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Abstract. For any kind of geometry on smooth manifolds (Riemannian, Complex,
foliation, ...) it is of fundamental importance to be able to determine when two objects
are isomorphic. The method of equivalence using G-structures is a systematic way to
classify the local invariants of a particular geometry. For example, these ideas can be
used to show that the only local invariants of a Riemannian manifold are the curvature
form and its derivatives.

In the case of almost complex structures we arrive at the Nijenhuis tensor. The
Newlander-Nirenberg theorem states that this tensor vanishes exactly when an almost
complex structure arises from a complex structure.

In this talk I introduce G-structures and use them to develop a sketch of the proof of
the Newlander-Nirenberg theorem.

1. G-structures

One of the fundamental problems in geometry is that of equivalence, the problem of
determining when two objects in a geometric category are isomorphic. While there is
no general definition of what a ‘geometric’ structure on manifolds is, there are common
features which all of the classical geometric structures have. One of the fundamental
ways to capture what is meant by a ‘geometric’ structure is a G-structure, where G is
a Lie group. The choice of G determines a kind of geometry, in the sense that G is the
group of ‘local symmetries’ of your geometry, or the group which preserves the framings
compatible with a geometry. To define what a G-structure is we need first

Definition. Given a smooth manifold Mn, a coframe at x ∈ M is an isomorphism
u : TxM → Rn. We denote the set of coframes based at x by FGL

x . The frame bundle
FGL is given by ∪x∈MFGL

x ⊂ T ∗M ⊗ Rn. This embedding gives us the subset topology
and projection map π which sends u ∈ FGL

x to x.

It is not hard to see that this is a principal GL(Rn) bundle. Indeed, for u, u′ ∈ FGL
x

the map A = u′u−1 ∈ GL(Rn) is the unique element of GL(Rn) so that Au = u′.

Definition. Let G ⊆ GL(Rn) be a Lie subgroup. A G-structure on Mn is a principal G
subbundle of FGL.

Example. Suppose M2n has an almost complex structure J , i.e. an endomorpism of TM
so that J2 = −I at each point. Recall that R2n ∼= Cn has a canonical complex structure
given by multiplication with i. We consider the subset F of coframes u ∈ FGL so that
u(Jv) = iu(v) for all v ∈ Tπ(u)M . We may write any two coframes in F as u and Au for
some A ∈ GL(R2n), and then

iAu(v) = Au(Jv) = Aiu(v).

Since this holds for all v, and u is onto, we have A ∈ GL(n,C). Thus we see that
F is a principal GL(n,C) subbundle of FGL. Conversely, given a principal GL(n,C)
subbundle F we can determine an almost complex structure J at each point by requiring
u(Jv) = iu(v) for some u ∈ Fx and all v ∈ TxM . Because F is a GL(n,C) bundle, J will
be independent of the choice of coframing u.
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At the moment this seems like a case of taking a simple structure and turning it into
a complicated bundle, but there are several benefits to taking this perspective.

2. The fundamental structure equation

Given a G-structure B we can define a very natural 1-form, the tautological form
ω : TB → Rn, by

ω(v) = u(π′u(v)) = (π∗u)(v)

for v ∈ TuB. Since ω maps to Rn, this is a vector of n 1-forms, ω = (ω1, . . . , ωn)T .
The tautological form gives us a partial coframing of B, and we would like to extend it

to a full coframing. By definition this form is zero exactly on the vertical vectors1. But
B is a principal G-bundle, so the obvious way to parameterize the vertical directions is
with a g valued connection. And here we have the theorem

Theorem (Cartan’s first structure equation). For a G-structure B with tautological form
ω and any psuedo-connection θ ∈ Ω1(B, g) there is a map T : B → Hom(Λ2Rn,Rn), called
torsion, so that

dω = −θ ∧ ω + T (ω ∧ ω)

at each point of B.

A few remarks:
1) I remind the reader that ω ∧ ω is not zero, since ω takes values in Rn. In general,

for two V ∼= Rn valued 1-forms ω and η, the wedge product ω ∧ η takes values V ⊗ V .
However, since we wedge ω with itself, the image will lie in the subspace Λ2V .

2) There is no guarantee of uniqueness. A different choice θ will result in different
torsion T . In general we try to find a choice of θ which absorbs T , or failing that, one
which leaves it as reduced as possible and hopefully in some canonical form.

3) In a sense which will soon be illustrated by the almost complex case, torsion is
a first order measure of the failure for B to be ’integrable’. The Newlander-Nirenberg
theorem says that an almost complex structure satisfies the integrability condition to be
a complex structure exactly if there is a choice of θ for which the torsion is 0.

Similarly, for an almost-symplectic structure (I.e. a manifold with non-degenerate
2-form, not necessarily closed. Here G is the symplectic group) the space of possible
torsions is naturally isomorphic to Λ3Rn. Under this isomorphism the torsion is the
exterior derivative of the almost symplectic 2 form. Presupposing all of this, it is clear
that an almost symplectic structure is symplectic exactly when its torsion vanishes.

Example (Reduction of torsion in an almost complex manifold). We continue to follow
the example of our almost complex manifold M . The fiber of F is G = GL(n,C), which
has Lie algebra g = gl(n,C). In this case the form ω = (ω1, . . . , ωn)T where each ωi is
complex valued. Cartan’s structure equation takes the form

dωi = −θij ∧ ωj + T ijkω
j ∧ ωk + T ijk̄ω

j ∧ ω̄k + T ij̄k̄ω̄
j ∧ ω̄k.

Now, by judicious choice of aijk, a
i
jk̄
∈ C we can find a new pseudo-connection θ̃ij =

θij + aijkω
k + ai

jk̄
ω̄k to cancel out all of the T ijk and T i

jk̄
terms. In other words, there is a

psuedo-connection θ̃ so that

dωi = −θ̃ij ∧ ωj + T ij̄k̄ω̄
j ∧ ω̄k.

1In a general fiber bundle π : E → M the vertical vectors are the elements annihilated by π′. In
particular, these are the directions which correspond to staying in the fiber.
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No further reduction of the torsion is possible since no choice of θ can produce ω̄j ∧ ω̄k
terms.

3. The Newlander-Nirenberg theorem

In general it is not possible to choose a psuedo-connection for which the torsion vanishes
completely. However, if our almost complex structure J comes from a complex chart
then the torsion does vanish. Indeed, at any point p ∈ M let U be a neighborhood
and φ : U → Cn a J-holomorphic map. By definition the map dφ : TU → Cn satisfies
dφ(Jv) = i · dφ(v) for all v ∈ TpM , so η(x) = dφx defines a section of F|U . Then the
tautological form can be written2 as ωu = g(u)−1ηx, where π(u) = x and g(u) is the
unique element of GL(n,C) so that g(u)−1ηx = u. The fundamental structure equation
is then of the form

dω = −g−1dgg−1 ∧ η = −θ ∧ ω.

We choose θ = g−1dg so that T ≡ 0.
Conversely, we have

Theorem (Newlander-Nirenberg). For an analytic almost complex structure J , if T ≡ 0,
then there is a complex atlas on M holomorphic with respect to J , i.e. one so that
dφ(Jv) = i · dφ(v).

sketch of proof. Fix ηi, a J-holomorphic framing of M . Our plan is to show that we can
‘integrate’ this to a new coframing dz1, . . . , dzn which is also J-holomorphic.

Consider the manifold M × Cn with coordinates p1, . . . , pn in the second factor and
the ideal I = {dζ} where ζ = p1η

1 + . . . + pnη
n. The form ζ is holomorphic as a linear

combination of holomorphic forms. For notation I will take ei be the ith coordinate vector
of Cn.

Claim: If T ≡ 0 then through each point of M × Cn there is an integral 2n-manifold3

of I on which η1 ∧ η̄1 ∧ . . . ∧ ηn ∧ η̄n 6= 0.
Suppose first that the claim is true. Fix a point q ∈ M and consider the integral

manifold through (q, e1). Because of the independence condition η1∧ η̄1∧ . . .∧ηn∧ η̄n 6= 0
this manifold is the graph of a function (p̃1, . . . , p̃n) : M → Cn. Then the form ζ1 =
p̃1η

1+. . .+p̃nη
n is closed, so in some neighborhood U of q there is a function z1 : U → C so

that dz1 = ζ1. Note that (p̃1, . . . , p̃n)(q) = e1 = (1, 0, . . . , 0), so dz1(q) = η1(q). Similarly,
from the integral manifold through (q, ei) we get holomorphic zi so that dzi(q) = ηi(q).
In particular we have dz1 ∧ . . . ∧ dzn(q) = η1 ∧ . . . ∧ ηn(q) 6= 0, so dz1 ∧ . . . ∧ dzn 6= 0 in
a neighborhood of q. So we have found a holomorphic chart near q.

2Any section of a principal bundle gives a trivialization. It is an exercise in unwinding the definitions
to show that ωu = g(u)−1ηx. One point of caution: ηx lives on M , but we can pull it back to F =
M × GL(n,C) by the projection onto the M term. Traditionally we omit pullbacks when the context
allows it.

3An integral manifold manifold is one on which the form dζ restricts to be zero on each tangent plane.
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To prove the claim we use Cartan’s test4. From Cartan’s structure equation we compute
that

dζ = dpi ∧ ηi + pjdη
j

= dpi ∧ ηi + pj(−θji ∧ ηi +������T ij̄k̄η̄
j ∧ η̄k)

= πi ∧ ηi

where πi = dpi − pjθji are independent of the ηi and η̄i. Without going into any more
detail about exterior differential systems, this is a very nice form for the equations to
take. It means that by a basic application of Cartan’s test this system is involutive,
which is a fancy way of saying that there is an integral manifold through each point. �

In the case where torsion is not zero we would have instead

dζ = πi ∧ ηi + piT
i
j̄k̄η̄

j ∧ η̄k.

The extra term means that the claim in the proof does not hold. For example, if T 1
12 = 1 at

a point q then an integral manifold through (q, e1) would simultaneously have η̄1∧ η̄2 = 0
and η1 ∧ η̄1 ∧ . . .∧ ηn ∧ η̄n 6= 0 at q, a contradiction. It is in this sense that torsion is the
obstruction to integrating an almost complex structure.

4. The classical Newlander-Nirenberg theorem

There is a more classical statement of the Newlander-Nirenberg theorem which says
that an almost complex structure is integrable exactly if the Nijenhuis tensor vanishes.
To get this we need to go through a but of complex geometry.

Since J2 = −I, the eigenvalues of J must be ±i. We would like to split TM into its
eigenspaces, so we complexify. Consider TCM = C⊗TM and extend the bracket on TM
to sections of TCM by C-linearity. We define

T 1,0M = {X − iJX : X ∈ X(M)}

and

T 0,1M = {X + iJX : X ∈ X(M)},
the eigenspaces of J . For example,

J(X + iJX) = JX − iX = −i(X + iJX).

We thus have the decomposition TCM = T 1,0M ⊕T 0,1M . There is a dual decomposition
C⊗ Ω1(M) = Ω0,1(M)⊕ Ω1,0(M)

We continue to take ηi a J-holomorphic framing ofM . Extend ηi to TCM by C-linearity
and consider it as an element of C⊗ Ω1(M). For W ∈ T 0,1M we have

iηi(W ) = ηi(JW ) = η(−iW ) = −iηi(W ),

so each ηi is zero on T 0,1M . By dimension count we see that T 0,1M = {η1, . . . , ηn}⊥.
In other words, a 1-form is holomorphic if and only if it is zero for all W ∈ T 0,1M and
W ∈ T 0,1M if and only if η(W ) = 0 for all holomorphic η.

4This is different from Cartan’s structure equation. If you do not know Cartan’s test, or anything
about the theory of exterior differential systems you can take the claim on faith. Or check out my
crash course introduction at http://math.berkeley.edu/~bmcmilla/Talks/EDS%20-%20Riemannian%

20surfaces%20embed.pdf which also has the punchline of proving that any Riemannian manifold has an
isometric embedding in Euclidean space. The definitive source is Robert Bryant’s ‘9 Lectures in Exterior
Differential Systems,’ googleable.
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Proposition. For an almost complex structure, T ≡ 0 if and only if [T 0,1M,T 0,1M ] ⊆
T 0,1M .

Proof. We fix W1,W2 ∈ T 0,1M and evaluate dηi(W1,W2) in 2 different ways:

dηi(W1,W2) = −θij ∧ ηj(W1,W2) + T ij̄k̄η̄
j ∧ η̄k(W1,W2)

= W1η
i(W2)−W2η

i(W1)− ηi([W1,W2])

Because ηi are holomorphic this simplifies to

T ij̄k̄η̄
j ∧ η̄k(W1,W2) = ηi([W1,W2]).

If T ≡ 0 then ηi([W1,W2]) = 0 for all i, which implies [W1,W2] ∈ T 0,1M for all W1,W2 ∈
T 0,1M . Conversely, if [W1,W2] ∈ T 0,1M for allW1,W2 ∈ T 0,1M then T i

j̄k̄
η̄j∧η̄k(W1,W2) =

0 for all W1,W2. �

To derive the Nijenhuis tensor, suppose we have X, Y ∈ X(M). Then

W = [X + iJX, Y + iJY ]

= [X, Y ]− [JX, JY ] + i([X, JY ] + [JX, Y ]).

The vector W is in T 0,1M exactly if JW = −iW , or

J [X, Y ]−J [JX, JY ]+i(J [X, JY ]+J [JX, Y ]) = [X, JY ]+[JX, Y ]−i([X, Y ]− [JX, JY ])

So, if we define

N(X, Y ) = J [X, Y ]− J [JX, JY ]− [X, JY ]− [JX, Y ])

we have [T 0,1M,T 0,1M ] ⊆ T 0,1M exactly when N(X, Y ) = 0 for all X, Y ∈ X(M).
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