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Foreword

The techniques revolving around the concept of linear
category are very widely used in nearly all branches of pure
and applied mathematics. 1In this text we exploit the clarification
which results from making this concept explicit, by applying it
to the study of linear control systems, After a review of basic
matri x theory, based on the explicit concept of rig (although
using only the bare rudiments of the developed theory of rigs and
rings), the linear category of R~matrices (which has sets
"of indices" as objects) and the category of R-linear spaces are
explicitly introduced as are the extensive and intensive functors
relating them

Mat (R) ——> Lin(R) «—— Mat (R)°P

Of course, the simplified results in the case where R is a fielgd,
are reviewed as a basis for the study of specific linear systems.
However, as much as possible is done for general rigs, because

the latter often arise in applications: Not only constant, but
also variable quantities, not only continuous, but also discrete
quantities, not only positives with negatives, but also strictly
nonnegative quantities, not only quantities with additive can-
cellation, but also additively idempotent quantities, all arise
daily in physics, economics etc. as "scalars" where matrix

techniques guided by linear concepts must be used.

An important example of additively idempotent quantities

is the following rig R:
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the scalar quantities are all nonnegative real numbers, including
oQ ; but the addition and multiplication are defined by

a + bdgf the minimum of a,b

a e bde the usual sum of a,b

The fact that the usual sum distributes over min
shows that this definition of R indeed satisfies the rig axioms,
and hence (by general principles) that  Mat(R) and Lin(R)
satisfy the axioms for linear categories. Note that the real
number 0 is the "1" of this rig and o0 is its "0". 1If
A and B are sets, then a matrix A ——i—a'B in Mat (R)
might have the following interpretation: the elements of A are
indices for certain states or products or locations, 1likewise B,
and we have in mind a specific process for transforming any agaA to any
b&EB at cost f(b/a) in R ; if £(b/a) = "1", it means the
cost of getting b from a by our process is 0, whereas if
f(b/a) = "0", it means that the cost is infinite, i.e., in
practice impossible for our specific process. Then if we wish
to consider a two-step process
f g
A—+——> B —}—> C
the cost of gf (g following f) is given by the usual rule of
matrix multiplication

(gf) (c/a) = :Z: g(c/b)«£(b/a)
b¢B
because (due to our definition of R ) this means
(gf) (c/a) = MIN([g(c/b) + £(b/a)]
beB

usual sum

and we would naturally choose the cheapest intermediate b &B,
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for given cEC, atA. For a one-point set 1, a matrix
1l —}—> A might specify the costs of acquiring the states or
things indexed by the elements of A and another matrix

A —}—> 1 might specify the costs of disposing of them; then

the matrix product /_+\

1 —+—> 2 ——>1
would be the single quantity in R obtained from choosing the

index in A for which the usual sum of these two costs is

cheapest, and associativity of///,,———+-\\\\\

1—i—'?‘A——f—)-B —— 1

~,

means in particular that for any process £ we can choose first
the output which is cheapesé to dispose of or the input which is

cheapest to acquire and arrive at the same resultant cost.

While the general concept of category involves associativity
of "multiplication®, the additional special feature of linear
categories is that the "maps" from any object A to any object
B can also be added, in a way that satisfies the distributive

laws below (also known as bilinearity)

|
A"LP'A BTB'
2

(£,+f)K = £,K+ f,4 as maps A' —> B
p(f1+f2) =/3f1 +/3f2 as maps A —> B!

The objects of interest in the theory of control systems
are not R-linear spaces as such, but concrete realizations in

Lin(R) of the abstract diagram




w
These form a new linear category Lin(R):]D ; 1if we need to take
into account the more detailed structure of the objective or
subjective states of the system,.j) might be replaced by a more

complicated abstract diagram or "directed graph", with a

resulting richer category of concrete realizations with scalars

R ; simpler directed graphs such as e—>. | and i:) have as

their linear realizations the linear transformations (analyzed
in terms of "rank") and the linear operators (analyzed in terms
of "eigenvalues") which are the main objects of study of

elementary linear algebra. The concrete realizations over R

of the graph| ¢ |are just the R-linear spaces themselves,

(which, if R is a field, can be analyzed merely in terms of

"dimensions").

The analysis just referred to consists, in Lin(R);E> as in even
more deneral linear categories of interest, in isolating certain
"simple" concrete objects and determining how the arbitrary
concrete objects can be expressed in terms of the simple ones

via the "direct sum" operation or refinements of the latter;
depending on the precise nature of R and JI), the distinct

simple objects may form a "continuous" family (involving parameters
from R such as eigenvalues. to specify them) or just a discrete
family; in the case ID=E' » with R a field, there is just

one simple object, concretized as R itself,(for every linear

space is a direct sum of copies of R ).
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A different family of concrete objects in Lin(R) is
that of those which serve as domains in representing various
types of elements in arbitrary objects. In the case of the
one~-dot graph, there is one main type of element of an object V
and the single object R serves to represent these as linear
maps R ——> V . In the more general case there is needed a
small linear category R [HDJC Lin(R)HD to represent even the
main types of elements; its maps consist roughly of R-linear
combinations of meaningful "words" of arrows from the graphlﬂ) .

But for example in the case of linear control systems

X \E Y
there is still another type of "element" which is of primary
concern: pairs <k,y> in which the subjective process y
"controls®" the objective process x in the sense that the

equation

x = b(y -~ ax)

is satisfied; here the controlling intervention b is acting

on the discrepancy in Y between the subjective process y and
the observation a of the objective process x; that the
elements of the R-linear spaces X,Y have the interpretation of
processes in time is implicit in the set-up itself, as calculation
of the representing object for such controlled elements reveals.
The spectral analysis based on the idealized "simple™ control
systems plays a role in the engineering design of more complex

control systems.

“Buffelo
s.n.{q} 1992
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Preliminaries on Rigs

0. A central example of "rig" is the field JEZ of real numbers,
but for linear algebra it is helpful to explicitly recognize the
possible role of other rigs as these occur in applications.
Two roles of rigs in linear algebra are
(1) the "base" ring of "scalars”" which is fundamental to the
very definition of linear transformation, namely the extent
of the homogeneity 'T(Ax) = AT(x) for all inputs x of T"
is the rig of scalars:a for which that equation is true, and

(2) in the spectral analysis of diagrams as simple as the " CD'
denoting a single linear operator, each "color" is associated

with specific rigs which are usually larger than the base rig.

Various rigs arise in applications for many different
reasons:
l) The linear space of all smooth vector fields on a region Ij
in 3-space actually admits as scalars the rig :-I_RU of all
smooth scalar fields, i.e. variable quantities as scalars, not

just the congtant scalars from lp\ .

2) Often it is important to concentrate on linear transformations

representable by matrices with whole-number entries, so that the

appropriate rig of scalars might be the rig ﬂ{: of natural
numbers or the rig Z of integers.

3) 1In statistics, economics, etc. it is often important to
concentrate on "positivity", in which case the rig R+ of
non-negative reals (we usually consider that OQ&TRQ or a rig

]I(+ of nonnegative functions may be the relevant supply of



scalars. The simplest results in linear algebra (such as that
dimension is the only invariant) hold only when the base rig
is actually a field, but even so the usual applications deal
with diagrams of linear maps, not merely with the linear spaces

themselves, and even in the simplest cases !:D and J the

categories of such diagrams require a much richer collection

of invariants than mere dimension.

The word "rig" was obtained by omitting the letter "n"
from "ring", for a ring is nothing but a rig in which every

quantity has a negative in the same rig.

@ A rig R is a specified set of quantities together with
two specified quantities 0,1 in it and two specified binary
operations +,+ on it satisfying the conditions

O+ x=x lex=x

(a+b) +(x+y) ‘= (a+x)+(b+y) (a*b)s (x-y) = (a-x).(b.y)

a0=20

a. (x+y) = a-x+b-y
for all a,b,x,y in R. . The four-variable combination of the
commutative and associative laws is the form which is most
likely to come up in practice. The distributive laws as stated

imply more general forms

_E.a;_ (2"4) = Za;_xJ‘
) J=1 L\

t=1

for any two lists a,x of quantities in R , where we apply the
usual sigma notation for repeated + and where the sum on the right
has nxm terms. The obvious naming procedure 2 = 1+1, 3 = 2+1,

etc. uniquely maps the rig-U\] into any rig R being considered,
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i+j=n I

. . = = | 143 :
for any x,y in R , any n in jPJ , where cij (ﬂi ) are 1n_ﬂ¢-

and the sum has n + 1 terms.

(X+Y)n

DEFINITION: x has negative y iff x + y = 0O
x has reciprocal y iff x.y =1

EXERCISE: If xl,x2 have negatives in R and if a is any
quantity in R then X;+x, and ax, (and axz) also have negatives
in R ., Hence if 1 has a negative in a rig R then R is

actually a ring.

Even in rings many non zero quantities may fail to have
reciprocals. For example, the ring of all rational functions

(in one variable t), for which 2,5 are not poles, contains
5 3
1 t 1

t
€ ’ m)—z etc. but not (t"T ’ —(f - S)_z etc.

DEFINITION: An idempotent pair in a rig is a pair of

quantities p,q for which p+g = 1 and p-q = O.

EXERCISE: In any idempotent pair, each of the two quantities

satisfies p2 =p . Ina Eiﬂﬁ' an idempotent pair is determined
by a single quantity p satisfying p2 = p. Relative to any given
idempotent pair p,q, the whole rig splits in two in the following

sense: given any x there is a unique pair of quantities u,v

satisfying the three conditions x = u+v PuUu =u, qV= Vv




DEFINITION: A quantity x in a rig is nilpotent of order € n

iff xn+1 = 0. Thus x2 = O means X is nilpotent of order € 1

x3 = 0 but x2 # O means x is nilpotent

of order 2 etc,

3) EXERCISE: If x is nilpotent of order n and a is any
uantity in the rig in question, then ax is nilpotent of or-
er € n. If some nilpotent has a reciprocal, then (] =1

and indeed there is only one quantity in the whole rig.

q. EXERCISE: 1If x2 = Q, y2 = O then (x-l-y)3 = Q.
e could only say (3{+y)2 = 0 if we moreover know that xy = 0O,
but that is usually not true. More generally (use the binomial

theorem)
if x is nilpotent of order £ n and y of order Em

then x + y is nilpotent of order & n+m
Caution: this result is NOT true in general without the
condition xy = yx, which will itself not be true when x,y
denote maps in a linear category rather than merely quantities

in a riqg.

DEFINITION: A field is a ring in which every nonzero quantity

has a reciprocal, and 0 # 1.

ji) EXERCISE: The only nilpotent quantity in a field is oO.
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@ Given a rig R it is often important to consider new rigs
which contain R but which also contain a further quantity x
satisfying an equation such as

xz = a+bx
where a,b are some-previously-fixed quantities in R | +his
can always be done by considering the new rig to consist of

ordered pairs of quantities from R with °d§f<b'd% 1d5f<3’q>'

xdgf<b,1> and the obvious pair-wise addition, so that every
new quantity is uniquely expressed as u + v x for u,v in R ,
but with a special multiplication rule depending on the given
a,b.

EXERCISE: Define the special multiplication of pairs u + v €
which extends a given rig R to the rig REE] of "dual numbers”

over R , wherein the equation 6&2 = Q is satisfied.

L —

EXERCISE: For a ring R ,define the multiplication for the ring
R [i] of "complex numbers” over R wherein the basic new

element 1 satisfies i2 = -1. Show that if u2 + v2 = 1, then

u + v ihas a reciprocal in R [?] . For what kind of u,v in

is u + v i nilpotent of order = 1 in R[}] ?’ If R 1is a field,

what stronger property must it have to insure that R E{] is also

a field?

Note that in the rig I![}J for R a ring and i2 = -1,

we have in particular that it = l; we can crudely picture that




fact by pretending that R is a line (even if it isn't) and
hence that R [_i_] is a coordinatized plane, then noting that
multiplication by i is rotation through a right angle.

However, to obtain an extension rig R [j] containing a quantity

j with j4 = 1 but j2+l # 0, we need more than two "dimensions";
in such, every quantity could be expressed as u°+u1j + uzj +u3j

where the four u's come from R

8) EERCISE: For the equation 93 = 1, consider N[QJ to consist

f triples of natural numbers with 9-\@,1,0> and determine the
Hpath followed by <k,n,m>upon being multiplied by Q, 92, 93

3 EXERCISE: 1In any rig, if x + y =1 and x is nilpotent,

then y has a reciprocal.




Rings

A ring is any set R of "quantities" which is furnished with the
structure of 0,1, addition + and multiplication +« in such a way that 0,1 are
distinguished elements of R and

Rx R —I— R

R X R —» R
are given mappings subject to the following axioms: + assigns to any pair a
of elements of R a unique sum a + b in R and * assigns to any pair a product
ab in R (note that by contrast a "linear space" is closed under a given
addition but has no_ given multiplication under which it is closed: we will
often use several different multiplications on the same underlying additive
system, which means we would be considering different rings; such a definitive
of multiplication must be verified to satisfy the following equational axioms
in order to be called a ring) so that
(associative) a(bec) = (ab)c all a,b, ¢ in R
(identity) la=a=al all a in R
(distributive) (a)+a,) (b,+b,) = a,b,+a b,+a,b,+ab, all a;, b, in R

a0=0=0a for all a in R

and so that the addition by itself satisfies

O+a=a=a+20 all a in R
(o, +az)+65,,_b2) =@,+b,) t(alebz) all a; b, W
|[EXERCISE|] The two axioms above for addition alone imply the usual commutative
and associative laws for addition.

We will almost always assume that our ground rings are moreover

commutative which means that the multiplication satisfies

‘ ab = ba all a,b in R

and also usually that they have negatives, i.e. that there is a mapping

R 223 R so that
a+(-a) = 0 all a in R
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when R has negatives, we can define subtraction by

a-b = a+ (-b) all a,b in R
def

However, very important in probability and many other fields is the linear

algebra over the system T of non-negative real numbers, so all our results

which do not depend on negatives will apply to these fields directly.

EXERCISE IMany of the important formulas of algebra are valid in any ring sin

they depend on the distributive law which is one of the defining axioms of

rings. For example

( (')Z’a(a

~&t=(@- ’x,(it-’lf"l-)

(CL-'\“ )(atb) =qt—lk"
(:.L-t—la) = q%+Qabth

*

‘L

If we do not have commutativity at our disposal the last two equations are

false and the correct version is a little more complicated, for example
(@)= +ab+ba +b-

Of course we use the usual abbreviations

at=zao

;Z:: 11-1

gqr=2rt=f4+l) x
ete

More information on rings is contained in the sections of these notes called

"Examples of commutative rings" and"Use of logical operations in algebra”.

. T . A
A mapping R —> § between rings is called a ring homomorphism

if it satisfies all of
T (o)=0
Ty vy =T ) TR L}
T(2)=1
T(a,2)=T(2)Tlxr,)
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or all ry. I, in R, where the ring operations on R are used on the left, and
those from S on the right, these operations being denoted by the same symbol

in all rings even though they have differing meaning depending on which rina

involved.
\
:‘l EXERCISEI If R,S have negatives and T is a ring homomorphism then it follows
™
' that 'T(zn_\ = —T(./L}

In a similar way if r happens to be an invertible element of R then T(r) is
an invertible element of S and in fact their reciprocals correspond:
T(n)

Only fragments of the category of (commutative) rings and ring
homomorphisms are used in introductory linear algebra. The detailed study
of this category is called Commutative Algebra or Algebraic Geometry.

Linear Algebra is an important tool in Commutative Algebra and hence
in the study of algebraic spaces as well as differential geometry, etc.,

i and on the other hand Commutative Algebra and Algebraic Geometry yield

important tools for more advanced Linear Algebra and its applications to

i Circuit Theory, Systems Theory, Linear differential Equations, etc.
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Fields, Nilpotents, Idempotents

The most basic properties of algebraic structures such as rings, linear
spaces, categories are expressed by equations, for example the distributive
property, nilpotence, associativity, the property of being a solution. However
in working with these equations we must frequently use stronger logical operatos
both in stating stronger axioms on the ground ring in linear algebra as well a
in summarizing the meaning of our camplicated calculations. (It should be

remarked however that most of this logic again becomes equational when we pass

to a higher realm). For example the additional axioms which state that a given

ring R is afjfieldlis that R is nondegenerate

" o=1 | false,

usually expressed by introducing "not" and saying

true l—- 0#1)

and that every non-zero quantity in R has a reciprocal
- 0 = dy[xy=1]
When the law of excluded middle is valid the latter is equivalent to the (in
general stronger) condition
x=0 v Aylxy=1l

being 1::'ueR (which has the virtue of being invariant under more geometrical
transformations but the drawback, in these cases like continuous functions whe
the law of excluded middle is false, of being less likely to be true). Usually
one expresses this field axiom u sing VJ'37 as?f(true |~ )

Va[x#o SIylry=1)
~#ith the understanding that the universe over which both x, y vary is R. Thus
Z:g "3,"))"'aD' ')zldi.x is a ring R which is not a field since for example

5 # O but there is no y inz for which S5y = 1. Since in any ring we can deduce
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purely equationally from hypotheses
Xy, = 1

_ Wy =t
that Y, = yz[_Here is the deduction, using only (commutative) ring axioms
and the hypothesis: il

gi= g =Y Rt = el e T 1 =
we can conclude that in any ring
. . q
and hence in any field that
va[reo 3Ly [ay=1]]

Further (since R is nondegenerate if it is a field) the (just justified)

reciprocal of x cannot be zero either.

EXERCISE If y is a reciprocal of x then x is a reciprocal of y; if)in

any given ring R, O has a‘reciprocal then R is degenerate . Thus if we restri
the universe to the set G of all non-zero elements of R (G is no longer a rin

the slightly simpler statement
Y2 ! g[?ﬁ‘r—ﬂ

is true over G. Since this is the criterion for the existence of a mapping,
L4

-\
G _Q__..>G

called the reciprocal mapping whose graph is the statement

there is a mapping

Xey = 1,

that is y = x 1 iff x-y = 1.

A much better way of understanding the last construction is as

follows. Let R be any commutative ring (not necessarily a field, maybe even

degenerat%. Define G to be the subset of R consistinag of all elements x of R

satisfying 3 3 Lx‘a :ﬂ
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in R. Then there is a reciprocal mapping G—>»G, 1 is in G, and G is clos

. 13 . 3 2 . 3 -‘—
under multiplication, i.e. if Xy, X, are in G then X,X, 1s in G, since i =1

('xly\zylf_x;lx"‘( This means that G is a (commutative) group called
"the multiplicative group of R". If O is in G then R is degenerate. For any
X in G, -x is also in G. But Xq 1%, in G do not imply Xy + X, in G. If R =B.
the real numbers, then 1 + x2 is always in G for any x, and the same is true
if R = C(X) = the ring of all continuous real-valued functtohson any
continuous domain ("topological space”) X. Now the condition that a ring R be
a field is just that R be the disjoint union of {O_g and G, i.e. that (readir

the V form of the definition backwards)
[ 6]

Since any ring R has a special element 1 and since R has an addition

operation, there are elements in R which may as well be denoted

2 1+1

3 l1+1+1

ceat ||

(not all of these need be distinct). Even if R is a field, not all of these
need have reciprocals, for example there is an important field with only thre:
elements in all in which 3 = 0. However most of the rings dealt with in detai:
in this course, even those which are not fields, will involveR in such a wa:
that all of the above do have reciprocals, which will be denoted as usual by

‘t, 1/3,.... Thus ¥1nG, 1/3 iInG..... where G denotes the multiplicative group

of any such ring R.

In any ring havi uQ{
\— \7‘13«& [*X_t‘é.t'ﬂ
cte.
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By a subring of a given ring R is meant a subset S of the elements of
which contains O, 1 and is closed under the addition, subtraction, and the
multiplication of R. Thus if p is any polynomial with coefficients in 2?' in

several, say three, variables, and if x,y,z are in S then p(x,y,z) is also in

EXERCIS If R is a ring having % and if S is a subset containing 0,1, and

closed under addition and the unary operation of multiplication by %, then S
|

is a subring if and only if S is closed under the unary operation of squaring

(The answer is a frequently-used formula).

Now a subring is not necessarily closed under division, even to the ex

| tent to which the latter is defined in R. Thus fCK is a subring, but Z is
not a field even thoughR is a field. But any subring of any field does hawe
l a special property not shared by all rings of interest, namely
xY=0 $£x=o \/%:o]

' EXERCISE Prove the statement just made, in any subring of a field .*

A nondegenerate ring S having this property for all x,y in S is called an

. This is intimately related to the cancellation property

Vx, %2 [ax e => 52K

for an element a, which (using subtraction) is easily proved eguivalent to the

"non zero divisioX¥" property of a

Vx [ar=0 = x=0]
where all universal quantifiers range over all x, X0 Xy in the ring in which
we are considering a (We might call a "monomorphic" in that rin%. Note that the
property uses the logical operators in an essential way, since when we want to

prove
a is monomorphic L— something else about a

we can't always eliminate the \f)£;> implicit on the left hand side. Of course

if the "something else" is just an instance of the cancellation property, such
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proof will present no problem. Now clearly a = O can not be monomorphic in a
nondegenerate ring, since

ax=0x=0
for any x, yet we could take x = 1, hence it wouldn't follow that x = O. Nov
the idea of an integral domain is that (assuming the law of excluded middle)

the only a which is not monomorphic in R is a = O. That is, the validity

for all a in R of any one of

a+o = vr[ex=o=2xzel
Ax[ax=oax 0] HuU=0
Vil axso=>[az0 VX7 "11

is equivalent (using LEM) to the condition that R is an integral domain. The

last form with V is the one familiar from high school as a crucial step in

the method of solving pdlynomial equations by factoring. This method is used

proving
THEOREM In any integral domain the equation
2
x° = x
has precisely two solutions.
Proof: if x2 = x then xz - X = 0 and hence x(x-1) = 0, (since x(x-1) = xz-x
in any ring). Now use the integral domain property to get x = O\ x-1 = O, i.¢

x = 0V x = 1. We say "precisely two" because the ring is nondegenerate.

- Commutative 2 :
EXERCISE] In any'ring, an element satisfying x = x is called

If x is an idempotent, then so is its "complement" 1 - x. The product of any
two idempotents is an idempotent. If x and y are idempotents and if xy = O, (o
says x,y are "disjoint" or "orthogonal") then x + y is also an idempotent. One
says a ring "has connected spectrum" if it has precisely two idempotents. In
general the idempotents describe chunks of the "spectrum", for ex. of a linear

transformation (which gives rise to a ring in a way we will study).

Very important in analyzing linear transformations will be the

nilpotentfelements in commutative rinags, where x is nilpotent iff
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Here the 537L,does not range over the ring we are talking about but rather ove¢
the set 0, 1,2,3,..... of natural numbers, which act as exponents on
elements of any ring (or indeed of any system wherein at least multiplicatior

is defined). In more detail we could say that x is nilpotent of order 1 if

while x2 # 0, etc. Of course O is nilpotent of order zero. In a nondegenerate
ring x = 1 is not nilpotent of any order. Using commutativity, the product of
a nilpotent with any - element is again nilpotent. Again using commutativity,
the sum of any two nilpotent elements is nilpotent, however we have to care

2
for the order. For example if x2 = 0 and y = O, then we can calculate that

(x+y) O.JAs for (x + y)z, it might be 0, but only in case xy = O, which

is not always true. Analysis of the calculation leads to the idea that to be

)
w
il
o

sure we have to add the orders of nilpotency:

+ . .
[THEOREM] 1£ X" 1 - 0, y™1o0 in a commutative ring, then always

n+m+1l -

(x +y) (o}

PROOF: In any commutative ring the distributive law implies the binomial

expansion
Op+yf = Z C. X
«& LfJ 3

for any x,y in the ring and in p in n\T(note that [NC# and thd'g can be used
Sulbmchon are

as coefficients in any ring, indeed in any system where addition i‘ defined.

In fact . anl
C :(1—t))*
oaty!
is in ]H’Jdéspite the denominators‘where ! denotes "factorial",b;.Pascbl‘)

Thus the proof of the theorem reduces to the following fact about the elementa

arithmetic of lei
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LEMMA » 1 y ' (
LEMMA] Pl memel = L3met Vi ne

Proof of Lemma asBEXERCISE

In any case, since

n ..
xh'?i:x .x
is a product, it is immediately clear that

THEOREM] In an integral domain the only nilpotent element is O

An extremely important property (for analysis, linear algebra, compute
science etc) is the following, showing that while the existence of nilpotent
elements has the "negative" consequences that some elements (the ones"near"
zero) are definitely not invertible, it also has the "positive" consequence t
some other elements (those "near" 1) definitely are invertible, and there is

even a specific formula for the reciprocals.

If h is any nilpotent element in a ring, then 1l-h has a reciprocal

the same ring. In fact if hn+1 = 0, then

l _ "
Sy

PROOF Calculate that the right-hand side, multiplied by 1l-h, gives 1.

REMARK In a ring furnished with a notion of convergence, the above can be
generalized to h for which hq—90 as n =& , i.e to small h's not necessarily
so small as "nilpotent". But the formula of the Theorem is surprisingly often
useful even just for the nilpotent case.

EXERCISE} If u has a reciprocal and h is nilpotent then ur h has a reciprocsa

(A formula/only slightly more complicated than that of the theorem)can either

deduced from the theorem as a corollary or calculated and proved directly).

EXERC&SE If u, = l-hl, u, = l-h2 are invertible elements of a ring of the

form indicated with hl, h2 nilpotent (with orders of nilpotency Ny N, say) the
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the product qu, is of course invertible; is it again of the special form,
"infinitesimally near 1" in the sense that

ulu2 = 1-=h
2

for some nilpotent h of some order? Start with the special case h12=0—h2 ’
\ 4 ' . 2
h, = o. What i f ,9‘;‘:‘{;‘.% wheve €*=p%

hy

REMARK (An Embedding) Any given integral domain R can be realized as subring

of a field F, by constructfﬁgF to consist of equivalence classes of fractior

g where x in R, s in R and s # O.
The condition that a ring R has "no" (i.e. no nonzero) nilpotent

elements is often referred to in geometry and analysis by saying the R is

IT IS MORE GENERAL THAN THE CANCELLATION (i.e. integral domain)

property, since for example R =1Bflwith co-ordinatewise multiplication is

reduced (i.e. has no nilpotent element) but not an integral domain since it

has non trivial idempotent elements(b,f? ’ <:1,0D§In logical notation with

variables, R is reduced if and only if ' -

E})L[:x?*'=c;l - X=0
holds for all x inR . Since the E} occurs on the left, this is one of its
eliminable cases. But more profoundly (i.e. using something of the quantitatﬁ

content of the theory of rings and not merely logical form)f

Tf a ring sa '1f—ies
Yx Xzo0o =>X=0O

then it is reduced. Hint: Show taat if xn+1 = O then x2n=0 and hence using on

main assumption then also x" = o. B?f induction then the n can be knocked dow
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Commutative Rings

Some important examples of commutative Kings which arise in

real linear algebra.

The ring 1N of real numbers is in fact a field, as is the
ring I\TL.L} of complex numbers. The latter has the property

Vadx [ =]

AT )
which I\ does not, and in fact 12L:] nas solutions to any polynomial

. z -1
Va Ve, . Va,_  de[ Y =a el rere, & ]

holds in mh—], for any n in [N . On the other hand IR- permits

equations?’

solutions to certain other equations which ’lR[i] does not, for example
_ Coa Z_ 2\
\/ 3 + Xtk )_ ]
VX, VX, 13 [."-3 (l th)=1
holds inJR but not in-m[.il‘

The idea of adjoining to R an element satisfying a pertain
equation, for example adjoining i satisfying i2==-1 to get R[_i\,-ccan
be used for other equations as well. For example
R[]
is obtained by adjoining E with £2=0. Since the equation is quadratic,
'H{[_E] shares with :{RL‘J being "two-dimensional over JR " (in the linear
sense which we will be studying in detail) but m[‘]is not a field nor
even an integral domain since it contains a non-zero nilpotent element.
In more detail every element of R{E]can be uniquely expressed in the form
at+a't
where a,a' are real. For example
1=1+o0¢t
is the multiplicative identity of IR[,E] while
O0=0+ 0t

is the additive identity and
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cion in Rl ‘ . .
The addition in [ is performed in the obvious manner, and if we

work out the multiplication using the distributive law and the speci

2
rule £ =0 we find

(b+b'e)= alo +

(ab'+a'b)

where indeed ab , ab'+a'b is a new pair of real numbers obtained fro
the two pair s a,a’ b,b' which we wanted to multiply. In particula
if a=b =0 and a'=b'=1l we recover the fact that £Z=O, yet £ # 0
since O is the element both of whose components are O.

The significance of the above multiplication law can be better unde:
stood if we consider first another]"infinite-dimensionalz example of
a ring

TELL£]= ring ¢f all polynomials a°+alt+a2t2+...+antn
of all possible degrees n with all possible
real coefficients a, .

As the notation suggests the polynomial ring‘ﬁtiflcan also be viewed
as the result of adjoining an element t to Hz-, but this t has no
special properties[;hich, paradoxically, is itself a very special
propertf] The polynomial ring is an integral domain, but definitely
not a field since indeed the only (non-zero) polynomials whose

reciprocals exist as polynomials are the constant ones a-

However, the ring of all rational functionsR(t), which is too big
to be of much use, is a field. An important ring between the two is
- L
/U{ [-‘L) t
sometimes called the ring of "Laurent polynomia153 consists of all

rational functions which can be expressed in the form



20

2 . rv
+aif1—a2 l’ t... Ctnt

for some V1ﬂL\E-DJ' with a, all real. The significance of this
i

ring for linear algebra is that t is invertible (i.e. has a

reciprocal) but has no special properties beyond that. Now suppose

R is eithermlq or ﬁLf,t] and that < is any given real number

or any given non-zero real number in the second case. Define a

mapping R =T
by sending any f in R to its value at X .

p(£)=Fla) govare £ R

Then it is clear that p is not only a linear transformation, but

P(-?;-)=do(4')do(é) {A’\Mﬂ—ﬂg_"“?
. P(1)=:L

because of trivial properties of evaluation at X . But now define a

mapping ‘R U T.R L?_,—l
as follows , , .
()= FHDf))E o ottf T

where Df denotes the derivative of f (Recall that TQ: ‘IR['CK
- "+ 4
CY ‘7? -TIZJ—II +

is a ring of functions in which differentiation makes sense)

THEOREM v is a ring homomorphism

Proof =showing that Leibniz rule for differentiation is

equivalent to the rule for multiplication in the ring ’HX_LEI
obtained by adjoining a nilpotent quantity to1fi . '
Remark: In differential geometry one considers the ring ﬁ?;;
of all smooth real functions defined on a domain)(.in higher

dimensional space. Then a homomorphisn1ﬁ€a§ﬁl is determined by
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X
a point F of —X and a homomorphism_R —7-52&115 determined

by differentiating in the direction of a certain tanagent vector to:X‘

To finish this preliminary survey of examples of commutative
rings which are basic to linear algebra, consider, for a given n, the
set 1E£L of all n-tuples of real numbers, and define this time the

multiplication too (as usually the addition) in coordinatewise fashion:
<A '-x‘b(;t - 3-;) = (X.#;,ijz) —-")xkyu>

. . N O . ,
Then in particular l=(1,1,...l7 is the identity for'ﬁ? . This ring

is closely connected with the important problem of diagonalizing

linear transformations and matrices.

. x s .
EXERCISE ] With multiplication defined this way.ﬂa is not a field;

in fact it has precisely 2" idempotent elements.



2x2 Re al Matrices

They form a four-dimensional linear space over IR. The multiplication rule

Gy QL' ‘9|| b;_| Qul"u'{'azlbn_ a,.bz‘+a2, b

i

Q2 Qgn \"n_ L”zz a'lzl’u"'qzzblz anl’u*azzl"zz

This rule is associative and is distributive with respect to addition, while

having 1 =1, '(1 0)
o 1

as identity.
The subsystem of all matrices of the form

AL O

O A
is closed under multiplic;tion and addition, and contains 1l; any two matrices
in this subsystem commute, i.e. AB = BA for the matrix product of any two
A,B of this special form. Hence these special matrices form a commuéative
ring. This ring is in fact isomorphic to TR?‘with the latter's co-ordinatewis

multiplication. For example

G2 ()

are the two non-trivial idempotent elements.

| EXERCISE/! & _(01)
d.»‘,oo

is nilpotent under matrix multiplication. If A is any nilpotent 2 x 2 matrix

the order of nilpotency is 1 (or 0). The set of all 2 x 2 real matrices of the

form ‘X S )
O A

(the two diagonal entries being required to be equal in each matrix, but arbdr
ry for various matrices in the set) is a 2-dimensional linear space overITi

is closed under matrix multiplication, i.e.




where the two ¢ entries are the same. Moreover the multiplication among thes:

special matrices in our set is again commutative, i.e.

/u )7 >\ S = sgame answer as above, not merely
0 /U O >‘ same kind

Thus '(:k}s is a commutative subring of the 2 x 2 matrices which is

actually isomorphic to ]R[E] . since

N AN )\o+OS)

e

o A o X [@)e)
- >\,i+ Se€ for ary

' i“@(f o)

is also nilpotent under matrix multiplication. However (calculate)
Ee¥=£ £%e

and (in contrast to the commutative case where the sum of nilpotents is again

)«,Siuﬁ-

nilpotent (albeit of higher order))

E+e¥*)’+0
nor will any matrix power kill 8*‘&'* xS
EXERCISE} One can find two matrices of the form (O Az),diagonal entries
not the same, which do not commute under matrix multiplication;
but the product is at least again of the same form; these are

called"triangular" matrices.

m The matrices of the form

L)

are closed under multiplication and commute among themselves, and two of ther

-

satisfy the matrix equat:ionlx2 +1=0
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More Exercises on 2x2 matrices

6) Assuming 52 = 0, 8*2 = 0, (8+€W)2 =1 |, show
that . .
(ESH? =€£T (e'e)? -g'¢
greer - € (EEN(E'D = (£7Er1(EEN
EEr+e'€E=- 11 (E-€Eh2 =
and check by matrix maultiplication.
1

7) Find a 2x2 matrix T which has a reciprocal T “for which

r€ =E"r

EXpress ™1 in terms of £, g*

8) The trace of a square matrix is the sum of the entries

on the main diagonal

tr = all + a22
a2 a2

Then| tr(ab) = tr(ba) |, tr(c-l ac) = tr(a) if ¢ is invertible,

tr(at+b) = tr(a) + tr(b), tr(ab - ba)= 0

9) What is the dimension of the space of all 2x2 matrices

whose trace = 0 ?



! FX
IM ATRICES satisfying SIMPLE EQUATIONS
R

We will show later that anv 2»2 matrix t satisfies a quadratic eguation

("Cayley-Hamilton") tz— tr(t)t + de/l:(t) =0

where tr(t) and det(t) are scalars.In fact tr was defined in exercise 8 and

tll tlz =t“ f,L— t t

iz 21

the determinant of a 2x2 matrix is defined by
L'u ""zz.
EXERCISE 10| Verify the above Cayley-Hamilton equation for t —
1 O ol ol (o Y o)

o1/ lojJ /7 \0oj /8!l )"

EXERCISE 11| Assuming the Cayley-Hamilton equation (and that the scalars are
a field (such as -I_R )) show that if det(t) ¥ O, then t is invertible , in fac

for scalars X,d !'.-.8 %’(XL' - Ez)

EXERCISE 12| Assuming the Cayley-Hamilton equation, show that if t is a

2x2 matrix having det(t)=0, then either t2=0 or t2 =\t for )\ a non-zero scalz

EXERCISE 13| t = Xe, e2 =é —__-> t2 = At (Ascalar) . Any 2x2 matrix

(overlR) is either invertible or nilpotent or a non zero scalar multiple

of an idempotent.

EXERCISE 14| There is a 3x3 (even upper triangular) matrix which is neither

invertible nor nilpotent nor a scalar multiple of an idempotent.

For example l 00 2
t=001 ., t is an idempotent e, and there is a
OO0 3 2

nilpotent £ such that t=e +£, eEcee =Q.Hence tT =t

but t satisfies no simpler equation. Show that this t is neither invertible

nor nilpotent nor a scalar multiple of a idempotent.

* Recall that a square matrix i
. s called upper trian
entries are on or above the main diagongl{. guiar if all its nonzero
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15)

Let V be a linear space (not necessarily]Rz) with two

given linear operatorséOVOG satisfying the equations

of exercise 6 . Can V be one-dimensional? If T is a
. 2 . *
given operator with T =1 and we define A = TAT

for any operator A, show that

* * %
(AB) =AB
L 2
A = A
If in particular T=€4 E*) is= 6 '6.
* . * *
show that i = -i, (€) = €

How must A be related to T, i, & in order that
* *
AA = AA?
How must A,B be related to T, i,&in order that
2 2 2
[a][s]? = |ns|
vhere we define IAIZ = AA*?

In the case V =R2, €=(g i) ’ '1‘-(2 i) show

*
that the set of all A for which A = 2 is a commutative

b a l o
A= _—_;}AA* = (a% + b?)
b o 1
o a .
A= _§A = - A
Ca o]

ring and that
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Linear Spaces ;
\

For any given ring R, there is a "linear category" (to be explained
presently) of R-linear spaces and R-linear transformations. It is traditiona
since Emmy N8ther, to call R-linear spaces "R-modules" when one wants to
emphasize that R is not necessarily a field, and to call R-linear spaces
"R-vector spaces" when one wants to insist that R is a field. In either case
one often says that the quantities in R are being used as scalgrs for
"scalar-multiplying” the quantities in the R-linear spaces in the category
of R-linear spaces, and also that R is the 2round ring for this category,
which means the same thing. There is nothing wrong with the term "module"
since it is appropriately abstract, though it does tend to obscure the fact
that all that's involved in it is the widespread and important mathematical
phenomenon of linearity , in weaker or stronger senses depending on f( .
The term "vector space”, though firmly rooted, is from a geometrical or
physical point of view misleading in two ways:

<:) The vectors drawn as arrows denote quantities in a linear space which are
acting by translation on the points of physical space (which is not the
same space: there is a zero vector but no distinguished zero-point in
physical space, there is vector addition of translations, but no
distinguished addition of points); the linear spaces of linear algebra
are slightly more abstract since they are not furnished with an action on
points; we can and do consider the richer structure where this action is
taken into account, but we no longer obtain a "linear category" but
another kind of category.

(:) Forces, pressures, momenta etc. varying over a region X do form linear
spaces of "vectors" in the physical sense which can be multiplied byTEi
indeed, but can in fact usually also be scalar-multiplied by smooth
functions from the ring R = Hir of smooth functions on X, and R is not

a field in the algebraic sense.
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The term "linear space" should however occasion no confusion.

DEFINITION OF LINEAR SPACE

The first part of the structure characteristic of a linear space ’\/

does not involve the ground ring R of scalars, it is an operation of

WAV =

which assigns to each pair of elements of'Kyranother element of Q) .Thus

addition

to specify a particular linear space we must first tell what the elements
of <7 are and how to add them. But there are some restrictions (or axioms

on how this can be done: we must be sure that there is a zero-element O in

.§7-which satisfies
V+0=V=0+V for al1Vin V

relative to the specified addition, and further the addition must satisfy
the commutative/associative law .
W+, ) + (W t10, ) = (Vg tw ) # (v el )

for all quadruples 'Ull ) 'U’z)'wi , Wy in V
Then the scalar multiplication

R —>V
must be made clear; it must assign to each scalar a in R and each Tf'inﬁ(;r
a "product" or "multiple" av injgr, and this must satisfy several axioms:

CL(1f‘71{LB:: GfUTT'GfUEL

a:C =0

where both additions are "vector" addition and both 0O's likewise, as well

as 1..U,:_U/
(@ v =albv)

where the multiplication "internal to R" is required to be compatible with

the scalar multiplication between R and V, and finally
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Grh)v = avthV
ov=0_

27

where we have "internal" addition in R on the left and "vector" addition in

_Kfron the right (and of course scalar multiplications on both sides).

EXERCISE If (as usually assumed for rings) R hag an operation of

minus R—> R satisfying Q+tae}=O for all a in R, then using the above axiom
on scalar multiplication we can construct an operation <§7:->1075n any
R-linear space (call it again minus) for which we can prove

for all vV .U)"(“U)so

EXAMPLE R itself is a basic example of an R-linear space, for any ring R.
If X is any set, then the set

X

R set of all R-functions on X

set of all mappings with domain X and codomain R

is an R-linear space where we define
f+gqg
to be the function whose values are given by
(f+g) (x) = f(x)+g(x) for all x in X
and similarly for a in R, £ in Rx
af
is the function given by

(af) (x) = a(£f(x)) all x in R

since f(x) in R (for each x) it can be R-multipled.by a since R is a ring.

In case X is a finite set, which is moreover ordered, it is usual
to specify functions f on X just by listing their values and in view of

conventions we will write these lists vertically and call them column vecto:
Thus ifx={i)z)33 is a three element set and '9.1"5!? has

S=6 =% F@=10
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then we can specify f as

10

Then the addition of functions defined above tells to add two column

vectors by adding at each level &4,

¢ 2 g

— | L
NEMIE
i0 -4 2

while scalar multiplication a f says to multiply each entry in a

column vactor by the same a

b ¢a
Ll=/ a

Al 31— 3 for any a in R
i0 {Oa

LINEAR TRANSFORMATION

If V,W are two R-linear spaces, then a linear transformation from

—_ 1
V—>W
which satisfies these conditions (of "linearity")

T(v+vy) =T + T(v)
Tav)= aT(v)

V to W is any mapping

for anylglfi)qfé_ in V and any a in R; note that the operations of vector
addition and scalar multiplication on the left hand side of the equation
are those given by V, whereas on the right hand side of the equations they
are those given by W, even though they are denoted by the same symbol 2ad

on both sides.
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| T
i> EXERCISE The only R-linear transformations R——> R are those given by

/ Tr)=os for all r

where § is a given element of R. Conversely, if S is given and [ is

defined by this equation, then T is R-linear.

\
‘;- If 51, 52 are two given scalars in R and if V is an R-linear

/ . .
space, then we can construct an R-linear transformation

-.-\7)‘_\7 (St;gz> ‘7V

as follows. First we make the set V x V (of all ordered pairs of elements

of V) itself into an R-linear space by defining the sum of V/and W (written

as column vecto.rs) " : UV +W -
i +(w‘ o all v, W, YAV

Uy

and the scalar multiple
VN _
Gl -
UZ 2 V}

a. V)

Then we define the mapping (Sl,sz) on such "column vectors" by

GnS)(Vi\z v+ s,V
v t 272
2
the result coming out in V. Verify that the mapping thus defined satisfies
the linearity conditions, and so is an R-linear transformation. In particular
addition V xV —‘t—§ v is an R-linear transformation.

Is multiplication —\7—S—> \V by a fixed scalar s an R-linear transformation?

! EXERCISE] (In the case V = R) the onlz R-linear transformations
T .
RxR =R

are of the form T = (51’52) as in the previous exercise, with Sl,S2 SCal"Y.‘i

|  determined (how_?)' by T.
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Exercise] The only R-linear transformations B ——7T3 R

are also given by pairs of scalars (better written this time as column
vectors themselves, rather than rows) .How are the two scalars determined

by the given R-linear transformation T?

IEXERCISE ‘ R2 = R X R

That is , the definition of addition and scalar multiplication comes out the

same whether we reagard R2 as a special case of the function space constructic
Rx in which X is an abstract set with two elements, or regard it as the

special case V = R of the "square" \/»\/ construction for an arbitrary

R-linear space V.



Linear Combinations

If I is a finite index set and aiskfor each i€I and viE.V for each
i€ I, where V is an R-linear space, then

.‘za‘lkz"«:

is a sinale element of V called the linear combination of the v's with
coefficients the )i's. For this to make sense the family of coefficients
and the family of "vectors" must be indexed by a common set I (but there
may be repetitions in one or both of the two families):; and of course each
coefficient in the family ofA\'s must be a scalar and each vector in the
family of v's must be in the same linear space V over the ring of scalars.
For example if I is the set of all commodities available in a certain
supermarket and if }\i is the price of the i-th commodity in dollars ner
unit amount of the commodity, a specific operation of linear combination is
thus determined. Namely for each visit of a shopper to the sunermarket let
vy be the amount the i-th’commodity purchased by the shopper. (Thus V is the
one~-dimensional space of all possible amounts of commodities, e.q. of all
possible weights - we could even imaaine these to be necative since the
shopper may be returninc some unsatisfactory previously-purchased items).
Then of course the linear combination (with coefficients the aiven nrices)

of the amount-family (Vi)iEI for anv shopper's visit is

Z A . U. = amount of dollars which that shomner
: Lt ¢ is expected to pay at the check-out.
LE]

In this example, V is one-dimensional, and in that respect only the example
is very special compared to the ones we have to consider. But even here V
is not the same as R, which latter consists of "pure" quantities, whereas

V consists of "weights". The ratio of two weights is a nure quantity:; i.e.
a pure guantity multiplied by a weight (scalar multiplication) is another
weight. If we chose a fixed weiaht, like one kilogqram, then we can define

a mapping R ) V

by sending any pure X to the weiaht eauivalent to A kilograms: this

(linear) mappinc so defined is invertible (hence an"isomorphism”). That is.
the choice of unit permits us to "identify" the two spaces R,V. However, this
identification is conditional: if we choose a different unit weight‘VB&V.

say the weight of one pound, the two spaces R, V remain unchanaed (and distinc!




34 -2 -
but the mapping R w—mpV (defined byA}—),\%)via which we make the
"identification” is different from the one based on kilograms.

IfR , then the composition of one with the inverse of the
other is a linear map from R to R, hence (by a previous exercise), determan
by multiplication by a fixed (pure) scalar, namely the conversion factor frm
one unit to the other. To simplify, we could also identify "dollar" as a

certain weight of silver.

In most of our examples V will not be one-dimensional, but a multi-
dimensional linear space, for example a space of intensional functions defim
on a region/or a space of extensional distributions on a reqioq/or a space
of translation vectors in physical affine space,or a space of column vectors

or a space of matrices, etc. For any R-linear space V and any finite index

set I we can forma new space VI

Elements of vl all families of elements of V indexed by I

Addition of

- F ‘ (3 .
glements of VI : The sum of two families (vi)lﬁl and (V. )1€.I

. is the family v + V whose i-th entry is the sum
of the i-th entries of the two:

(v+V)i asg Vitv; €I

Scalar Multiplication
I
of Elements of V= (Av):.L oS¢ )Vi igx
by Elements of R
The dimension of VI is bigger than the dimension of V by a factor egual to tk
cardinality (number of elements) of I.

aim(vh) = |z1]-aim(v)
( In our supermarket example V is one-dimensional, but V
if there are 341 commodities available: it is the space of all possible
purchases by all possible shoppers at the given store). Then if (Al igl is
any fixed family of scalars indexed by the finite set I, the process of
forming linear combination with those scalars as coefficients is a well-

¢,ZA()

cEJL

1 is 341-dimensional

defined mapping

since any family (element of V ) can be substituted into the blank and
the result will be a uniaue element of V itself.(Recall that the definition

—

of 'mapping” is any process which satisfies a condition of the type

7 L .
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1) EXERCISE The operation, AZ(){of forming linear combinations with :
- t
fixed family of scalars as coefficients,is a linear trans-

formation between R-linear spaces.

2) EXERCISE (RZ)I :’_; (RI)2 i.e. construct a tautological invertible

linear transformation between the two indicated linear space

3) EXERCISE Not every R-linear transformation vt -V is of the form
"linear combination with certain given coefficients" if
2

= R

dim(V) > 1. That is, construct a counterexample with V ==

[T HEOREM]Any R-linear transformation RI__T-QR is of the form
T =27\i()iwhere the coefficients 3,.' can be determined from the aiven

‘f,’rans formation T.

PROOF : Assume I is a given finite index set and T is any given R-linear
be the family of elements of R whose i-th

transformation RI—) R. Let ?
wh

entry is O for any i # j, an ose j-th entry is 1. That is

1 i=j
(e.)i= for all i
0 i#j
Thus we have a family of families, i.e. for each j£1I ejeRI’. These
"unit vectors" e. are defined once and for all; but now for any given linear
transformation T whose domain is RI we can apply T to these special elements
of the codomain of T: since in our present case the codomain of T is the

linear space R of scalars itself, we can thus define

A e T (e i
We now try to show that the operation of forming linear combination with
these coefficients is the same as the given process T, when either is aopliec
to any elements of RT (not only to the very few elements e. of R! used to
define )j from T): Let xj be any family of elements of R(i.e. a sinqle
element of RI). Then

X = Z Xd' eo(.

Je€T

That is, since the x. themselves are actual scalars (in the special case
considered in this theorem) they can be used as coefficients to form the

Hence for the given mapping T

linear combination of the fixed vectors ej, and the result is x itself.
Verif}:j
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Tx = 'I‘zxjej = ijT(ej) since T is linear
= zxjilj by our definition of )j

= E 3 xj since R 1is commutative
jtI
= the linear combination, with the coefficients

of the arbitrary x§,RT

Since this holds for all x, T =£)‘j( )jas we wanted to show

COROLLAR;] If V is a one-dimensional R-linear space, the only R-linear tran¢

formations VI—)V are given by linear combination with a fixed family of
coefficients.

Sketcl) of Proof: Choose a unit u of V (i.e. a non-zero element: multiplying
it by arbitrary scalars is an invertible linear transformation R-'—"—)V with
inverse ‘!——z;R (the existence of such u's is the definition of "one
dimensional"”). Then if T is any linear VI——)V u..‘o-rOu. is a linear
transformation R ——}I which by the theorem is determined by coef‘:l.c:l.ents >\
which can be transported back to/and be shown to work for T itself.

We have used above the fact that any linear transformation T preserves

(an equational condition) any linear combination; this is in fact really
what one wants linear transformation to do, and so could very well be taken
as the definition of "linearity" for a mappina T, except that it may seem
excessive to invoke arbitrarily large finite sets I in a definition if one
can avoid it, even though in the applications of the definiton it is pre-
cisely the arbitrary finite sets which come up. Let us spell out this more
liberal definition; first we need to make explicit a certain tautoloaical

construction.
If T is any mapping whose domain is a set V and whose codomain is
a set W, and I is any finite index set then we define another mapmninc

AV W
3
with domain the set of all I-indexed families of elements of V;and codomain

the set of all I-indexed families of elements of W,by the specific formula

(TI(U)),; = T(Ul)




Then 3/2

DEFINITION If V,W are R-linear spaces and V-—T—) W is any mapping, v

say T is linear if and only if for any finite set I and any family(/\i)‘:&'
of scalars (i.e. I -2‘—) R is any mapping) the following diagramr is "commut

tive®", i.e. the indicated %i;gomes out true).
—_ —I - g -
VE s WE Y @)y iV
>\W N How ™ aenon
down m

T acnstd

The equality required is of elements of W, constructed in the two indicated
ways; as is customary we have used the same notation EA;( ): for the linea:
combination operation in the two different linear spaces V,W even though the
concrete interpretation depends on the specific definition§of addition and

scalar multiplication given in the specification of the linear structure on

the two spaces.
Now the liberal definitior of linearity implies the previously given

definition of linearity as follows: Let the index set I be the two-element
set whose only elements are 1,2, and let the family of scalars beAJ_:I’Az:

Then TAY. = Vil

1Ll
i.e. for this particular choice of index set and family of coefficients,

" . , . ‘o .
linear combination" reduces to simple "addition" of a pair of vectors: hence
the general linearity condition on T implies in particular that

— 4

V{t;z’; l >W{gz’:

+

3 Tl )= 00T
v v
V > W

In words, if T preserves general linear combinations, then T preserves
addition in particular. Now if I is instead a one element set but(/\‘:)[éz
is an arbitrary "family" (one element) A , then linear "combination" with
coefficient A is just simple scalar multiplication, so if T preserves genera
linear combinations then in particular T preserves scalar multiplication by

any scalar A : M)X I—)}&.“ —r()nr) -.—')T@ o2V
vIow
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Note that if I has only one element, vl = v. Similarly, if I is empty, viz
the linear space with only the zero element, and we get T(0O) = O.

Briefly, the three clauses in the original definition of "linearity"
of a mapping are special cases of the liberal definitionf Conversely, as
needed in the applications, the three-clause definition implies that T pre-
serves general linear combinations: this has the usual sort of proof for
such things: (a) by mathematical induction and the associative and distribu
tive laws, one proves it for arbitrarily large ordered sets of the form

__l__h:-_{lJZﬂ)..Jm'g
then (b) one uses the fact that for any finite set I there exists an n and
=1 which can be used to transport

a bijection (invertible mapping)‘gzln
(3"( )@ the theorem from I  to I.

The{g :In-$>I just mentioned can be a source of confusion in
applications, since /3 is not uniquely determined by I (though n is)—jgamount
to counting the elements of I in a particular order, so that /3(/} is the
"first" (according t°f3 ) element of I,/3(2) is the "second" element of I
according to /3, etc. In the case where I is the set of commodities available
in the supermarket, a mapping‘g:In———€>I could be somebody's subjective choic
of a "shopping list" written down in a particular order (more precisely, this
would normally be injective but not bijective, since the shopper would not
bother to list the items of which he plans to buy zero amount). If there
exists a bijection(g :In——>I, one says (by definition) that ]I] = n; but in
that case there exist n! (factorial) different choices for/S’, none of which
are to be preferrred in general, for example the objective meaning of the

supermarket bill
/B/\(V): 2 kivzl

eI

for agiven price family.:\ is indepe#dent of the subjective ordering in the
shopper's shopping list)as wel;,as:the subjectively chosen ordering in which
the check-out person rinas up the amounts K

The ordering of the index set of course is involved in the notation for
families of quantities as column vectors, row vectors, and matrices: the
meaning of matrix multiplication is objective, but the way the matrices are
written in a particular case changes when the choice of ordering is changed -
what must be maintained to maintain the meaning is the integrity of the index
sets and of their elements. Thus if I, J are sets, by alJ x I matrix of scalar:

is meant a doubly-indexed family

b..T R 1¢J
ji ;
i€ 1

and if K is a third set by a KxJ matrix is ment a doublv indexed family



/ - th
d R xex
kj

jeyg

since the index set J is the same, the matrix product ab can be defined

as the KxI matrix

(. L\\ . q;—7 ij e i€
' T ad. L -
|(aL'Ki AJ&, z/;_\? —'j(d dL L€

When we are moreover given orderings of the three index sets I,J,K, then

a,b, and ab can be displayed rectangularly and the above definition is seen
to be equivalent to the " each row of a times each column of b to get all the
entries of ab" description where each of the "times" really means a differen
linear combination with index set J. The matrix multiplication situation coul

conveniently be described as follows:
7ING
N\
£ S
ab
where the mark on the arrows indicates that these are not ordinary mapplngs

from I to J, etc. but matrices with entries in R. However,

——

L -

THEOREM A JxI matrix of scalars determines an actual manping

RIm-’ RJ which is R-linear, and all R-linear mappings from RI to RJ are

so determined.
PROOF : Let I be a J x I matriX . We will define a mapping T as follows.
For any x&RI we can view x as an Ix:tl matr:.x (a colmnn vector”, if I were

ordered) , where I1 is a one element set, LIxIl——} I‘]

— x - kB =
T, ——>1 —>
- >
«3¢8’4
The matrix product is a JxI‘- matrix, i.e. a J-indexed family of scalars, i.e

an element of RJ. Recalling the definition of matrix nroduct, we see that we

have defined /7
!

! Zh X o.QQé'sI) LE ?I/

[ 288 ______/——'
It can then be verlf:Led that Ty, is R-linear and that, conversely, any R-line
mapping R-———)R is of this form, where the entries b;; can be recovered
)
from T-as-a-process by feeding in the special 0,1 "column vectors" e as before

g -0




8
are matrices with scalar entries

Yo - -
b a
THEOREM If I—4»J —+> K
then in R‘I- aRI )pl(
Th Ta

we have .
T =TT, |
i = o
i 'ab a_‘b_
i.e. composition of linear transformations between these smpecial spaces RI i

represented by matrix multiplication ab

PROOF Calculate!



Linear Categories 1

In general a specific catecory is determined by speciﬁﬁnjobjects
and morphisms together with domain, codomain, comprosition, and identity
subject to associativity and identity laws. The domain and codomain of
a morphism are objects, and it is helpful to write

X -iz-iP :T/ )5:>OWi
to mean that "f is a morphism whose domain is the object X and whose
codomain is the object Y". An endomornhism of X is any morphism whose
domain and codomain are both X. The composition of two morphisms is
meaninoful iff the codomain of the first is the same object as the
domain of the second, as in

xHy &z

Where Y is the common object; in that case the cormposition is another
morphism, denoted by gf, whose dorain and codomain are as indicated in

x—ﬂ>¥
5&72

the associative law states that if X —=3 ¥ - P ; —By W, then .
h(gf) = (ha)f, i.e. that in the diagram

Y*@;\J

rthe two outer paths from X to W are actually the same mornphism. Finally
for every object X there is an identity endomorphism lx, determined
hrono all the (in general many) endormorphisms of X by the conditions
that for any morphism f with domain X and any more_}sm X with cedomrain

K, T—*K

f£x=f, Jxx-x \\l/ix
X

'\-)Y
(here T,Y are any objects of the category). f :

As two simple exarples of categories we mention 1) the category
hose objects are all finite sets and whose morphisms are all possible
appinas between finite sets, with composition the usual "substitution"”

nd 2) the catecory whose objects are again all possible finite sets
thouocht of as "index sets") but whose morphisms I—4—>J are all
ossible JxI matrices of real numbers with matrix multinlication as

omposition



2

]
‘EXERCISE If af = as mappinas, then the matrix corresponding tod"

T~ |
B\\\ie’ (BA)&L' J%B"“d Jt

This category(:)may be considered as "larocer" than the catecory(1 >51nc1
any mapping I —7>J determines a matrix by

£ = 1 if £(i) = J
ji . . .
O if f£(i) # 3
Such matrices may be characterized by the condition that in every "co-

lumn” there is just one 1, the rest of the entries being 0; of course
most matrlces do not meet this strincent reaquirement, which is whv we

is equal to the ma rix product of the matrices corresponding to g,f.

But there is also an important qualitative difference, namely the
category whose morphisms are mappings is distributive Ax(B+C)=AxB+AxC
for a natural sum and product on the objects (to be explained) whereas

the category whose morphisms are matrices is linear » x B = A + B for

the sum and product defined in the same wav .

%ﬂ‘&ﬁ JL‘\L |V3;J

i.e. the two composites define the same morphism X —>W, then one savs
we have a commutative square. A square as pictured is said to have a
diagonal-fill-in if there exists a from Y to Z for which

EJ{;. 1.: F;/:r = ]ﬁi

Proposition If a sauare has a diaconal fill-in, then it is a cormuta-

tive sqguare.
Proof: This is easily seen to be a just restaterment of the associative

law.

EXERCISE:| CGive simple examples in the cateaory of finite sets and

mappings of a square that is not cormmutative and also of a sauare that

is commutative but which does not have a diaconal f£ill -in.

If we have in a catecory four objects and four morphisms for whi

10—




fom———y . _
@ EXERCISE If glf = lx and fc_rz = 1, then a, = d,.

A morphism X ——ia.y in a category is said to be invertible

¢r to be an isomorphism if there exists in the same cateaory another

morphism a for which the following two equations are true 45
gf =1
' 1.0 X ——= v 1
fg = 1y X <5 )

This g is unique if it exists or more stronoly

where f-1 is defined only

Thus we can name g in terms of f
if £ is invertible and is called the inverse of f.
EXERCISE 1x is invertible

r-4

1 -1, -1

f is invertible, so is £ ~ and (f ) ~ = £

1f £, @ are both invertible and composable, then 97f is
invertible and

P T Xy =tz
"(The socks-and-shoeés principle)

d mappings
An isomorphism in the cateogory of setsﬁgg often called a bijectiocn.

Two objects X,Y are sald to be isomorphic X ZY iff there exists at
least one isomorphism between them. In effect two isomorphic objects
(though they may be different) are mathematically indistiﬁéuish;ble
(unless more is known about them than just that they lie in the cate-
gory in question), however in that case they are in fact coming from
objects in a "richer" category where they may not be isomorphic) .

<::> EXERCISEl In the category of sets and mappinags, two sets are isomorvmhi

iff they have the same number of elements.

‘5} EXERCISEI In the category of matrices, there exist isomornhisms Q -2

which are not induced by mappinas 2 —> 2 (However, if there exists
an invertible matrix I-~+> J, it does follow that there exists also
an invertible mannina I—>J but some calculation is needed to
produce it)

But the problem of the existence of an isomorphismr between two
given objects (and the resulting division of all objects intc eauiva-
lence classes known as isomorphism classes - e.g. there is one isomorn
ass of finite sets for each natural number n = 0,1,2,3...., and the
ass corresponding to n consists of all finite sets isororphic to
the set [g]=-{l,2,....,n}-) by no means finishes the role of isomorphi
because where there is one there are usually many:

A morphism which is both an endomornhism and also an isomorghis
is called an automorphism, and the set Autc (X) of all automorphisms
of the object X in the catecory & is called the automorphism group

hio

L




Y /| EXERCISE| In the category of sets and mappvinos, if a set X has n ele-!

ments, then Aut(X) has n! = n«(n-1) (n-2)« .3.2.1 elements. n!fnn
because in general the number of mappinas from X to Y is m® if X has

n elements and Y has m elements.

@ EXERCISE| In the category whose morphisms are real matrices Aut (En])

is an n"-dimensional (non-linear) space consisting of all n x n matrices

whose determinant does not vanish.

EXERCISE[ In any category, if X 2 v, then there is a bijection betweeﬂ‘n
Aut (X) and Aut(Y) which preserves composition. (Choose X —3 Y in ord?r
to define this). Further, the number of isomorphisms X.——-Y is the

same as the size of Aut (X).

A very important role is nlayed by pairs of morphisms satisfy-

ing the one equation

f
- ——
(_'f = lx X <T__Y

@ EXERCISE | In the category of sets and manpings, if we are given two
sets X and Y, then there exists a pair f,a as above iff n < m where
n=[¥| san-=Iyl,

In general the existence of a "section/retraction" pair f,g as above
is a very strong proof that X is "smaller" then Y; in cate’gories’" richer
than sets "smaller than"is more aeneral than this but one still worKs
to use it in "local or" approximate ways because it is so explicit
when one can get it. The importance is reflected in the many names that

have come into use to describe various aspectts:
f is called a split monomorphism iff there exists a retraction

/ c for £ E’L.e. _gg ng = lx]]

g is called a snlit enimorphism iff there exists a section f for g

[i.e. ¢ [af = 1 J]

A pair f,g is called a splittina for an endomorphism e of Y iff

fg=eandgf=1x
An endomorphism e is called splittable iff 3 ng,g....

EXERCISF| Any splittable endomorphism e is idempotent ee = e.

EXERCISE[ If e is an idempotent endomormhism of Y and if xl, x2 occur
in two splitting pairs for the same e, then xl g x2

EXERCISEI In the catecory of linear spaces and linear transformations
if X—0——Y with of = 1 let Y be the kernel (nullspace) of the
< ° —_— =

e 96

xl

9 -
split epimorphism g. Say (for f understood) that "yg X" if~f.} fox=y] !
Show that anv element y of Y can be uniquely expressed as a sum




: Y = y1*Y, v1€X, vy & Y, 45

(The same is actually true in any linear category).

In the category of linear spaces and linear transformations

the case X = 0) we have a very explicit way of handling imaces, (which
will not be directly available in more structural categories of linear

systems, etc: A morphism f is called quasi-invertible if there exists
another morphism ¢ in the same category with lfgf = f

EXERCISE | If f is quasi invertible, then there exists a "quasi-inverse'

Ne]

(~\\where j is a (split) monomorphism and p is a (split) epimorphism.
1y |

g for which both fgf = f and afg = g [éint: given a g satisfyinec only
the one equatioi, show that Edngfg is an improved version satisfying
both. ‘Moreover § = g, so that no further improvement is possible with=
out more information./ If g is guasi inverse to f , then both af and fg
re idempotent (endomorphisms of domain and codomain of £, resmectively)

The following applies in particular to the category of
linear spaces and linear transformations.
Theorem: In a category in which every morphism has a quasi-inverse
and every idempotent has a splitting pair, it follows that every mor-

phism £ has a factorization

X £ \NY
/f
.X&I 3

f = jp

X )
DEFINITION X -F—}Y is a monomorphism iff v T v T'—"‘ X [fx1= fxz"‘?"l4

EXERCISE| Any split monomorphism is a monomornhism (has very simple

roof: EXERCISE’ Let g be a quasi-inverse for f and lef X,i,p and
Y',j,r be splittings for the idempotents gf and fag respectively.

De fine 'x'—i1—9~Y' by £f' = rfi. Then f'has an inverse q' defined in
a ddal manner. (Thus we may identify X',Y' and assume f',q' are identi-
ties) jf'p = £ so £ is factored as required.

Actually the mono-epi factorization is essentially determined
Py f (though the splittings g,i,r are not) and is called the image of f

In general "epi" and "mono" are not such simple equational properties
but involve a universal quantification over all (or at least many) mor-

phisms of the category in auestion:

—
Xq

EXERCISE | A morphism in the category of sets is a monomorphism iff ik s

{njective.

(as well as in the category of sets and mappinas, with the excention of

proof, as does the following "dual}.
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(0

EXERCISE\ Any split epimorphism is an epimorphism, where
DEFINITION: Y -27>z is an epimorphism iff
—_— W ‘
L
Vo Ve 2w [Ma=vs = W=

W
EXERCISEW A mapping of sets is an epimorphism iff it is surjective

©

—Z?int: Take W a two-element set (of "Wahrheitswerte")

’EXERCISEI If every morphism has a quasi-inverse, then every epi-
morphism and every monomorphism splits (in the two respective senses).

Unfortunately in most categories the foregoina exercise does
ot apply so we are forced to consider two distinct ways that an object]
may be smaller than another; in fact we combine the two as follows

Vx _éY'”means g x€—s ——Y where heavy head means epi and tail

means mono. Fortunately in most categories iterating this idea does

not lead to more complications; i.e. < so defined is already transi-

tive.
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Why are catecories like Lin, Lin¢, Lin€, and Liﬁﬂ\ considered as
"linear” catecories? There are essentially two answer s, which can be

shown to be essentia%}y ecuivalent. The first is that "maps can be added

For examnle, if V._Tr;; VW are two linear transformations between two

linear spaces, we can define a manninca

A-B 5

by the formula
(A+B) (v) = A(v) + B(v) for all vgEV

Then A+B is linear (if 2,B are) because
(A+R) (Exivi) A (S )\ivi) + B(Z)\ivi)— definition of A+B

i = SA.Pv. + SA.Bv. __ since A,B linear
i it i i
; =‘25A.(Avi+nvi) — since W linear space
=3 A (R+B) v, — definition of 2+R
i i .
acain

Now if

. A
U BV?W—.&,X

pre all linear then

(A+B) T

S (A+B)

5
Together with the associative law of cornmosition (which holds for any ;
cateqory) and the commutétivity, associativity, and C laws for addition
or morrhisms hetween each given pair V,%, the above distrihutive laws

)
are the essential axioms for "linear cateqgory"

We get a whole class of different examnles of linear categories
Ps follows. (See theorem below). Consider any "directed graph"la which
means a alven set I of "vertices", a alven set G of "edges" ang a glven
pair a él.{ma/nsc;A"I thought of as assigning to each edge g its
"source vertex" )bhn) and its "target veytex bl(q) No axioms are im-

posed in general on the structural mans 20;51 of a oramh 6=<I.G,§, XD
If I,G are finite sets, then the granh G can actuallv be pictured by
drawing the vertices as dots and the edges as arrows;




:In the pictured example, I has 5 elements, G has 8 elements and the
idefinitions of 60:31 are forced by the picture. |
Exercise:§ Find a pair of edges 519> in the above picture for which i
i B(gl = 3 (g,) and Bi(gl = bi(gz) but g; # g, (Parallel edges").
!Flnd also a pair h;, h EG for which 9, (hy) = ot (h,) and a,_(h )= Qa(h )
} ("feedback edge"). Flnd also an edge g such that b (a) = )ﬂg) ("LooP")
Ias well as a vertex i such that VhE,G[B (h) # i and bL(h) # i :
("Isolated vertex") and finally a vertex j such that J ,[31(}1) = ﬂ
ana Y h g6[3, ) # ﬂ("stnk?").

Some of the simplest basic examples of graphs would be the !

following four. ] J/ .’2 @

Now if we are aiven a graph G and a category € (for example the
category € = Lin of real linear spaces and real linear transForrnatlons'
or the catecory €= 5 of sets and arbitrary mamnings) then we can
construct an interestinag and useful cateqgory e as follows (in case
C=Lin, we could call Lin Gthe category of "linear systems of shane 6
and ﬁ-linear morphisms hetween such systems") :

0) An object Wof C is any system of the followinao type: to everv
vertex i1£ I of 6 we choose an chject V. of @, and to every edge

g € G we choose a morphism T_ of (oA subj'ect;only to the condition that

whenever i—g->j in G (i.e. whenever bo(g) = i and éi(g) = j)we must

specify a e-morphism T whose domain is the C-object Vi and whos'e

codomain is the e—ob"!ﬁct VJ (i.e.

-—Lbjln(‘;: ,—T9—>v in C.

1) 1£W =<V, T> W = (W,S) are two objects of eG, then by a morphism!

A= is meant any assignment of a €-morphism RA. to every l
vertex i €I of €3 which satisfies the * {3 -homomorrhism” or G—naturaht
condition: for all edges g€ G in G the eguatlon below must hold |

(where i = bo(q) )3 —bi(g)) Vv AL — W'
L - vy

- Aj Tg, = ng Ai T Sﬂ

l4
G —8—> W

'Remark: We often just write g alone for Ta' Sq etc. when the context

is understood.



2) If _" }_B_;\V'J‘»\/.are ﬁ": morphisms then the comnosition AB is
defined as follows et in @ Y9
comnosition in

(AB.).i def AiBi for each vertex ieI of &

|
}
m AB again satisfies the G-naturalitv conditions for each ,
i
l

edge g & Gof G , and is hence acain a @ -morphism.

Exercise:

only 21 Ai
main point is to show that the A;
itself is (and if the individual inverses exist) ).

Exercisefl If we consider the particular oranh m’g with two vertices
and two parallel edges, and take (o4 =$ = the category of all sets and
all mappings, then S*.y is the cateadory of all graphs and graph-mornhils
where the latter means a pair of mappings, workino on edqges and on
vertices respectively, which "preserve" the source and target relations

A is invertible (i.e. is an isomormhism) in 6Gif and
is invertible in € for each vertex i€ I of G.(Hint: the !
1 (taken toaether) is {(-natural iﬁ!

of two given graphs.
Now nearly all categorieg of mathematical interest can be viewdd

as full subcategories % = €™ where ¢ =§ or G=Lin and G is an
appropriately chosen graph. Here "full" means that we take the sare
definition (of G-natural) for the morphisms of@as for the morphisms
of 6 G, but restrict the objects, often by equations. For example,

ir=| - >
Pty

reasonable to restrict to the full subcategory Qof GG
of all T_Y—=(V,T> for which Y& Ty = Tr,J in € Note_that in this
example there are three e-objects' V:.L involved in each @ ~-object, and
the egquation defininggmight just be written "O(f:‘,\a ", by the
T-omission remark above.

1f € itself is a linear category, then there are many more
types of equations which would define reasonable @ , Ssince we can usé
not only composition in @ but also_the linear structure of C in makinq
up eauations. For example if G = I,le then very important in geometfy
and analysis is the subcateqory% < — Lin consisting of all de’
for which{d @d = 0 An example fundamental in ‘feedback controlljis

the araph ﬂf - X l
bT A T\c |

and the subcategory 'C Lin® defined by the ecuation

it is often

which consist

C = B(l, - AC) |
' More exactly, note that there is a subaraph U,'o C./H-_consistinq of
only A,B, and that such a subgranh induces a trivial "foraettina"




5o . ¥

==~~~

— Lina;
which in this case just omits C from anv iF:system to aet the under

Lin

T

lying ng-system. Composing this with the inclusion we get a trivial

sy— — Linﬁs |
'The first non-trivial problem of feedback control theory is, given any!

linear ﬂs-system X fg; Y in Linnz , to find all iF -systems in EF-

o

which restrict to it, i.e. to find all Y==>X which are solutions of the

process

equation C = B(lY-AC).

In case the Lin-endomormhism 1Y+BA of ¥ is invertible (for
example if BA is nilpotent), then the feedback-control problem has a

unigue solution C.
* On a first reading one could skip to the theorem on the next page
Lin itself can be considered as a full subcateqorv of the
(non linear) category gmwhere _ﬂ" is the (rather larae) graph whos%
vertices are the natural numbers 0,1,2,3.... and whose edges are all
rectangular real matrices of all possible sizes, and QO(A)_ = m, 51(}\). =n
f A is n x m. Hint: To a linear space V associate the [M-system in Eg
whose n-th vertex is V" = the set of all n-tuples of vectors from V,
with the matrices acting in a sensible way, and show that an M-natural
morphism between such objects of ES‘ is essentially just a linear
transformation between the linear spmaces V (in particular if A is a
1}4-natural morphism, then all the mappinas An are actuallv determined
by the ope mapping A
[Exercise *§ (Introduction to topology, advanced calculus, functional
analysis), By a (symmetric) metric space X is meant a set X of points
equipped with a "distance function", which means a function %
X x X -—-d——)[o, Cb) (where[O, 00)={r: £,TR | r> O}) satisfying the

four axioms

d(x,y) + d(y,z) = d(x,z) for all X,v,2 in X

d(xIY) = d(YIx)
d(x,x) =0
d(x,y) = O‘=%7x = y.

If x-—ii—>ﬂ is a mapping between two metric spaces, f is called a

continuous map iff VXVG, > OHS > O _
Vi [d (2 x)<s = d (S fa))<€ |

The composition.x-19 Y i%é yA of two continuous maps is again continyous

SO we get a category ’ Vd?fh_ a full inclusion of cateogories

- T
St © e |




‘ {
if we ¢ ae ‘ine the grapn’ll’ as follows. There are only two VerthDES 1'

and ]N » but many edges, as follows: There is exactly one edge ’ﬂ")lN
but there are edges _Nor—)'ﬂ for each n=0,1,2,3.... and for n =0 as
well; there is exactly one edge 4l r—)fr( identity"), but between
N"f'—-“—‘) [Nq’ there is an edge for each natural number n = 0,1,2,

The inclusion met C—)S’ is defined by associating to each metric
space X the T—system of sets v, =X, VR =Cgt (X) where Cgt(X) is the
set of "convergent sﬁuences in X", i.e. the set of all continuous
maps IN*—?X where [N is the metric space whose noints are 0,1..., 09,
the natural numbers together with one more noint called &© and whose
distance function is d(n,m)= é - % , where o% deo‘ The internretatign
of the abstract edoes of [[' in the particular T -system corresnondina

to a given metric space X is

o

c
snc Cgt(x)e_;_, X
where n evaluates a given sequence at n(in particular, the value at po©

is the "limit" of the seauence ), C assians to any point the sequence

which is constantly that point, and Sn shifts any secguence XorX)re %o

y n, i.e. -
Py ne s, (% *K+n

‘ s (x),o = Xoe

Then the proof of fullness Er ctf.;.gm:s f1rst a simple calculatlon

showing that any T -natural f CCS‘:\X) &I ; Cgt (y)?

1 R
fa Y

is actually determined by fl via (fN (x))n = fl(xn) for anv x £Cgt (X)

and that this is true in particular for n =¢Q0 , i.e. that

im F(x,) = F(lim x,)

Ehich can be proved to be eauivalent to £, being continuous.

THEOREM For any oranh G and for €=Lin (or more generally any linear
category @), the cateqory Lin™" of ~linear systems is again a linear

category
Proof: If W——%W in 1in@Q , then define (a+B) =A +B, in Li

(previously deflned) for each vertex ig I in G . Then A+B is again
G-natural, for if 1—?—}j is any edge in G, , then

(AA-B +B)'I‘ T+BT since Lin itself Vf'—ﬂi—)w
T T T AT is a Lin Cat i i
= SgA1+SgBJ. since A,B assumed G-nattn'al Tg Sg
= S (A+B) def
g i Vj _(A‘TB’———) wj
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52 |Thus the addition of morphism in Lin Q;(with given domain and codomain)
is well defined and fairly obviously satisfies the commutative, assof
ciative, and zero laws (for given domainvand codomainM since additli«
in Lin itself does and we have already Proved many times that "productp
| Lin (V' W )

of linear spaces agaln satls‘y the CAZlaws; we are dealing with the
subspace LlnG( “_/.Tk./) of this product consistino of 6—natura1

families (A ) . ieI” but identities like the C A Z laws are clearly

inherited by subspaces, if omnly they are closed under addition, and
that is what we proved above. To finish the proof we need only shwuyw thpt
Lin G satisfies the two distributive axioms characteristic of linear

categories. So assume the
—_—
U—a\/ﬂw—-—%x

are all G -linear morphisms. Then for i a vertex of G,

( (A+B) C; = (A + B)ici definition of commosition
= (Iiti +Bi)ci definition of addition
= A.C. + B,C, since Lin satisfies distributi¢ie

= (AC); ‘+(BC)i definition of composition

= (AC + BC)i definition of addition

Hence (A + B)C = AC + BC since above holds for all i.
Complete the proof by showing that
D(A + C) = DA + DC

The subcategories of systems defined by equations 1like

A ﬂ.= 1" , d2 = 0, C = B(1 -AC) are all also 1linear categories. Hint:
The main point here is to understand that there is nothing to prove
since these were all full subcategories.

Now we come to the second form of the condition that a category;
be "linear", which involves the construction of (cartesian) nroducts
and of _coproducts. Let us start with the (non linear) examnle of
coproducts xl + x2 in the cateqory Sof sets and mappings; it is
simply the ("disjoint") uniom of the two sets Xl, x2 and hence comes

with two injection mappings X —3“—))(1 + X,, k =1,2

X, PN

X

!




where ik(X) = X consiue.ed as an element of the (aisjoint) union xl+X2
for x ¢ X, k = 1,2. This pair of injection mappings has the followina
"universal mapping property" (UMP): if Y is any set and if X -Ji;_9Y

are any two mappings then there exists a unique (single) mapping f

for which £, = fi i.and f, = féz (C?QSOSitionS) ﬁ—fi-\\\\tl
1 —
~3

/ X Kz’- -—.,.— -:\X
X" \————'—‘"-_——//F-:
Namely, we can define f for any x:&xl + X, by cases as follows:
jgl(x) if x comes from X;

f(x)
(fz(x) if x comes from X,

Since all x in X, + X, come from either X, or X,, f(x) is thus defined
for all x, and without ambiquity since no x comes from both (i.e. the
union is taken in the "disjoint" sense - in fact no other sense has
sense since we did not assume that X, /X, lie inside any common larger
set in which they could "overlap"). By construction f satisfies the twp
equations fk = ka for k = 1,2 and moreover these equations with fl,E
given, force this construction of f, so it is "unique", subject to
those equations, as well. Since f is determined by fk's we may denote
it by £ = (fl'fz)'

As a very special case of the above, we could take'x1 = xz =Y,
fl = f2 = ly. Then we get (as the resulting f) a standard map

Y@ vy _é*__) Y

sometimes called the "codiagonal"” map of Y: for each element y of Y,
there are exactly two elements x of Y@Y for which A‘ (x) = vy.
oy I=Z- =41 Y

suggest the equation Y@ Y = 2 Y which we will prove in a moment.

\\\"I

Y may be identified with manpings 1-—3—9Y

and hence by the UMP of coproducts, manpinags 2 —>Y may be identified
with ordered pairs of elements of Y: y =(yl,y2)

2 4 —
W@i---a‘-Y

I1f 1 denotes any one-element set, then elemggts of a general selt

—— — e — .

2



We will use tne UMP as the definition of the concept of co-

product @with "injections" in any cateqory; it will tend to have
radically different concrete internretations in each particular

category.

The empty set @ is characterized by the fact that for any set
Y, there is exactly one mapping @—=Y (called "the empty mapping with
codomain Y"). In any category this "UMP" characterizes a particular

object called the coterminal object; depending on the category, it may

be far from "empty")
Proposition; 1In any category having coproducts @and coterminal objec

@, we have that Cbe)(éx g’—_\ﬁi\
Proof: Consider any Y and 5»)13 £,.5, XZ V)

-- - =Y
X.M

then we can define f = f2; f2' lx = f2 by the identity property, and
f2e = fl since there is only one @ —»Y no matter how we represent it.
Thus the UMP for ¢®x is satisfied by X if we take the two injectiops
to be the empty map e and the identity lx.

Now the one element set 4 is characterized by th&"dual" UMP" :
for any set X there is exactly one mapping X —>

In any category this

T+

characterizes the kind of object known as a terminal objeét.
Any two terminal objects in the same catecory are isomorphif.
>imilarly we can "dualize" the UMP for conroducts to obtain the
important notion of (cartesian) product of two objects Yl' Y2 in a
category: it should be an object Y\x Y, equipped with "obrojections"
Pys Py such that for any object X and any pair of morphisms X—ﬁﬁYl,

X —-&-)Yz there exists a unique morphism f for which both fk =p f

k=l /F A

Since f is uniquely determined by fl, fz, we may denote it £ =("1
f
2

If there is an object F in our category (such as E = 1 in the category S
of sets) for which we consider morphisms E-X3X to be "elements" of X
for all X, then the above UMP for the nrojections just says (taking
X = E) th@t the

elements of Y, X Y, "are" ordered nairs of elements of Yy, ¥,

VY.
— (f)

1




That is, any ele're":t E-._;leyz of course defines an o‘deré’d pair of

elements E ——P—‘—-—}Y k = 1,2, but the UMP says that conversely
Thus we may picture Y, XY, as

every such pair comes from a unique y.

"rectangularized" by Dy/Py- , 2~:
Ta —

1/P1

though the Yl’ Y2

showing why these products are called "cartesian”,
are arbitrary sets and are only very schematically shown above as l;wgs
"Dual" to the isomorphism @#&E X -=» X, we have

In any category with oroducts x and a terminal object 1,

X —=—1 xX.
There is a diagonal morphism X 25X » Xx.

Exercisefl The meaning of f = (;9 in general can be understood on

arblitrary elements by using the diagram \
/,Yi
Pa

E —-ﬁz FosYix X
\fz \X\YL

and the uniaueness in the UMP to qet
f f.x
\f (x) = fix
Hint: Do both sides have the same composite with each projection?
Combinina the UMP's of coproducts and products we obtain the
following in any cateqgory that has both: Any mornhism xlgxz._fg/lxyz
is uniquely represented by a "matrix" whose entries are themselves

morphisms (between "smaller"ibjectS) . / >/l
f, .= p, fi. 1.t .
ki~ Pkt Nt £
X1@ X.z, Yi" }i

| koi= 1.2 XL}] . \%

Caution: These matrices cannot in general be "multiplied"”.
In particular, there is a "canonical" morphism

d A
(V x XDV x X)) ———3 v x(X,BX,)
(for any three objects 1in any cagegory gav1ng both coproducts and

products) defined by

PvdZKzF;K k:i‘l,

Pedty = <4 qy k =1,2



Y
5P |where V x(X;@X,) LSV X (X, @ X,) oy X, X,

V x xk—£4-—+V, V x xk-iﬁ—yv are projections, and xk_‘x._} XIGXZ,
VvV x xk_i&—;v x Xlev x X, are injections (draw a manning diagram).

Xercise
S ;

In the category ggof sets and mappings the "distributivity"

d is an isomorphism .\\XY (X-x"‘ Xb)

- - -

| j Xy &

+
Q
\2

———— —_—

Any category ;S‘G,! where (5 is any given;graph and § is tlLe
cAateagory ~f sets, satisfies distributivity of products over coproducts
in tne &euse that all the canonical morphisms @ are isomorphisms.
Hint- Coproducts and products not only exist in SC—' but may be compute:
i the naivw manner, i.e. for each vertex i of ﬁat a time.

Caution "Distributivity" (i.e. d isomorphism) will often not hold in
subcateagories 93 of Sa:’because the meaning of coproducts may
change to_a highly non-naive interpretation; the "U" in UMP refers to
all Y in only, and moreover the X, + X, which works in 36 may
not lie in @ .

The distributive law d does not hold true in the categofy Lin
of linear spaces and linear transformations. To understand this we must
calculate what coproducts and products in Lin mean. For the case of
products this is easy: if Yl'YZ are linear snaces, then the set leYz
eguipped with co-ordinate-wise addition and scalar multiplication is
again a linear space, the projections Py are linear transformations
by construction, and if fl,f2 are any two linear transform:tions with
a common linear space X as domain, then f defined by fx = ;l:
is_acgain linear. But for comroducts sorethinc very differe"% from the

>case happens.
THEOREM | For any two linear spaces Vl’ v, there is a canonical linear

isomornhism
Vi@V, == Vix\}

PROOF: First we note that the single-element linear smace 0 is both
coterminal and termrminal in Lin. This implies(we knew it already) that

between anv two linear smaces V,W, there is a zero linear transforma-

V>
w v

tion




Since morphisms from coprclducts to products are always defined by 57
 "matrices" of smaller morphism, we can in our case define a morphism
by means of the "identity matrix" whose entries are

Ly v

1 271

0. 1l

VY3 2
We finish the proof by showina that the familiar le v, satisfies
also the UMP of cooroduct in Lin if we define appropriat injections

vk___i_—) \/1:«\(2, k‘i.b

v

obviously these have to be

il(v) =(g) for any vEV,

- [0
iz(u) "(u) for any ueV,
Now to verify the UMP we have to consider any linear space W and any
two linear transformations Vk_l_ak__éw k = 1,2; then we define

v, x vz_L_, W

L4

Ak, - A1 o+ Ay,

Then note that (A (O) A R q“ vE %
(Ar_,_, (w)= A A u all ueVa,

so that Aik = A‘k 1, as requi 1, and on the other hand
since A is required to be a morphism in Lin, i.e. to preserve sums in
particular, the definition is forced by the agreement with

A, on 1k' so that A is unique as also reaquired by the @UMP
With a little more care, using the propert::.es of the "identity

matrix" above instead of elements u,v. etc, the above theorem is

by using the formul

dualizing..). Either us:.ng that, or calculating d:.rectly, we get

m M & \/2, Mx WQ, In Llh
Exercise@ In a linear category, block matrices can he multiplied
(of course taking care of the order whem "multiplying” (i.e. composing

th t
e components L)i9 Uz, Vi "\/L 62— \/1 @ \é —-—7k)4y\.
Bu Blb A" AlZ)

proved to hold in any linear category which has products (or conroductf,

Bbl Bz Au A
(AR = S AL B, :




5¢

wieLe B, A, .
Uk—;.L_)Vj_ ij )Wj
In practice, in a linear catecgory we just identify levz = Vl@ v, But
it is well to keen in mind how different they are in a non-linear
category, which at the opposite extreme often satisfies the"distributiye
law" for objectssthat the canonical map 4 is an isomorphism.

Since in a non-linear catecory there is no "addition" for mormhisms in
general, there should be no confusion between the distributive law

for addition of linear transformations which holds in a linear cateocon
on the one hand, and the distributive law for "addition" (i.e. coprodu¢t:

of objects in some typical non-linear catecories like 8, 8*. S?‘ S"-Ta

an e other hand. d
The canonical map Vx XL@M‘XJJ V)( (71 +Z))

is usually not an isomorphism in a linear category. Hint: Take
V=X =X, = R in Lin and compare the dimensions of the two sides
of 4. - ———

Since the codiagonal map in a linear category is (up to the
"identity" matrix) just the internal addition operation of the given

Wr W= Wa W5
as(uy) = Wgrwy - —=—

we see that the addition of morphisms V__z‘;' W can be reconstructed
as the composite *

O L2 VeVt WiWes el -y

«

object (e.a. linear smpace) W:

T + Ts.
using only the fact that the “identity matrix" for W is an isomorphism}
Since in turn the very existence of the "identity matrix" for all
objects W depends on the fact that the nﬁf&he-morphism from the coter-
minal object to the terminal object is invertible (thus the coterminal
object has a unique element (the inverse of the canonical map) which
may be called 0), and since the concepts of coterminal and terminal
objects, coproduct and product objects of pairs of objects, and co-
diagonal and diagonal maps (4 (x) =(:5 ) of an object, depend only on
the composition of morphisms in the given category, we see that our
second characterization of "linear categories", namely

VO W -Z3vxw,
implies the first, namely the existence of a good notion of addition
for morphisms, provided only that we prove the

In any category with coproducts, nroducts etc. in which thefe




are zero maps and VW%V xW is always an isomorphism, define addi-
tion of morphisms by@above. Then this addition satisfies the comronu-
tativity and associative laws for V ::;'W and the distributive laws
for U -ﬂ»V.::;: We— Y. —7

Conversely in any category equipped with a good notion of addinpg
morphisms, we can characterize the injections and projections of an
object Vl€B Vz, which serves simultaneously as coproduct and nroduct,

by purely "alaebraic" equations as follows

ppi; =0 -\/ﬂ_

s - e v/ |
. _ 1 z 3
‘.’111 = v, \/% \K\/L

i,p, +ip, =1
11 282 v.e@v, 2%

|Exercise Recalling that i (x) =(g), iy (y) =(3), Pl(;) = x"’z(;)= y

on elements, prove the above equations for the morphisms. The equationg
imply that e, g3f ikpk is an jidempotent endomorpliism of X for k=1,2,

and that e, + e, = 1,, where X = vavé, while e;e, = O = eye,. Such a
pair of idempotent endomorphisms of an object X in a linear category

(i.e. with products = O and sum ='1x) is often called a "dgcompo§ition
of the identity into disjoint idemsotents” and plays an important role
in all kinds of spectral analysis. We can recover the component smaces
from a space X equipped with such a decomposition of the identity, singe

Vl = Ker(ez)

vV, = Ker(el)

with il,i2 as the inclusions, and that Px is constructed by using the
same rule as e, but proving that all values of ey actually lie in the

subspace V, &X.

In a linear category the coproduct and product universal
mapping properties follow from the algebraic equations discussed above
For examgle if Vk_fk__;ﬂ are any two morphisms, we can define _
vlmvi———)w using as the sum A = Rp; + AP, of two morphisms obtaipec
by composing with the pk's. Then the algebraic equations governing the
p's and i's imply that the A so defined is the unique morphism satis-
fyina both A = Ail and A, = Aiz. Dually, if we are given U—Ek—>Vk
we can define a sinale B usina addition and the i's, then use the

governing equations to prove B is the uniaue morphism allowing recovery

of the B 32 usinag the p's.

1’




CANONICAL FORIS AND EIGENVALUES ]R [ J ]
. . S Lln

There is a process of construction

as follows. For each set S, TR[S] is the linear space of all those
real valued functions on S which have finite support. (So that
TR[S]C—-) F\S is actually an equality if S is finite). Moreover if
S——f—‘/T is any mapping, then a linear transformation

R[s] B, RLT]
(REFJ(U)L=§&;°5 S RreT

S
$(s)=t
Exercisell The process ]R[]ls "functovhl”, i.e. if S———»T__)U

are any mappings of sets, then ’R[g FJ R[ﬂ] ’IR [FJ

as linear transformations ‘R[S]——QTREJ .

Prop051tlon' Consider the mapping

is defined by

= !
defined by % () (s = {:(1’ i,f, : 4 :.

Then for any linear space W and any mappinc S———Ji_aw there is a
unique 1linear transformation ]R[S_]———)-W for which fo S = f

Proof: Define - ' Dy
() =Z - F6) C A
The sum is well-defined since v has finite support and clearly has the

three stated properties.

DEFINITION| A "family of vectors"” s—-)ﬁ is
1) 1linearly independent iff its linear extension IR[‘;J—-—-—)W is

1n]ect1ve
2) linearly spanning iff f is surjective
3) a linear basis iff f is an isomorphism

A linear space W is said to have dimension = S iff there exists a basi§

family £ for V with domain S.

THEOREM (Rls a field) Every W in Lin has a dimension.

m 91 IRgz = g; = qy+ for any mappings T :g'_"_; U in g . If there

exists an isomorphism IR[S] ——;@ in Lin, there exists one induced
by an isomorphism S -£53 T in 8 . alm st
o

[THEOREM| (Rank) Thi above theorem remalns/\true if is remlaced by
¥ and Lin by LinY. However this does not aeneralize to graphs G

with loops.
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Rank of a L inear Transformation

The spectral analysis of the diagram L is much simpler
[
than that of the diagram i:)
The latter involves the continuous infinity of eigenvalues as

®"colors", whereas the former involves only a whole number

called "rank", at least when the groundrig of scalars is

a field. This is basically because the maps in the category

Lin g (whose objects are linear transformations A,B), are

arbitrary commutative squares

A l l B TlA = BTO;

(.
Ld

1

even if A,B happen to be endomaps (linear "operators®") we do not

require that the To and T1 be the same; this means in
particular that there are "many" isomorphisms in our category,
hence "few" invariants. In fact, besides the dimensions of the
domain and codomain of A , the only invariant is the dimension
of the image of A (assuming that Lin itself is the category

of linear spaces over a field of scalars).
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Exercise 1) Given any three whole numbers <n, r, m)’

for which r < min(n,m), construct amap n —> m of finite

sets of the indicated cardinalities whose image has cardinality

Rn

r , and show that the induced linear map QL has image
m

of dimension r , in fact k

n

R
B

B |

monic linear maps ;;;47
Rm

Exercise 2) If R is a field, show that for any linear

factorize it into epic and
r
R

v
transformation l A with finite dimensional Vv, W
17}

there exists a unique triple (n,r,m} for which A is isomo‘rphic

¥
in Lin: to your example B above.
R

Exercise 3) Rnowing the invariant <n,r,m> of a linear

transformation A we can detect two properties which A may
have: show that
"A is epi " iff r=m € n

"A is mono" iff r=n £ m
(Just as for finite sets)

Exercise 4) The dimension of the kernel of A is n - r,

(the "nullity" of A ; the other difference m - r might

be called the "co-nullity").
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Spectral Analysis

Recall that Newton analyzed sunlicht (by passina it throuch a

prism) into a "Spectrum" consistinag of various colors 2 each of which
has a certain intensity ma - A basigc nrooram for analyzina an ob-
ject in a linear catecory such as Lin is to show that it is

.1somorph1c to a big sum (in the GI; sense) of relatively simple ob-
Ijects I\ (which A_ themselves canncot be further broken down as a
I("parallel connection") e of still simpler objects:; the number L
‘of summands of each given tvne‘J\.ln the decompositon oF‘h{’ is
'usuallv called the multiplicity(rather than intensity) of the "color"
A in v

In each linear catecorv, we have to determine first what the
ilrreducn.ble "color" <A\ should be (see below for some of the simnler
jexamples) and then to analyze an “arbitrary" object W/ , we study for,
yeach _/\_the "eicenvectors" of tyne /\. inv in the sense of
lDEFINITION :I In a agiven cateagorv, an eicenvector of type /\_ in Vis
just any morphism (in the category in auestion) _A_ —3N\/ . That is,
an eiaenvector is really nothino but a morphism in the annropnriate
category, except that we imagine that the domain is some kind of
extremely special object (the "eigenvalue” in auestion should be i
thouaht of as the snecial information reauired to smecifv A. in.'par- ;
ticular amonc all nossible objects). We say that /\. is an eicenobject
for N/ if there exists an injective eigenvector AG—b ; thus an i
"eigenvalue" ofV would be special information determinineg an eicen-°
object of V , i.e. one which will actually occur at least once in
ithe expression of v as a @ of "colors" (in those catecories where
the program succeeds.
Elnqulst' ark: Terms like "eigenvalue", etc. are hybrids as follows
German: i

'British: Characteristic

cians, economists, etc. perhaps martly because it helns discriminate
from other kinds of values that might be "characteristic" of a given

E ituation. ;
i

For example, if we consider Lin itself, then the basis theorem

|
i
!
The hybrid is widely used by American chemists, enaineers, mathemati- !
1
t
|

says that every V is isomorphic to some R which is actually

_RQ IRO_.GR(n terms). Thus we could say that Lin is "monochromatic"”
with R as the only "color", which can occur with various "intensitv"
(=dimension) as we consider different objects V : in fact knowing
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object in the case of Lin. There is no need for "eigenvalues" since

no information is reauired to distinouish between colors since there

is only one. d;
The catecory of central importance in this connection is Lin

where d; =[e is a single loop, i.e. the catecory whose objects are
(single) linear omerators, however, sipce the answer will be simpler
we will consider first the case Qa =
whose objects are arbitrary linear transformations (whose domain and

codomain dimensions may differ) which are to be mormhically comnared
comparison arrows from Lin

. i.e. the cateoory Lin?

by commutative squares involvina two

(since has two vertices). Any object in this category is actually

isomorphic in this cateaory to one of the form

R"
¢’ where the number of 1's is the

14
1
1§;::) (isomorphism-invariant) rank, which
n ﬂ%)

is of course 5; min(n,m)

Exercise:’ There exist no isomorphisms L_

]Rll Lo | ‘.\R't

~

4 000 ’ 10cCo
O 100 \L C100
O o oo OO0 10
3
) IP\—%.»]F\?,
in Lin¥. L4

Q is calculated

"vertex by vertex" so that
with the interna strucl ral man bel
interaction":

ToS) i) =[T2)in VoW, for (;’)8 V.o W,.

As in arithmetic we use natural numbers as coefficients when larage

Just "parallel connection, no

sums with repeated summands are involved, for examnle

2Ve W= VeVeWoe We W




: m ( N| | rawnlK (T) =2.
@ N g <’_,—> b oth A,/;Jrcwe hon -2erc
R

bo‘l""'}:/(/:O

Thus if we denote the three "colors"

RY (R
P

e

I

K

(l il
D" D
then every object of Lin¥ is isomorphic to a uniaque object of the form
- X
2 m.K @ nlD &@weD
where

m, =d-m(vo-) = i’anK(T')
L =rank (T>

my = dim (%) ~ vank (T)




X The three colors of LinY are not completely inderendent 627
since there are morphisms :D—ék

where the first is injective (a monomorphism which is however not a
split monomorphism) and the second is surjective (an epimorphism which
is however not a split epimorphism) and the composite of the two in O.

1 O— U V— W—> O

is an exact sequence in any LlnG and if either U‘;‘\A/ is split

(in LinG ) as a monomorphism or V—*W is split as an epimorphism,
N Ky 13

then W@U“} \/- (Hint: use the aloebraic eauations which characte-

rize & in any linear cateaory). This shows "why" neither morphism

in :)*c—-vD—BIK splits, since ]1/@ D" is not isomorphic to D

M If V:_ {, is any object of Lm* , then in it an

eigenvector of type D is essentially any vector in V , an eiagen-
vector o~ type [Dy‘ is essentially any vector in V U‘(-)V is essen-
tially any vector in the kernel of T. Thus T is lnlectlve iff _}( is
not an "eigenvalue” of V . If we consider any

D—+K-*>=V
then the composite "is" v, but considered as a vector of _Vo , rather
than (as given) as a vector of Ker('l‘) . If we consider any © E-%

then in
the comp051te "is" T-o in \ (All statements in this exercise are

essentially obv1ous if one draws the rectanogular diacrams in Lin which

they describe).

m In LinY, the three endomorphism rinas (i.e. consistina of
endomorphisms in the sense of Lin{') of all three distinct colors
D*.ID. )B are actually isomorphic to the same ring, namely IR it
self.

The most strikino feature of Lin27 from the smectral noint of
view is that there is a continuous infinitv of possible “"colors" '\
(phe ones which are usually called ordinary possible eiacenvalues) and
which have one-dimensional underlying spaces) as well as a further
necessary infinite family of colors which is partly continuous and
partly discrete (these are connected with nilpotency phenomena and
have all possible dimensions, although thev are much simpler than the
general operator (cbject of Ling?) which we need to analyze) and
finally another continuous family of two-dimensional "colors" which

are usuallv referred to as "complex”.




©o Let us consider first an example of the last-mentioned comnlex

"color" 4: : It is nothino but the rotation throuah a right angle in
two-dimensional space, consi an object of Lin® :
o1
-QD(:‘O) o - |
- —4
C .J. | ©

am Ccannot be decomposed in Ling . Since a non-trivial de-

Jcomposition would have to involve one-dimensional summands, it must be

hown that there is no isomorphism (O -
a =€ 2@ |\ O
| R
AP — >

i.e. that the indicated equations for a 2 x 2 matrix 0(\ and a pair of
1 x 1 matrices a,b has no solution with OQ invertible, i.e. that therd
is no choice of basis for —IR?’ with respect which the right-anale ro-
tation is expressed by a ma:rix of the form 8 ?_, (which intuitively

would just stretch T_k?‘ without rotating it). Determine all LinQ- endo-

morphisms of d: , i.e. all 2 x 2 matrices for which
T AGEEAA
183 V is any ]bjg t of Lin& , then in it an "eiagenvector" of typs

q: is any choice of family of two vectors in -v for which
TU = -v 'To,z-z),i.e. to a choice of a sinqle vector '.-01 for whigh
- 4 2) < 1 p‘r
| Vy = - U4 d: is an "eiaenvalue" of V iff such a family of two
Phich is linearly independent exists, i.e. iff there exists a nlane
in V which is closed under the operation T and on which T looks
like (up to R-linear isomorphism) rotation throuoch a right anale.
What does linear indemendence of such a family of two mean in terms of

the single v which generates it?

Now we notice that all operators on one-dimensional space must]

be considered as distinct possible colors or eigenvalues in analyzing

pbjects in Lin,<> .

. ok N
fEXERCISE:} If IR .| areﬁny two real numbers for which there

px1sts an isomorphism% R-——R ~ of 'L’m,Q, then /\=/U . If on an

prbitrary linear space R/ of dimension n, we consider the very special
Eperator of multip]}ication by 2 :Dthen there exist isomorphisms

) -
in Lin(() (In fact in this very special case, any isomorphism ¢X_ in Lin

will be one in LinQ ). Of course

= A n
>\ (O . @—7 when operatinoc on TIQ .
';o M AN i c,a € of n copies. Thus our object has
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—

only one eigenvalue ?\ ,» but of multiplicity n. But we could have, fox

example, on an n + m d:.mens:.onal space just two eigenvalues

W RenR s R 35))

where the matrix has n }\'s and m// s on the diaoconal.

m An eigenvector of _type

rvof V for whichl To=\ o
. = )T s . _— .

in V of type Ee is just a vector in Ker(| ) and indeed an
eigenvector of type >'ﬁ2 may also be considered as a vector in the
kernel of the operator T-A (which leads to_a method for calculatino
which eigenvalues A\ actually occur in WV’ , namely by solvina the
n-th dearee polynomial eaquation det(T- A ) = 0: the latter is often
called the "characteristic eaquation" of T, but to be consistent in

lanquage-mixina one should call it the "eiaeneauation of | ".

T
in \/Q is essentially just
In particular an eigenvector

m Is the complex number i isomorphic to the complex number
-1 e category Linzj of real linear operators? In other words, is
there any invertible solution a to the matrix eauation

<; 1 o -1 all al2
1 o
a1 2 Y a5 252

As the last exercise suagests, it is not always the most effec-

i

tive procedure to insist on the spectral philosophy in its purest form
but to choose for example a class of identif,-able objects which in-
cludes all the colors but which may contain many pairs of "different"
objects which are actually isomorphic. For example any nilpotent
operator in L1n is isomorphic to a strictly umper~triancular matrix

ce ¢

ccc o

[ ol
Oorr‘

where there are zeroes below and on the main diagonal, but a more pre-
cise analysis would show that any such is in turn isomorphic to one
having only 1's (and 0's) above the diaconal, with the precise arranqet
ment of 1's reflecting the way in which the various L1n 4&3— ands are
either coupled through T or actually split off as L1n -&)- ands.

-/
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EXERCISE:ff An eigenvector of type ( ‘:i ' \2;:>
N

is essentially a vector v of Vr for which 2 v = 0. The object(g é)
is an eigenvalue in X/ .rlff such a v exists for which the family

v, Tv of two vectors in ‘?- is linearly independent.
. 0o 1 . 9 " "
The object of Lin has to be accented as a "color

EXERCISE: o O

in 1ts own richt, since it ‘cannot be represented as a QE} of two
one-dimensional objects in Lin£> . On the other hand "colors" are

again not completely unrelated, as there exists an exact seauence

in Linz> (which however by the first part of the exercise does not

split.)
Determine explicitly which 2 x 2 matrices are isomorphic

in Lin to an upper-trianqular matrix, and that any upper-triangula
matrix (é b)is either a color (i.e. Ef} -irreducible) in its own
right (if b # O) or is.isomorphic to the € of two one-dimensional
eigenvalues, i.e. to ’\ja). Hint: If @g nd)ls the given arbitrary
matrix, then since we know that determlnants, trace, and eigenvalues

remain unchanced under isomorphism, the ,// must be determlned by
the two  emuations A ;o= S S
)“ﬁ‘/’ o< + F

Knowing this, isomorphisms can be found. Or alternatively, an undeter-

mined putative 1somornhlsm can be con51dered

R — R*¥E

then the one eauation statlng that

L.—[ (go‘;') L has lower LaF{- corner O

can be shown to have a solution with non-zero determinant, provided a

suitable discriminant involving trace and determinant is positive.

ED(x)=Ch

if both b are non-zero, but if bl =1, b2 = O they are not

lsomorphlc.




. . ) /
Find a simple example of a 2 x 2 matrix A which is not r

gular but which is isomorphic LT = AL to an upper triangu-
lar T by means of an (invertible) lower triangular L. Show that this
could not possibly be done with an upper-triancular L, since LTL -1 is
upper-triangular whenever L and T are. Show that the lower-trianaular
L can be taken to be in the manifestly invertible form 1 - }{ where

ff is nilpotent, or a composition of such.

Some useful properties of operators (even of a "spectral”
nature) can be proved more easily without explicit spectral analysis

ISE:@ If we have an exact_sedquence
Q - &
e v—%w
in Lin{D and if a2 = 0, b2 = 0, then T = 0. (Though not necessarily

72 = 0). Use the fact that J@ W=, \/'m Lin
@hough not in LiniD ) to show first that
r' Q K
= lao b
i< . . . .
where \V —j>‘[)-1s an arbitrary linear transformation.

The spectral approach is extremely important for solving linear
differential equations. We will consider instead an example'of linear
difference eguations, which are both of importance in their own right
and as a method of computerized solution of differential equations,
as well as analogous in many respects. Whereas for (ordinary) differen
tial equations we would consider the operator gt on an infinite-
dimensional space of smooth functions, for difference eauations we may
consider a different object of Lin‘z> as follows: Let ﬁ{ denote
the infinite-dimensional space of sequences of real numbers, so that
a typical vector x in ﬂ{ is an arbitrary infinite sequance
XyrXqr Xoreeoe of real numbers, which (x + y) = x‘fyn: etc. for all ni
On this space we consider the shift operator ,E;

R QS (SX) Xrq alln=01 2, qLLxE,IR“‘r

which assigns to each sequence the new one obtained by shifting: 55 is
clearly_ﬂa-llnear. In order to consider "second-order" eauations in

particular, we consider the _]R -linear map

‘R TRL (x) = (7("

-
We want to relate this to certain operators on 12f but not in such
a way that ‘r is a Lln;) morphlsm. Rather it will be of interest to

consider operators T on;JR together with Lin gj -morphisms in the

L4




. . . r~
irection opposite to ||

T
SGRN < = RZQ GT - SG|

i.e. <:5 is an "eigenvector" of S; with "eicenvalue"” 1- , which

moreover satisfies the initial condition

—~ ! ' 2
Hoe G = identity on R

For example consider the equation studied by Fibonacci (=Leonardo of
Pisa 1250, who participated in mathematical contests sponsored by the

Emperor Frederick II of Sicily):

Xnr2 =Xnya T X,
It is clear that if we start with any given pair of initial values
DX Xy then recursively applyina Fibonacci's equation, we aenerate
a uniquely determined complete sequence x. Let G be the mapping from
pairs to sequences thus generated; by construction we havei}iG%identity
and C§ may be referred to as the solution operator for Fibonacci's
quation. However, when we speak of "solving" an equation we usually
intend that the solution be expressed in terms of generally-understood
mathematical operations; thus if we started with say x, = 1, X = 1,
but need to know the 1013th value of the resultina sequence, can we
calculate it by means of operations known from high-school algebra
without actually aoing throuch the 101l steps suagested by the equation
itself? Note that the equation can be expressed in terms of our shift

pperatorSas 2
Sx=5x+%x
(S*-S-4)x =0

e N . : -R-N

there combination in parentheses is a sinagle new operator on [t .
enturies of experience with difference equations suaaest lookina for
lspecial solutions (analoagous to the special solutions e;\t appropriate

for differential eauations)in the form of "geometrical proaressions"”:

n
Xp = A alln=0,1,2..-.
Ehere A is to be determined. In fact if we substitute this into the
quation we find that A must be one of the two numbers

4t VE
2

-

or

A, =

of the "aolden mean". Thus there are two special solutions

Lrs) (gm)

2

of Fibonacci's eauation, and we will see that every solution can be

unjiquely expressed as a linear combination of these two )




a, b.
EXERCISE: ff Given Xor Xy solve the equation a + b = X
a>\++ bA_= x4 for a,b

xy = a(tel3 Zb(g.—ﬁ-)“ s
2 2

where the coefficients a, b can be determined from the initial values

Thus the solutions constitute a two-dimensional subspace of the
infinite-dimensional space IR—IN ., Wwith 6 as the inclusion.( A diffe
rent second-order equation from Fibonacci's would involve a different
pair of eigenvalues and a differenta ). Now notice that if x is a

solution of Fibonacci's equation 2
Sx =Sx+x

then its shift y = Sx is another solution: .

529 - S = S(Sx +7<) =565x)+<57()=5~a ty
In other words the inclusion |R? —G—;\ TR is actually a sub-object in
Lin? (not only in Lin). This means that G is a Lin 2 -morphism, if

we only make explicit the operator T on | 2 for which GT:- SG
Since
G (2] -
X1

2x
3x
5x

but GT/CL)=

LI R IR, ]
0O 0O +~ O

O o o

we have S 6(;),;

NWN QO

th= 1

1

on the other hand 56 o) _ |1} but 67‘(? =/ %2 shence ti=1
1 2
:

12 21
Thus it appears that -~
1l 1
m The statement that all values of (5 satisfy Fibonacci's

[a]
equation 1s equivalent to the eaquationS7 G= S@E+@G for linear trans-
formation. If GQT=0@, then using the latter twice we aet

G.Tz;GT,.G ,Oor G(TZ’_T_l):Oﬁince also ?6?.1, we aet TZ'-T-'] =0
oc T?* =T+,

—_——— e —



?"f m Verify that for the above T, we have indeed that QT = SC—.]

where is the map obtained by interating the Fibonacci equation wi th

given initial values, and also where 6 is expressed in the "closed

form" with powers of >\i‘ = 1_:,_. Vs and coefficients a,b obtained from

ith help of A ~
X , X, wi elp of 2. |
o 1 s
The initial values emphasized by Fibonacci were whole numbers
x =1, x, = 1, which leads to the "Fibonacci numbers" 1,1, 2, 3,

o
5, 8, 13, 21, 34,... all of which are whole: it is thus striking that

the "closed form" expressing all of them as a fixed linear combination
of two powers Aﬂ' must involve not only denominator %n but even the

irrational number 1/5: . On the other hand, what is considered "explicit"
depends on the problem at hand: if we want rational approximation to
a solution (like %E) of a polynomial equation (like AZ-R-—1= O);
one way to obtain them is by just iterating the correspondinag difference

equation, as follows

[M Investigate the claim: If x is "any" solution of

K K-
' S®™x za$S x’+.--+b>\+C K K-1
then &im 7'(5 +1 = the larcest solution of A= a) + .- -4b>\+C.
n oo X ‘
n




Determ inants computed by Linear Categories 7S

_ and Nilpotents
While certain invariants such as the trace and the multiplicity
of all non zero eigenvalues are (not only invariant under isomornhismr
in Lin€ but also) the sare for T an@d § which are "weakly equivalent"”
in the sense of the definition
T~3< Jae[BA=-T A AB=9)],

some other invariants such as the determinant can be changed by weak

equivalence, so other methods are needed to comrpute them.

e ——

Exercise | Prove that isomorphism implies weak equivalence, i.e. that
e —

if for given T(SV' S there is known to exist at least one

v = W for which LT = SL and L1 exists, then it is possible to
A
—

construct V‘ W for which BA = T and 2B = §.
2}
There exist R% R2 such that BA = 1 (hence has determi-
nant 1) but S = AB has Jdeterminant O.
For calculating deterrinants, the following Axioms for determri-

nants (of ormerators on finite dimensional snaces) are useful:

T
1. 16V , w95 are such that T S 5, i.e.
4 .
JV— W [tlexisks and LT = 5[:]
then det(T) = det(S) ‘ .
2. For anv W,‘)s with dim(V) = n, there ex::Lrsts an upper triangular
nx n matrix T and an isomorphism in LinQ R"—:ewo

3. If T=[tg-.--- is any upper triangular nxn matrix, then

O ) [det@-t t, -t ]
the nroduct of the n diagonal elements LCaution: for a square
matrix which has non-zero elements both above and below the main
diaaonal, the deterrinant is not given by such a simple formula,
but bv a much rore comnlicated Fomula;’

nQSO _ _ ' _ P

4. If is a given matrix |and recall that given any V

we can find a matrix isomorphic to it by choosina eny bhasis
"‘_;_yv 5? V and defining §, = ,3.1 S (BJ,then an isomorphisn

T(; n_~» o can be constructed as a composition of isom i
sororphis

R—&-R a2z 2 moisey
L = LOLl"Lp of the extremely simple kind known as "elementary ro

and colurmn operations”:
Sp-1 S Sp-» 2 1
R B e B B R T
. Lp Lp-1 Lp-2 R Ly —“Lg
_ -1 -1 '1. T
LS =L, Sk Lk T= LP SP‘1 LP Sggerlﬁrfqgular

?'C;QM
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[Excrcise] 1n fact, if‘_ Oc04o —c + 00010

endomorphism in Lan)J.S an endomorphism in Lin of R"' of the snecial
form . n
Lk‘ck‘ln + Hk v Ck -'f- O, Hk ml.pof‘e.nf endo aFIR

so that it is trivial to see that L;r exists!
C oooo0 o

where "elementarv" means in narticular that each Ly (while not an

cC oo

with the 1 in the i-th row and j-th column onlv, then for any scruare

matrix A of the same size -1
T A LAL

is just like A except that the —tg row of A has been replaced by the
sum of the original -th row nlus C times the -th row. Thus by choosind
C # O and the 'pivotal"” position i,j correctl_y we can arrange that thﬁ
entry in the second row and first colurmn of A is 0. 'T‘hen by a sccond
choice of € and i,j (hence an 2) , we can arrange the A 2,,_ -1 A AL
has still more zeroces, and continue until the result has all enkries
below the main diagonal 0. Since 2, X, K,...etc. are also isororphic
in Lin@ , all isororphism-invariant properties, such as the value cof
the determinant, remain the same for each of A, ;, K,..., ye can com-
pute the determinant of A by computing the determinant of ?\ , but if
that is upper triangular, then its determinant is just sirﬁply the
product of the n diaoconal entries of f This is very often the hLest
way to calculate the determinant of a large square matrix R (unless

perhans we know a lot a priori about the structure of 3).

A
Exercise § (Followina problem 1 on the "last" test) If V(——W’ are

any linear transformations (with V,¥W not necessarllan , then

tr (BA) = tr(AB). IfTQV is an idempotent onerator(T = T), then tr(T)
is a whole number and tr(T) € dim(V).

Hint: If W d;f{v}:'r, Tv = v} , and B is the inclusion map of W into
V, then we can construct an 2 (essentiallv the "rule" of A is the
same as that of T, but the idemnotence of T must be used to show that

it goes into W) for which T - 1
C‘V ?WQ " BA=T, AB:-1y,

But the 'l:r-(iw) = dim (W) can be nroved for any identity endo-
morphism by using any basis.




Test i

DEFINITIONS TO BE USED ON TEST

If A is an nxn square matrix, its trace is defined

as the sum of the diagonal entries

n
tr(A) = ?.1: a;y

where a,; are entries of A . If T is a linear endomorphism
(operator) on a linear space V , and if R -i’- vV is a
linear isomorphism (or coordinate sy stem for V) then

(provisionally) the trace of T relative to X may be

defined as the trace of the matrix which represents T relative
to
- -1
tr . (T) tr (KX "TK)

1f ?\ is any scalar, then

Vy(m -{v&v’ TV -]\v}

is a linear subspace of V called the a-th eigenspace of T,

whose dimension dim vVa (T) is called the multiplicity of A
as an eigenvalue of T; if the multiplicity dim VA ('I')> o,
i.e. if gv [v ¥ 0O and Tv -)v] then one says ) is an
eigenvalue of T.

Two linear operators VOT ’ WQS are weakly equivalent

if there exist linear transformations V A > W, W B > V
for which BA=T and AB = S . A map (in the category
Lino) from T to S is a linear transformation Vv —B& > W

for which AT = SA|; T and S are isornogghic (as linear

operators) if there exists an invertible map A from T to S

1

(then A™" will be amap from S to T ).



- 2 -

A map (in the category Lin !) from one linear transfor-

mation Vo T >-Vl to another wo S > Wl is a pair
A
V. ———i—ﬁ>.w. of linear transformations for which A.T = SA ;
i i 1 o)

the map is an isomorphism iff both Ai are.

1. If A is an nxm matrix and B is an mxn matrix,

show that ¢tr(AB) = tr(BA).

2. Show that the trace of a linear operator T is well-
defined independently of a coordinate system, i.e. that ifCK,ﬁs
are two coordinate systems on the space V on which T acts,
then (although the matrices a('l'ro( and (.‘)-lTﬁ are usually

different) the numbers 'rr“('r) = trﬁ (T) are always equal.

3. Prove that if two linear operators T, S are weakly

equivalent, then tr(T) = tr(s).

4. If T,S are weakly equivalent (witnessed by A,B)

show that 'r2 ’ 82 are weakly equivalent (by constructing A ,

so that A, B witness this new equivalence).

How are tr(Tz), tr(Sz) related? Wwhat about T3, S3 ?

5. Show that if A,B witness the weak equivalence of T, S

)

then A,B are in particular maps in Lin¥,. If A is a map

from T to S and if A is invertible, construct B so that

A,B witness the weak equivalence of T,S. But construct a simple
example of V(Jr, WOS which are weakly equivalem'7 but for which

dim Vv = 1, dim W = 2 (so that no invertible A could exist.)



6. If T, S are weakly equivalent linear operators and
if A is an invertible scalar (i.e. a non-zero scalar if the
scalars form a field), show that the multiplicity of /-i as
an eigenvalue of T equals the multiplicity ofa as an

eigenvalue of S ; do this by constructing a linear isomorphism

A
VA (T) 4 WZ(S) and constructing its inverse.
7. Give a simple example of a pair of linear transformations

A
_ . - . -
\'4 . = W for which A O 1is an eigenvalue of S AB, but

h = 1 is the only eigenvalue of T = B A. [In fact, one
example correctly chosen will work both for problem 7 and for

the last part of problem SJ

Conclusion: The hypothesis A ¥ O is needed in problem 6.

8) Given two scalars A ,/(/ , multiplication defines

linear transformations R J—)vR, R —7L)-R between one-

dimensional spaces Vo = vl = R, wo = Wl = R. How must ;] ,/1/

be related in order that these two transformations are isomogghic

as objects of the category Lin'-b ?

. or ¥
9. But considering two scalars as operators R r R
how must they be related to be isomorphic in Lin ?
lo. Consider an arbitrary 2x2 matrix as an object
i:::)(tll t12>
R
ta1  t22
of the category Ling of linear operators, Try to find an

upper triangular matrix 2 Cll 512
R‘: > = S
o 522

T




and an isomorphism A in LincD between S and the given

T . TFind conditions on the four scalar entries of T for
which such an S and A exist, explaining why the condition
is different in the two cases R = real numbers and

R = complex numbers, giving a simple example in the real case

for which the condition is not satisfied.

Hint: S would have the same determinant as T ,

and determinant A # O.



Application of the “Geometric Series” Formula

= Z D &1
to Differential Equations. K=C
The above formula can be valid for "nilpotency reasons" even when D is

not nilpotent, in situations where D is acting on a big linear space in

"locally nilpotent" fashion. For example consider the space of all polynomials

in one variable t and interpret D as ordinary differentiation: Q
mC linear C. guadratic cubic C - all 'D
U polynomials polynomials polynomials polynomials

While 1 .is not nilpotent in acting on all volynomials (since there exist

polynomja‘s of degree > any given n), for each given polynomial g,
\\ﬂ

if we take n = deg(qg) , because applying D decreases the degree by one and
hence interatingD enough times kills the given polynomial g. That is
) . o . .
wel - . . - Wl - Y
aanD 3'() Is'{aloa ‘Lut Vgaw 9 O istyue
(This of course would not be true if we allowed g to be a rational function

or an exponential function).

Suppose we need to find all solutions W of the differential equation
U-U'=g
rwhere g is a given polynomial "forcing term". Now a basic general principle
of linear algebra is that, if T is any linear transformation, then the set

of all solutions WU of Tu.:g'

can be parameterized by the linear space of all solutions f of the
"homogeneous equation" T ‘\:"O

provided we can find one "particular”" solution a7 1»0 (]

q =

UJ|I

—.—~

The parameterization is just -S- — 'u‘—...e{fi e, ﬁe t “loy
Che -Tvom (vaej'fhm.lcuge) i_‘ lT* =O_k g - l lu-g-k

where the inverse of the bijection is ‘}hé

EXERCISE’ Prove this basic principle of linear algebra.

Now in applying this basic principle to the above differentis
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equation we take | = 1—D , SO that the homogeneous equation is just

{-f/=0

whose solutions are well known from elementary calculus to be parameterize:

by integration constants A . {(\‘-);Aet
Thus we need only find a particular solution a to our differential
equation 1w - T ! """‘jr
But since g is a p_olynomjo.gl, our "local nilpotency" geometric series
tells us that "E: Z Dng.

K=o -

is the unique"polynomial solution; in fact the degree of WL is the same as

the degree of g.
EXERCISE: Verify this for %Cf)' ?Jt —'t + 7

Thus the general solutlon of u- u 3—
. 14
is ‘LL Ae +ZD
where the series is actually f1n1te for any given polynomial g.

While we have taken]) =( \' to keep the solution of the homogeneous

equation simple and thus emphasize the method of finding¢ the particular
solutionjexactly the same method could be used if D’] o( \l'{'?(yl"l( Y'
Then the solution f of @.‘D)F=O would involve periods of oscillation,dampin¢
and growth constants, etc. but so long as the forcing term g is a polynomia.
the particular polynomial solutionﬂcould still be found by iterating

(this more complicated)D on g and adding the results, since even this

more complicated D is still "locally nilpotent" when acting on polynomials
Further (going beyond pure alcebra into analysis) even if g is not a
polynomial it can be approximated by a polynomial if we are interested in
studying the fine structure of a solution Y over a brief period of time

(say over a time span of a few days when the shortest period of g is annual

fvticws,

* S:V\te 'u—u'wﬁb) )\: Wou-2evw \)C(a'wﬂ“-“ L4



Multi - Dimensional Calculus
g3

If ‘F is a (smooth) real-valued function defined on an open interva

in the line such that the values of ‘F lie in an open interval Y, and if

% is another smooth function defined on Y, then the chain rule of
elementary calculus _states that 17 1o
(%c-f)’(x) =q (fi)-£(2)
For a multitude of applications in geometry, physics, economics, etc. it
is necessary to give the chain rule a meaning and validity also in higher-
dimensional situations. If XLY ‘3">Z. are mappings of three higher-
dimensional non-linear spaces, the meaning of OF is clear:
X $L57 gof)@) = q(F) al 2inX

But what of ( )' and what of the "multiplication"e gn the riaght-hand
side of the chain rule? I:Iote that even in the one-dimensional case, even
though x is restricted to X, if Q=""‘(x) "‘"j\(ﬂhéﬁz;u the product av”
makes sense for _a_ny_'l/ ; similarly if b’gi(u\for a certain sJ bca‘m be
multiplied by any W (not necessarily in Y). Moreover

(b@v-—_— b(a'v—) 'g-cr all v~

The chain rule gives another meaning to the product ba in_case tg_?-{’(’l’.)

namely if C = (‘écf),('x') Aic’iﬁ':,:éue x) € hew. —_—

e, for all v, cvz(ba)v=blav)

Now if X,Y,Z are not necessarily l-dimensional (nor linear) we can

still attach to each point % a linear space Vx called the tangent space

to X at (for example X might be a sphere) and similarly Wa a linear space

attached to each point 4& of Y. Then the derivative of‘!’ at L

will be a linear transformation V% ﬂ’_’,w{(i)
. . . - 2 . . 47 v
i.e. S'('t)l,"tw;(;;) Loxal veVy );\.J .\'{x)(,\,v,*}zvz)-)\‘”t)"{ 3, (v, .

Now composition of linear transformations may be considered as a generaliz

"multiplication". If we have another non-linear map ;Y"'>2 and if we hav



3‘-{ chosen 'X/d then we can chose not only ‘j. F@)but also 2= 3(;) 3”’“’”

and if we denote the tangent spaces to Z by Ub Jsor zaZ

then
. qef)y_
x —343=7 Ve _3——_7L z=4(y)
3 : " 40y
1\ /; }”(t)\; 9'4) ?=F(1J
v Wy

The chain rule says that the last diagram is commutative, as composition

of linear transformations (i.e. "multiplication"®)
In case all three X,Y,Z of the non linear spaces are included
— ™~ . ]
in (affine) linear spaces XC© v) YC-W) 4cU it is often possible to

identify the various tangent spaces with a common 1linear subspace VOC\/)

W W )Uo C U« of the containing space by rotation and subtractio
0

of vectors, for example e .
Vx : s de \/
- 3” R X
ez
g X
o Vo

so that x corresponds to the origin. If we omit all these identifications,
! . [

f' (x) becomes (somewhat confusingly) a linear transformation {‘("t)-\}o‘9 Wa

between fixed linear spaces, but in general a different linear transformati

for each x. If X,Y,Z are open (for example balls) in V W J 'Hm\

u ('

v V
but in general they will be lower-dimensional, as in our picture. w, =V

While the "co-ordinate free" description is necessary for describing
the objective motion of bodies in everyday life and in conceptual physics,
equally necessary for numerical calculations is the introduction of

(subjectively chosen) Zcoordinate systems"; such induce among other thinas
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the choice of a basis in each tangent space (which in turn induces an
identification of the various tangent spaces with each other which may
have to be untangled by subtracting and rotating etc.) Thfs if XCI‘I\”T ‘ff—ﬁ?':
are open, then for each x j_ ﬂﬂ we have linear transformations?

R”W S(‘L) __3_}_>

{ . . m
Then -f{x)'t" is a matrix product for each column vector wele where

f'(x) "is" the matrix whose entries are
.o 4 sl -
%{(14),.: Ef; 3

)i 511‘ g =l -y

)
where the 'f; are the components of the nonlinear map £
and similarly the chosen bases for the tancent spaces to Y and 2 wJ'_.ll

give g'(y) the matrix entries

i _ Ja. K=(, .,
%(Xx)i - 3—33; .5:-1, rf

Since composition of linear transformations is represented, relative to

given coordinates, by matrix multiplication, the chain rule becomes

ghil) =9 2a U

3_‘ 933 Qx Lzl)"\m

where it must be understood that the ég}‘ are to be evaluated at y = f(x)
and not some other y. :13

Another important construction in calculus is Newton's method, both
in the nroof of theorems like the implicit function theorem as well as in
a great variety of numerical approximations. Here one needs to find x for

which f(x) = y, where f is a given non-linear map and y is a aiven noint
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in the codomain Y of f. Newton's method is to iterate the (even more l
nonlinear) map .',)Z (')-) - T+ i:j_’l_&)_
: 'j.' 4 /(1) !

starting from a point < which one believes is "nearly" a solution and

repeatlng;']q again and agaln hoping that the resultina sequence |

X, NE) =X, (Fx)=x, -

of points in X w111 "converge" to an actual solution x of f(x) = y.
While this hope is amazingly often justified, the discussion of that
is given in courses on analysis. Here we just point out that since, if X,
are more than onedimensional, f'(x) is not a number but a linear trans-

formation, to even get the Newton procedure% goinag one has to deal with

the inverse
H(2)

of a linear transformation (and indeed deal with it in a way that can be

repeated when one changes from'x to a new X , thus getting a whole

4

new linear transformation) and this is one of the important problems

of linear algebra. (More precisely, if dim(X) > dim(Y), it is only a one
sided inverse S(X)for f'(x), i.e. -SI(I)'S(‘E)?-IW ,rather than an actual 2-$idé€
inverse, which is possible because of the geometry and required for Newton'

method.)
The operators grad, curI. div, lap, are linear transformations betwee

infinite -dimensional linear spaces of functions. For example if X is open
in TR™ , then RT = the linear space of all smooth real-valued functions on

admits the linear self-transformation

B =1 T

named after Laplace, who was instrumental in using it to develop the theory
of gravitational and electrical potential.

._.PExercise: Use lap to define a new (non associative) product on functions
X-)K as follows (Here we use the fact that [R™ is a ring as well as a

Linear space ). gof 35 (o) g ptF) ;wf(g)ﬂ
Yhw %o(uv‘)"—' ‘:cyu\" +U % US j“l’“‘é Mh!
xXeu= U Dute; x; w "‘@"‘Mmod

3}






