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1. THE STATIC QUARK MODEL 

The purpose of these lectures is to 
discuss recent work on the quark model and 
its applications to hadron spectroscopy 
and some high-energy phenomena. 

It has become widely accepted that 
hadrons are composite objects with frac­
tionally charged quark constituents. Hadrcn 
spectroscopy may be explained then in terms 
of the excitations of valence quarks inside 
composite hadrons. Perhaps even more strik­
ingly, under powerful electron and neutrino 
microscopes, the elementary quark degrees 
of freedom (quark-partons) have been re­
solved in deep inelastic lepton-nucleon 
scattering. 

Nevertheless, quarks as ordinary 
elementary particles have never teen iso­
lated frcm composite hadrons. This negative 
experimental result motivates the idea of 
quark confinement and accordingly, quarks 
are assumed tc be permanently bound inside 
strongly interacting particles. 

The final microscopic theory for de­
scribing this strange situation in hadron 
physics is not known yet. The path we shall 
follow here is a recent attempt tc approach 
the problem of quark confinement from the 
phenomenological side. 

1.1. THE SINGLE PARTICLE MODEL 

Jn a first approximation we shall 
picture a strongly interacting particle as 
a small domain of space which is occupied 
by quark and gluon ortits. It will be 
assumed, therefore, that there is an aver­
age field of force which confines the 
quark and gluon constituents to the inte­
rior of hadrcns. First, we shall describe 
the quark orbits in the spirit of the sin­
gle particle model from nuclear physics. 

The first successful scheme of the 
nuclear shell structure to describe nucle­
ar spins, magnetic moments, and various 

ß -decay spectra is that where the nucle­
ar energy levels are treated as due to 
filling-up of individual particle levels 
for nucléons in a spherical box. It is 
assumed that the strong interaction of 
each nucleón with all the other nucléons 
in the nucleus can be approximated as a 
roughly constant interaction potential 
extending over the nuclear volume such 
that the assemblage of nucléons forms a 
"self-consistent" box. 

Similarly, we shall assume that the 
average field of force which confines the 
quarks may be represented by a scalar 
square-well potential of radius R as 
shown in Fig.1.1. The radius R is taken 
to be 1 i'ermi, in accordance with our 
knowledge about the typical size of a 
hadron. 
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Fig.1.1. Scalar square-well 
potential to confine quarks 
within a spherical box of 
radius R . 

The agent which supports this 11 self -
-consistent" square-well potential Is not 
specified yet. It may be due to some effect 
of the other constituents, or related to 
the structure of the vacuum as a physical 
medium. We shall return to this problem 
in the third lecture. 

With a non-relativistic description 
of quarks inside the spherical box we would 
run immediately into trouble. In the non-
-relativistic quark model the nucleon's 
magnetic moment is determined by the free 
quark magnetic moment jt = q/2m q where q 
is the quark charge and m^ its mass. In 
the standard, non-relativistic quark model 
the mass of up quarks and down quarks is 
taken as m q s- 300 MeV in order to fit the 
proton's magnetic moment. 
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However, the formula yu. = q/2m Is 
valid only for a relativistic free quark. 
For the hour.d Dirac quark the result is 
correct only in the non-relativistic limit 
when m q » p , where p is the momentum 
of the bound quark. If we solve the 
Schrödinger equation for a particle of 
mass niq in the square-well potential of 
Fig. 1.1 in the M q •*• <x> limit, we find for 
the ground state energy 

* 4 ÎT* 

so that the momentum p is of the order 
of MJC/H . Thus, p ~6C0 MeV and hence 
the formula fl = q/2m cannot be used for 
iHq ~ 300 MeV . Consequently, this standard 
result of the non-relativistic quark model 
has no derivation for a physical proton. 
It would be valid only for a gigantic pro­
ton with a radius of several ferais. 

Therefore, we shall describe the sta­
tionary states of the quark orbits by the 
relativistic Dirac equation 

ft + fi + fl Vit) (1.1) 

where tt- and fl are the standard Dirac 
matrices : 

" • U o j , I3' I . - i j 

and 6 with k=l,2,3 stands for the 
2x2 Pauli matrices. The momentum p* is 
represented in Eq.(l.l) by -it V in coor­
dinate representation. We shall set ti=c=l 
here and later on, unless they are kept 
for pedagogical purposes. Our metric is 
(+ ) with n Äp A*= g^VV11 = P*- P* • 

The scalar potential V<r) in (1.1) 

is that of Fig. 1.1 in the M q -»• <*> limit. 
Thus, the mass of the quark is m q inside 
the spherical box (hadron.) , and it is 
m + M •* o» outside. The potential V(r) 
implements our initial assumption that 
quarks with finite energy cannot exist 
outside hadrons, while they are freely 
moving particles in the interior points. 
Hence the terminology : quark confinement 

in the static quark model, where the word 
"static" refers to the rigid spherical po­
tential4'' . In the forthcoming lectures we 
shall see that the static potential may be 
replaced by some ful]y relativistic and 

l-S) 
dynamical confinement mechanism 

1.2. QUARK ORBITS 

We shall determine now the eigenmodes 
(orbits^ of relativistic quarks inside the 
spherical square-well potential wall Vir;. 
Each eigenmode is characterized by some 
eigenfrequency £ , the square of the total 
angular momentum J , and the projection 
J z of the total angular momentum along, 
say, the z-axis. 

The angular momentum operator J is 
the sum of the orbital angular momentum L , 

—> -> 
L * f x f , 

-» 
and the spin operator ~ J£ , 

[f/] , 
so that we may write 

-. , ft 

-» 
The components of J satisfy the usual 
commutation relations 

[ i \ J1] - ;JJ . 
• 

Besides, the square of the total angular 
momentum commutes with each component, 

[ j 2 , J k ] = 0 , k = 1,2,3 . 

The components of L and ¿ £ satisfy 
similar commutation relations. 

It is easy to show that the Hamilton 
operator 

H ' ¿ ? + /3 + fl ]/<*) 

commutes with J and J , 
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[H , J 2J = 0 , 

[H , J j = o . 
?2 have Therefore, the operators H , J 

common eigenfur.ctions 

where S , J(3+l), and M are the common 
eigenvalues of the corresponding operators. 

The four-component spinor wave func­
tion HJJM may be represented as 

T£iH 
(I.2; 

where %fn and #£JM a r e two-component 
spinors. Substituting (1.2) into the Dirac 
equation we find 

a.3) 

The two-component spinors are eigenfunc-
tions of the operators J 2 and J z : 

Eq.íl.3) may be solved in spherical polar 
coordinates r t Q *t by separation of the 
variables. 

First, we shall find the angular de­
pendence of the two-component spinors 

and X f j M . This can be dene by 
applying the addition rule of two angular 
momenta in quantum mechanics. The eigen-
functions of the orbital angular momentum 
are well-known from non-relativistic 
quantum mechanics as the spherical har­
monics 

V - V i « , 

The eigenfunctions of the spin angu­

lar momentum operator are denoted by , 
/i. * * í , where f*. is the projection of 
the spin on the z-axis. Since the square 
of the spin operator 

a ? / ¿ 
4 

is a c-number, we have one eigenvalue equa­
tion to determine u^* : 

Let us denote the spin variable of the 
eigenfunction Uy«. by <¡t whose two values 
are chosen as oC=± j . Since 

we find 

The eigenfunctions S^JM of the oper­
í a • * i ; * ator J * L *j o are given by 

-> 

where n « f is a unit normal vector along 
T , and the Cl*^-* are Clebsch-Gordan 
coefficients. For a given J there are two 
independent ways of constructing the eigen­
function from two different values 
of the orbital angular momentum : 

M = vn •A 

The function VfjM defined in the 
space of the angular variables Ô , f and 
the spinor variable J. is expanded in 
Eq. (1.4) in terms of the orthonormal spinors 
Uyx where the quantities 

il 

are the contravariant spinor components. 
The quantity Jl^/*?.) with transforms 
as a spinor 

V£,M-1 
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Jljj^ are known as the spinor spherical 
harmonics. The Clebsch-Gordan coefficients 
are given in Table 1.1. 

Table 1.1. The Clebsch-
-Gordan coefficients for 
the coupling of spin 1/2 
with angular momentum 1 . 

1-Ï 
1 ~i 1 

4L -*-M * ¡ ' 1 ~i 1 " <t*t 
1 ~i 1 

V i **** 

The spinor spherical harmonics SLJF^(N) 
determine the angular dependence of the 
spinors "ffejM and / ¿ J M . I f ^ £ J M is 
expressed in terms of Jl } t M , then / i ? M 

is given by J l j ^ , where g + f ' . j j . T n i s 

follows from the fact that / ¿ J M is pro­
portional to ¿^f* ̂ T J M in Eq.íl.3J. Under 
spatial rotations 5*-p* behaves as • S-n , 

and 

follows by direct inspection. 

The spinor spherical harmonics form 
an orthonormal and complete system 

where J o * nnflJflJf is the element of solid 
angle around the unit vector n . Both 

and X Î Ï M are arbitrary functions 
of the radial variable r which was 
omitted in the separation of the angular 
dependence. 

The complete four-component spinor 
wave function H*£j{M is given in polar 
coordinates by 

IF) i W * ; 
(1.5) 

where , and . fir) and 
g(v) are the radial wave functions. By 
substituting (1.5) into Eq.il.3) we find 
after elementary calculations a coupled 
system of first order differential equa­
tions for the radial functions : 

•37- + — Vr) + (e-^%-vc-rj) ¡<f). 0/ 

where K,'l(l*í)-lGH)-¿¡.Introducing new radial 
functions 

we find 

-j^r ~ f 6<-yy + <£ - « j - Foy » o. (i.6~b) 

The function G(r) can be expressed 
from Eq.(1.6a) as 

< ¿fio IC F<f) (1.7) 

By substituting into il.6b) we find 

0 if r < < 

AT-

where 

M» ¿f r > K 

The solutions of Eq.il.8) can be 
expressed in terms of Bessel functions. 
The general solution of the differential 
equation 

YX) * Ct j< J„ i/3x; + Cjfx J.„ i/3x; 

where 5 „C*> is the Eessel function. Thus, 
we may write for the general solution of 
Eq.il.8 ; 

F«v - '« (f 3 ^ . eA¡? lv_k w f (1. 9) 
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where c 4 and cx
 a r e arbitrary coeffi­

cients and 

TP = 

The eigenvalue spectrum can be calculated 
from the requirement of continuity for the 
solutions at r = R . 

1.3. BOUNDARY CONDITION AND EIGENVALUES 

We shall calculate the eigenvalue 
spectrum of a confined quark inside the 
spherical potential wall in the M -» «o 
limit. Consider first the outside solution. 
Since £ is some fixed eigenvalue, p iM^ 
if r >R and -> oo . Using the well-
-known relation 

}W OX) 

we may write Í1.9) as 

for r > R , and M q -> *> . 

The expansions 

require a particular choice for the ratio 
cj/c¿ i n order to cancel the exponen­
tially growing terms in the exterior part 
of the bound state solution as given by 
Eq.(1.10). Thus, the radial wave function 
F(r) exponentially decreases outside the 
spherical square-well potential : 

cot) ~ c eM , Y" , tt.n) 

where c is some arbitrary constant. 

The function G(r) is calculable 
asymptotically by substituting (1.11) into 
Eq.(1.7) , 

G«) a. - c « ' 

where the constant c is the same as in 
(1.11) . The asymptotic forms (1.11) and 
(.1.12) are valid for any value of r out­
side the square-well potential when •*•«>. 
It follows from Eqs.(l.ll) and (.1.12) that 

fC-c) - - G<*) (1.13) 

if r > R and M q -*• oo . The relation (1.13) 
remains valid if we approach the boundary 
r = R from outside, and it must be re­
quired also for the interior solution on 
the boundary by the condition of continuity. 

The spectrum of a confined quark in 
the Mq - * o o limit can be calculated then 
from the solution of the free Dirac equa -
tion where the boundary condition 

(I.13a) 

is required for H^JÍM in Eq.<1.5) at 
r = R . The wave functions i f e j g K i vanish 
outside the spherical wall. 

The boundary condition (1.13) can be 
written as 

(1.14) 
<C « 1? 

where the matrices 

(Lia; 

are the standard ones. Eq.(l.l4) is of gen­
eral validity for arbitrary quark states 
inside the cavity because the stationary 
states "V Í J ÍM subject to (1.14) form a 
complete system inside the sphere ( r f R ) . 

The boundary condition (1.14^ guar­
antees that there is no charge or other 
quantum number lost through the potential 
wall at r = R . Indeed, the local charge 
and current densities in the interior are 

i ^ c x ) -- " f i t ) i") , 

where we omitted the indices £ ï t M of the 
spinor wave function. If the quantum number 
associated with the current is not to be 
lost through the surface of the sphere, 
then it is necessary that 
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F \ K 3 k (x) . I N F I - o 

if r = R . I t follows from the boundary 
condition (1.14) that 

j f - t + r 0 <i.i5j 

for an arbitrary quark state inside the 
sphere, and thus 

¿ 3-k . f i n ? I = - Ï I - t . 

Therefore, 

and 
YT î < X J = o j T - a 

f <*> = o , 

are consequences of (1.14) . 

The stress tensor for the quark wave 
function which describes the momentum and 
energy flow inside the hadron is 

T 

and 

A " 

The momentum and energy flow through the 
potential wall is given by evaluating 
„zn^-pk* on the surface : 

a . i 0 

The boundary condition of Eq.(1.14) was 
used in the derivation of ïïq.(l.lb). We 
have found before that 'F'J'm O on the sur­
face, and hence its derivative points 
along the normal, 

Therefore, we find that 

where P q is interpreted as the quark 
pressure exerted on the surface. 

let us calculate now the eigenstates 
of a quark inside the sphere of radius R . 
The wave function +{}eM<f) is given by<1.5) 
where fir) and g(r) must be determined 
from the radial differential equations 

subject to the boundary condition £1.14). 
Prom the condition of regularity of the 
radial wave functions when r •» o it 
follows that 

tit) 
j *<Hf J«4 i f ) % > 0 

Therefore, for both values of OC we may 
write 

G(r) is calculated for K>0 from the 
relation 

3¿ <•*) = <*) - ~ J , <•*) 

which yields 

If % < Q , the application of the formula 

il I * ) = ~ L*> ( • * ) 

gives 

Therefore, for both values of "K we find 

The constant c in fir; and g(r) is de­
termined from the normalization condition 

4 . 

The eigenvalues ¿n for a given J and X 

are determined from the boundary condition 
Él.14) which gives a transcendent equation 
for £ n : 

PARITY 
The wave functions ^EITIA are eigen-

functions of the Hamilton operator H , 
the square of the total angular momentum 

•*2 
operator J , and its projection J 

z 
However, they are not eigenfunctions of 
the square of the orbital angular momentum 
"*2 A 
L , though the two-component spinors j £ j g M 
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are eigenfunctions of with eigen­
values l(t*') and «'(«'+<) , 

respectively ; 
here l*}t{ and i'-Jïj . 

These remarks follow from the 
simple observation that the Hamilton op­
erator H does not commute with 

We conclude, therefore, that for a rel­
ativistic quark there is no meaning in 
separating the angular momentum into or­
bital part and spin part. This separation 
is meaningful only in the non-relativistic 
limit when X ^ J Í ' M i s v e r v small in compar­
ison with YtjiM • Then the square of the 
orbital angular momentum, L = I (l*t) , is 
a good quantum number. 

In the relativistic case the two 
values of I label two different quantum 
states which are distinguished by their 
parity quantum number under spatial re­
flections : 

r —> - r . ( 1 . 2 0 ) 

The four-component spinor r\('f(i) trans­
forms under the parity transformation 
( 1 . 2 0 ) as 

where the intrinsic parity of the 
quark is independent of its quantum me-
chanical state, and fya -</ by convention. 
Thus, we find 

Prom 

and 
(-</'- - i-l)* 

we get 

The result (1.21) shows that the intrinsic 
parity "¿^ of the quark is multiplied by 
a state-dependent factor 

X * C-*)* <1.22) 

which may be called the parity of the quark 
state. The two states for a given J differ 
in their parity 1t according to Eq.(1.22). 

1.4. THE NUCLEON WAVE FUNCTION 

The nucleón is represented in our 
static quark model by a three-quark wave 
function where each quark occupies the 
lowest eigenmode of the spherical cavity 
whose radius is R . W e shall discuss now 
some of the eigenfunctions and the solu­
tions of the eigenvalue equations^ 

For massless quarks, with m^= o in 
the Dirac equation, if J = 1/2 , either 

or + < 

(*) 

tic**-,) 
J 4 r r e ' (1.23) 

¿ V (1.24) 

where the normalization constant is 

The spherical Bessel functions Cf ) are 
defined by 

and U^. is a two-component Pauli spinor. 
The formulae CI.23) and Í1.24) can be trivi­
ally derived on the basis of the discussion 
in Subsections 1.2 and 1.3. 

The linear boundary condition (1.14) 
yields an eigenvalue condition for the 
mode frequencies XT I x » 

or 

(1.21) 
t « J , v = — ! K (1.25) 
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where Y-n,* is related to the energy £rxtc 
of the eigenmode by 

C ^ ' 1? 
One notes that Eq.(1.25)is a special case 
of (1.19) for m q = o , and 3=1/2 . 

By convention we choose positive 
(negative) n sequentially to label the 
positive (negative) roots of Eq.(1.25). 
The first few solutions to E q . ( 1 . 2 5 ) are 

•K. = -1 

K = +1 
V I 
cl.l 

2.04 ; x, 

= 3.81 ; 
2,-1 

s2.1 

5.40 

7.00 

The eigenvalue condition (1.25) implies 
the relation 

which gives immediately the negative en­
ergy eigenvalues. The negative energy 
states are interpreted in the spirit of 
the Dirac equation as positive energy 
antiquark solutions. 

Eigenstates with higher total angular 
momentum may be constructed in analogous 
manner. Instead of this construction we 
shall give here the J = 1/2 states for 
massive quarks. The lowest quark state 
for J = 1/2 and can be written as 

(1.26) 

where the normalization constant is 

' 0 0 £(€-yn^) 

The eigenfrequency (or energy) <J is 
expressed in the form 

where X» tf("ljty obeys the eigenvalue equation 
(1.19) for J = 1/2 and : 

(1.27) 

The smallest positive root of (1.27,) , 
x(m qR) , is shown in Pig.1.2. 

Each occupied mode of mass m^ con­

tributes a term £ O n v f l ) to the energy of the 
nucleón. We shall return to the construc­
tion of the nucleón wave function after 
introducing the quark field operator of the 
spherical cavity. 

Pig. 1.2. Eigenvalue x(iriqR) 
of the lowest quark mode with 
mass in a spherical cavity of 
radius R . 

The quark field operator q(r,t) can 
be defined in terms of the complete system 
of cavity eigenstates 

where there is an infinite sum over integer 
values of n for each J , 1 , M ; n la­
bels the radial excitations of quarks for 
given angular momentum quantum numbers. 
* ^ W M stands for the spinor wave func­
tion of the eigenmodes. 

Like in positron theory, we redefine 
the quark annihilation operators ajijj(n) 
for negative n as antiquark creation 
operators with positive energy : 

*J1M fa) 

+ 
a j l M ^ = ¿JlM<--n) 

n > o 

n < o 

Thus, we may write the quark field oper­
ator as 

•n>o 
(1.28) 
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where kj1 MCn> annihilates a quark and 
djjjjCti,) creates an antiquark in the corre­
sponding eigenmode. The antiquark wave 
functions ¿'«M ̂ ) wH-h positive energy 
8, . ' =i„i for n >o are defined by 

<n>o 

They would be associated with negative 
energy eigenstates in the "hole theory". 

We define the well-known anticommu-
tation relations for fermions, 

with.all other anticommutators zero. The 
vacuum, or empty cavity, is defined as a 
state I o > such that 

As the first interesting exercise in 
the static quark model with relativistic 
quarks we calculate now the static prop­
erties of the nucleón '»^. I trust that you 
are familiar with the elements of SU(3) 
and SU(6) , though some group properties 
will be discussed in the second lecture. 
Here we need only a minimal knowledge to 
treat the static nucleón with relativistic 
quark orbits. 

Por simplicity, we take massless up 
and down quarks. With R = 1 fermi the 
kinetic energy 

of the confined three-quark state in the 
lowest mode is about 1220 MeV not very far 
from the average mass of 1180 MeV for the 
N(938) - A (1236) system. 

The quark state 

Clol (-«'o) l°> (1.29) Í x 

is described by the wave function (1.23) 
if 

and the lowest root x- L_ 1 = 2.04 of (1.25) 
are chosen. You may have noticed that I 
alternatingly substitute the value of I or 

K. for the second label of the wave func­
tions and creation operators. 

In the non-relativistic quark model the 
state (1.29) would correspond for, say, an 
up quark to a state U ( t ) where the spin 
points along the z-axis. In our case, for 
a relativistic quark, it is the total angu­
lar momentum which classifies the states. 
Apart from this difference the spin-isospin 
structure of our nucleón wave function is 
the same as in the non-relativistic quark 
model. Por a proton we may w r i t e ^ 

- d 4 ( t ; u 4 c + ; ^ a j - u 4 a ; v t ; d 3 < t ; j 

and a similar construction is valid for 
our neutron state. 

One notes that the wave function (1.30) 
is symmetric in the quark variables if the 
two up quarks and the down quark occupy the 
same lowest orbit in the nucleón. This is 
forbidden for two identical up quarks be­
cause of the Permi statistics for half-
-integer particles. In the next lecture 
we shall introduce three colors for each 
quark which solves the problem then. How­
ever, the results of the following discus­
sion are not affected by this old paradox 
of the quark model. You may think about the 
nucleón simply as built of a red, yellow, 
and blue quark and hence the wave function 
with the lowest mode occupied can be made 
antisymmetric. 

1.5 STATIC PARAMETERS OP THE MJCLEON 

We calculate now the magnetic moment 
and charge radius of the proton and neutron 
and the axial-vector charge £ß -decay cou­
pling constant) of the proton. The magnetic 
moment operator is defined by 

jML A i r x f ? « î f 3i) 
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where the quark operator q has an index 
i = 1,2 for up quarks and down quarks, 
respectively. A summation is understood 
over the omitted index i in Eq. (1.31.). 
The charge matrix 

Q = 

in the internal Cu 
from the elements. 

d) space is familiar 

Given the quark field operator (l.28) 
and the state vector (1.30,) it is straight-
forward to calculate the value of /*• in 
(l.3l) for the nucleón states. For the 
proton we find 

r-9 = M * u XtfàOiift'i) 
(1.32) 

where R was fixed at the beginning to be 
1 fermi. 

The result (1.32) is understood with­
out fancy field theory. Let us calculate 
the magnetic moment of a single quark of 
charge Q in the eigenmode of Eq. (1.23) 
by using (1.31) as a quantum mechanical 
formula in terms of the wave function q(r) 
of(1.23) . The result is 

r\ « n *,/( (*,,.,-<) . 

The rest is SU(6), since the spin-isospin 
structure of our nucleón state vectors 
corresponds to that of the non-relativistic 
quark model. We get then Eq.(l.32)immedi­
ately. 

Substituting R - l fermi and 
x, , = 2.04 in the formula (1.32) , we 
N -I find jXy, = 1 GeV or a gyromagnetic ratxo 

of 

while the experimental value is gp = 2.79. 
The agreement is not too bad for a first 
rough guess. The neutron's magnetic moment 
can be calculated analogously and 

is obtained which is a famous result of 
the non-relativistic quark model. 

origin of the magnetic moment in our pic­
ture is completely different from that of 
the non-relativistic quark model. If it were 
not confined, the massless Dirac field would 
possess no magnetic moment (in Eq.(1.32) 

- » 00 , a s R - > o o ) , Confinement sets a 
scale through the radius R of the spher­
ical square-well potential of Fig.1.1 and 
a magnetic moment arises from the cross 
terms between the upper and lower compo­
nents of the wave function (1.23,) . 

The mean square of the charge radius 
for a quark eigenmode is defined by 

«*> - J clV «r*V;qf cf) j 0-33) 

where Q is the quark charge and is 
the wave function from Eq.(1.23). The for­
mula (I.33) can be easily evaluated and 
we obtain 

For the proton Eq.(1.34) gives 

< * * > * = 0.73 f e r * u - ; 

for the neutron 

' / V 

The proton's charge radius is measured to 
be 

<f\y- = O.gg £ O.03 f c n m ' 

and for the neutron 

<r* > = . o.n t o.of f£ 
" exf 

Finally we may calculate the axial 
vector coupling constant of ß decay defined 
by 

h IJ MÙtfMlrM) (1.35) 

where the matrix 

f4 °1 
L 0 -* J 

acts in (u , d) space. The coupling constant 
g A contributes to the weak decay of the 
neutron, 

H -* V + e + v£ 

It is interesting to note that the which is interpreted in the quark model as 
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the quark decay-

inside the nucleón. 
a + e + v¿ 

function (1.26). The result is 

1? 
(2.1) 

The matrix element of the axial charge 
operator in Eq.(1.35) can be evaluated for 
the proton state vector (I . 3 0 ) in a 
straightforward manner. Por massless quarks 
with the wave function (1.23) we obtain 

In the non-relativistic quark model 

S A - 3 

The result for relativistic quarks differs 
because the lower components in Eq.(l.23) 
are important in their contribution to g^ 

and have opposite spin orientation from 
the upper components. 

We have seen here that the static 
quark model with confined relativistic 
quarks incorporates many of the successful 
features of the non-relativistic quark 
model, and where it is different improve­
ments are made, as, for example, in the 
value of g^ 

2. HADRON SPECTROSCOPY 

2 . 1 . RADIAL NUCLEON EXCITATIONS 

Before I get to the discussion of 
orbital excitations of confined quarks, 
there is a technical point to add to the 
topics of the first lecture. The static 
parameters of the nucleón were calculated 
there for massless quarks. In later appli­
cations some mass is certainly required 
for the strange quark so that we have to 
calculate the single particle matrix ele-

U) 
ments of massive quarks for completeness ' , 

The contribution of a single quark 
of mass rriq in the lowest cavity eigen-
mode to the magnetic moment is calculated 
from ( 1.31) with the help of the wave 

where A = m q R and x = x(m qR) is the 
smallest positive root of Eq. (1.27) as shown 
in Pig.1.2. JL stands for 1? X(*Ji) with 

^2 = J 4+x 4 . The formula (2.1) goes over 
into the previous result for m^ = o . 

The axial-vector charge ( f̂l ) 

ft) -f ¿'t ^*CT)€ (2.2) 

connects either non-strange quarks i=j, 
S=0 or one strange and one non-strange 

quark i=s, j=u, or d ; S=l . In Eq.(2.2) 
^¡It) denotes the quark wave function 

of the i~th species in the lowest cavity 
eigenmode. We obtain a fairly complicated 
expression for the axial vector coupling 
constant : 

(Q \ ¿XjXj Q:-A¿ ( 2 . 3 ) 

p 
The mean charge radius 4r > of Eq.(1 . 3 3 ) 

for a massive quark in the lowest cavity 
eigenmode is 

i i d.[ix*c<-o+u +ia-33-1Mn+a-j ««- 3) 

QUARK EXCITATIONS 

In order to display the rich spectrum 
of confined quarks inside the potential 
wall, we shall discuss now the Hamilton 
operator of the quantized field theory of 
quarks inside a sphere of radius R . The 
Hamilton operator is defined by 

U - Í f * • (2.5) 

in normal ordered form where the field 
operator of the i^h quark species has been 
given in Eq.(1.28) ; i = 1,2 , 3 stands for 
up, down, and strange quarks, respectively. 
A summation is understood over the repeated 
indices of the different quark types in 
Eq(2.5). The mass matrix m¿_j in (2.5) is 
diagonal : 
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0 o 

Here m^ and m.2 are equal in the ab­
sence of electromagnetic interaction. The 
mass of the strange quark mj, or m s in 
a different notation is always larger 
than m u=m]_ . 

The Hamilton operator can be written 
in terms of creation and annihilation 
operators as 

W H E R E

 + ^ M J ^ J J C I M 

is the occupation number operator of a 
given eigenmode. Eq.(2.7) implies that 
there is an infinite spectrum of quark 
modes and an infinite variety of different 
occupations inside the sphere of radius 
R . 

We shall see a little later that the 
physical hadron states must be colorless 
in the presence of quark-gluon coupling. 
Therefore, only those occupations of quark 
and antiquark orbitals will be allowed in 
the potential well which have zero tri-
ality quantum number, such as qqq or qq , 
etc. 

Another practical restriction on our 
first investigation of the baryon spectrum 
in the spherical potential well is that we 
do not consider quark orbits with total 
angular momentum J > l / 2 . The reason is 
that a quark with JI 3/2 exerts a non-
spherical pressure on the surface and it 
is expected that the corresponding state 
becomes deformed from the spherical sym­
metry when we go beyond the static poten­
tial approximation. 

The lowest quark eigenmodes with 
J = 1/2 and their radial excitations with 
the same angular momentum correspond to 
a spherically symmetric pressure where the 
static potential picture seems to be more 

reasonable. 

As we shall see, three-quark baryons 
are to be color singlets and are therefore 
to be constructed of quarks in totally 
symmetric spin-isospin-spatial states. Sev­
eral spatial states (quantum modes) are 
available in order of increasing energy : 

lSi/2 with xx-i = 2 . 0 4 , 

iPl/2 with x 1 1 = 3.84 , 

2Si/2 with *2-l 
etc. 

5.4 

It is elementary group theory to find the 
totally symmetric ways to distribute up 
and down quarks with spin = 1/2 among 
these orbitals^*. Strange baryons are not 
considered yet. The resulting spectrum is 
given in Fig.2.1. Here,as you can see from 
the above list of the eigenvalues of differ­
ent orbitale,we take massless up and 
down quarks, for simplicity. 

2200 

N ( i - ) _ 

J.N(R2N(|--

Z 0 0 0 -

1*00 -

1 
1C00 -

VtOO -

1PÍ 

2Ntt.).N(R 

-1VVV 
1 W 

_A(H 

'«ÉM.4H 

•«tt-)N(t-)- •1*4 \ \ 

1200 L N(H i s 

Fig.2.1. Low-lying three-quark 
nonstrange baryon states with 
3 £3/2 in the static quark model. 
Nucléons C1=1/2) are in the 
left column, A'a ¿1=3/2) in the 
right. 

The lowest states, (lSi/2)"^, are to 
to be identified with the NÉ938) and 
A(l236). One notes from Fig.2.1 that the 
symmetry scheme of the static quark model 
with relativistic quark orbits is not 
the SU(6) of the non-relativistic quark 
model. For example, the low-lying negative 
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parity multiplet does not include a 3 * S 

state since each quark is in a J = 1/2 
state. Baryons with three quark modes oc­
cupied and Ji 5/2 are states in which 
the surface is probably not dominantly 
spherical. There may arise a non-spherical 
pressure on the surface even for baryon 
states with J ¿3/2 in Fig.2.1 if P-states 
are excited and there is some interference 
between different quark orbitals. 

We expect the energies in Fig. 2.1 
to be shifted and the degeneracies removed 
when the quark-gluon interaction is incor­
porated in the model. 

2.2 CONFINED GLUONS 

Quarks are not the only hadron con­
stituents in our picture. They are coupled 
to massless vector particles, or gluons, 
which are the mediators of important inter­
actions between quarks. Gluons must be 
confined inside hadrons which have been 
represented so far as a spherical square-
-well potential with infinite walls for 
quarks. 

Gluons as vector particles are de­
scribed similarly to the photon by the 
Maxwell equations. We shall assume now 
that inside the sphere of radius R there 
is a vacuum phase (or hadron phase) with 
dielectric constant 6 = 1 and magnetic 
permeability fl = 1 . However, outside the 
potential well the physical vacuum acts 
for gluons as a strange medium with £ = o 
and f*. = eo (see Fig.2.2) . 

£-1 

A" 1 

1 £ - 0 

•r 

Fig.2.2. The vacuum in two 
phases against vector gluons 
is characterized by some 
dielectric constant & and 
magnetic permeability . 

We wish to show that gluons become con­

fined to the interior of the sphere under 
these conditions for the vacuum against the 
vector gluon field. 

The repulsion of the gluon field from 
the outside phase of the vacuum can be 
understood as an exercise from electro­
statics. Consider a point charge Q em­
bedded in a semi-infinite dielectric 
a distance d away from a plane interface 
which separates the first medium from an­
other semi-infinite dielectric £t . The 
surface is taken as the plane z=o , as 
shown in Fig.2.3. 

PHYSICAL VACUUM 

M A G E 
CHARGE 

Fig.2.3. The solid lines with 
arrows show the electric flux 
lines of a charge Q embedded 
in a semi-infinite dielectric^. 

We have to find the solution to the 
equations of electrostatics 

and 

7*f 

47T 

o 
o 

(2.a; 

everywhere. The boundary conditions at z=o 
are given by 

(2.9) 

The solution to the problem is given 
by the method of image charges. The elec-
trie field E is derivable from a poten­
tial <)> which is given for z > o by the 
formula . 

1'T4U* *J, 2 > ° . (2.10) 

The image charge Q* in (2.10) is located 
at the symmetrical position with respect 
to Q as shown in Fig.2.3. For z < o the 
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potential is equivalent to that of a 
charge Q1' at the position of the actual 
charge Q 

•R 

The boundary conditions (2.9) determine 
the image charges Q ' and Q1' : 

in!* a , 

2£* a 
(2.11) 

The semiinfinite slab of dielectric 
corresponds in our terminology to 

the "hadron phase" of the vacuum inside 
the potential wall, if £, » I is chosen. 
The semiinfinite slab of dielectric € z 

may be associated with the "outside phase" 
when <f4-»o . In this limit the induction 
vector D vanishes in the left half-space 
and it becomes tangential to the surface 
in the "hadron phase" (see Pig.2.3) . This 
picture follows from Eq.fë.ll). 

they always drag along. 

Let us turn now to the description of 
confined gluons inside a sphere of radius 
R . Here we shall follow a different pro­
cedure as compared with the description of 
the quark orbitals in the first lecture. 
Instead of starting out with quantum me­
chanical gluon orbitals and constructing 
the quantum field from these states, we 
shall study first the classical gluon field. 

It is characterized by the gluon elec-
trie field E and gluon magnetic field B 
which satisfy the Maxwell equations C¿*f**i) 

V 2 = o 
(.2.12) 

Gluon field confinement is implemented by 
the boundary conditions 

n • E n x 3 = o (2.13) 

There is a similar situation in the 
presence of magnetic field. Since the 
permeability ju of the "outside phase" is 
infinite, the magnetic field H becomes 
perpendicular to the surface in the 
"hadron phase". This is understandable if 
we note that the houndary condition on the 
magnetic field H at the surface of a 
very high-permeability material is the 
same as for the electric field at the sur­
face of a conductor. 

-> 
The magnetic field H cannot pene­

trate into the "outside phase", similarly 
to the induction vector D in electro­
statics. Consequently, no wave propagation 
is supported in the "outside phase" ! 

Indeed, the reflection coefficient 
R on the surface between the two phases, 
for electromagnetic waves of the gluon 
field propagating in the "hadron phase" , 
is given by 

When £ 4-»0 there is total reflection on 
the surface. The gluon field becomes con­
fined to the "hadron phase" . Charged point 
particles are also confined to the "hadron 
phase" because of the gluon gauge field 

at r = R , in accordance with our two-
-phase picture of the vacuum. The first 
two equations of (2.12) are satisfied auto­
matically if the field strengths are ex­
pressed in terms of the gluon four-potential 
A ^ f f ) as 

-> 

E - 3 X Vf -> —> —> 
3 = V x fl 

There is some freedom in our choice of the 
four-potential A^. as expressed by the 
gauge transformation 

A 31 
The second pair of equations in (2.12) 

are equivalent to the wave equation! 

• A = o , a? = o , 
if the Lorentz condition 

~* —» 
V A 

n = — - V 

1Ï 3t 
is imposed on A 

The gluon field energy is given by 
the well-known expression 

H . i f J V ( * ' . * } , (2.14) 

and the angular momentum of the field is 

•r * x ( £ * 3 ) (2.15) 

- 92 



The components of the stress-energy tensor 
are 

(2.16) 

Too - - ¿ C ( 

where the expressions 

describe the energy and momentum densities 
of the gluon field. 

It follows from the boundary condi­
tions (2.13) that there is no energy flow 
across the surface : 

R K O - O . 

The momentum flow through the surface is 
given by evaluating fi^T'1* with the help 
of Eq.(2.l6) and the boundary conditions 
(2.13) : 

where 

(2.17) 

is interpreted as the gluon field pressure 
on the surface. 

The negative sign of the magnetic 
field pressure in (2.17) requires some 
explanation. The repulsive force exerted 
by the gluon electric field on the walls 
of the spherical potential well can be 
understood from the simple model of the 
dielectric slab of Fig.2.3. There is a 
polarization surface charge density on the 
plane at z=o between the two semiinfinite 
slabs given by 

o „ i = — : H " IX £4C£,+€I) <j*+J*)3/* 
(2.18) 

where $ is the distance from the origin 
on the plane z=o . Instead of using the 
image charges we can describe the electric 
field in terms of the polarization charge 
density ĵ»ol . When £ 4 " 0 and £ a - » o , the 
polarization charge in (2.18) is of the 
same sign as Q . Therefore, the force 

between the charge Q and the surface is 
repulsive implicating a positive electric 
pressure on the surface. 

The situation is opposite in the mag-
netostatic case where the electric charge 
Q is replaced by a fictive magnetic mo­
nopole g . Due to the highly polarizable 
magnetic property of the outside phase, a 
magnetic surface charge polarization appears, 
which has the opposite sign of g . There­
fore, an attractive force arises between 
the monopole g and the- surface explaining 
the negative sign of the magnetic pressure 
in (2.17) . 

CAVITY EIGEOTODES 

There are two different types of 
spherical waves which satisfy the Maxwell 
equations (2.12) inside a cavity of radius 
R . The transverse magnetic (TM) , or elec­
tric, fields are given in multipole form by 

'CI <*; • < Jl [ £ u <k<> 
R R - R R I •* -, - L U I (2.19a) •Ha W- 'Wal* 

and 

C<*>.-^(S)4V; 
where Oi = k . The radial function gj(ta) 
is defined by 

(2.20) 

and J^(x) is the Bessel function. The 
vector spherical harmonics in (2.19a,b) 
follow the standard definitions : 

H M ^ ' Y** <*>,
 (V,M̂ V°< (2.21a; 

<•%<*>)*••><!&<*>h 
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and 

Since the vector spherical harmonics 
YjjU in (2.21a) is transverse to r , 
we find that the magnetic field 3 is 
transverse in the electric, or transverse 
magnetic, multipole eigenmode : 

-* 
The electric field E in the TM multipole 
eigenmode is not transverse, however. 
Indeed, ¿f^^rity i n (2.19a) can be written 
as 

where the first term is longitudinal along 
the radial vector r while the second 
term is transverse to v . 

Since the boundary condition (2.13) 
for B requires it to be longitudinal, 
and according to (2.22) B is transverse 
in the TM mode, we find the eigenvalue 
equation from (2.19b) , 

îj<l<*; - O (2.24) 

for the eigenfrequencies of the TM cavity 
eigenmodes. It is easy to see that E 
from (2.23) satisfies the boundary con­
dition (2.13) because of the relation 

X 3\,_, Cx) + x lr9u in) * IV J v (x) . 
The frequency of the lowest TM mode in 
units of the inverse of the cavity radius 
is 

x Q ( T M ) = 4.49 , for JT = 1~ (2.25) 

where P is the parity of the eigenmode. 
It describes the state-dependent change 
of sign of the field strengths under spa­
tial reflections. 

The normalization in Eq.(2.19a,b) is 
chosen in such a way that the electro­
magnetic field energy (2.14) is ¿O y 

while the square of the total angular mo­
mentum J in(2.15,)is J(J+1) as expected. 

There is an infinite sequence of modes 
for given angular momentum values with 
increasing numbers of radial nodes. The 
parity in TM mode is 

V = ( --))* • 
The discussion is similar for the 

transverse electric TE , or magnetic, 
modes. The fields in multipole form are 

Eqs. (2.19a,b) change to the form ¿2.26a,b) 
under the substitution E -> -iB, B -> iE , 
which corresponds to the invariance of the 
Maxwell equations (2.12) with respect to 
the transformations B -* E , E -* -B . 

-+OT) + 
The electric field (fjt) is trans­

verse in the TE mode , 

so that the boundary condition (2.13) is 
-* _* 

trivial for E . For the magnetic field B 
in Eq.(2.26b) the boundary condition (2.13) 
implies the eigenvalue equation 

3 fa+4&V + %.t CkH)'0 (2.21) 

whose lowest eigenfrequency in units of the 
inverse cavity radius is 

x o ( T E ) = 2.74 , for J P = 1 + . (2.28) 

The parity of the TE eigenmodes is ? • <-') > +*. 

QUANTIZATION 

Similarly to the field strengths, the 
gluon four-potential A/A. can be expanded 
into spherical eigenmodes. In radiation 
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gauge ( A Q = 0^ the expansion is 

\ c. 
A < x ; - £ A . <*)+c + ffix)) (2.29) 

U Ï M / 

where !k describes the type of the mode 
a>3 M and the summation is over all eigen­
modes of the cavity. In the quantization 
procedure C W J H ^ and £tô»M% a r e considered 
to be q-numbers, that is, annihilation 
and creation operators, respectively. Their 
commutation relations are given by 

' (2.30) 

The Hamilton operator can be calcu­
lated from (2.14) using the expansion of 
Eq.(2.29) : 

« 3 M l 
J . C 2 . 3 i ; 

Similarly, the third component of the 
angular momentum J is calculated from 
Eq.(2.15) to be 

Introducing the occupation number operator 

/t 
we may write E q s . ( 2 . 3 1 ) and (2.32) as 

3* - H * H ( A W * ! + l ) , 

where the eigenvalues of the operator A&JÏMJ 

are positive integers and zero. The zero 
eigenvalue corresponds to the zero-point 
fluctuations of the gluon field. 

In the expansion ¿2.29) for the vec­
tor potential the summation over "X in­
cludes the TE and TM modes. We are not 
concerned here with the problem of longi­
tudinal and scalar gluon modes which 
appear only in intermediate states in 
perturbation theory, and not as physical 

gluon orbitals inside the potential well. 

The spectroscopic implications^ of 
gluon orbitals will be discussed in the 
fourth lecture. 

2.3. FLAVOR AND COLOR 

Each quark eigenmode with energy 
inside the spherical potential well of 
Fig.1.1 may be occupied by any of the four 
different quark species, upCu), down (d) , 
strange Cs) , and charmed (c) , which are 
known so far. They are given in Table 2.1 
with their most important properties ( quan­
tum numbers). 

Table 2.1. The quantum numbers 
of the four quarks are given 
here : isospin, third component 
of isospin, charge, and charm. 

quark 
species I Y Q c 

u 
1 
1 

I 
Í 

1 
3 

Î 
3 

0 

d 
1 
Í 

4 T 
3 "5 0 

s O O _ I 
3 

/ 

" 3 0 

c O 0 
T 

1 
I 
3 

•f 

The quark eigenmode inside the spher­
ical cavity is labelled then with a new 
index «C = 1,2,3,4 with reference to the 
quark species which may occupy it. The 
suffix «(• is known as the flavor index of 
the quark. Antiquarks carry the same quantum 
numbers as quarks, but with opposite signs, 
of course. 

The same mass m^ = m a is assigned to 
the non-strange and charmless up and down 
quarks. In what follows here we shall assume 
m u = o , for simplicity. The charmed quark 
is supposed to be heavy with a mass between 
1 and 2 GeV , while the mass of the strange 
quark is about 3oo MeV . The mass parameter 
is defined here as the value of m in the 

q 
free Dirac equation (l.l) . 
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We shall assume that each flavor 
occurs in three different colors with a 
suffix i = 1,2,3 . The twelve different 
quark field operators are a straightfor­
ward generalization of the expansion in 
Eq.(1.28) : 

where 

n . H M 

Tahle 2.2 is a short summary of the twelve 
different quark fields : 

Table 2.2 

up down strange charmed 

red %* 

yellow % %3 \* 
blue %3i %z ? 3 3 

Each quark with given flavor, say the up 
quark, comes in three colors with the same 
particle properties except the color quan­
tum numbers. 

The field theoretical Hamiltonian 
is defined with the help of the quark 
fields as 

VU'' i-'M"*^* C 2.34, 

where a summation is understood for the 
same indices. A normal ordering is under­
stood in the Hamilton operator (2.34) to 
eliminate the zero-point energy of the 
empty cavity (vacuum) . Therefore, H<j_ is 
expressed by the creation and annihilation 
operators of the different eigenmodes as 

V2 
3tn m 
i* ¡oí 

The Hamiltonian of Eq.(2.34) is in­
variant under the transformations of the 
color group of SU(3) • Quarks are trans­
formed as members of the triplet represen­
tation of color SUG) : 

U - ZXf í l i Ü i 
1 k'* J 

The standard Gell-Mann matrices ClK 
act in the internal color space and «<K 
are eight parameters of the unitary trans­
formation U, . The commutation relations 
of the %n matrices are well-known : 

Here f.- v are the structure constants of 
color SHO) • As a reminder ( we give here 
two A matrices, 

K Q O 
O -i O 
o o O 

A o o 
O 4 o 
o o -i 

The color generators of S U O ) c are 
defined by 

The third component of the color isospin 
is 

r = r, 
- 3 2 

while the color hypercharge is defined by 
.= Í 

The eigenvalues of the color generators 
F3 and Fg unambiguously characterize the 
colored quark states of the triplet repre­
sentation in Table 2.3 . 

Table 2.3 

Q U A R K S A U T I Q U A R K S 

red yellow blue green violet orange 

1 
Z 

1 
~i. 0 

( 

"Ä 
< 

Ï 0 

i P8 
à 
ÏÏ 

1 

Tf 
2 

{3 
1 

~ Í 3 

1 

~(3 
Z 
(3 

The eigenvalues of Ij and Y for colored 
quark states are given by the diagonal ele­
ments of the matrices i 3 and J, g , 

respectively. The antiquarks are charac-
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terized by complementary colors. 

The flavor and color properties of 
gluons were not specified yet. Gluons are 
assumed to be flavor singlets under the 
flavor group of SU CA) , and they belong 
to the octet representation of color SU(3), 
There are eight colored gluon fields 

A^ír.t; , i = 1,2 8 

labelled by the color index i 

2.4. QUANTUM CHROMODYKÂMICS IN A CAVITY 

Many theorists believe today in quan­
tum chromodynamics (q.c.d.) as the micro­
scopic dynamics of quarks and gluons 
providing a key understanding of hadron 
structure. This field theoretical model is 
very elegant and simple in its formulation. 
It became popular among many theorists for 
the following reasons : 

(1) it explains scaling and the parton 
picture in deep inelastic lepton-
nucleon scattering in terms of asymp­
totic freedom ; 

(2) it allows for a spatially symmetric 
ground state of the nucleón in the 
terminology of the static quark model; 

(3) it gives a total cross section of 
electron-positron annihilation into 
hadrons which is three times larger 
than without color, in approximate 
agreement with the data ; 

(4) there is a hope that only color sin­
glet states are observable in the 
theory with a possible explanation 
for quark confinement. 

The last point is only a conjecture and 
there are some doubts about its validity. 
In our phenomenological approach quark and 
gluon confinement are provided as the 
initial assumption of the model. 

We shall designate the quark fields 
by where the first index i=l,2,3 
refers to the triplet representation of 
color SU (3 ) . Quarks belong to the lowest 
representation of the flavor group SU(4) 
as the approximate hadronic symmetry and 
the second index << refers to this group. 

The vector gluon fields are designated 
by Ay* where the first index i refers 
to color. Gluons belong to an octet rep­
resentation of the color gauge group SU(3), 
and the eight colors are labelled by 
i = 1,2,...,8 . These vector particles are 
flavor singlets under the hadronic symmetry 
group SU(4) . 

The action W inside the sphere of 
radius R is invariant under the color 
gauge group SU<3) , and we shall write for 
it 

- 3 i i * ' A «y.} 
(2.35) 

where the flavor and color indices of the 
quark fields are not written out explicitly. 
Terms without some indices are understood 
to be summed over those omitted indices 
here, and later on. 

The non-Abelian field strength tensor 
in Eq.(2.35) is given by 

The structure constants of the color gauge 
group SU 13) are denoted by f. , and 

i j k 

g is the small, fundamental quark-gluon 
coupling constant in the action W . The 
eight Gell-Mann matrices A; act in the 
internal color space of quarks. 

Apart from the mass term with the di­
agonal mass matrix 

m = 

the action W in (2.35) is invariant under 
the hadronic symmetry group SU (4). 

The boundary condition for the quark 
fields is given on the surface of the 
sphere by 

(2.36) 

The boundary condition for the gauge fields 
is 
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vx* - ( o , -n ) , (2.37) 

where n = — is the unit normal to the 
surface. 

The field equations can be derived 
from the action principle </" W = 0 : 

¿-i ^R^)n + Î ^ ; f l V - I r V 0 . ( 2 . 3 9 j 

In Eq.(2.38) we have introduced the gauge 

covariant derivative 

There are eight conserved color cur-
; < x ) in the theory, and they 

are given by 

magnetic fields, 

Y\ • 1 1 - O 

«n x 3 ; » o 

(2.42a) 

(2.42b) 

so that the normal components of the color -* 
electric fields E. , and the tangential 
components of the color magnetic fields B i 

all vanish on the boundary of the hadron. 
The color electric fields and the color 
magnetic fields are defined as the time-
-space and space-space components of the 
field strength tensor Fiju.n , respectively. 

It follows from Eq.(2.42a) that there 
is no color electric flux through the sur­
face of the hadron (potential wall) . 
As a consequence of Gauss's theorem, the 
total color charges for i = 1,2,...,8 
must vanish in the model for an extended 
hadron with closed boundary : 

The two terms in Eq.(2.40) are the con­
tributions to the color currents from 
quarks and gluons, respectively. 

In our perturbative calculations the • 
confined gluon fields will be treated in 
the zeroth order of the quark-gluon cou­
pling constant g . In this approximation, 
ignoring the self coupling of the gauge 
fields, the field equations (2.38) and 
(2.39) become identical with those of eight 
independent Maxwell fields coupled to color 
charged matter. 

The eight color generators of the 
model are determined from the color cur^ 
rents as 

.0 
(2.41) 

They are constants of motion and measure 
the color charges of the hadron with col­
ored quark and gluon constituents. 

The boundary condition (2.37) for the 
gauge fields may be written in a more 
familiar form in terms of the electric and 

Consequently, only color singlet states 
are allowed inside the potential wall ! 

2.5. THE BARYON AND MESON SPECTRUM 

We shall calculate now the spectrum 
of light baryons and mesons in the lowest 
order of the quark-gluon coupling. Consider 
a hadron with static, spherical boundary 
(R = 1 fermi) whose interior is populated 
with quark orbitals in color singlet state. 
The quark content of the lowest baryon 
states is qqq , while for mesons qq . The 
hadron states are classified by the rep­
resentations of the flavor group which we 
take as S U O ) for baryons and mesons with­
out charmed quarks 

J »* 
In lowest order of «*c = the 

gluon exchange graphs are shown in Pig.2.4. 
Since the quarks remain in the lowest eigen­
mode in Pig.2.4a , the color current at the 
vertices is time-independent. Consequently, 
only the static part of the gluon propagator 
contributes in Pig.2.4a. The gluon propagator 
is defined as in ordinary field theory : 
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where \o> is the empty cavity ( vacuum) 
in free field theory . The gluon fields 
are confined, subject to the boundary con­
ditions (2.42a,b) . 

(a) (b) 

Pig.2.4- Gluon interaction 
diagrams for a baryon in 
lowest order of <<c . There 
are similar diagrams for 
mesons. Ca) Gluon exchange; 
(b) gluon self-energy. 

To lowest order in <¿e the non-
Abelian gluon self-coupling does not con­
tribute and the gluons act as eight inde­
pendent Abelian fields without self-inter­
action. It is like having eight "photons" 
as the mediators of quark interactions 
inside the hadron. 

In the self-energy diagrams of 
Pig.2.4b the intermediate quark may be in 
any cavity mode. After renormalization, 
the diagram gives a Lamb shift type con­
tribution to the splitting of hadron 
energy levels. We do not calculate this 
self-energy diagram here with some hope 
that its contribution does not change the 
character of the spectrum significantly. 

STATIC QUARK-GLUON INTERACTION ENERGY 

We shall calculate now the contri­
bution of Pig.2.4a to hadron energies. 
The color magnetostatic interaction energy 
may be written as 

AEH - - { fí \ B, C ? ) 3. ( ? ) ; (2.43) 

where the magnetic fields B i are deter­
mined from the quark current distributions 
by Maxwell's equations and the boundary 
conditions (2.42b) . Therefore, we write 

V • 3; = O 

(2.44a) 

(2.44b) 

where j" /^ is the color current of the k^*1 

quark orbital : 

¡i 
(it) + (*)-* Clt) (k) 

Here ¡^K.^) is the scalar color magnetization 
density of a quark of mass m^ in the 
lowest eigenstate. The integral 

n 

/ * • ( W K i ) " I 
gives the color magnetic moment (2.1) of 
the quark orbital. 

Equations (2.44a,b) can be integrated 
to determine B.'k' : i 

where / * C * i K , r ) is the integral of 
to a radius r , and 

c 
à*' 

er') 

.tkt r at' ~ 
•r r> 

(k) Since the color magnetic field B,-
is radial in Eq.(2.45) it satisfies the 
boundary condition (2.42b) automatically. 

The expression (2.45) for B(- may be 
substituted into the color magnetostatic 
interaction energy (2.43/" 

f 
A F „ ' - ^ Z L 3;t?)ic (?) , (2.46) 

»»< k>i J , ' ' Sfkete 

where B.̂  is the color magnetic field 
generated by the k t n quark of the hadron. 
After straightforward calculation of (2.46) 
we find 

•R3 

(2.47; 

where 

-2X*xe si*lxK i iV 1 xi + j xkH (*xK) + i*¿Sit**t) 
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with y^x^-sinXjj.cos x k ; x k is the root of 
Eq.(1.27) for a given m k R and 

The color and spin dependence of 
Eq.(2.47) can be simplified by the follow­
ing observations. For a color singlet 
meson 

<v „ u) 
(Xi + A.- j | M > - o . 

"I ul 
Squaring íl; + 3 t - and using 

we find 

(2.48) 

(2.49) 

The trick is similar for baryons 

k 
whence 

(2.50) 

The final expression for the magnetic 
interaction energy is 

(2.51) 

* K * H k K , *a/«; = Z i Mk¿-(¿̂  ?e; k>£ 

Here % = 1 for a baryon, 2 for a meson. 

We turn now to the calculation of the 
gluon electrostatic energy. We shall ap­
proximate in Fig.2.4a the static gluon 
propagator with the free one in the electro­
static case. This probably overestimate 
somewhat the color electrostatic inter­
action energy. 

The color electric field of a quark 
satisfies the equations of electrostatics, 

-.Oik) 
where ¿¡¿ «y is a sigle quark s color 
charge density l l t ) 

Here Í K « V i s * n e color charge density of 
a quark of mass m K in the lowest eigenmode 
with 

o 

We obtain the color electric field by the 
application of Gauss's law 

(k, 
(2.52) 

where i k ^ is the integral of i-r) out 
to a radius r 

Eq. (2.52) can be used in the expression 

for the color electrostatic interaction 
energy. The sum over the color index i 
can be performed using Eqs.(2.48), (2.49) , 
and (2.50), with the following result 

(2.53) 

Here \ = 1 for a baryon, 2 for a meson. 
The function f (x^x-^) is given by the 
integral 

H 

o 1 

where 

¿[^- (WJfKj /XK ] - - m [ s ;nj f K c o í X K - ( í í M l x K ) / c K J 

with x(rnR) given by Eq.(1.27), and 

HADRON MASSES 

(2.54) 

We are ready to evaluate the hadron 
masses now by writing down the expression 
for the total energy of the system inside 
the square-well potential of Fig.1.1. 

The quarks contribute their rest and 
kinetic energies to the hadron's mass : 

Here L -, and ïf are the respective u, d. s r 

numbers of the nonstrange and strange 
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quarks, and the eigenfrequency is defined 
in Eq.(2.54) . 

The color magnetic interaction energy 
can he written in the form 

E/w, r M uj +aufHui-»-a«Mff (2.56) 

by evaluating „ -» 

in each state. In Eq.(2.56/) M u d is the 
color magnetic interaction between two 
nonstrange quarks, is that between 
a nonstrange and strange quark and M 

S s 

is the interaction energy between two 
strange quarks. The values of , 
M u s , and M s g are shown in Pig.2.5. 

Pig.2.5. Magnetic gluon exchange 
energy of two quarks as a func­
tion of mR . The solid line gives 
the interaction energy between 
equal-mass quarks (M ud or WiSB) , 
the dashed line is the interaction 
energy between a massless quark 
and a quark of mass m (Mus) • 

The coefficients a , , a „ , a 
ucl us ss 

in (2.56) are state-dependent and tabu­
lated in Table 2.4. 

The color electrostatic energy (2.53) 
will be written in the form 

£ £ = ¿uJ • lud. + Li |uj *• Ist fíf j í2- 57) 
where f -, , f, , and f have analogous ud ' us ' ss ° 
meaning as the magnetic terms above. The 
coefficients b u d , b u g , and b s g are 
also state-dependent. Por the proton, for 
example 

V = 3 ' b u s = b s s = 0 • 

With m = m. = o , and ni = 3oo MeV we 
U Q S 

find 
fu4 = 0.3 , fu4 * fu.S - fss • 

Table 2.4. Parameters which 
specify the gluon magneto­
static energy of light hadrons 

Hadron a u d a 
us ss 

V -3 0 0 
A -3 0 0 
Z 1 -4 0 
~̂  0 -4 1 
A 3 0 0 r 1 2 0 
—« 

0 2 1 
if 0 0 3 

2 0 0 
K* 0 2 0 
O l 2 0 0 
4 0 0 2 
or -6 0 0 
K 0 -6 0 

The mass of a hadron of radius R is 
then given by 

M - f ̂  + £T M + E¿ (2.58) 

where the individual terms are given hy 
Eqs.(2.55)-(2.57) . The various mass split­
tings follow a simple pattern. If <¿c were 
zero, baryons would be heavier than mesons 
since baryons have three quarks and mesons 
have two. The A and the proton would be 
degenerate as would be the § and JC . 

When we turn on the color magnetic 
interaction the A and the proton are split 
since a

u d=3 f o r the A and -3 for the 
proton. The $ and W remain degenerate, 
but they are split from the ÍÍ . The ratio 
of the magnetic interaction 1 : -3 for 
the ( J ; 1 0 ) and 3f follows from the fact 
that the quarks are in a triplet state 
(6Vft"0 in the ^ J , 1 0 ) a n d a r e i n a singlet 
state ( 6~, • 6"x)"-3 in the ÎC . 

The binding from the color electro­
static interaction energy is larger for 
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mesons which further splits them from 
baryons, though this splitting is not large. 

The SU (3)symmetry breaking is intro­
duced by the mass splitting of the strange 
and nonstrange quarks. If the only effect 
of this SU (3) breaking were in the quark 
mass-kinetic term E^ , the £ and A 
would remain degenerate. However, the 
presence of the strange quark's mass modi­
fies the wave function of the strange 
quark and therefore causes a secondary 
SU<3) breaking through the gluon magneto-
static interaction. This splits the £ 
and A in the right direction. For m u = o 
this can be seen from Fig.2.5 where M 
is larger than M us 

Lud 
If they were equal, 

there were no splitting. 

The resulting spectrum of light 
baryons and mesons is shown in Fig.2.6 

BARYONS ME50N5 

Fig.2.6. The hadron masses are shown 
for m =m.=o , m =3oo MeV , <tc =2 , 
and R =4 fermi. The experimental 
masses are given by arrows. 

THE "2 -"l' PROBLEM 

It is well-known that the 7 and 7' 
have special problems in the ordinary quark 

model. We face the same difficulty, of 
course. If the ^ and ^' are treated on 
the same footing as the >̂ and to 

one state will be 
then 

and the other 

1 = SS 

7 > . I - Í -UÜ+dl; 

in which case the ^' will be degenerate 
with the 3T (as the u> is with the f) 
Experimentally the is very massive 
(958 MeV). 

There is, however, an annihilation 
process, shown in Fig.2.7, which will 
raise the and lower the *l without 
significant changes in the other states. 
Since the gluons are invariant under flavor 
SU (3), The diagrams in Pig.2.7 couple only 
to the SU<3) -singlet components of the 
states 7 and ' . Because the gluons 
are vectors, the diagrams vanish for the 
vector meson states. They act only on the 

*/ and y' . 

The annihilation diagrams are diagonal 
in the SU<3) octet and singlet states which 
correspond to the quark states 

^=R ( U Ü 4-cU -ZSS ) t J= ( U U + CLI + SS) 

There is no coupling to the octet state 
and we shall assume phenomenologically a 
large singlet matrix element which will 
mix the states ss and uü+d3 . 

Applying the standard procedure to 
describe the mixing, we introduce the mass 
matrix 

r + Í — 
» s n 

«3 ft 
M = 

where a 
The octet 
gy E,j are calculable from Eq.^.58). 

is a number proportional to J,c . 

energy E 0 and the singlet ener-

Fig.2.7. Lowest order gluon anni­
hilation diagrams for spin-zero 
flavor SUC3) singlet mesons. 
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We can no.w diagonalize M. an compute 
and it^i . The parameter a is deter­
mined to fit M^i = 958 MeV.. The mass 
is calculated then. This is shown in 
Pig.2.6. 

It remains an open question whether 
the explicit calculation of the diagrams 
in Pig.2.7 would confirm the phenomenolog-
ical analysis above. This brings up the 
most disturbing point about the spectrum 
in Fig. 2.6 : the large value of <¿c which 
was required to account for the fairly 
large mass splittings due to spin inter­
actions 

MAGNETIC MOMENTS 

We shall briefly discuss the predic­
tions for the magnetic moments of baryons. 
The calculation is rather straightforward, 
since the magnetic moment of a single 
quark orbital was already given in Eq^2.lj . 
The procedure is the same what we fol­
lowed for the proton and neutron in the 
first lecture. The results are given in 
Table 2.5. 

Table 2.5. Baryon magnetic moments 
in units of f^p . The predictions 
of the static quark model with rel­
ativistic auarks are for m u=md=o", 
and m s=2R0*MeV. The SU Q) predic­
tions' depend on the P/D ratio for 
the magnetic moment operator. The 
figures in parentheses correspond 
to a conventional choice. 

MAGNETIC MOMENT Lj^jf-r) 

Hadron Experiment Quark mod SU O) 

W -0.685 2 
" 3 

A -0.24 -0.26 

0.93 0.97 1 (D 

r 0. 31 -h <*> 

z~ -0.53 -0.36 -1-c (-1) 

-0.56 o (-f ) 

-0.69Í0.27 -0.23 -1-c (-1) 

3. THE QUARK BAG MODEL 

3.1. INTRODUCTION 

Motivated by recent field theoretical 
investigations, we shall assume that the 
physical vacuum is characterized by some 
microscopic structure which in "normal 
phase", outside hadrons, cannot support the 
propagation of quark and gluon fields. The 
vacuum acts like a strange medium against 
hadronic constituent fields, though Lorentz 
invariance will be maintained. 

Now, by concentration of energy, a small 
domain of a different phase may be created 
in the "medium" of the physical vacuum. It 
is like boiling the vacuum and creating small 
bubbles with a characteristic size of 1 fermi. 
Inside the bubble (hadron phase_) quark and 
gluon fields can propagate in the ordinary 
manner. 

We. picture the hadron then as a small 
domain in the new.phase with quark and gluon 
constituents. This is the. bag. The boundary 
surface of the bag between the two phases 
is impermeable against the vector gluon 
fields, therefore they cannot penetrate into 
the normal phase of the vacuum. The imper­
meability of the surface is expressed in the 
form of boundary conditions for the gluon 
fields? 

The gluon electric fields E. i=l,2, 
...,8 in an octet of eight colors are tan­
gential whereas the gluon magnetic fields 
B^ are normal to the surface in the in­

stantaneous rest frame of the surface ele­
ment. Consequently, there is no gluon field 
energy flux through the surface of the hadron 
domain in space. 

The dynamics of the quark and gluon 
fields inside the bag is governed locally 
by the field equations of quantum chromo-
dynamics (q.c.d.) . Gluons are confined 
inside the hadron phase and quarks become 
also confined because of the gluon gauge 
fields they always drag along. 
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We shall consider the quark hag model 
as a step forward from the static quark 
model of the previous lectures. In the 
forthcoming applications we have to discuss 
those properties of the bag model which 
distinguish it from a static square-well 
potential. Apart from the pleasing feature 
of the fully relativistic formulation, 
perhaps the most important new element in 
the bag model is that hadrons are de­
scribed as deformable droplets whose 
shapes are determined dynamically. 

Now we come to the important question 
why the bag as a small droplet of hadron 
phase is stable against the internal 
pressure of the quark and gluon constit­
uents. We assume that to create a vacuum 
bubble in hadron phase takes an amount of 
energy B per unit volume, and an amount 
of energy g per unit surface. The con­
stant B may be associated with the vac­
uum pressure exerted on the bubble : the 
energy required to increase the volume of 
the bubble by an amount <fV is 3-,/V . 
The surface tension S is associated 
with surface energy on the boundary be­
tween the hadron phase and the "normal" 
vacuum phase. 

The pressure exerted by the gluon 
fields on the boundary of a hadron is 
balanced then by volume energy B per 
unit volume and surface energy 6* per 
unit surface. The quark bag model is the 
invention of the ingenious MIT group 2~*) 
who have introduced volume tension to 
stabilize hadrons. Later the surface en­
ergy (f per unit surface was introduced 
by a group of us upon dynamical and phys­
ical considerations 

The boundary of the bag is trans­
parent against leptons and the mediators 
of electromagnetic and weak interactions. 
These particles (or fields) may propagate 
in both phases of the vacuum in the normal 
manner. The two phase picture of the vac­
uum in the bag model is a strong inter­
action phenomenon. 

We do not attempt to derive B or 
6" from some microscopic structure of 

the physical vacuum in gauge theories, though 
it did not escape our attention that the 
above discussed physical picture may be re­

ía; 
lated to instantons in q.c.d. , or to some 
other vacuum phenomena (merons ? ) . 

t* ) 

According to a recent suggestion ' , 
the physical vacuum in quantum chromody-
namics may exist in two different phases. 
Both phases are characterized by pseudo-
particles with one-half topological charge 
merons The name meron comes from the 

Greek root fxêfoC meaning part or frac­
tion. In the presence of separated quarks 
the meron gas in plasma phase which con­
fines quarks may find it favorable to be 
in a dielectric phase at a cost of some 
energy per unit volume and unit surface. 
The quarks would be almost free particles 
inside this region, thus producing an effec­
tive "bag" with fairly sharp boundary (see 
Pig.3.1) . 

Pig.3.1. Separated quarks are 
connected by color flux lines 
in hadron phase which may be 
associated with some dielectric 
phase of merons. The outside 
"normal" phase is a quark con­
fining plasma phase for merons. 

3.2. LIQUID DROP MODEL AND SINGLE PARTICLE 
SPECTRA 

Our step from the static square-well 
potential to the bag model is somewhat 
analogous to an interesting example from 
the history of nuclear physics. 

A heavy nucleus is best described in 
telegraphic style as a bag of nucléons. 
In a more sophisticated manner, the close 
packing of the nucléons in the nucleus and 
the existence of a relatively sharp nuclear 
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boundary have led to the comparison of the 
nucleus with a liquid drop. The empirical 
binding energies can be interpreted then 
as a sum of surface energy, volume energy, 
and electrostatic energy of the nuclear 
droplet. The treatment of the nucleus as 
a deformable droplet is quite successful 
in the theory of nuclear fission. 

According to the liquid drop model, 
the fundamental modes of nuclear excit­
ations correspond to collective types of 
motion, such as surface oscillations and 
elastic vibrations. 

New progress in the theory of nuclear 
spectra was obtained through the develop­
ment of the so-called single particle model 
This model assumes that nuclear stationary 
states, like electron configurations in 
atoms, can be approximately described in 
terms of the motion of the individual par­
ticles in an average field of force. 

The single particle model explains the 
stability of certain nuclei, those which 
possess closed shells of protons and 
neutrons. The model is also successful in 
accounting for the spins of nuclear ground 
states and nuclear magnetic moments. 

The liquid drop model and the single 
particle model represent opposite ap­
proaches to the problem of nuclear struc­
ture. Each refers to essential aspects of 
nuclear structure, and it is expected that 
a synthesis is necessary for a detailed 

H) 
description of nuclear properties. 

The necessity of this synthesis is 
clearly indicated by the observed behav­
ior of nuclear quadrupole moments. Though 
the quadrupole moments of nuclear ground 
states give definite evidence of the shell 
structure, for many nuclei, the magnitude 
of the quadrupole moments is too large in 
comparison with the predictions of the 
single particle model. This suggest that 
the eauilibrium shape of those nuclei 
deviates from the spherical symmetry. 

A simple explanation arises if one 
considers the motion of the individual 
particles in a deformatle nucleus. The 

centrifugal pressure exerted by the particles 
on the walls of the nucleus may lead to a 
considerable deformation. The quadrupole 
moments associated with those deformations 
are in accordance with observations. 

An instructive scheme to demonstrate 
this idea is that where the nuclear energy 
levels are treated as due to a filling-up 
of individual particle levels for nucléons 
in a spherical box with infinite walls. 
It is assumed here that the strong inter­
action of each nucleón with all other 
nucléons can be approximated in the nucleus 
as a roughly constant interaction potential 
over the nuclear volume so that the nucléons 
form a "self-consistent" box (or bag) . 

This bag is deformable, and there are 
dynamical degrees of freedom associated 
with the surface deformations. For odd A 
nuclei great success is obtained by asso­
ciating the spin and magnetic moment of the 
nucleus with the odd valence nucleón alone 
outside the core. The valence nucleón is 
coupled to the core through the collective 
variables of the droplet. This coupling 
arises from the boundary condition for the 
valence nucleon's wave function at the sur­
face of the nucleus. 

The description of odd A nuclei in 
terms of the dynamical variables of the va­
lence nucléons outside the core, together 
with the collective variables of the nucle­
ar droplet may be called the bag model of 
the nucleus, in our terminology. The model 
is quite successful in describing the single 
particle excitation spectra of odd A nu­
clei. 

The analogy with the quark bag model 
is almost self-explanatory. The valence 
quarks of hadrons are similar to the va­
lence nucléons of nuclei, and the dynamical 
variables of the bag (hadron droplet) are 
analogous to the collective variables of 
the nuclear droplet. The volume energy of 
the nucleus is like the volume energy B V 
in the quark bag model. In both models, 
the surface energy is an essential part of 
the droplet's dynamics. Similarly to the 
nuclear deformations in high angular momen-
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tum states, we expect cigar-like bag shapes 
for high angular momentum excitations of 
hadrons. 

If the quark bag model turns out to 
be a successful phenomenological device, 
and that is a big if, then it becomes im­
portant to understand whether the collec­
tive variables of the bag are associated 
with the internal microscopic dynamics of 
the constituents, or they are related to 
the microscopic structure of the physical 
vacuum. 

3.3. ACTION PRINCIPLE. BAGGED Q.C.D. 

Following the considerations of the 
introduction to this lecture, we want to 
find the action W for the bag which is 
pictured as a bubble in hadron phase , 
embedded in the field non-supporting phys­
ical vacuum in a Lorentz invariant manner. 
The bubble is filled with colored quark 
fields and the non-Abelian gauge fields of 
gluons . The pressure of quarks and gluons 
exerted on the surface of the bubble is 
balanced by surface tension 6" and vac­
uum pressure B . 

The relativistic action W for the 
bag is written as 

SURF 

The first part on the right-hand side of 
Eq. Í3.1) is recognized as the action of 
q.c.d. (see Eq.(2.35)) as restricted to the 
interior points of the bag. Hence the ter­
minology : bagged quantum chromodynamics. 

The second integral in (3.1) describes 
the surface part of the action where 425 

is the area of the surface element, and 
VL is the velocity of the surface ele­

ment along the normal vector of the sur­
face in a given point. In other words, the 
second integral in (3.1) is the three-
dimensional area of the hypersurface swept 

out by the surface of the bag in Minkowski 
space-time. The strength of surface tension 
is set by the constant ff with dimension 
energy/area, or length . The last inte­
gral in Eq.O.l) is proportional to the 
four-dimensional volume swept out by the 
bag as a whole in Minkowski space-time. 
Por a given instant of time it is propor­
tional to the three-dimensional volume of 
the bag. The constant B has the dimen­
sion of energy/volume, or length -^ . This 
term may be interpreted as vacuum pressure 
against the bubble. 

The action W in (3.1) is Lorentz 
invariant, since it is defined in a geo­
metrical manner. 

Prom the variation of the quark and 
gluon fields in the interior points of the 
bag we can derive the field equations (2.38) 
and (2.39) as a consequence of the action 
principle <fw = 0 in (3.1) . 

Variation of F\I^.C) 0 n the surface 
leads to the generalization of the static 
boundary conditions (2.42a,b) : 

(3.2a) 

(3.2b) 

so that the normal components of the color 
electric fields E^ vanish on the boundary 
of the bag. In Eqs.(3.2a,b) n is a unit 
normal vector to the surface of the bag 
and n Q is the surface velocity along n , 

Therefore, the tangential components of the 
color magnetic fields B^ vanish on the 
surface of the bag in the instantaneous 
rest frame of the surface element. 

It follows from Eq.í3.2a) that there 
is no color electric flux through the sur­
face of the bag. Consequently, the eight 
color generators , i=l,2,...,8 , must 
vanish in the bag model for an extended 
hadron with closed boundary (Gauss's theo­
rem ) 

4« 
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/ " V 

- i F- F- 26 % + 2 (3.3; 

where % is the mean curvature of the 
surface in Minkowski space. 

The mean curvature X. is best de­
scribed in curvilinear coordinates î M . 
The surface of the bag is given by J 1 = 
The metric of the JH system is 

a 3X% ¿X* 
«/*>» * ¿3* j j w 

where X denote the rectilinear and 
orthogonal coordinates. With these defini­
tions we may write for 1 ¿ 

(3.4; 

where 

is the Jacobian of the coordinate trans­
formation. One can see by inspection of 
Eq.(3.4) that K depends on the velocity 
and acceleration of the corresponding sur­
face point. 

Eq.(3.3) governs the dynamics of the 
bubble under surface tension with outward 
gluon field pressure and inward vacuum 
pressure. For a static surface there is 
great simplification in (3.4) and we obtain 

where l/fy and 1/R* are the principal 
curvatures of the static surface in a given 
point. 

E q . (3.5) has a transparent physical 
interpretation. It describes the balance of 
forces in pquilibrium. The first term on 
the right-hand side of (3.5) describes the 
surface tension of the boundary between 
the two phases of the vacuum like for an 
air bubble in liquid phase. The second term 
B acts like vacuum pressure against the 

bubble. 

The left-hand side of (3.5) is the 
gluon field pressure on the surface of the 
bag. It is balanced out in equilibrium by 
surface tension and vacuum pressure. 

We did not include the quark pressure 
on the left-hand side of Eq.(3.3) . It can 
be shown that the quark pressure is present 
in (3.3) in an indirect way when the quark-
gluon coupling constant is not zero. Quarks 
are coupled to the gauge fields which exert 
a pressure on the surface whose «C-»o limit 
is equivalent to using the quark boundary 
condition (2.36) and the quark pressure 
"R̂  defined in Subsection 1.3. 

We picture the classical bag equations 
in the following manner : 

field equations 
of q.c.d. 

««4. CZ-31)) 

gauge field 
boundary 
conditions 

bubble 
dynamics 

= ¿ C K + 3 

The bag as a dynamical system requires 
a rather complicated description in terms 
of several dynamical variables, even if 
only a few quark and gluon constituents 
are present and the collective variables 
of the bag's surface are represented by 
a minimal number of dynamical degrees of 
freedom. A great simplification arises if 
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The color currents ii <•*) are defined in 
Eq.(2.40) . 

The covariant generalization of the 
static boundary conditions (2.36) for the 
quark fields is straightforward : 

where t f * C*\»tn) was defined before. 

Variation of the surface variables 
in (3.1) leads to the equation of motion 
for the boundary of the extended hadron : 



inside the dynamical system of the bag we 
may identify a slowly moving subsystem 
whose motion is instantaneously followed by 
the rest. This separation of the system into 
two parts is the working hypothesis of the 
adiabatic bag dynamics. 

3.4. NUCLEON i n ADIABATIC APPROXIMATION 

In order to understand the basic idea 
of the adiabatic approximation method, let 
us consider a molecule which consists of 
a given number of electrons with mass m 
and of atomic nuclei with mass M . The 
Hamiltonian can be written in the form 

where 

is the operator for the kinetic energy of 
the electrons (light particles) , and 

K * ÏH 4-J*í 
is the kinetic energy of the nuclei (heavy 
particles) . The electron coordinates with 
respect to the center of mass are denoted 
by r , and R stands for the relative coor­
dinates of the nuclei. V(r,R) is the poten­
tial energy of the interaction. 

BORN-OPPENHEIMER APPROXIMATION 

In molecular physics due to the large 
ratio M/m of nuclear mass to electron 
mass the nuclear periods are much longer 
than the electronic periods. It is then a 
good approximation to regard the nuclei as 
fixed calculating the electronic motion. 
In the second step the nuclear motion can 
be. calculated under the assumption that the 
electrons have their steady motion for each 
instantaneous arrangament of the nuclei. 
This is the Born-Oppenheimer approximation, 
or adiabatic approach. 

Mathematically it is based upon the 
hypothesis that the operator l̂ n for the 
kinetic energy of the heavy particles can 
be treated as a small perturbation. Thus, 
in the zeroth order approximation the 
Schrödinger equation 

gives the stationary states *ßi (H,r) for 
fixed values of the coordinates R of the 
heavy particles. The index n stands for 
the quantum numbers of the stationary 
states ; the energies and the wave 
functions vBn<"R / '**) depend upon R as 
upon a set of parameters. 

„ Assuming that the solutions of (3.6) 
are known, the eigenfunctions of the com­
plete Schrödinger equation 

can be written as 

"\> i*,')- Zk™)^'11,*) (3.8) 

since the functions Hn t*,*) form a com­
plete system for given R . 

Substituting (3.8) into (3.7) , after 
multiplication by "f,£ ¿ -R,*) and integrating 
over the coordinates r , we find the fol­
lowing system of equations for k^C*) : 

Here the operator i s defined "by 

(3.10) 

_ pff^tt.VK*^*,«-) . 

The system of differential equations 
¿3.9) is exact. In adiaratio approximation 
the right-hand side of (3.9) is set to zero 
and the system of differential equations for 

4 > ^ C Ä ) decouples into independent equa­
tions 

f + £~,«>"W° <*)• E° 4° 

for each stationary state -m of the light 
particles. One notes from C3.ll) that the 
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motion of the heavy particles is governed 
by the potential energy £nCH) , which is 
the energy of the light particles (elec­
trons) for fixed position of the heavy par­
ticles ( nuclei ) . 

Thus, in adiabatic approximation, the 
wave function ^CH,*) reduces to the simple 
product 

^ w i i = ^ " ß i v C*i+) (3.12) 

so that for each stationary state m of 
the electrons there are several states of 
motion of the heavy nuclei which are dis­
tinguished by the quantum numbers i> 

Using perturbation theory it can be 
shown that the condition for the appli­
cability of the adiabatic approximation 
reduces to the inequality 

\<L\KJt,>\«lC-C\ <3.13) 

for •wis'rt and for arbitrary quantum num­
bers v and v' . 

A sufficient condition for the appli­
cability of the adiabatic approximation is 
that the frequencies of vibration of the 
nuclei uJe should be small in comparison 
with the transition frequencies between 
electronic states : 

t « I £ H - £ J . (3.14) 

The condition (3.14) is sufficient but not 
necessary. In some cases the adiabatic 
condition (3.13) is satisfied even when 
(3.14) is not true. 

NUCLEON WAVE FUNCTION 

We shall motivate now on the basis of 
dynamical considerations the bag model's 
version of what has become the classical 
quark model : the description of the SU(6) 
baryon multipletC56) and meson multiplet 
(35) . The lowest allowed color singlet 
state for the baryon has three quarks, 
whereas the lowest meson carries a quark 
and an antiquark. The quarks satisfy the 
free Dirac equation inside the bag, under 
the assumption that the presence of the 

colored gauge fields may be neglected in 
zeroth approximation. Their effects can be 
included perturbatively. 

We shall apply the adiabatic approx­
imation scheme for the description of the 
bag's shape in quantum mechanics with light 
quarks inside. The collective (surface) 
variables of the bag are regarded as the 
slowly moving part of the system. Thus, we 
shall conjecture the following correspon­
dence with molecular physics : 

nuclei - surface variables 

electrons - light quarks 

As a first step, the bag equations 
have to be solved for a fixed static sur^ 
face, so that the energy levels of the 
confined quarks become analogous to the 
energy levels £«(*) of the Schrödinger 
equation (3.6) for fixed position of the 
nuclei. The quark energy levels will de­
pend on the shape of the static surface. 
Therefore, they generate some potential 
energy for the collective surface variables. 
In the next step we have to solve the 
Schrödinger equation for the Hamiltonian 
of the surface variables in the presence 
of the potential energy generated by the 
confined quarks. 

The lowest states are expected to have 
minimum kinetic energy for the light quarks 
and thus the quarks should move in the most 
symmetrical way in space. We expect, there­
fore, that the quark orbitals dominantly 
exert a spherically symmetric pressure on 
the bag surface for the lowest hadron 
states. Consequently, the surface which 
results from balancing this quark pressure 
against the homogeneous and isotropic vac­
uum pressure B and surface tension €~ , 
should be dominantly spherical. 

For a spherical surface, the dynam­
ical variable $ Ci) (radius) represents the 
collective variables of the bag. The second 
and third integrals of the action W in 
Eq.(3.l) correspond to the effective 
Lagrangian 
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in spherical approximation. 

Introducing the canonical momentum 
^ which is conjugate to the surface 

variable £ , 
AT 

1* > 

the Hamiltonian of the surface in spher­
ical approximation is given by 

The quantum mechanical commutation rela­
tion 

is valid between the canonically conjugate 
variables j* and ^ 

In adiabatic approximation the wave 
function of the surface and three quarks 
may be written as a product (see (3.12)) , 

where the spinor wave function Af «•) is 
the eigenfunction of the free Dirac equa­
tion inside a spherical surface of radius 

§ under the constraint of the boundary 
condition (1.14) at r = f . In Eq. Í3.17) 

Ui stands for the kf1 eigenvalue of the 
i-Ik quark. 

The wave function in adiabatic approx­
imation generates some potential energy 

(3.IB) 

for the surface Hamiltonian (3.16) if the 
three massless quarks of the nucleón occupy 
the lowest eigenmode inside the sphere of 
radius £ . The adiabatic quark wave func­
tions in (3.17) are taken from (.1.23) • 

The quark potential energy (3.18) is 
somewhat analogous to the van der Waals 
potential generated by electrons inside a 
molecule. In analogy with Eq.(3.11) we 
shall write now the Schrödinger equation 
of the surface in spherical approximation. 

In coordinate representation the sur­
face of the bag is described by the wave 
function <|> tj>; , and the kinetic operator 

is represented by 
i* 

t .I A 
t - - * jf« -

The Hamiltonian in Eq.(3.l6) acts upon %>(f) 

as a nonlocal integral operator and the 
stationary Schrödinger equation 

[lT'+KI*S"jt +
 i^3f3-i'£<S)}h>'eh 0.19) 

determines the quantized bag in spherical 
approximation. The potential energy ¿CF) 

is taken from (3.18) . The wave function 
K^S) vanishes at F'O a n d "thus % x is 

Hermitian in the j> E E O ) interval. 

The mathematical definition of the 
square root operator 

requires some elaboration. First, we choose 
a complete orthonormal set of wave func­
tions from the solution of the eigenvalue 
equation 

[- |! + VV]t^'£^V (3.20) 

for the square of the operator, where 

\JC$) - HX'e'-J'I . 

The boundary condition * ß t<v" 0 is imposed 
on the solutions of the nonlinear oscilla­
tor equation (3.20) . 

Since the square root operator is 
diagonal in the above defined basis ( 

it can be written as a nonlocal integral 
operator 

If+/¿*vy \1¡> -> I - t y K w ^ , 

</ * (3.21) 

The Schrödinger equation (3.19) becomes 
then an integral equation, 

00 

The integral equation 0.22) can be 
solved by numerical methods. The first few 
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eigenvalues of Eq. (3.22) are given by 

^ « SM 3.23 

for B = 0 . The corresponding wave func­
tions are shown in Fig.3.2. The energy 
levels appear as the radial excitations of 
the surface ( compare with vibrations of 
nuclei in molecules) . 

*<j> 

Fig.3.2. The wave functions are 
shown for the radial excitations 
of the surface when the three 
massless quarks of the nucleón 
occupy the lowest orbital in our 
adiabatic approximation. 

Fig.3.3 shows the probability distri­
bution for finding the bag in gro-and state 
with a radius between ^ and f +• <if . The 
arrow indicates the classical radius of the 
static bag which is given by setting the 
kinetic term of the surface to zero and 
minimizing the static energy 

e* - «•«*« • 9* 
with respect to the bag radius S . 

As we can see from Fig.3.3 , the sur­
face of the bag is blurred quantum mechani­
cally, though the probability distribution 
is sharply peaked around the classical 
radius of the static bag. This observation 
serves as a basis for the static bag approx 
imation where the kinetic energy of the 
surface is neglected and a sharp boundary 
is assumed approximately. 

From the minimum of the static energy 
with pure volume tension, 

3 X,RT 
G.24) 

we can determine the mass of the nucleón 
in the static bag approximation as it was 
done first by the MIT group three years 

3) 
ago. The parameter B is chosen in (3.24) 
to fit the average mass of the NC938) -
A (1236) system: 

i CtrSp (3 x4).<) = -MÍO HeV 

whence B*̂  = 120 MeV . This value of the 
vacuum pressure sets the hadronic scale and 
the static radius of the nucleón from the 
minimum of (3.24) is found to be 1.4 fermi 
with a mean charge square radius of 

P 

The radii of the different hadrons are 
not very far from 1 fermi in the static bag 
approximation and thus the results of the 
first and second lectures are applicable. 
There are some modifications, of course, 
because the radii slightly vary from hadron 
to hadron. 

Fig.3.3 

4. CHARMONIUM. STRING. GIUONIUM 

4.1. CHARMONIUM 

The charmonium bound state may be 
treated in adiabatic approximation as a 
quark molecule whose charmed quarks corre­
spond to the slowly moving heavy particles 
of the system. In close analogy with the 
hydrogen molecule we may conjecture the 



correspondence s 

protons - heavy charmed quarks, 

electrons -

Coulomb 
potential -

light quarks, massless 
gluons, collective bag 
variables, 

instantaneous cc-inter-
action. 

The adiabatic approximation is de­
fined first in terms of the simplified 
problem where the dynamical degrees of 
freedom are the non-Abelian gauge fields 

fly-. , the ordinary, light quark fields 
fiK."^ » "the collective variables of the 

bag and a pair of static sources of the 
gauge fields at positions r-̂  and r g 

The static sources consist of a pair of 
color spins represented by the ¿ 5¿ matri­
ces of color 3U<3) with the interaction 

i <i"'V 
where j 3; are the color spin degrees of 
freedom for the two static sources. 

Y/e shall assume that the ground state 
eigenvectors and eigenvalues of the static 
source Hamiltonian whose dynamical vari­
ables include the gauge fields, light 
quarks, color spins, and the collective 
variables of the bag are given by 

where r^ and r 2 are parameters in the 
Hamiltonian, similarly to the variables R 
in the Schrödinger equation £3.6) . 

In adiatatic approximation at any 
instant of time when the heavy quarks are 
located at r^ and ? 2 , the other dy­
namical degrees of freedom are described 
by the state \j¿(<,j?i)> , that is the bag 
with the light variables can instantaneous­
ly readjust itself to the slowly moving 
sources of the charmed quark-ar.tiquark 
pair and remains in ground state. 

In this molecular approximation at 
every instant of time the energy stored 
in the gauge fields and light quarks, 
together with the surface and volume ener­

gies of the bag, is 

Therefore, the charmonium bound state is 
described by the Hamiltonian 

1Î* H - * ¿ + ¿ £4.1) 

where the kinetic energy of the heavy 
charmed quarks is added to the rest masses, 
and the potential energy V(r) . 

In a further approximation we shall 
ignore the transverse gluon and light quark 
degrees of freedom together with the kinetic 
quantum energy of the surface which is 
treated classically. 

THE STATIC BAG 

The static non-Abelian gluon field 
between the static quark sources may be re­
placed by an effective Abelian field fyt 

(Coulomb part) .The non-Abelian character 
of the gluon field would appear in the spin-
-dependent color magnetic interactions. 

We have to solve now the Maxwell equa­
tions 

CMrf-l £ * owl 35 3 o 

¿iv 3 ' (4.2) 

«u £ 3 1«' «"-v-J 

inside the static bag with the effective 
quark-gluon coupling constant g . The equa­
tion of motion for the bag's surface is a 
static relation here between the gluon 
electric field pressure and surface tension 
plus vacuum pressure : 

i "* *• • i 1 \ -3 (4.3) 

where 1 ^ and 1/R g are the principal 
curvatures in two orthogonal directions at 
a given point of the static surface. The 
electric field E is subject to the bound­
ary condition 

-n £ (4.4) 
where n is a normal vector to the static 
surface. 
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In order to be able to calculate the 
potential energy V*(r) in IA.1) , we have 
to solve the static bag equations (4.2) -
- (4.4) . Eq.(4.2) together with the bound­
ary condition may be solved for any bag 
shape by computer. Eq.£4.3) determines 
then the static equilibrium shape of the 
bag with fixed sources inside. 

In the numerical calculations the 
strength of the quark-gluon coupling was 
set at the value 

Ï -
4JT 

_£_ = o.Z 

while 

6" * 
ZZO M e / 

(4.5) 

(4.6) 

was chosen for surface tension. For sim­
plicity, B = 0 was taken. The numbers 
(4.5) and (4.6) satisfy several require­
ments in charmonium physics which will be 
discussed a little later. 

The shape of the bag from the comput­
er calculation is shown in Fig.4.1 for 
different values of the distance between 
the static sources'.3'' We estimate the error 
in the calculation to be within ten per­
cent. 

1 2 3 A 

Fig.4.1. The first quadrant of 
the static bag for different 
values of the distance between 
the static sources. The arrow 
indicates the radius of an 
exact vortex tube between the 
quarks at infinite separation. 

COLOR ELECTRIC VORTEX TUBE 

We shall prove now that an infinite 
color electric vortex tube with radius R, 

v .Z7r*<r / 
(4.7) 

is an exact solution to the static bag 
equations if the flux of the homogeneous 

—» 

color electric field E longitudinal in­
side the tube is determined by the color 
charge g . The tube is of cylindrical 
geometry (see Fig.4.2) . 

Fig.4.2 

Indeed, if the longitudinal color elec­
tric field E forms a homogeneous vortex 
tube of radius R with cylindrical surface, 
the Maxwell equations are satisfied inside —* 
the tube trivially. Since E is tangential 
at the surface, Eq.(4.4) is also trivial. 
It follows from (4.3) that 

i 
fi 

(4.8) 

is valid on the cylindrical surface. From 
Gauss's law, 

j = \t\n*r 
the radius R of the vortex tube can be 
expressed using (4.8) . We get then Eq.(4.7) 

The static energy stored in 
the color electric field on a length r , 

is proportional to the length 
the proportionality factor 

with 

(4.9) 

which is the field energy per unit length. 
The surface energy per unit length is 

'/s (4.10) 

A similar vortex tube develops between 
two point-like color charges at large sepa­
ration. Only at the ends of the cigar-like 
bag are the field E and the shape of the 
bag modified in comparison with the exact, 
infinite vortex tube solution of Fig.4.2. 

The potential energy V(r) of the cc-
-pair is shown for the numerical solution 
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is shown in Pig.4.3. A divergent Coulomb 
self energy of the point-like color 
charges which is independent of the dis­
tance r is subtracted from V(r) . 

Pig.4^3. The potential energy of 
the cc-pair as a function of the 
separation r . The straight line 
is the surface energy. 

The potential energy V(r) is well 
approximated by 

at small distances where a dominant 
Coulomb interaction energy is expected 
between the color charges. At large dis­
tances V(r) is proportional to the dis­
tance r , 

and the proportionality factor A is 
given by the exact vortex tube solution, 

(4.11) 

With the parameters of Eqs.(4.5) and 
(4.6) the numerical value of A is 
1 GeV/fermi , well-tailored for charm-

onium calculations. The color electric 
vortex tube solution with linearly rising 
potential energy sets in already at rather 

small distances around r = 0.5 fermi (see 
Pig.4.3 ) . The surface energy is also shown 
in Pig.4.3. It is linear as expected for a 
vortex tube between color charges, and the 
relation 

ys - * M 
which follows from Eqs. (4.9) and (4.10) is 
well approximated by the numerical solution. 
The slope of surface energy is twice of the 
slope for the gluon field energy in Pig.4.3. 

The radius of the ideal vortex tube 
can be calculated from Eq.(4.7) with the 
previously fixed values of g /kit and G : 

This value of R is shown in Pig.4.1 
indicating the rapid convergence of the 
bag shape to the exact vortex tube. 

The vortex energy 

\ - ys * V 
per unit length may be identified for long 
hadrons with a string-like tension between 
the quark and antiquark. Por high angular 
momentum states of the elongated hadron, 
the slope of the Regge trajectory is re­
lated to % asymptotically as ^ 

o( <o) (4.12) 

It is remarkable that % = 1 GeV/fermi from 
the charmonium fit is very close to the 
universal Regge slope at'to) = 0 . 9 G e V - 2 in 
the string model. 

CHARMONIUM SPECTRUM 

The potential energy of Pig.4.3 can be 
used in the Schrödinger equation 

~ j £ V * * BÍ<?j (4.13) 

to calculate the charmonium spectrum. Here 
r stands for the relative three-vector 

of the cc-pair and m is the reduced mass 
of the charmed quark. An additive constant 
is not determined in the potential V(rJ 
from Pig.4.3 which is well approximated 
by 

a* i 

- -± - + \r . (4.14) 
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tu 
Some authors 7 have used a similar 

potential to V(r) of Eq.i4.14) . We are 
close to their results in our calculation'3'' 
of the charmonium spectrum if 

•m s i <me x o. g G*v" 
is put in the Schrödinger equation (see 
P i S . 4 . 4 ) . M a s s ( G . v ) 

17 

1 5 

3.3 

3.1 

1 + -
1 
r- 2 * * , o* 

Pig.4.4. The charmonium spectrum 
in the quark bag model in adiab­
atic approximation. 

The spin-dependence of the cc inter­
action energy remains an unsolved problem 
in the quark bag model. The force between 
a color charge and the bag surface is 
repulsive classically. A color magnetic 
moment, however, exerts an attracive force 
on the surface which may explain the 
rather strong spin splitting of the ^ 
and <lc states in the charmonium spectrum. 

In molecular physics the ratio of 
masses is m / M ~ 1 0 ~ 3 , so that excellent 
quantitative calculations are possible. 
However, the level separation of quark 
excitations in the charmonium is approx­
imately 

A f<y =r 5"-Coo Mel/ . 

How, we may estimate the level separation 
of gluon, light quark, and surface excit­
ations. The effective mass of confined 
gluons or light quarks is about 

with a classical radius R = 0.5 fermi for 
the vortex tube. This is not a very large 
energy on the scale of charmonium physics, 
so that the notion of an effective potential 
V Cr) , and the adiabatic picture in general, 

has only a limited validity. 
IS) 

Kogut and Susskind have considered 
the effects of the light quarks. As the 
length of the vortex tube between the color 
charges and the field energy increases, it 
becomes energetically favorable at a certain 
point to lower the energy by creating ordi­
nary qq-pairs inside the tube-like bag : 
the long range force can be screened by 
producing a color neutralizing light quark 
near each heavy quark. Therefore, as r -» 
the energy of a cc-pair surrounded by 
screening cloud becomes the sum of the 
masses of two charmed mesons. The bag under­
goes fission and disintegrates into a pair 
of D and D mesons (see Pig.4.5) . 

t»9 spft 

3Ç 
fl 
3Ç ~ I Gel/ 

Pig.4.5 

4.2. STRING-LIKE EXCITATIONS OP HADRONS 

Johnson and Thorn have suggested"'' that 
string-like hadrons may be pictured in the 
quark bag model as vortex tubes of color 
flux lines which terminate on concentration 
of color at the end points.A meson with one 
quark and one antiquark would have the q 
at one end and q at the other. A baryon 
with three valence quarks would be arranged 
as a linear chain molecule where the largest 
angular momentum for a state of given mass 
is expected when two quarks are at one end 
and the third is at the other (see Pig.4.6). 

The color flux connecting opposite ends 
is the same for mesons and baryons giving 
an explanation for the same slope of meson 
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and baryon trajectories. 

DIQUARK 

MESON BARYON 
Pig.4.6. Elongated bag rotating 
about the center of mass with 
an angular frequency ¿o . 

Vie shall construct now the solution 
which yields maximal angular momentum for 
fixed mass. Accordingly, let us consider 
a bag with elongated shape rotating about 
the center of mass with an angular fre­
quency CO . It is assumed that the end 
points move with light velocity. 

A given point inside the bag, at a 
distance x" from the axis of rotation, 
moves with a velocity 

X x 
V = w x - — 

where L is the length of the cigar-like 
bag. In this calculation the bag surface 
will be given by balancing the gluon field 
pressure against B , the confining vac­
uum pressure : 

The color electric field E; is 
determined by Gauss's law, 

* ft - J Ï 

field is consistent with the linear bound­
ary conditions in Eqs.(3.2a,b) . 

If from (4.16) and B ± from 
(4.17) are substituted into Eq.44.15) , the 
cross section A can be expressed as a 
function of the orbital velocity v : 

(4.18) 

where we have used j 

»-< 

for a color triplet state. The cross section 
A in (4.18) shows the expected Lorentz 

contraction. 

The total mass M of the rotating 
bag consists of three terms, 

(4.19) 

where E_ 

(4.16) 

_ q is the quark energy, E^ the 
gluon field energy, and B V is the volume 
energy. Surface tension is set to zero here, 
for simplicity. 

The length of the stretched bag ( L ) 
is determined , for a given value of the 
total angular momentum J , by the condi­
tion 

â m _ 
T T ' - (4.20) 

This is the condition that the angular 
momentum be a maximum for fixed M .. 

The different pieces of the total mass 
M in (4.19) are the following. The volume 
energy is 

IBV = 3-l\¿V ñcvj = b l Í J JL ¡ A V [ ¡ ^ 

where A is the cross section of the bag 
at a point where the mean field strength 
associated with the color charge 3 ï ^' 
is E^ . The color magnetic field 
associated with the rotation of the color 
electric field is given by 

£ - 7 * Î L (4.17) 

-> 
at a point moving with velocity v . This 

and the energy of the colored flux lines 
is 

Since we assume that the valence quark wave 
functions are localized near the ends, the 
total quark energy E^ is 

(4.21) 
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for a convective quark momentum p at the 
ends. 

The total angular momentum J = Jq+J.^ 
Is the sum of the quark and gluon field 
angular momenta. The angular momentum of 
the color fields is 

whereas the total quark angular momentum 
is given by 

With the calculated ingredients we 
may express the total mass M as a func­
tion of L , 

£4.22) 

for fixed total angular momentum J . 
Prom Eqs. (4.20) and (4.22) we find an 
asymptotically linear trajectory 

3 - oi'o; M 4
 ¡ 

with the slope 

The parameters B and °£c have been 
determined from the hadron spectrum to be 
about B^*= 140 MeV and o( c«¿ . With 
these values in (4.23) we find 

d'(o) = 0 . 9 3 ( W ) ' * 

in very good agreement with the experimen­
tally determined slope which is about 

¿O) = 0.9 CeV~ 2 . **f 
The slope ^<») in (4.23) has been 

calculated for a state in which the color­
ed objects at the two ends belong to the 
3 or 3 representation of color SU(3). 

If the expectation value of the Casimir 
operator j 

1*1 

is C in a given representation, the 
formula for the slope may be written as 

where <^l0> reduces to (4.23) with C * | 

in color triplet representation. 

We shall discuas now some approxima­
tions of the above calculations. The formu­
la (4.21) for the total quark energy as­
sumes that the energy ~ i/fK associated 
with the confinement of quarks may be ig­
nored in comparison to the total energy of 
the system. 

In this approximation the quark energy 
E = 2p is zero for the following reason. 
1 

Por a given angular momentum J the quark 
energy E^ can be expressed with the help 
of the relation J = pi + J f as 

where L is given by 

(4 .26) 

The quark energy E q in (4.25? is zero for 
the value of L from (4.26) . 

Therefore, ignoring corrections of the 
order of 1//Ä , the total energy and 
angular momentum of the elongated bag is 
associated with the color flux lines. The 
quarks at the ends serve to terminate the 
color flux, otherwise they do not affect 
the dynamics. 

This picture of the leading Regge 
trajectory is similar to the dual string 
model. However, the bag dynamics is associ­
ated with the color flux lines and the 
geometrical variables of the string merely 
serve to parametrize the motion of these 
fields. Further, since the cross section A 

in (4.18) is independent of J , the elon­
gated bag as a string is "fat", with the 
transverse dimension of ordinary hadron 
ground states. 

The calculation presented here is 
expected to be valid for an asymptotic 
trajectory with large angular momenta. The 
value of J should be of the order of five 
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or so. In that case 

and the string energy dominates over quark 
energies at the ends. The hope is that the 
asymptotic calculation remains sensible 
even at lower values of the angular mo­
mentum. 

4.3. GLUONIUM 

One of the most spectacular predic­
tions of the quark bag model is the exis­
tence of quarkless gluonic hadrons*K They 
are constructed in close analogy with the 
quark orbitals of ordinary hadrons. Gluons 
populate then the eigenmodes of a spheric­
al bag of radius 1? 

To lowest order in ° ¿ e the gluon 
self-coupling may be ignored, and the 
colored vector gluon fields behave as 
Abelian vector fields. They satisfy 
Maxwell's equations inside the bag subject 
to the boundary conditions (3.2a,b) . 

The gluon orbitals were carefully 
discussed in the second lecture where TE 
and TM eigenmodes were introduced with 
definite angular momentum quantum numbers. 
When these gluon eigenmodes become popu­
lated with valence gluons they must form 
overall color singlets. 

Color singlet states of two gluons 
may be constructed with <f;k coupling and 
the charge conjugation quantum number C 
is +1 then. Color singlet states of three 
gluons may be constructed by ^.-^1 (c=+1^ 
or ^±Yi couplings. 

In Table 4.1 we calculated the masses 
of the lowest states in the static bag 
approximation with a radius of 1 fermi. 
In order to remain similar to the calcu­
lations of the static quark model of the 
first two lectures, the masses in Table4.1 
contain only the energies of the confined 
gluons. 

All states are flavor and color 
singlets, and only those with total angu­
lar momentum zero exert dominantly 

spherical pressure on the surface of the 
gluonic hadron. The energies of gluon states 
with non-zero angular momentum are less 
reliable in spherical approximation. 

Table 4.1. Lowest-lying gluonium 
states with zero angular momentum. 
The last two states with J=l and 
J = 2 are not well described in 
spherical approximation. They are 
included for later reference. 

occupied modes J mass MeV 

TE TE 0 + + 1096 

TE TM 0~+ 1446 

TE TE TE 0 + " 1644 

TM TM 0 + + 1796 

TE TE TM 1 1994 

TE TE 2 + + 1096 

The high angular momentum states of 
glueballs are elongated string-like objects 
on straight line Regge trajectories. This 
description is motivated by the discussion 
before, in Subsection 4.2. 

One notes that the slope of the Regge 
trajectories associated with "fat" gluon 
strings is given by 

i -t 
where <*•(0) * 0 . 9 G*V is the slope of ordi­
nary Regge trajectories. The factor 2/3 
in (A.27) is a consequence of color octet 
charge separation at the ends of the string. 
Instead of quarks we have gluons at the 
ends. Ordinary elongated hadrons as "fat" 
strings carry color triplet charges at the 
ends, hence the different slope of the 
trajectories (see (4.24)) . 

If the pomeron with an intercept of 
one is identified with a. spinning string 
of two gluons in color singlet and flavor 
singlet state, the slope oC'jl*(o)»o.CG«Vfrom 
(4.27) predicts 1 . 3 GeV for the mass of the 
first physical state 2 + + on the trajec­
tory. Some curvature in the pomeron trajec­
tory may shift the mass 1 . 3 GeV upward. 
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The spherical cavity state 2 in spherical gluon pressure on the walls. 

If we accept the trajectory structure 
for all-glue bags where the pomeron has 
intercept one and its daughters are integer 
spaced below, the mass of the vector glue-
ball should be around wo, a I.3M with the 
slope di'f~tC*)*0.eM~i. 

UJ 
Recently Robson has suggested that the 

vector glueball might already have been 
found in a DESY-Prascati experiment at 
1.11 GeV. He argues that the main decay 
properties of the recent DESY-Frascati 
resonance are certainly consistent with a 
vector glueball if the basic assumption of 
Freund and Nambu is accepted : the only 
poles needed in the Zweig violation cal­
culations are the (V , oo , ^ t «uU "ty , as 
shown in Pig.4.8 for some sequential pole 
model diagrams. 

In the experiment the reaction 

Vo * f> 

was studied by the interference between the 
Compton and Bethe-Heitler processes and a 
resonance-like structure of mass 1110 MeV 
was found. The observed width was consis­
tent with the experimental resolution of 
30 MeV and it was parametrized as a reso­
nance of width 20 MeV, and 

3.12. ' if I ' U Ceif* 
dt |t-o ' ) 

a factor of twenty smaller than for co -
- production. 

We shall follow Robson's argument to 
get some insight into this kind of phenom­
enology even if this resonance-like struc­
ture disappears for some reason in the 
future. 

If one assumes the SU(4) broken cou­
plings of the 0 v to the known vector 
mesons, 

to r j (4.28) 

and i*fl„ = l.ll GeV , fo„ = 2 0 MeV are 
accepted for input, then 

r(it ' i.c lut 
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TE mode whose mass was given in Table 4.1 
at 1096 MeV may become the 2 + + particle 
on the pomeron trajectory when the hadron 
deformation from the non-spherical pressure 
is included in the calculations. 

One finds motivation for the existence 
of all-glue hadron states outside the quark 
bag model, too. Freund and Nambu predicted 
this new form of hadronic matter in the 
string model They identified the pomeron 
and its daughters with closed quarkless 
strings whose slope is one-half of the 
ordinary slope^ c^^n * I « C 1 . 

The leading pomeron trajectory and 
some daughters of the closed string are 
shown in Fig.4.7 where the intercept of 
the pomeron is put to one arbitrarily. 

GLUEBALL PHENOMENOLOGY 

One way to produce quarkless states 
in any of the above mentioned models is to 
annihilate quarks with antiquarks. Some 
a u t h o r s h a v e explored the possibility 
that when such annihilations occur, as in 
Zweig-rule violating meson decays, the 
intermediate quarkless resonances (glue-
balls) dominate the dynamics. Unfortunate­
ly, the discussions remain on the level of 
a gross form of phenomenology. 

Nevertheless, we hope that a first 
qualitative insight into the problem may 
be useful and stimulating for an experi­
mental search, and it may lead to the 
construction of a genuine theory of all-
-glue hadron states. 

Let us consider first the vector 
glueball 0 v with quantum numbers J=l . 
In the string model 0 y is the lowest 
physical state on the first daughter of 
the pomeron trajectory. Its mass may be 
estimated from Pig.4.7 where the parallel 
and equidistant trajectories give a mass 
-mo, « l.kGtV , if ci'f.„ lo)* is taken. 

The lowest lying 1 state has a 
mass of about 2 GeV in the static model 
of Table A.l which may be modified in the 
future due to deformations by the non-

2 



is obtained from the sequential pole 
model of Pig.4.8, only a factor of two 
above experiment. This is taken by Robson 
as an encouragement for ignoring the 
contribution of higher mass vector glue-
balls in the sequential pole model. Their 
inclusion would not be an appealing pos­
sibility anyway. 

(a) (b) 
Pig.4.8. Sequential pole model 
with 0 V intermediate state, (a.) 
phenomenological diagram ; Cb) 
string picture. 

Using the mass 1.11 GeV and Eq.(4.28) 
as input, the width may also be predic­
ted from the sequential pole model with 
the following results 

S = 0.032 GeV'4 , 

f Cl»-* K + K ) - O . l i e l / , ( S.Stf.Setf uf) 

r (0V->K*K)- 0.84 MeV * r¿u„-> K.&.)l 

T (o„-.ee) = if ef . 

The dominant decay mode is 0 V -> f 3T 
evolving into a JT^JC'IT0 final state, 
and the decay into two kaons is sup­
pressed. 

The tensor glueball 0 T as the 
lowest physical state on the pomeron 
trajectory, and the scalar glueball 0 

as the second daughter are expected in the 
mass region of 1-2 GeV. Their phenomenology 
is very interesting and may be found else­
where . 

5. EXOTIC STATES. THE POMERON 

5.1. MULTIQUARK HADRONS 

The quark bag model may shed some 
light on the old problem of exotics. In this 
model the mass of a hadron increases roughly 
in proportion to the total number of quarks 
inside the bag. This is due to the fact that 
the quark kinetic energy dominates the to­
tal energy of the bag. This would implicate 
that multiquark hadrons are heavier then 
ordinary ones. The crucial question is, of 
course, whether these multiquark states 
bind to form relatively stable hadrons. 

It has been known for a long time 
that the Coulomb-like color electric forces 
saturate inside hadrons supporting rather 
strong evidence against low-lying exotic 
states in quantum chromodynamics. It means 
that there are no strong forces between 
color singlet mesons and baryons which 
might be related to confinement structure. 
With this argument a low-lying qqqq state, 
say, would be rather like a loosely bound 
molecule with color singlet qq "atoms" , 
if such a molecule may exist at all. 

la) 
Recently Jaffe has called attention 

to the presence of color magnetic forces, 
however. Two color singlet hadrons sitting 
close to each other are not an eigenstate 
of the magnetic gluon exchange operator of 
Eq.¿2.47) . They can exchange a gluon 
becoming color octets still forming an over­
all color singlet state. This force may mix 
and split multiquark states. 

Since the spin splittings among qqq 
baryons and qq mesons are a significant 
fraction of their masses, it may happen 
that a multiquark state qqqq or qqqqq may 
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lose so rauch energy in color-spin inter­
action that it becomes bound, relative to 
the decay into normal qq or qqq hadrons. 

On the basis of group theoretical 
calculations Jaffe argues that the ground 
states of qqqq and qqqqq are n o t exotic, 
they are nonets. This is good news, since 
they may be misclassified as conventional 
qq or qqq states. The weight diagrams and 
quark content of these multiplets is 
shown in Fig.5.1. 

dsuu • 

udud 

• usdd 

( u G - d d ) s s 
uds 

^ ( u ü * d d ) s s 

s ü d d » -1 J 

Q 2 ^ 2 NONET 
MESONS 

sduu 

A more detailed discussion on the 
phenomenological aspects of the multiquark 
states in the bag model is given elsewhere i 0 y! 
We turn now to the interesting problem of 
high angular momentum excitations of qqqq 
states. 

5.2. BARYONIUM 

The quark bag model accomodates a fam­
ily of mesons which are probably dominant-
ly coupled to baryon-antibaryon channels. 
Experimental results support the existence 
of these peculiar mesons which are known 
as states of baryonium . 

The baryonium is pictured in the quark 
bag model as a fat string-like spinning 
object with a diquark and anti-diquark pair 
at the two ends. The dominant decay mode 
of the spinning string is to create a qq 
pair in the color electric field of the 
elongated bag so that the quark joins the 
diquark and the antiquark joins the anti-
diquark breaking the string into a baryon-
-antibaryon pair. 

uddss 0 

ddsuû 

V2 
uds(uû + d d ) 

, u u d s s 

uds(uû-dd) 

udsss 

udssü • - I A • U D S S D " 

d'à NONET 
BARYONS 

Fig.5.1. The quark content 
of qqqq and qqqqq nonets. 

We have seen in Subsection 4.2 that 
the slopes of Regge trajectories associ­
ated with rotating string-like objects 
depend on the color separation at the two 
ends. The slope formula (4.24) depends on 
the value of the Casimir operator. We may 
have color charges in triplet, sextet, or 
octet representation at the ends of the 
spinning bag. 

The triplet representation applies 
for the large angular momentum excitations 
of ordinary mesons and baryons. Octet sep­
aration is characteristic of the excitations 
of glueballs into spinning objects at the 
ends. In baryonium the diquark (qq) may be in 
color triplet or color sextet representation. 
The slopes of the corresponding trajectories 
are given in Table 5.1 : 

The exotic states turn out to be 
Table 5.1 

heavier in Jaffe vs calculation, far above triplet sextet octet 
the threshold for decaying into (qq)(qq) 
or (qqq)(qq) states, so that they must be c = Í ( ¿ A / 

(»1 

to/3 3 

broad if resonant at all. slope OC'ÍO; ff''« 
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Therefore, we expect baryonium tra­
jectories with ordinary slope <*'<°) when 
the diquark is in color triplet represen­
tation, and with a slope $^d'<°) in sextet 
representation of the diquark. The latter 
states are very difficult to excite from 
ordinary hadrons, since this 6-E string 
can only be produced in higher order 
requering an extra gluon exchange in com­
parison with ordinary processes. 

If, however, such a state is produced 
somehow, it remains quite stable since its 
decay is also of higher order in the quark-
-gluon coupling. Consequently, the quark 
bag model predicts the existence of ex­
tremely narrow spinning states with large 
angular momentum which predominantly decay 
into baryon-antibaryon channels. Here the 
expression "extremely narrow" means rela­
tively narrow, in comparison with ordinary 
resonances. 

Recently Chew suggested that two 
natural parity trajectories, with isospin 
degeneracy as well as exchange degeneracy 
are able to account for most of the avail­
able evidence concerning meson states that 
communicate preferentially with baryon-
-antibaryon channels. The two baryonium 
trajectories are shown in Pig.5.2. They 
have ordinary slopes <¿'t°) corresponding 
to diquarks in color triplet representation. 

S T U 

Pig.5.2. The two leading natu­
ral parity baryonium trajecto­
ries proposed by G.P.Chew. 

-Further search for baryonium spates remains 
one of the most exciting projects in hadron 
spectroscopy. 

5.3. QUARK BAG STAR 

There is a general belief that pulsars 
are neutron stars compressed to densities 
greater than the density of atomic nuclei. 
We may guess that when the density of mat­
ter is further increased and becomes so 
large that the mean distance between quarks 
in different baryons is much less than 
1 fermi, the description of matter as nu­
cléons interacting via potentials does not 
remain valid. A new description of matter 
composed of quarks may become relevant then. 
The existence of quark matter on a mac­
roscopic scale would be rather spectacular 
evidence for multiquark states. 

It is conjectured that at sufficient­
ly high densities matter will behave as a 
relativistic gas of free quarks with 

where p is the pressure and ? is the 
density of matter. We shall bring now some 
qualitative arguments that the vacuum 
pressure (or surface tension) in the quark 
bag model may be large enough to compress 
the neutron phase of pulsars into quark 
phase(see Pig.5.3) . 

(a) (b) 

Pig.5.3. Phase transition of 
neutron matter into quark 
phase under large pressure, 
(a) Neutron matter ; Cb) quark 
matter. 
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1 8 

or 

The normal density of nuclear matter 

-nucleón. f\o * 0.16 

III 

° c m * 

In highly compressed nuclear matter ex­
perts estimate the density to be about 

i - £ , 
c m * ' 

and the corresponding pressure in neutron 
stars may be about 

Now we recall that a fit(or an esti­
mate, more precisely) for the lowest 
baryon and meson states suggested the 
value B*« 120 MeV . This value of the 
vacuum pressure in c.g.s. units is 

so that the possibility for the formation 
of quark bag stars is there. 

tt) 
Following Chaplin and Nauenberg we 

shall apply Gibbs'criterion for a phase 
transition to calculate the density where 
the baryon matter changes to quark matter 
at zero temperature. At a fixed pressure 
p and zero temperature the stable phase 

of matter is the one which has the lowest 
Gibbs energy 

f> + f 
u. -1 -n (5.1) 

where £ is the energy density and n is 
the conserved baryon number density. 
Equating the Gibbs energy for quark matter 
and for baryon matter at the same pressure^ 

determines then the transition point. 

First, we calculate the chemical 
potential in the quark phase of matter. 
The ground state of quark matter inside 
a gigantic bag (quark star) under vacuum 
pressure from the outside is a fermi gas 
with all color states occupied for each 
eigenmode up to the fermi level. 

When the quark masses may be neglected 
in comparison with the fermi energy of 
quarks, one can write for the energy den­
sity j> at zero temperature 

+ 3 S . A n (5.2) 

on dimensional grounds. Here A is a con­
stant proportional to 110 , and n is the 
baryon number density which is conserved 
even when baryons do not exist anymore 
individually. 

The constant A was calculated by 
Chaplin and Nauenberg to second order in 
the quark-gluon coupling constant g , 

where lit is the number of quark flavors 
contributing to the energy density f . 

From Eqs.i.5-1) - ^5.3) we can express 
the chemical potential (Gibbs energy per 
unit baryon number) as a function of the 
pressure p for zero temperature 

A \3A . „J/h 

From the condition / ^ ¿ a r y « t * /*-<f»°>fk 
we may calculate the critical baryon energy 
density where baryons begin to disappear 
and a new quark phase develops. Table 5.2 
shows the critical baryon density jc in 
units of 10 ̂ gr/cm^ in three different 
models of nuclear matter at high densities. 

Table 5.2 

model Sc 

Pandharipande-Smith 2.7 

Bethe-Johnson I 6.5 

Bethe-Johnson II 13 

In the calculations the values B *=• lAfO 

and dc * 3..X were used from the best MIT 
fit to the low-lying hadron spectrum. 
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Prom Table 5-2 it turns out that the 
phase transition occurs at baryon den­
sities which are 10-50 times the baryon 
energy density in normal nuclei. Now, it 
is argued that the maximum allowed energy 
density for siable quark stars as derived 
from general relativity is 

y„„x - 8.3 3! , Jt ' - r 3 . (5.4) 

The value of in (5.4) seems 
to be smaller than in Table 5.2 by a fac­
tor of three to five. Therefore, the 
existence of stable quark bag stars or 
quark matter at the center of neutron 
stars remains under que-stion mark. 

Since we are in a very sensitive en­
ergy region both in baryon phase and quark 
phase, the results are far from being 
conclusive. We seem to be on the border 
line of being capable of determining the 
possible existence of this incredible 
object. There is certainly more to come in 
the theoretical development of the quark 
model and nuclear matter calculations at 
extreme densities before the question can 
be settled satisfactorily. 

5.4. HIGH ENERGY SCATTERING PROCESSES 

We shall study in the quark bag model 
the qualitative description of hadronic 
final states associated with high energy 
processes. It will be shown that color 
separation above .1 fermi is the governing 
mechanism to generate the final state in 
high energy collisions. This mechanism may 
explain the great similarity of final 
states in hadron-hadron and lepton-hadron 
reactions, as well as in e +-e~ annihila­
tion. 

LOW'S MODEL OP THE POMERON 

A remarkable feature of total hadron 
cross sections is that they are approxi­
mately constant over a broad energy range, 
between 10 GeV and 300 GeV laboratory 
energy. Low presents an attractive and 
simple model of the "bare" pomeron with 

sufficiently weak coupling, so that the 
problem of rising cross sections and related 
logarithmic effects may be viewed as higher 
order corrections which are ignored here. 

The constancy of the total cross sec­
tions is usually associated with the fol­
lowing experimental observations : 

1. Elastic cross sections are also 
approximately constant over the same ener­
gy range, though they are much smaller than 
the corresponding total cross sections. The 
elastic amplitudes mainly appear as the 
diffraction due to multi-particle production 
processes. The elastic processes themselves 
are only secondarily reflected in the elas­
tic amplitudes. 

2. The real parts of forward scattering 
amplitudes are small compared to imaginary 
parts. The real part associated via dis­
persion relations with a constant 6¿ o¿ is 
zero, so that its presence is a measure of 
the non-constancy of 6¿ ,¿ . 

3. There is a diffractive peak which is 
approximately Gaussian in the momentum 
transfer. 

4. There is an approximate factorization 
of diffractive amplitudes and total cross 
sections 

5. Approximate factorization and Peynman 
scaling, (or limiting fragmentation) are 
observed in inclusive processes. In the 
fragmentation region of b the inclusive 
cross section for a fragment c is 

b . . d£f - fiedle * c ) 
Gab ¿'le 

demonstrating the independenc from the 
projectile a . is the momentum trans­
fer from b to c and X = 4- M ZA is Peynman's 
scaling variable with M the missing mass, 
and s the center of mass energy squared. 

6. An universal plateau is observed in 
the central region in rapidity space. This 
plateau seems to be independent of the ini­
tial state of the reaction in which it is 
created. 

Low s model of the pomeron seems to 
account for all the above mentioned obser­
vations, together with the constancy of 

éío¿ . The only exception is factorization 
which is accidental in the model. 
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BAGS IN INTERACTION 

Following Low we describe the colli­
sion process of two hadrons qualitatively 
as the specific interaction of the hadron 
bags with color gluon exchange. Consider 
two bags approaching each other in the 
c m . system with a definite impact param­
eter b as shown in Fig.5.4. We assume 
the same radius and mass for the two bags. 

requires the exchange of two colored gluons 
which is a higher order process in <¿c 

COLOR OCTET 

• VORTEX 

COLOR OCTET 

2R 

I 
b 

t 
2R 

\ 

Fig.5.5. Bags after fusion and 
color gluon exchange form a 
stretched vortex tube with the 
two ends racing away with light 
velocity, approximately. 

Fig.5.4. Two bags colliding 
with impact parameter b . 
Dots symbolize the valence 
quarks of incoming nucléons. 

In a classical picture with sharp 
bag boundaries the bags will pass each 
other without interaction for b > 2R 
They cannot interact, since the colored 
vector gluon fields are confined to the 
interior of the bags. In the quantum the­
ory the surface of the bag becomes fuzzy, 
but a well-defined meaning is maintained 
for the impact parameter b 

When b <. 2R the two bags will touch 
in some point, and evolve for intermediate 
times as a fused single bag in highly 
excited state. The most probable inter­
action which may arise is the exchange of 
a soft colored gluon between the two parts 
of the intermediate bag running away with 
a relative velocity 2 v ~ 2 c . The two 
color singlet parts become color octets 
due to the exchange of the soft gluon. 
Since the color flux lines are confined, 
the intermediate bag stretches and a color 
electric vortex tube develops between the 
two color octet parts (see Fig.5.5 ) . 

The overlap of the initial config­
uration with the stretched intermediate 
bag is negligible so that the lowest order 
real part of the elastic scattering ampli­
tude fCb) vanishes. Elastic scattering 

One notes that a similar color electric 
vortex develops in deep inelastic lepton-
- nucleón scattering when a colored quark 
inside the nucleón receives enormous momen­
tum transfer by, say, a very energetic 
electron. As a result, the kicked out quark 
carrying color charge is running away from 
the rest of the nucleón approximately with 
light velocity. Since the diquark left 
behind must be in color triplet state, the 
bag stretches and a color electric vortex 
appears between the quark in escape and the 
rest of the nucleón. 

In electron-positron annihilation at 
very large energies when a qq-pair is cre­
ated inside a "hadronic domain" of the 
physical vacuum, the pair is running away 
in back-to-back configuration with a rel­
ative velocity 2 v ~ 2 c . Again, a color 
electric vortex tube develops with color 
triplet charges at the two ends. 

We have seen that three different 
reactions with different initial states 
have led to very similar intermediate states 
("stretched color electric vortex tubes ) 
before decaying into the final state. This 
observation may serve as án explanation for 
the experimental fact that the three reac­
tions have similar multi-particle distri­
butions in the hadronic final states. 

FRAGMENTATION IN THE BAG MODEL 

For the sake of definiteness, we shall 

- 125 -



describe first the decay of the elongated 
intermediate bag of the e + - e - annihilation 
process. 

Prom Gauss's theorem the effective 
color electric field strength inside the 
vortex tube is 

3 **JT (5.5) 

where R stands for the radius, and g 
is the fundamental quark-gluon coupling. 
The factor {ATS in (5.5) comes from 
the triplet representation of color at the 
two ends. 

Since the bag surface is classical 
in this discussion , it makes little dif­
ference whether we apply surface tension 
or volume energy for providing confine­
ment. We shall use volume energy. The 
energy of a vortex tube of length L is 

¿ * i n'r-i + 3HlirL 

where the second term comes from the vol­
ume energy. Prom the minimum of £ for 
a given L , we find the radius 

and 

tudinally excited objects are similar to 
the elongated intermediate bag, so that 
they split again. After n splittings we 
get 2 n similar objects. The decay con­
tinues until the longitudinal excitation 
of the new objects becomes comparable with 
their transverse excitation. These are not 
stable hadrons yet, though they decay into 
the final state as ordinary resonances 
(fire balls). 

Consider the above process in the 
rapidity variable. Initially, the rapidity 
of the baek-to-back qq-pair is -Inl-f and 

in If , respectively : 

_ L _ 

The pair creation energy somewhat decreases 
the momentum o f the quark and antiquark, 
from p to p-m . The rapidity, on the 
other hand, remains almost the same : 

In other words, if the quark and antiquark 
of the longitudinally excited bag are suf­
ficiently separated in rapidity space (àyiî), 

then pair creation does not change their 
rapidity. 

After splitting the bag, we find the 
following rapidity diagram : 

When the vortex tube is long enough,* 
a new qq-pair may be created inside. Pair 
creation may occur through tunneling. 
Por the balance of energy it is neces­
sary that 

where m is the minimum quark energy 
required by momentum uncertainty due to 
the transverse dimension R : 

I - I M 

Since the flux lines become abrupted 
between the newly created q and q , the 
bag may break there producing two color­
less objects. The newly born and longi-

This simple picture already yields the 
important properties of fragmentation. 

Indeed, the multiplicity of hadrons 
from the elongated bag is the same as the 
sum of hadron multiplicities of two newly 
created bags. The extension of bags in 
rapidity space is also additive, 

A 3 = A ^ + A - J * 

so that the multiplicity is proportional 
to the length of the rapidity interval 

•Yl «N. o -n - í í • 2 In. 2- f 
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or 

The above picture is valid if the 
mass of the splitting bags is sufficiently-
large, <fs i 2-3 C-eV. Such a fireball may 
radiate about five pions on the average, 
therefore we may set the value of c at 

C~3 , in accordance with experiments. 

The existence of the universal 
plateau and the fragmentation regions is 
a natural consequence of the model. Since 
the color electric field is invariant 
under flavor S1K3), the flavor of the 
created pair in the middle of the expand­
ing bag does not depend on the type of 
the originally incoming particles. There­
fore, the rapidity space becomes populated 
uniformly by fireballs of 2-3 GeV, and 
only the ones at the end of the rapidity 
distribution remember the specific proper­
ties of the original quarks. 

Fireballs from the interior of the 
rapidity distribution decay into the final 
particles of the universal plateau, while 
the two fireballs at the end of the rapid­
ity distribution populate the fragmentation 
region of the target and projectile. It 
follows then that the width of a fragmen­
tation region is the same as the extension 
of a fireball's decay products in rapidity 
space, . 

At higher center of mass energy the 
only change is that the distance between 
the two fragmentation regions becomes 
larger, so that the distribution depends 
only on iJm<w-tf and i/«;„-i/ , respectively. 
In other words, Feynman's limiting frag­
mentation hypothesis is a natural conse­
quence of the model. 

THE POMEROIÍ 

The mechanism of multi-particle 
production is the same in e + - e~ collision 
as in, say, proton-proton scattering. The 
fragmentation regions are, of course, 
different. 

In pp collision at least two qq pairs 
must be created to neutralize the color 
octet content of the fragmenting parts (see 
Fig.5.6). The central plateau develops in 

VACUUM 

Fig.5.6 

the above described manner, though its 
height may depend on the different pair 
creation in the middle, and the different 
strength of the color electric field gener­
ated by the color octet charges at the ends 
of the elongated bag. 

If the length of the initial system 
before breakup is L0 in the c m . system 
in pp collision, then the corresponding 
time for which the combined system holds 
together is ^ a ¿ o since V*C*i . In the 
lab system, the corresponding event happens 
at a time after collision 

i - T' 

and distance from the collision point 

1/. f . 

where - i s the velocity of the trans­
formation from the c m . system to the 
laboratory system, 

4 

and 

At 300 GeV, for example, 
so that the combined state holds together 
for a long time before breakup. This may 
give a natural explanation for particle 
production in nuclei. 

The exchange of a soft gluon in pp 
collision leads automatically to a constant 
cross section which is mainly inelastic 
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due to color separation. Low estimates 
< / c ~ j for the quark-gluon coupling from 
the value of the total cross section, 
6 ^ ' ~ . He also calculates an approx­
imate Gaussian shape for the diffractive 
peak in elastic pp scattering. 

A similar qualitative description 
may be developed for non-diffractive 
scattering processes where color separation 
occurs via quark-antiquark annihilation . 

DEEP INELASTIC SCATTERING 

Deep inelastic scattering has sug­
gested point-like quark constituents 
inside the nucleón. Considered from a 
reference frame with infinite momentum 
the nucleón can be envisaged as an assemble 
of quark partons sharing the nucleon's 
momentum and being almost free. This 
picture is to be contrasted with the indi­
cations that hadrons are impossible to 
break into their constituents. 

It seems natural to believe that the 
quark bag model comprises these aspects 
of deep inelastic scattering processes. 
Actually these requirements were basic in 
motivating the MIT bag model. 

Inside the bag the quark fields are 
coupled to the non-Abelian gluon fields 
with a coupling constant which is assumed 
to be small. So apart from a region close 
to the boundary the quarks are moving 
relatively freely and it is natural to 
assume that a highly virtual photon will 
see a free field short distance structure. 
The parton picture follows then. 
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