogue category. This alternative point of view has one main
conceptual benefit: it reveals that the strength of the continuation monad is the fragment of
a more fundamental and symmetric structure — provided by a distributivity law between
the parametric continuation monad and the canonical action of the dialogue category over
itself. The purpose of this work is to describe the formal properties of this parametric
continuation monad and of its distributivity law.

1. Introduction

Origins of tensorial logic. The idea of tensorial logic emerged in Kyoto during a sabbat-
ical stay at the Research Institute in Mathematical Sciences (RIMS). There, in the very
first days of the summer 2006, I suddenly realized that the distributivity law of linear
logic

(A®B)@C — AR (B() (1
could be unified with the tensorial strength of the continuation monad

by shifting from linear logic to this more primitive logic of tensor and negation, where
negation is not required to be involutive anymore. The very name of “tensorial logic”
originates from the observation that the distributivity law

kxpc : —(BeX)eC — —(=(BeC)®X) (3)

of tensorial logic can be seen as a refinement of the distributivity law (1) of linear logic
and at the same time as a parametric version of the tensorial strength (2) with parameter
provided by the variable X.

One main purpose of the present article is to clarify the algebraic nature of this prim-
itive and unifying principle of logic (3) starting from the observation that the family
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of morphisms « is canonically defined in every dialogue category. Recall from (Mellies
2009; Mellies-Tabareau 2009) that a dialogue category is a monoidal category (¢, ®, I)
equipped with an object | called its tensorial pole, and a pair of natural isomorphisms

YA,B : %(A®ij-) = %(‘B?A _OJ-)
Va.B : €(A®B,1) = (A, Lo B)
providing a representation of the two presheaves
A—»%¢A®B,l) , B—»%A®B,1L) : ¥ — Set.

The situation is extremely common in logic and in algebra. A typical illustration is pro-
vided by the category of (possibly infinite dimensional) vector spaces on a given field &,
with the object L defined as the field & itself. Another example is provided by any carte-
sian closed category ¢ with a fixed object L in it.

When the tensor product ® of the dialogue category is symmetric, the objects A — |
and | o— A are isomorphic, and are thus often identified and written as — A for simplicity.
It is well-known that every dialogue category comes equipped with a monad

A lo—(A—ol) : ¥ — ¥ (4)

obtained by applying negation twice. This monad is traditionally called the continuation
monad of the dialogue category in programming language theory because it is related
to the continuation-passing style translations used during compilation. Note that the
tensorial strength (2) of the continuation monad is defined in any dialogue category ¢
as the morphism (3) instantiated at the parameter X equal to the tensorial unit I.

Seen from the point of view of tensorial logic, linear logic starts when one decides to
force the double-negation monad to coincide with the identity. This step is reflected in
categorical terms by the shift from general dialogue categories to the specific case of
x-autonomous categories. Recall that a x-autonomous category is a symmetric dialogue
category where the unit

A — -4
of the continuation monad is invertible for every object A. The distributivity law (1)

of linear logic is then recovered in any x-autonomous category as a special case of the
distributivity law (3) of tensorial logic instantiated this time at the parameter X = - A:

k-apBc " ("B®-A4A)eC — -(-(BeC)®-A)
The definition of (1) is justified by the fact that the multiplicative disjunction % of linear
logic is defined as
A®B = -(-B®-A) (5)
in any x-autonomous category.
This unification of (1) and (2) leads to the methodological question of understanding
the algebraic nature of the tensorial principle (3) which underlies both of them. Quite
obviously, this mathematical investigation of (3) should shed light on (1) and (2) and

benefit at the same time from what is already known about these two well-studied in-
stances. Typically, the fact that the distributivity law (3) is a parametric refinement of
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the tensorial strength (2) leads us to decompose it in two independent ingredients, for
every dialogue category ¢:

a. a functor
® : (X,4) —» X®A=lo—((A-ol)®X) : ¥P’x¥ — E

corresponding to a parametric version of the continuation monad, with the object X
as parameter,
b. a natural transformation

KX,A,B : (X@A)@B — X@(A@B)

generalizing the tensorial strength of the continuation monad.

This decomposition of (3) into a. and b. reduces our original problem to understanding
in turn the algebraic nature of this specific functor ® and of this specific natural trans-
formation x. As we will see, the exercise is not particularly difficult in itself — although
it should be done with great care — but extremely useful, since it reveals the basic 2-
dimensional structures which regulate the logical discourse, and more specifically its
use of negation.

Parametric continuation monad. As explained above, the first aim of this paper is to
reconstruct the functor ® and more precisely to understand in which sense this functor
should be understood as a parametric version of the continuation monad. A preliminary
step in this direction is to observe that every dialogue category ¥ comes equipped with
an adjunction

L

% /J_\ & op (6)
\_/

R
where L and R denote the expected negation functors:

L : a—~a—ol R : b Lo-b.

In order to analyze the algebraic nature of this adjunction, it also appears convenient to
rename the monoidal categories 4 and ¥ °? in the following way:

— the category <7 is the new name for ¥ and its tensor product and unit are noted ®
and true in order to stress the logical interpretation of ® and I as a linear conjunction
and its neutral element,

— the category # is the new name for ¥ °?(>:)) whose tensor product and unit are de-
noted @ and false in order to stress the logical interpretation of ® and I as a linear
disjunction and its neutral element.

Here, the notation % °?(*:1) means that the orientation of the morphisms (of dimension 1)
is reversed in ¢ as well as the orientation of the tensor product (of dimension 0). This
symmetric formulation of dialogue categories leads to the notion of dialogue chirality
introduced in our companion paper (). The interested reader may have a look at the
original definition there. However, it will be sufficient in this paper to remember that
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a dialogue chirality is essentially the same thing as a dialogue category formulated in
this 2-sided and symmetric fashion. The specific orientation for the disjunction in the
category 4 is chosen in order to rewrite the formula (5) as follows:

A®B = R(LAQLB) (7

and thus to interpret @ as a primitive variant of %, with the functors L and R playing
the role of coercions (or shifts) interpreted as identity functors in the case of linear logic.
At this point, one should remember that just as in the case of any monoidal category, the
monoidal structure of & defines a (weak) left action

x = Q@ : BxHB — B (8)

of the monoidal category (%, @, false) over itself, seen as a category. Recall that by weak
left action of a monoidal category (.#,®,I) on a category 2", one means a functor

x . MXEX — X
equipped with natural isomorphisms
Pmn @ M®(nxx) — (MQn)*zx pr oz — Ixzx
satisfying the two expected coherence diagrams:
(m®n) (pxx) <——mx (nx (pxx)) ——=m*((n®p)*x)
Iz n

(men)@p)xx

(men)®p)*x 9)

mxx * (I % x)

\/

(m®I)=*

where a and p denote the associativity and unit combinators of the monoidal cate-
gory .. We will establish in §2 a general transfer theorem which states that the weak
action (8) may be transported along the adjunction

o /L\* B (10)
\_/

R

into the lax action defined as
® : Bxd - BxB 2 B L .
Note that the resulting operation

b®a = R(b© L(a)) 11
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coincides with the functor we started from. Recall also that a lax action of a monoidal
category (#,®,1) on a category £ is defined as a functor

® : MXZX — X
equipped with natural morphisms
Umpn @ MO N®r) — (MOn)@x pur x — I®x

satisfying the same two coherence diagrams (9) as a weak action. In particular, a weak
action is the same thing as a lax action whose morphisms ., ,, and i are invertible. We
will call parametric monad in 2" with parameters in the monoidal category (.#,®,1I)
such a lax action on the category 2°. The terminology is justified by the fact that every
such parametric monad ® includes a monad in 2 defined as (I ® —) where I is the
unit of the monoidal category .#. Typically, starting from the parametric continuation
monad (11) defined above, one recovers the continuation monad as

false®a = R(false@®@La) = RolL(a).

We will see moreover in §2 that the coherence diagrams defining a parametric monad
are obtained as a direct parametrization of the usual definition of monad.

Commutation between monads. The notion of parametric monad is not only useful in
itself: it also leads to a pleasingly symmetric way to think of the notion of tensorial
strength. Given a monad T on a monoidal category (¥¢,®,I), recall that a tensorial
strength is defined as a natural family of morphisms

OA,B : T(A)@B—)T(A@B)

regulated by four coherence diagrams. These four diagrams may be organized into two
independent series, each of them consisting of two coherence diagrams. The first series
of diagrams describes how a single tensor product ® interacts with the multiplication
and the unit of the monad:

TT(A)® B—>—=T(T(A) ® B) —>—=TT(A® B)

T(A)® B Z T(A® B)

B

A®
T(A)® B Z

T(A® B)
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The second series of diagrams describes how a single monad 7 interacts with the asso-
ciativity and unit law of the tensor product:

(T(A)®B)C —"—-T(AB) @ C —"—=T(A® B)® C)

T(A)@ (B O) z T(A® (B®(0))

/ TA\
T(A)®I z

T(A®I)

where o and p are the canonical isomorphism of the monoidal category. As we will see,
the apparent dissymmetry between the two series of commutative diagrams hides a
symmetry which appears when one thinks

— of the monad 7T as a parametrized 1-monad ® on the left, with parameters taken in
the trivial monoidal category 1 with a single object I and a single morphism,

— of the tensor product ® as a parametrized ¥-monad on the right, with parameters
taken in the monoidal category (¥, ®,I) and multiplication and unit defined as «
and p.

Here, by parametric monad on the left, we mean a parametric monad in the usual sense,
whereas by parametric .#-monad on the right, we mean a parametric .# °*(*)-monad
where .# °?(©) denotes the monoidal category .# where the direction of the tensor prod-
uct has been reversed. This symmetric point of view on tensorial strengths enables to
write the tensorial strength as a distributivity law

ocap : (I®A) @B — I®(A®B)

between the left and right parametric monads. As we will see, yet another way to think
of the category ¢ equipped with the three data (®, ®, o) is to identify it as a lax version
of (1,%)-biaction (or bimodule) where the equality

(I®@Ad)®B = I®(A®B)

has been replaced by a natural transformation o satisfying the four coherence diagrams
recalled above.

Plan of the paper. We introduce the notion of parametric monad in §2 and establish an
elementary transfer theorem for parametric monads. We construct in §3 the parametric
continuation monad ® of a dialogue category, and deduce from the transfer theorem that
it indeed defines such a parametric monad in every dialogue chirality. We introduce in
§4 the notion of commutator between parametric monads, and show that it generalizes
the notion of tensorial strength as well as the notion of distributivity between monads.
We conclude the paper in §5 by constructing for every dialogue chirality a double nega-
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tion commutator between the parametric continuation monad and the action ® of the
category 7 over itself.

Related works. Since the main purpose of the paper is to design a bridge between linear
logic and the theory of strong monads, the reader is probably advised to read the origi-
nal papers (Girard 1987; Girard 1995) about linear logic as well as the seminal papers
on strong monads (Kock 1970; Moggi 1991) in algebra and in programming language
semantics. It should be mentioned that the distributivity law (1) was originally observed
in (Hu & Joyal 1999) and that it was then extensively studied in (Cockett & Seely 1997;
Blute & Cockett & Seely & Trimble 1996) in their seminal work on the coherence proper-
ties of weakly distributive categories, partially reported in (Mellies 2009). As the reader
will see, an important part of the present paper is devoted to the idea that lax algebraic
structures may be transported along adjunctions. Although the shift from weak to lax
structures plays a fundamental role in our work on tensorial logic, the transfer theorem
for lax algebras along adjunctions is only a slight variant of similar transfer theorems
along equivalences of categories, most specifically the 2-categorical account developed
in (Kelly & Lack 2004) starting from ideas in (Bénabou 1963).

Other parametrized notions of monad. The notion of monad (7, 1, n) is well established
today, and it is sufficiently important and primitive to be extended and parametrized
in various ways, depending on the situation of interest. Let us mention in particular
that two other notions of parametrized monad has been recently introduced for different
purposes in (Atkey 2009) and in (Uustalu 2003). Despite the proximity in name, these
parametric notions of monad are different, and not immediately related.

Side remark. The reader should be aware that there is an element of choice in picking
the double-negation monad (4) instead of the other double-negation monad

A (Lo—A)—ol : € — € 12)

also available in any dialogue category, and defined in just the same way as (4) except
that the order of negations has been interchanged. However, the choice of (4) against (12)
does not really matter because the very notion of dialogue category % is invariant under
the change of orientation

¢ — g0 (13)

of the tensor product. This change of orientation interchanges the left negation and
the right negation. From this follows that the double-negation monad (4) taken in the
dialogue category % °*(?) coincides with the double-negation monad (12) taken in the
original dialogue category . In other words, the two choices are simply equivalent mod-
ulo (13). As a matter of fact, the only important point to remember is that the strength
studied in the present paper permutes the double-negation monad (4) with the right
action of the tensor product:

oap : (Lo—(A—-ol))®B — Llo—((A®B)—ol)



Paul-André Melli¢s 8

whereas the other strength permutes its double-negation monad (12) with the left action
of the tensor product:

A® ((L-B)—l) — (Llo—(A®B))—Ll.

2. Parametric monads

We start by recalling the formal definition of adjunction in a 2-category # introduced
in (Kelly & Street 1974) and then review a series of basic consequences of the definition.
In particular, we establish an elementary transfer theorem which states that every para-
metric #-monad on the %-side of an adjunction L 4 R is transported to a parametric
#-monad on its .<7-side, this for every monoidal category 7.

2.1. Formal adjunctions

Recall that an adjunction in a 2-category # consists of a pair <7, 4 of 0-dimensional
cells, of a pair
L:o — % R:%B— o

of 1-dimensional cells, and of a pair
n:ly=RolL e: LoR=1g4

of 2-dimensional cells. One requires moreover that the 2-dimensional cells obtained by
pasting:

o - o o - o
R L L
/bg\“’/ \M /ﬁg\
B B B B

1 1
coincide with the identity on the 1-dimensional cells L and R, respectively. In that case,
one writes L -| R and one says that the 1-cell L is left adjoint to the 1-cell R, and con-
versely, that the 1-cell R is right adjoint to the 1-cell L. These equations may be depicted

in string diagrams in the following way, with the 0-cell & coloured blue (or light grey)
and the 0-cell & coloured red (or dark grey).

R R

e B B
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L L

B g B

n of 74

L L

By convention, the black string representing the functors L and R is oriented downwards
when it depicts the functor L and upwards when it depicts the functor R. This specific
orientation is justified by the connection with dialogue games exhibited in our compan-
ion paper (®;) where the functor R corresponds to the Opponent moves of a dialogue
game, and the functor L corresponds to the Player moves. In that case, the orientation
of L and R reflects the flow of information and control in the proof.

2.2. Formal monads
A monad in a 2-category # is defined as a 0-cell <7 together with a 1-cell
T : o — A
together with a pair of 2-cells
n : ly — T w : TolT — T

making the two diagrams below commute:

ToToT —L 7101 % \

A comonad in a 2-category 7 is defined as a monad in the 2-category # op2) obtained
by reversing the orientation of the 2-cells in the 2-category # .

Tol —% o7

2.3. The external adjunction

Suppose given a formal adjunction

o /1\ B (14)
\_/

R

in a 2-category # . It is well-known that every such adjunction induces a monad Ro L on
the 0-cell &7 and a comonad L o R on the 0-cell 4. Less known is the fact that this monad
is part of a much broader structure, originally noticed by Jean Bénabou, see (Bénabou
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1963) for details, as well as the more recent account in (Kelly & Lack 2004). We describe
this broader structure now. Let

End(&) = W (o, )
denote the hom-category of the 0-cells &/

— with objects the 1-cells from the 0-cell &7 to itself,

— with morphisms the 2-cells between these 1-cells.

The category End(/) is strict monoidal, with composition o as tensor product, and with
the identity 1-cell 1. as tensor unit. Note that a monoid in this category End(«) is
the same thing as a monad in # on the 0-cell 7. Similarly, a comonoid in the cat-
egory End(#) is the same thing as a comonad in # on the 0-cell #. Now, the main
observation is that the two 1-cells L and R induce in turn two functors

[L,R] : End(&) — End(%)
F — LoFoR

[R,L] : End(#) — End(¥)
G — RoGolL

defined by pre and postcomposition. The two functors are moreover involved in an ad-
junction

(L, R]

End (o) @ End(%) (15)

[R.L]

between the hom-categories. This adjunction is called the external adjunction associated
to the formal adjunction L 4 R. By external, one means that it is an adjunction between
categories End(«/) and End(#) reflecting to the outside the formal adjunction L 4 R
living inside the 2-category . The unit and counit of the external adjunction are defined
in the expected way:

Mr=noFon : F=RoLoFoRolL,
[l =e0Goe : LoRoGoLoR=G.

Looking at it more closely, the adjunction simply says that there exists a one-to-one
correspondence between the 2-cells

4
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and the 2-cells

% F o
el
BB

in the 2-category 7, and that this correspondence is natural wrt. the action on F' in
End(«/) and wrt. the action on G in End(#). The adjunction may be also seen as an
avatar of what Kelly and Street like to call “mate 2-cells” in their 2-categorical theory of
adjunctions, see (Kelly & Street 1974) for details.

2.4. Lax monoidal functors

Recall that a lax monoidal functor between monoidal categories (#,®,I) and (A4, ®,1I)
is defined as a functor

r . o — N

equipped with two natural transformations
map : FAQFB — F(A®B) mr : I — F(I)

making the three diagrams below commute:

(FA® FB)® FC F(A® B)® FC F((A® B)® C)

al la (16)

FA® (FB® FC) FA® F(B®C) F(A® (B® C))

2N 2N an

FIRFA——™ - F(I® A) FAQFI——™ - FA®I)

for all objects A, B,C of the category .#, where a, A and p denote the canonical mor-
phisms of the monoidal categories. An important property of lax monoidal functors is
that they compose, and in fact define a 2-category with

— monoidal categories as 0-cells,
— lax monoidal functors as 1-cells,
— monoidal natural transformations as 2-cells.

Although we will not really use this notion in the paper, we find useful to recall that a
monoidal natural transformation

g : (F7m) = (va) : (%a@)vj) — (‘/V7®7I)
between lax monoidal functors (F,m) and (G,n) is defined as a natural transformation

¢ : F == G : AH — N
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between the underlying functors, making the diagrams commute

0®0

F(A)® F(B) G(A) ® G(B)

I
7N

r)——% > G
F(A® B) G(A® B)

A lax monoidal functor is called weak when the coercions m; and m 4 g are isomorphisms
for all objects A, B of the category %.

2.5. Parametric monads

The notion of lax monoidal functor was introduced by Jean Bénabou, who was guided by
his important observation that a monoid in a monoidal category (.#,®, I) is the same
thing as a lax monoidal functor

1 — (A,3,])

from the monoidal category 1 with a single object and a single morphism. This specific
formulation of monoids provides a nice conceptual explanation for the fact that every lax
monoidal functor transports monoids to monoids.

Now, it is not difficult to see that a formal monad (7,u,n) on a 0O-cell & of a 2-
category # is the same thing as a monoid in the monoidal category End(«?) = # (<7, 7).
From this follows that a formal monad is the same thing as a lax monoidal functor

1 — End(«®).

The discussion justifies considering a parametric notion of monad, parametrized by a
monoidal category (_7,®,e) in the following way.

Definition 1 (parametric monad). A parametric _#-monad on a 0-cell & of a 2-
category # is defined as a lax monoidal functor

(T,p) : 7 — End(&).

The monoidal category _# is called the parameter category of the #-monad; and an
object j of the category ¢ is called a parameter.

The definition is a straightforward application of Bénabou’s ideas and we do not claim
any originality for it. It is worth mentioning here that in the case of # = Cat, a para-
metric monad is the same thing as a lax action of the monoidal category ¢ on the
category . By lax action, one simply means a lax algebra of the 2-monad

I x— : Cat — Cat

on the 2-category of categories. Note also that we use for convenience the greek letter 1
rather than the latin letter m in order to denote the coercion maps of the lax monoidal
functor 7.
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At this point, it seems reasonable to give an equivalent and fully explicit description
of the notion of parametric monad. A parametric _#-monad (7', i) consists of
— al-cell T} : &/ — 4 for every parameter j and a 2-cell Ty : T; = T} for every
morphism f : j — k between such parameters,
— a2-cell pe : 1,4 = T, called the unit of the parametric monad,
— a2-cell p; : T; 0Ty = Tjgi called the (j, k)-component of the multiplication of the
parametric monad, for every pair of parameters j and k.
These data are moreover required to make a series of coherence diagrams commute in
the category End(«). First, the diagrams

Tfﬁ Tk‘ \Tg ide
7= 7

ijTl J\T/ J
id;

Tyof ’

which express the functoriality of 7. Then, the diagrams
TyoT,

T7 O Tk; g T]/ o Tk/
Ky k et k!
Trog
Tier Ty ek

which express the naturality of x. Finally, the diagrams

p,j.koTl

TjoTkOT‘l Tj®ko/—1—’l

Tjopk, Hi@k,L

Hi k@1 o

XTOT/

which express the monoidality of u. These diagrams should commute for all indices
J,j' k., k', and all morphisms f, g, h of the parameter category 7.

and

Remark. Note that every parametric #-monad T' comes equipped with a morphism A —
Te A where e is the unit of the monoidal category #. On the other hand, the reader
should be careful that is (at least in general) no morphism A — T;A for an object j
different of the unit e in the category 7.
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Parametric comonads. There is also a notion of parametric comonad (K, §) indexed by
a monoidal category (_#,®,I) in a 2-category # defined by duality as a parametric
_# °P(M-monad in the 2-category # °P(?). Here, the category _# °»(!) is obtained by revers-
ing the orientation of the morphisms of the category # °»(!) and the 2-category # °r(?)
by reversing the orientation of the 2-cells. Note in particular that

WP (o o) = W(A, )N

and thus that a parametric ¢ -comonad is the same thing as an oplax (rather than lax)
monoidal functor

(K,8) : ¢ — End(o)=% (o, o)

with the expected notion of oplax monoidal functor between monoidal categories.

2.6. The transfer theorem

At this point, we are ready to establish our transfer theorem for parametric monads.
To that purpose, we start by considering a formal adjunction (14) in a 2-category 7/,
together with the external adjunction (15) resulting from it. The transfer theorem is
based on the key observation that

Proposition 1. The right adjoint functor
[R,L] : End(¥) — End(%)

defines a lax monoidal functor.
In order to establish the property, we need to define a 2-cell

my : ly = RolgolL
as well as a family of 2-cells

mgr : (RoGoL)o(RoFoL) = Ro(GoF)oL
indexed by the 1-cells
FG : # — A

and making a series of coherence diagrams commute in the category End(</). The 2-
cells m; and mg r are defined in the expected way, using the unit » and the counit ¢
of the formal adjunction L 4 R, respectively. The construction may be depicted in the
language of string diagrams. The 2-cell m¢ r is depicted as

R GOF L

B of

mag,Fr =
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while the 2-cell m; is depicted as

1, L
lgg o

The proof that the coherence diagrams required of a lax monoidal functor commute
works exactly in the same way as the proof that the endofunctor R o L defines a monoid
in the category End(«). The first coherence diagram is reflected by the plctorlal equality

HOGOF HOGOF
RHL R G L RGL R F L

and the second coherence diagrams involving the unit m; are depicted as the diagram-
matic equalities below:

R F L R F L R F L
B o N B
€ _ Y _ 5
n n
R F L R F L R F I

At this point, the transfer theorem below follows from Proposition (1) and the fact that
lax monoidal functors compose.

Proposition 2 (transfer theorem). Every parametric #-monad (T, 1) in the 0-cell #
induces a parametric _#-monad in the 0-cell <.

The parametric #-monad on the 0-cell & is simply defined by composing the two lax
monoidal functors

T [R,L]

7 — T~ End®) End(«)

The composite functor is lax monoidal and thus defines a parametric _#-monad on the 0-
cell «7. This parametric monad is called the transferred parametric monad. Observe that
the fact that every formal adjunction L 4 R defines a formal monad on the 0-cell .o/ may
be seen as a consequence of the transfer theorem. Indeed, the monad on . is obtained
by transferring the identity monad on % along the adjunction.
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3. The parametric continuation monad

As explained in the introduction, the purpose of the transfer theorem is to shed light
on the algebraic structure of the continuation monad defined in any dialogue cate-
gory (¢,®,I). The key idea to deduce the operation (11) defined as

b®a = R(b® L(a))

from the action * = @ of the monoidal category (£, @, false) on itself. Here, it is worth
recalling that (%, @, false) is just another name for the opposite % °?(%) of the original
dialogue category ¢. So, if we think of .o = ¥ as a category of formulas and proofs, it is
natural to think of & as a category of formulas and refutations. Accordingly, if we think
of the tensor product ® = ® as a conjunction in the original dialogue category <7, it is
natural to think of the tensor product @ °?(?) = @ of the category # as a disjunction.
The important point is that the action of the monoidal category £ on itself may be
seen as a parametric Z-monad S on the category %, defined by the family of functors

Sy b = bbb : B — X (18)

where the 2-category # is taken in that case equal to the 2-category Cat of categories,
functors and natural transformations. Alternatively, the parametric monad S may be
formulated as the weak monoidal functor

S : % — End(¥%)
obtained by currifying the tensor product
Q@ : BxHB — A

At this point, the transfer theorem established in Proposition 2 enables us to conclude
that:

Proposition 3. In every dialogue chirality, the functor
® : Bxod — A
defines a parametric monad
T, : a — b®a=R(b® L(a))
on the category <7, parametrized by the monoidal category (4, @, false).

For convenience and readability, we like to write the functor 7}, using the following tree
notation:

T : a = /N

Using this notation, the natural transformations / fa1se and s, », which equip the para-
metric monad (7, 1) are defined as:
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R
R \
n ! A Y
M false : a — L — e
| false L
a \
a
R
\
@ R
VAN \ R
by L @ \
| . /N o ©
Hbyby R — b1 @ — 7N
\ /N Q L
© bo L 7\ |
VRN | b1 by a
b2 L a
;

Although this may be easily checked directly, the fact that (T, 1) satisfies the coherence
properties of a parametric monad is a consequence of our general transfer theorem,
applied to the parametric monad S defined in (18) and to the adjunction L 4 R.

Remark. The construction of the parametric monad T is not specific to dialogue cate-
gories. In particular, it would work for any monoidal category «# = ¢ equipped with an
adjunction L 4 R with its opposite category # = % °?(>:1). Even more generally, for any
category </ equipped with an adjunction L 4 R with a monoidal category (%, @, false).

4. Commutators between parametric monads

At this point, we are ready to introduce the notion of commutator between parametric
monads, and to establish at the same time that every dialogue chirality is equipped
with such a structure. As we will see, the notion of commutator unifies and generalizes
the celebrated notions of tensorial strength on the one hand, and of distributivity law
between two monads on the other hand.

4.1. Definition
We suppose given a 0-cell ¢ in a 2-category # equipped with a parametric _#-monad
T=e : ¢ — End%)
and a parametric .# °?(®)-monad
S=o : P9 — End(%)
with parameters taken in the monoidal categories (_#,®,e) and (/Z,®,u).

Definition 2 (commutator). A commutator between two parametric monads 7' = e
and S = o is defined as a natural transformation

Kk : ST = TS : Zx#4"Y — End%)
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making the four diagrams below commute

om ° - °
]. —_— Om —> [} Om
E® L® om
[T He
Om, e®
(:m K _ j®k. c® - > o,
: o
JQk m
on o on e ‘@
Om —> j@ —> 0Oy j®
je® om Om
Ky Hq
o | -
. o e
°m®n K Jje ‘.u > ]o
| @ - o J K u
J men

for all objects i, j of the category # and all objects m, n of the category .#.

Remark. In the particular case when # = Cat, a commutator may be alternatively
formulated as a natural transformation

kK @ (—e—=)o— = —e(—0o—) : IXExM — E

with components
Kjima : (jeA)om — je(Aom)

parametrized by the objects j of the category #, m of the category .# and A of the
category €.

Remark. The question of extending Beck’s theorem (Beck 1969) from distributivity laws
between monads to general commutators between parametric monads is interesting, but
outside the scope of this paper, and we thus prefer to leave it for later work. Let us simply
observe at this stage that the existence of a commutator between a left #-monad S and
a right .#-monad T enables one to construct a # x .# °?(*)-monad noted T o S on the
0-cell o7 on which the two monads S and T act in the 2-category #'. The parametric
monad T o S is defined as the family of 1-cells

(TOS)(j’m) = Tnobf;

parametrized by the objects (j,m) of the category # x .# op(0) The commutator be-
tween S and T is used in the definition of the multiplicative structure p of the paramet-
ric monad 7T o S. This observation justifies to think of a commutator as a lax notion of
bimodule (or biaction).
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4.2. Commutators in string diagrams

The notion of commutator may be depicted in string diagrams as follows. The basic idea
is to depict the commutator  itself as a braiding

j Om

Om j

commuting the string representing the action e over the string representing o. This no-
tation enables to depict the coherence diagrams of the commutator « as a series of topo-
logically intuitive equations, permuting the multiplication and unit of each parametric
monad under or over the string representing the other parametric monad. Typically, the
first series of equations in the definition of a commutator “permutes” the operations i,
over the string representing the action o

j® L® om j® k® Oom
He
K
om jok® om iok®
Om Om
He
K Y
Om e® Om e®

while the second series of equations “permutes” the operations u, under the string rep-
resenting the action e
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j® On Om j® On °m
v &
Ho
— K
K
Ho
° .
men je® Om®n ].
i® i ®
Mo
K ;,LO
Oy j® Ou j.

Remark. The notion of commutator may be easily adapted to the case of a parametric
comonad commuting with a parametric comonad, or of a parametric monad commuting
with a parametric comonad, with their associated string diagrams.

4.3. Illustrations

We show that the notion of commutator is sufficiently general to recover two well-known
and apparently disjoint notions of commutation with a monad. The first example is pro-
vided by the notion of tensorial strength recalled in the introduction. It is essentially
immediate that

Proposition 4. A tensorial strength
oap : T(A) @B — TA®B)
is the same thing as a commutator between a monad 7" and the action of the monoidal

category (¢,®,I) over itself.

The parametrization is given in that case by # = 1 and .# = ¥. The second example is
provided by the notion of a distributivity law between two monads S and 7. Recall that
such a distributivity law is defined as a natural transformation

A ST = TS
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making the four coherence diagrams

SST —2—= 8T8 —2—= 88T T
n n
H Iz
N ST A TS
ST TS
STT=—2—=TST—2-=TTS g
n n
2 7
A ST A TS
ST TS

commute. Once again, it is essentially straightforward that

Proposition 5. A distributivity law between two monads S and 7' is the same thing a
commutator between them.

The parametrization is given in that case by ¢ =1 and .# = L.

5. The double negation commutator

In this final section, we conclude the paper and show that in every dialogue chiral-
ity (o7, #), the strength

Oaq,as : RL(al) D as — RL(a1 W) ag)

of the continuation monad 7" = Ro L is the emerged fragment of a much wider structure,
provided by a commutator

Kb,a1,az : (b® al) Da — b® (a1 D CLQ)

between the parametric continuation monad 7" = ® and the action S = @® of the mo-
noidal category (<7, ®, true) over itself. Quite obviously, the strength o,, ,, is recovered
by instantiating the commutator x4, ., at the specific instance b = false. In order to
construct the commutator « in every dialogue chirality, we find convenient to introduce
first the notion of transjunction which provides a pleasant and illuminating shortcut to
the construction.

5.1. Formal transjunctions

The notion of formal transjunction in a 2-category # refines the notion of formal adjunc-
tion recalled in §2.1 to a situation where the 0-cells .« and % are themselves replaced
by formal adjunctions.
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Definition 3 (transjunction). Suppose given a pair of formal adjunctions

L1 L2

Rl R2

whose units and counits are denoted 7,7, and ¢, 2 respectively. A formal transjunc-
tion F' 3 GG between a pair of 1-cells

F . o — 9 G : By — %

accross the adjunctions L; 1 R; and L, 4 R» is defined as a pair of natural transforma-
tions

axiom: L] = GolyoF cut: FoRi oG = Ry

making the two diagrams

FoRloL1$>FOR10GOLQOF GOLgoFORloGC:Ut>GOL20R2

71 (a) cut axiom (b) €2

€1

FWZZRQOLQOF LloRloG:

commute.

The notion of transjunction is ultimately justified by the following observation, which
holds in every 2-category 7' .

Proposition 6. A transjunction ' -3 G accross the adjunctions L; - Ry and Lo - Ry is
the same thing as a formal adjunction Ly o F' 4 Ry o G.

Side remark. Given a pair of 1-cells F : ¢; — % and G : 6> — %1 of the 2-category #/,
a formal adjunction F - G is the same thing as a formal transjunction F' 3 G accross
the identity 1-cells L; = R; = id¢, and Ly = Ry = idy, where & = % = % and
oty = By = Co.

5.2. Transjunctions in string diagrams

These various equations between 2-cells may be alternatively depicted as string dia-
grams living in the ambient 2-category # . First of all, the generators axiom and cut of
a transjunction F' 3 G accross the adjunctions L; 4 Ry and L, -| R are depicted as
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G L, F
2
o
axiom = cut =
o
o
L 1 F Rl G
Then, the two coherence equations (a) and (b) of Definition 3 are depicted as:
Ry L, F R, Ly F
oy oy
. (@
A 7
F F
G
. |
Ly R G Ly Ry G

Note that one recovers in this way a pair of equations akin to the cut-axiom rule of
proof-nets in linear logic. One main difference with linear logic is that the background
in tensorial logic (and in transjunctions) is polychromic rather than monochromic —
with the 0-cells .« in blue (or light grey) and %; in red (or dark grey) separated by the
oriented boundary defined by the 1-cells L; and R; fori =1, 2.
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5.3. Transjunction homomorphism

It is also useful to consider a notion of homorphism between transjunctions, which gives
rise to a category of transjunctions.

Definition 4 (homomorphism). A homomorphism
(f,g9) : F3G — F' 3¢

between two transjunctions F 3 G and I’ 3 G’ accross the same adjunctions L; - R
and L, -1 Ry is defined as a pair of natural transformations

f : F = F g : G = G
making the two diagrams

!

GolLyoF =———GoLyoF’ F’OR10G1$R2
axiomw (a) Hg f” (b) WCut
L1$GIOL2OF1 FOR]_OGl%FOR]_OG

commute.

Pictorially, such a homomorphism (f, ¢g) is a pair of natural transformations f : F = F’
and g : G’ = G satisfying the pictorial equalities below:

G Ly F G Ly F

—
)
~

—~
~
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5.4. The continuation commutator
At this final stage of the paper, we are ready to establish that
Proposition 7. Every dialogue chirality is equipped with a commutator
Kbam : (B®a)oOm — b®(adm) (19)

between

— the parametric monad 7' = ® acting on the category 7, with parameters taken in the
monoidal category (4, @, false),
— the monoidal action S = @® of the monoidal category .« over itself.

The construction of the commutator « is based on the observation that every dialogue
chirality is equipped with a family of adjunctions

L(—om) -+ R(—@m") (20)
parametrized by the objects m of the category <7. Here, the functor
(- o — B0l

denotes the change of frame consisting in transporting an object m in the category &/ = ¢
to the same object m* seen this time in the opposite category # = % °?(®:1) Note that
this adjunction (19) formulated in the style of dialogue chiralities corresponds in the
language of dialogue categories to the adjunction

(—®A) ol H Llo—(A®-)

which generalizes the adjunction (6) and identifies it as the particular instance where A =
I is the tensorial unit of the dialogue category. Each adjunction (20) may be alternatively
seen as a transjunction

(—om) 3 (—om")
accross the adjunction L - R, presented by the natural transformation
axiom[m] : L(a) — Lla®dm)@m’
cutfm] : Rb@m")om — R()

parametrized by the objects m, a of the category «# and the objects b of the category %.
At this point, the morphism

Kbam : RO@L@)om — Rb@Ladm))

is simply obtained by composing these two combinators and the associativity law of %
in an appropriate fashion:

R(b@ L(a)) ®>m R(b@ L(a ®m))

axiom[m] l Tcut[m]

ROb @ (L(a®m) @m*)) @ m — 22" p(b@ Lla®m)) @m*) ®m
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It is not difficult to check that the resulting natural transformation x satisfies all the
coherence diagrams of §4.1 and thus defines a commutator between the parametric con-
tinuation monad 7' = ® and the action S = @ of the monoidal category .« over itself.
This concludes the proof of Proposition 7.

6. Conclusion

The present paper is part of a series of articles (®1; ®2; ®4; ®5) whose purpose is to
provide a type-theoretic status to game semantics, based on the algebraic study of nega-
tion in dialogue categories. As such, the paper may be also seen as one ingredient in
the wider project of adapting to tensorial logic and to dialogue categories the combina-
torial presentation of linear logic and of x-autonomous categories elaborated in (Cockett
& Seely 1997; Blute & Cockett & Seely & Trimble 1996).
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Appendix: a general 2-categorical transfer theorem

In this Appendix, we would like to show that the transfer theorem (Proposition 2) es-
tablished in §2.6 is a particular case of a more general 2-categorical property — at least
when 7 coincides with the 2-category Cat of categories, functors and natural transfor-
mations. In that case, the 2-functor

T« X - JgxZ%Z : Cat — Cat 21

defines a weak 2-monad for every monoidal category (_#,®,I) and a parametric ¢ -
monad on a category % is the same thing as a lax T-algebra

* : /X%ﬂ — €.

Recall that a lax T-algebra for a weak 2-monad (7', m, ¢) in a 2-category # is a 1-cell

x : T¢ — €
together with a pair of 2-cells
i T¢
¢ d ¢ - )
\u g / re” e e
T¢ X T /

making the expected coherence diagrams commute. Now, a general transfer theorem
established in (Mellies 2006) states that given a formal adjunction

R
in a 2-category # equipped with a weak 2-monad 7', every lax T-algebra
x : TA — P

on the 0-cell 2 induces a lax T-algebra structure on the 0-cell .7, defined as follows:

® : To L 192 X 2 £ .
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In the particular case when % = Cat, one recovers our original transfer theorem (Propo-
sition 2) by applying the result to the weak 2-monad (21). The general transfer theorem
may be also applied to the 2-monad

T : Cat — Cat

which transports every category ¢ to its free monoidal category 7%. In that case, the
transfer theorem applied to a dialogue chirality establishes that the monoidal struc-
ture (%, @, false) induces a lax monoidal structure on the category <, provided by the
family of n-ary disjunctions

[A41®---RA,] = R(LAQ® --©@LA,).

This algebraic construction is important because it provides a way to adapt to tensorial
logic the familiar definition (7) of the ® connective in linear logic. The key idea is to
replace the binary disjunction of linear logic by a family of n-ary disjunctions. The reason
for moving to a family of connectives is that the tensorial version of binary disjunction
is not associative — in the sense that the two objects

[[A®B]®3C] (A% [B®C]]

are in general not isomorphic in a dialogue category. However, the family of n-ary dis-
junctions is itself associative in some sense, but in a more subtle and oriented fashion.
For instance, there are canonical proofs of tensorial logic connecting the two clusters of
binary disjunctions above with the ternary disjunction:

[A®B]®C] — [A®B®RC] «— [A®R[B3C]]

The point is that these canonical associativity maps are not invertible in general. This
purely algebraic analysis clarifies in what sense the linear disjunction ® living in the di-
alogue category </ = ¢ is derived by deformation — one should probably say by adjunc-
tion in that case — from the disjunction @ living in the opposite category 2 = ¥ °(0:1),



