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In a previous work (1), the independence of pure field physics from any metric was 
established in the context of Newtonian laws of attraction.  A distinction was made there 
between force flux and force; the former is independent of any given metric by way of 
the field, the latter is determined from it by way of the notion of work, into which the 
metric enters.  The origin of the metric in Newtonian theory is thus energetic or 
dynamical in nature. 

The independence of pure field physics from any metric is also true in a completely 
analogous way for Maxwell’s electrodynamics.  Here, in contrast to Newtonian field 
physics, one has two field vectors (six-vectors in the four-dimensional universe), which 
we shall distinguish in the sequel as the electromagnetic and magneto-electric field 
vectors; both of them are independent of the metric.  Here, the metric will not, as in 
Newtonian mechanics, be introduced from the energetic-dynamical standpoint – since the 
field determines its own electromagnetic mechanics – but from the kinematical 
standpoint, namely, through the laws of field radiation (light).  In order to show this, we 
must associate both fields by way of the so-called constitutive relations (dielectricity and 
permeability).  The origin of the metric in Maxwell’s electrodynamics, and thus, as a 
further consequence, its origin in the Lorentz-Minkowski-Einstein theory of relativity, 
lies in these relations. 

 
 

1. 
 

We begin with the representation of the two sets of four Maxwell differential 
equations in the form that they were given by Minkowski (2), and then write them in the 
form of two integral theorems, i.e., in the form that extends the idea of local effects into 

                                                
† Translated by D.H. Delphenich. 
 
1 F. Kottler, Newton’sches Gesetz und Metrik, These Proceedings, v. 131 ([1922], denoted by N.). 
 
2 H. Minkowski, Die Grundgleichungen für die elektromagnetischen Vorgänger in bewegten Körper, Gött. 
Nachr. 1908, esp., § 7-8. 
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field physics (see N, no. 2).  This form was first given by R. Hargreaves (1); H. Bateman 
(2) and the author (3) then devoted time to a detailed investigation of it. 

As is well known, the Minkowskian representation relates to a four-dimensional 
manifold (the “Universe”) with three spacelike coordinates and one timelike coordinate.  
The three-dimensional universe of Newtonian static field physics is, as is natural, 
replaced with a four-dimensional one in this dynamical field physics of time-varying 
fields, in which each point will also be denoted with the time at which it is found at each 
point.  There is nothing more than Lagrange’s geometry of four dimensions, a realm in 
which the aforementioned researchers already examined mechanics – although time does 
not enter into classical mechanics on an equal basis with the spacelike coordinates, but as 
an independent parameter, as opposed to Minkowski’s theory – when the metric of this 
four-dimensional space of Minkowski does not enter into it.  This metric is (pseudo-) 
Euclidian in Cartesian coordinates.  In that way, we find that the Minkowski notation for 
Maxwell’s differential equations is already strained, and it becomes our problem to free 
these differential equations from it. 

To that end, we next remark that Minkowski’s notation (loc. cit. § 7 (A) and (B) 
therein, and § 12, in which the dual six-vector was introduced into (B) with the generality 
of scope that was found in Laue’s book) will be given unequivocal preference here, as A. 
Einstein later remarked from the standpoint of general relativity theory (4).  The deeper 
grounds for this lies in the fact that in the first form the quadruple (B) already has the 
form of the coefficients of an integral form of third degree, hence, which would best 
correspond to the basic ideas of field physics, and which has a form that is independent of 
any metric.  The advance that we shall make in this article consists of also bringing the 
quadruple (A) into such a form. 

We next give the aforementioned Minkowskian notion.  Let us set (in the notion of 
Weyl (5)): 

H23 = Hx,      H31 = Hy,  H12 = Hz,             (1) 

H14 = − Dx 1− ,  H24 = − Dy 1− , H34 = − Dz 1− ,    

 
in which we have written: 

x1 = x,  x2 = y, x3 = z, x4 = ct 1− ; 

                                                
1 R. Hargreaves, Integral forms and their connection with physical equations, Camb. Phil. Trans. 21 (1908), 
pp. 107. 
 
2 H. Bateman, The transformation of the electrodynamical equations.  Lond. Math. Soc. Proceed. Ser. 2, 
vol. 8 (1910), pp. 223, et seq. – Of the numerous later publications of H. Bateman that must be given 
particular emphasis at this point in time, let us cite: His book “Electrical and Optical Wave Motion,” 
Cambridge University Press, 1915, and his article: “Electromagnetic Vectors,” Physical Review 12 (1918), 
pp. 459. – cf., also, the article of Bateman’s student F. D. Murnaghan: “The absolute significance of 
Maxwell’s Equations,” Physical Review, 17 (1921), pp. 73, et seq. 
 
3 F. Kottler, Über die Raumzeitlinien der Minkowski’schen Weit.  These Proceedings 121 (1912), esp. § 3. 
 
4 A. Einstein, Eine neue formale Deutung der Maxwell’schen Feldgleichungen der Elektrodynamik.  Berl. 
Ber., 1916, 1, pp. 184, et seq. 
 
5 H. Weyl, Raum-Zeit-Materie, 4th ed., (1921), § 23, pp. 173, et seq. 
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furthermore: 

S1 = x

c

i
, S2 =

y

c

i
, S3 = z

c

i
, S4 = ρ 1− .  (2) 

 
Here, H means a vector (alternating tensor) of degree 2 (six-vector), whose spacelike 

part is the magnetic field strength H, and whose timelike part is the electrical 

displacement D, and furthermore, S is a vector of degree 1 (four-vector) whose spacelike 

part is the electrical current density i, and whose timelike part is the electrical charge 
density ρ ; finally, c is the velocity of light, x, y, z, t are Cartesian coordinates and time.  
From Minkowski, one then has: 

 
4

1

ik

k k

H

x=

∂
∂∑ = Si ,  i = 1, 2, 3, 4   (A)  

 
for the four-dimensional form of the first Maxwell quadruple, which reads like: 
 

1
rot ,

div ,
c t c

ρ

∂ − = 
∂ 

= 

iD
H

D

     ( )A′  

 
in ordinary notation.  The physical meaning of the first three of equations( )A′ , or, as 
Maxwell and Lorentz would write: 

rot H = 
1

c t c

∂ +
∂

iD
, 

 
is well known: The total electric current is the source of a magnetic field (Biot-Savart 
law).  We rightfully speak of ( )A′ as the electromagnetic law.  The last equation 
in ( )A′ states: The true electric charge is the source of the electrical displacement. 

By comparison, formula (A) states: The displacement current and the magnetic 
rotation are coupled to each other, since they are nothing but the timelike (spacelike, 
resp.) parts of the spacelike components of the four-dimensional divergence of the six-
vector H; the timelike component of this divergence is identical with the three-
dimensional divergence of the electrical displacement.  The source of this divergence of 
the six-vector H, the electromagnetic six-vector, is, as we would reasonably like to 
assume, the electrical four-current S, which combines the Galvanic current (convection 
current, resp.) with the electrical charge.  We also see here a return to Maxwell, who 
emphasized the unity of the Galvanic and displacement current, because he proposed the 
magnetic equivalence of both types of current (1); from Minkowski’s standpoint, this 
naturally eliminates any meaning to a union of space and time, i.e., of electricity and 

                                                
1 This idea of the equivalence with regard to magnetic effects is historically important because the 
development of modern field notions in empty space took a detour by way of the displacement current.  
One sees in this the presence of Hertzian notions regarding the extension of electrical forces.  Today, this 
detour is naturally superfluous since the notion of the field is completely established. 
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magnetism.  More precisely, the consideration of the electrical substance (current and 
charge) thus emerges in (A), which is perhaps a deficiency in this form of field physics. 

Let us further set: 

23 31 12

14 24 34

, , ,

1 1 1.

x y z

x y z

F F F

F F F

= = = 
= − − = − − = − − 

B B B

E E E
  (3) 

 
Here, F refers to a vector of degree 2, whose spacelike part is the magnetic induction 

B, and whose timelike part is the electrical field strength E.  According to Minkowski, 

one then has: 

lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0 (klm)    (B) 

 
for each of the four combinations (klm) of the four indices 1234 taken three at a time for 
the four-dimensional form of the second Maxwell quadruple, which reads like: 
 

1
rot 0,

div 0
c t

B

∂ + = 
∂ 

= 

B
E

     ( )B′  

 
in the ordinary Maxwell notation.  The physical meaning of the first of the three 
equations in( )B′ , or, as Maxwell and Lorentz would write: 
 

rot E = − 1

c t

∂
∂
B

 

 
is well known:  The magnetic induction current is the source of an electrical field 
(Faraday’s law of induction).  We rightfully speak of ( )B′ as the magneto-electric law.  
The last equation of( )B′ states: The source of the magnetic induction is zero. 

In contrast to this, formula (B) states: The magnetic induction current and the 
electrical rotation belong together since they are nothing but the timelike (spacelike, 
resp.) parts of the spacelike components of the four-dimensional rotation of the six-vector 
F; the timelike components of this rotation are identical with the three-dimensional 
divergence of the magnetic induction.  The source of this rotation of the six-vector F, as 
we would like to reasonably assume, is the magnetic four-current, when it is given. 
However, since the true magnetic current and the true magnetic charge are null in the 
usual Maxwellian formulation, the rotation of the six-vector F is equal to null. 

What we have denoted here as the four-dimensional divergence (four-dimensional 
rotation, resp.) of a six-vector proves, on closer examination, although we shall say 
nothing further about this, to be the interior (exterior, resp.) product (in the Grassmann 
sense) of the so-called vector operator ∇, whose components are: 

 

∇1 =
1x

∂
∂

,  ∇2 =
2x

∂
∂

, ∇3 =
3x

∂
∂

, ∇4 =
4x

∂
∂

, 
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with the six-vector. 
 

2. 
 
We once more return to the notation that was used by Hargreaves that represents the 

eight Maxwell differential equations in the form of two integral laws whose true nature 
will be revealed and in terms of which the idea of local action in physics is most 
reasonable. 

The quadruple (B) already has, as we mentioned, the desired form.  Then: 
 

lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= Fklm 

 
has the form of the coefficients of an integral form of third degree, as they appear in the 
four-dimensional general theorem of Gauss and Green (1): 
 

∫∫ F23 dx2 dx3 + F31 dx3 dx1 + F12 dx1 dx2 + F14 dx1 dx4 + F24 dx2 dx4 + F34 dx3 dx4 = 

= ∫∫∫ F234 dx2 dx3 dx4 + F134 dx1 dx3 dx4 + F124 dx1 dx2 dx4 + F123 dx1 dx2 dx3 . (4) 

 
In (4), the double integral ranges over a closed two-dimensional surface that bounds a 
three-dimensional space, over which the triple integral ranges.  Accordingly, Hargreaves 
and Bateman replace the quadruple (B) with the integral theorem: 
 

( )ik
∑∫∫ Fik dxi dxk = 0,     (II) 

 
in which the sum is over all six combinations (ik) of the four indices 1234 taken two at a 
time. 

For the quadruple (A), this formalism is not so simple.  If one thus introduces six-

vector
*

H , which is complementary (dual) to H, (cf., N, no. 3), then one arrives at a 
formula that is analogous to (II).  Since, for Minkowski, we have a Euclidian metric in 
Cartesian coordinates the covariant and contravariant coordinates are identical, and we 
may set: 

  H12 =
*

34H ,  H13 =
*

42H , H14 =
*

23H , 

  H34 =
*

12H ,  H24 =
*

31H , H23 =
*

14H . 

 

Instead of 
*

H , we write good old E, and thus have: 
 

                                                
1 On this, cf., F. Kottler, Über die Raumzeitlinien der Minkowski’schen Welt.  These Proceedings, 121 
(1912), § 2. – For the notion, cf. N, no. 2. 
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 1
34 42 23

2 3 4

k

k k

H
E E E

x x x x

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂∑   = E234 , 

 2
34 41 13

1 3 4

k

k k

H
E E E

x x x x

∂ ∂ ∂ ∂= − − −
∂ ∂ ∂ ∂∑   = − E134 , 

 3
24 41 12

1 2 4

k

k k

H
E E E

x x x x

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂∑   = E124 , 

 4
23 31 12

1 2 3

k

k k

H
E E E

x x x x

∂ ∂ ∂ ∂= − − −
∂ ∂ ∂ ∂∑   = − E123 . 

 

Likewise, we introduce the vector
*

S of third degree that is complementary to the 

vector S of first degree (1); moreover, we have, in which we write S instead of 
*

S : 
 

S1 = S234 ,  S2 = − S134 ,  S3 = S124 , S4 = − S123 , 
 

in which one naturally has, e.g.: 
 

S123 = − S132 = − S213 =  S231 = S312 = − S321 . 
 

This therefore means that: 
 

E23 = − Dx 1− ,  E31 = − Dy 1− , E12 = − Dz 1− ,   

E14 = Hx,   E24 = Hy,  E34 = Hz ;         (5) 

 
furthermore: 

S234 = x

c

i
, S134 = − y

c

i
, S124 = z

c

i
, S123 = ρ 1− .  (6) 

 
We then come to the quadruple: 
 

Eklm = Sklm  (klm) 
 

in place of (A), which can also take the form of an integral law: 
 

( )ik
∑∫∫ Eik dxi dxk =

( )ikl
∑∫∫∫ Sklm dxi dxk dxl .   (I) 

 
The first sum goes over all six combinations (ik) of the four indices 1234 taken two 

at a time, and the second sum goes over all four combinations (ikl) of the four indices 

                                                
1 Here, one occasionally remarks that the complement of

*
S is not S again, but – S; then 

1

*
S = − S231 = − S1, 

etc.  Cf., the remarks on pp. 8 of article N. 
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1234 taken two at a time.  The double integral is taken over the closed two-dimensional 
bounding surface of a three-dimensional space, over which the triple integral is taken. 

 
3. 

 
We would like to once more focus our consideration of Maxwell’s equations and 

their metric upon the formulas (I) and (II).  One immediately sees that both integral 
theorems (I) and (II) are independent of any metric, and independent of the meaning that 
one ascribes to the coordinates x.  They can then be generalized to the spacetime 
(dynamical) picture that Faraday envisioned, in which the spacelike (static) force effect 
of the field in any closed neighborhood can be replaced with one that takes place on the 
bounding surface.  Hence, these integral theorems must be essential invariants under all 
transformations of the coordinate systems, so they certainly cannot be linked with any 
metric because one would prefer not to deal with such a thing in the evaluation of 
boundary surface integrals and the like.  Rather, only the theorems of integral calculus are 
necessary; i.e., the manifolds over which one integrates must be made more precise in the 
sense of Analysis Situs (connectivity relations, singularities, etc.), not, however, in the 
sense of metric geometry (1). 

Accordingly, we would like regard the x in (I) and (II) as any coordinates in any 
four-fold extended, simply connected, nowhere singular manifold, in which we, in order 
to preserve the reality conditions, would like to distinguish the x1, x2, x3 as the spacelike 
coordinates and x4 as the timelike one.  The form of (I) and (II) naturally remains the 
same under any transformation to new coordinatesx′ , as is already known from Jacobi’s 
application of such integrals to the transformation of the Laplacian differential 
expressions.  It thus transforms the E and the F like covariant vectors (alternating tensors) 
of second degree, hence, e.g.: 

Eik =
,

p q
pq

p q i k

x x
E

x x

′ ′∂ ∂
′

∂ ∂∑  (ik) 

  
etc., and the S naturally transform like covariant vectors of third degree: 
 

Sikl =
p q r

pqr
pqr i k l

x x x
S

x x x

′ ′∂ ∂ ′∂′
∂ ∂ ∂∑ ,  (ikl). 

 
In place of the integral theorems (I) and (II), we can also pose the eight differential 

equations: 
Eklm = Sklm ,   (klm)     (I a) 
Fklm = 0,    (klm).    (II a) 

 
This is therefore the archetype for the form that the Maxwell equations become when 
they are expressed independently of any metric.  In these equations, we mean, for future 
reference: 

                                                
1 On this, cf., H. Poincaré, Analysis situs.  Journal de l’école polytechnique, 2. série, cah. 1 (1895), § 7. 
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   Eklm = lm mk kl
k l m

E E E
x x x

∂ ∂ ∂+ +
∂ ∂ ∂

, 

   Fklm = lm mk kl
k l m

F F F
x x x

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
and E is the electromagnetic six-vector, while F is the magneto-electric six-vector.  
Furthermore, S is the vector of third degree that yields the amount of electricity that flows 
through the “spatially” oriented surface element in the time element (is contained in the 
“spatially” oriented volume element, resp.): i.e., the electrical four-current.  One easily 
finds that the next higher construction in the E: 
 

E1234 = 234 134 124 123
1 2 3 4x x x x

∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂

E E E E ≡ 0 

 
vanishes identically.  Hence, one has the continuity equation of the electrical current: 
 

S1234 = 234 134 124 123
1 2 3 4x x x x

∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂

S S S S ≡ 0 . 

 
In order to understand the physical meaning of the Maxwell equations in the new 

form (I a) and (II a) we revert, for the moment, to the special Minkowski interpretation, 
hence, to equations (3) (equations (5), resp.) for the magneto-electric vector F (the 
electromagnetic vector E, resp.).  There, the spacelike part of  F is the magnetic induction 
B and the timelike part of F is the electric field E; furthermore, the spacelike part of E is 

the electric induction D (as we would like to say instead of “displacement,” by way of 

analogy) and the timelike part of E is the magnetic field H.  As is well known, in 

Maxwell’s phenomenological picture only the “field” reigns in the ether, whereas in 
ponderable matter the field will increase due to the effects that the matter contributes, 
such as magnetization (polarization, resp.), in the form of “induction.”  Therefore, the 
induction and the field in a non-ferromagnetic (isotropic, resp.) medium are proportional 
to each other, and the proportionality factor is the magnetic permeability (the dielectric 
constant, resp.), which represent constitutive relations: 

 
B = µ H,  D = ε F . 

 
In the Minkowski picture, the distinction between space and time dissolves; 

therefore, the magnetic induction and the electric field combine into a single entity, the 
magneto-electric vector F, and likewise the electric induction and the magnetic field 
combine into the electromagnetic vector E.  (One notes the strict analogy between 
induction and field in both cases, which was not true for Minkowski, since he coupled the 
complementary vector H to the vector F, which is strictly analogous to E, instead of E.)  
We will now examine both vectors E and F with regard to their four-dimensional 
rotation.  This rotation is different from null only where a true electric (magnetic, resp.) 
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four-current exists.  Since the true magnetic four-current always vanishes, the rotation of 
the magneto-electric vector is always null. 

Physically speaking, one thus has in E, the “field” [combined magnetic field and 
electrical induction (displacement-) current] of a true electrical quantity (whether moving 
or at rest), and in F, the “field” (combined electric field and magnetic induction current) 
of a true magnetic quantity (when it is given); E represents the electromagnetic effect of 
the electricity and F represents the magneto-electric effect of the magnetism. 

Corresponding to the phenomenological viewpoint of field physics, which only tries 
to describe collective phenomena, but not causal orientation, one can naturally exchange 
causes and effects in the previous statements and say: The electromagnetic field E 
produces singularities, viz., the true electric substance, and the magneto-electric field F 
produces singularities, viz., the true magnetic substance. 

In this formulation, there are obviously no opposing reactions between the 
electromagnetic and magneto-electric fields.  Then, from the well-known laws of 
induction (Lenz’s rule) one has that, e.g., a magnetic field that is produced by an electric 
current tends to weaken the current that produced it; in this example, the electromagnetic 
effect thus has a magneto-electric effect as a consequence that tends to weaken it.  This is 
therefore an obvious failing of field physics.  In truth, this reaction already assumes the 
statement of constitutive relations of the type (7) between both vectors E and F, and it 
will be shown that these relations are based on the assumption of a metric, hence, on one 
of the quantitative features that are foreign to the original “qualitative (1)” field theory. 

In the following section, it will also be shown that this metric follows from the 
measurement of the velocity of light; in fact, as has been completely understood since the 
time of W. Weber and F. Kohlsrausch, the velocity of light plays an essential role in all of 
the relations that couple electricity and magnetism, and indeed in all practical 
measurements in the neighborhood of them.  However, since the later development of 
special relativity has shown, a theory that is linked with difficult problems with the 
velocity of light, problems that A. Einstein gave a provisional resolution to with his 
postulate of the constancy of the velocity of light, we cannot set aside the cornerstone of 
pure field physics, viz., the qualitative description of the coupling relations between the 
electromagnetic field and the magneto-electric field, or ignore the metrically quantitative 
physics in the latter, hence, in a neighborhood in which the arbitrary convention plays an 
essential role.  The absence of opposing reactions between the electromagnetic and the 
magneto-electric fields is therefore no failing of pure field physics.  (On this, we remark 
that, as will be shown in no. 6, one can also not speak of an energetic viewpoint.  The 
energetic viewpoint [the impossibility of the perpetuum mobile] can support Lenz’s rule, 
but only when the dielectric constant and permeability are already known.) 

Before we leave behind the prototype for Maxwell’s equations (I a) ((II a, resp.), we 
need to make a formal remark.  As was known in N, no. 3, the geometrical principle of 
duality also governs vectors as geometrical quantities.  One can thus introduce the 
complementation of E and F only when one takes care to choose an arbitrary  
proportionality factor that one omits, and which proves to be a vector of fourth degree 
here: 

                                                
1 For Poincaré, qualitative refers to the Analysis Situs, as opposed to the quantitative metric (despite the use 
of coordinates, hence, numbers introduced for the purpose of ordering).  Cf., Poincaré, La valeur de la 
science.  Chap III, § 2: “la géometrie qualitative.” 
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ε1234, 
 
and which naturally varies from position to position.  In order to remain in agreement 
with the usual notation (A), (B) for Maxwell’s equations, we confine ourselves to that 
convention, so as to introduce the complementation solely for E (and S), but not for F.  
One has: 

  E12 = ε1234

*
34E , E13 = ε1234

*
42E , E14 = ε1234

*
23E , 

  E34 = ε1234

*
12E , E42 = ε1234

*
13E , E23 = ε1234

*
14E , 

 

in which
*

E is the contravariant vector of degree 2 that is complementary to E.  Likewise: 
 

  S234 = − ε1234

*
1S , S134 = + ε1234

*
2S , S124 = − ε1234

*
3S , 

     S123 = − ε1234

*
4S , 

 
and therefore, instead of (I a), we have: 
 

 E234 =
*
1

1234( )k

k k

E
x

∂ ε
∂∑  = S234 = − ε1234

*
1S , 

 E134 = −
*
2

1234( )k

k k

E
x

∂ ε
∂∑  = S134 = + ε1234

*
2S , 

 E124 =
*
3

1234( )k

k k

E
x

∂ ε
∂∑  = S124 = − ε1234

*
3S , 

 E123 = −
*
4

1234( )k

k k

E
x

∂ ε
∂∑  = S123 = + ε1234

*
4S , 

 
or, when summarized for the Maxwellian quadruple: 
 

*

1234
1234

1
( )ik

k k

E
x

∂ ε
ε ∂∑ = −

*
1S ,  i = 12, 34  (I b) 

Fklm = lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0  (klm) .    (II b) 

 

Thus,
*

Ssatisfies the continuity equation: 
 

*

1234( )i

i ix

∂ ε
∂∑ S = 0 . 
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4. 
 

After having presented Maxwell’s equations in the previous section in a form (I a) 
((II a), resp.) that was independent of any metric, we must ask how it is that a metric 
enters into the ordinary representation, a metric that modern relativity theory even 
presents as its result. 

The basis for this is the constitutive relations between the two vectors E and F.  
Here, we would next like to discuss which viewpoint is necessary for their introduction.  
Up till now, we have regarded the electromagnetic field E and the magneto-electric field 
F as known and then computed the electric four-current S (the null magnetic four-current, 
resp.).  However, in our experience, it is not the field that is given, since we possess no 
sense organ that could make us aware of the presence of an electromagnetic field.  
Rather, we base our experience primarily on our sense of sight, which recognizes motion, 
but not fields.  We thus try to ensure that all of our observations will lead back to 
observations of a kinematical nature.  Thus, we know only the coordinates x1, x2, x3, x4, 
which establish the position and time for an event; e.g., the ponderomotive effect of a 
field.  Accordingly, instead of regarding the field quantities as the quintessential givens, 
as we did before, we must regard them as unknowns whose connection to the actual 
knowns x1, x2, x3, x4 is yet to be discovered, hence, their nature as dependent functions of 
these independent variables.  The integral theorems I and II (their corollaries I a and II a, 
resp.), when applied to this way of thinking, are transformed into eight partial differential 
equations for the twelve unknowns E and F.  One can regard the four quantities S as 
given since they are connected with a motion, namely, the current of electricity. 

However, if one considers the eight differential equations (I a), (II a) for the twelve 
unknowns E and F from this new viewpoint then one sees that the problem of integrating 
them is underdetermined.  One next sees that the four equations (I a): 

 
Eklm = Sklm   (klm)   (I a) 

 
are not independent of each other, since the identity: 
 

E1234 = 234 134 124 123
1 2 3 4x x x x

∂ ∂ ∂ ∂− + −
∂ ∂ ∂ ∂

E E E E ≡ 0 

 
exists.  Likewise, the four equations (II a): 
 

Eklm = 0   (klm)   (II a) 
 
are not independent of each other, since the identity: 
 

F1234 = 234 134 124 123
1 2 3 4x x x x

∂ ∂ ∂ ∂− + −
∂ ∂ ∂ ∂

F F F F ≡ 0 

 
exists.  We thus obtain only six independent differential equations for twelve unknowns, 
viz., six equations too few.  Thus, if one would like to define a well-determined 
integration problem then one must add six algebraic equations to the six differential 
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equations that one may naturally regard as arbitrary.  In this ambiguity, the previously-
mentioned conventional element, and likewise the dubious side of Maxwellian theory, 
such as the numerous difficulties in crystal optics, ferromagnetic theory, and not least of 
all, the theory of optical phenomena in moving media (relativity theory), has been 
sufficiently substantiated historically. 

The aforementioned six equations that are to be appended are precisely the six 
constitutive relations that represent the six quantities E as functions of the six quantities 
F.  One thus chooses ordinary linear relations, such as, for example, (7) or the relations 
for the anisotropic media of crystal optics; naturally, one must never forget that linear 
approximations are usually nothing but approximations, initial terms in a Taylor series 
development for a complicated function that has been truncated after the first power.  
(Confer the analogous case of Hooke’s law in elasticity theory.)  Thus, if, as is often 
asserted nowadays, Maxwell’s equations cannot be extended to describe the phenomena 
inside of matter, which is entirely correct, then the basis for this must lie completely in 
the linearity of the Maxwellian constitutive relation as an approximation that is not 
satisfied for ponderable matter, and not in Maxwell’s equations themselves. 

We would now like to give a special example of how the constitutive equations 
between E and F lead to a metric as a consequence; indeed, we would like to take the 
case of matter-free space.  We will thus obtain the Minkowski metric (the generalized 
Einstein metric when we consider gravitation, resp.)  The mathematical process is thus 
similar to the introduction of the metric in N, sec. 4: there, the covariant vector of force 
was derived from the contravariant complement of force flux by means of a polar 
correlation (orthogonality).  Likewise, we will use a polar correlation to derive a 
covariant vector from the contravariant complement of the magneto-electric vector F, 
which we would then like to identify with the vector E.  The vector F and the polar 
reciprocal vector to its complement are then both solutions to the Maxwell equations for 
the case of matter-free space. 

One thus has the constitutive equations: 
 

Eik =
*

,

pq
ip kq

p q

a a F∑  (ik)     (8) 

in which the form: 
4

, 1
ik i k

i k

a ξ ξ
=
∑       (9) 

 
for the orthogonality has been assumed (cf., N, sec. 4).  If the aik are constant and, in 
particular: 

aik = δik =
1

0

i k

i k

=
 ≠

 

 
then one has the Minkowski metric, whereas if they are variable functions of the chosen 
position x1, x2, x3, x4 then one has the Einstein metric (hence, gravitation).  Furthermore, 
one now has, as in N, sec. 4: 

ε1234 = a      (10) 
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which makes: 

  F12 =
*
34F a ,  F13 =

*
42F a ,  F14 =

*
23F a , 

  F34 =
*
12F a ,  F42 =

*
13F a ,  F23 =

*
14F a . 

 
If one chooses, as Minkowski did, aik = δik then one has, in particular: 
 

E12 =
*
12F = F34, E13 =

*
13F = F42, etc., 

 
or [cf., (3) and (5)]: 

D = E,  B = H. 

 
In matter-free space with no gravitational field, field and induction are equal to each 

other.  In general, according to Einstein, in matter-free space with a gravitational field 
one has, if we write gik instead of aik,: 

 

Eik =
,

1
ip kq p q

p q

g g F
g

′ ′⋅ ⋅∑   (ik) 

 
in which pqp q′ ′  means a positive permutation of the indices 1234.  If one further sets, in 
which x no longer refers to a Cartesian coordinate: 
 

  E23 = − D1 1− ,  E31 = − D2 1− , 

  E14 =     H1 1− ,  E24 =    H2 1− , etc., 

and likewise: 
  F23 =    B1,   F31 =  B2, 

  F14 = − E1 1− ,  F24 = − E2 1− , etc., 

 
then one has, e.g.: 

− D1 1 g− ⋅  =        (g21 g32 – g22 g31) (− E3 1− )   (12) 

  + (g23 g31 – g21 g33) (− E2 1− )         

  + (g22 g33 – g24 g32) (− E1 1− )         

  + (g21 g34 – g24 g31) B1          

  + (g22 g34 – g24 g32) B2          

  + (g23 g34 – g24 g33) B3, etc.,         

 
which again reduces to D1 = E1 if gik = δik . 
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If one considers the constitutive relations (8) then one may eliminate the vector E by 
way of F in the (I a) ((I b), resp.), and one obtains, e.g., in place of (I b) (II b), as a simple 
calculation shows (1): 

, ,

( )ip kq
pq

k p q k

aa a F
x

∂
∂∑ = Si a  i = 1, 2, 3, 4   (I c) 

lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0  (klm).   (II c) 

 

In this, we have set
*
iS = − Si.  This is the usual preferred notation for Maxwell’s equations 

(for matter-free space), which is already admittedly burdened with a well-defined metric.  
Thus, the problem of integrating (I c) and (II c) when S is given is completely 
determined. 

For Minkowski’s metric (aik = δik ) one has (in matter-free space): 
 

ik
k k

F
x

∂
∂∑ = Si   i     (I d) 

lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0 (klm),    (II d) 

 
which one would like to equate with (A) and (B) in sec. 1 (2). 

                                                
1 Cf., F. Kottler, Über die Raumzeitlinien der Minkowsi’schen Welt, these Proceedings 121 (1912), pp. 
1688, in which one finds an easily recognizable typographical error. 
 
2 Here, two passing remarks are in order: 

The first one concerns equations (II).  From Volterra’s generalization of complex variables in n-
dimensional spaces, a connection such as the one that one finds here between the coefficients E and F of 
two integral forms of second degree in a four-dimensional space is governed by the theory of conjugate 
functions.  Cf., V. Volterra, Linc. Rend. Ser. V, vol. 5, sem. 1 (1889), pp. 599, et seq., “sulle funzioni 
conjugate” or “Leçons sur l’integration des equations aux dérivées partielles professées à Stockholm,” Paris 
1912, lessons 5 and 6.  Volterra operates with integrals of the type: 

 

( )

l k
lk

lk

F dx dx∑∫∫ , 

 
which are taken over an open surface such that Fklm = 0 depends only upon the boundary curve of this 
surface, and which are called functions of this curve (fonctions de ligne).  The conjugate function to it is: 
 

*

( )

i k
ik

ik

F dx dx∑∫∫ , 

in which
*

12F = F34, etc.; hence, relations (11) or the Euclidian metric in Cartesian coordinates must apply.  

In any case, these conjugate functions must be a functions of the curve; i.e.,
*

klmF  ≡ 0.  Thus, the F satisfy 

equations of the form (I d) (with S = 0) and (II d)  On such systems of differential equations cf., Volterra 
“Sulla integrazioni di un sistema di equazione differenziali a derivate parziali, etc.,” Rend. Circ. Palermo 3 
(1889), pp. 260, et seq.  The term “conjugate function” is justified since the analogy with the Cauchy 
integral: 
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5. 
 

The definition of the constitutive relations that we just carried out determines the 
dielectric and magnetic properties of the medium.  Physically speaking, this has two 
senses: a static one and a dynamical one.  However, it is well-known that one can regard 
the static case as a limiting case of the dynamical one, namely, one can obtain statics by 
considering electromagnetic waves with infinitely large wavelengths.  Accordingly, being 
given the dielectric and magnetic properties that we briefly mentioned equivalent to being 
given the laws of radiation for electromagnetic fields inside the medium considered.  So 
to speak, our metric thus amounts to the same thing as the measurement of the velocity of 
light.  

The radiation of waves is known to be a chapter in the theory of partial differential 
equations that unfortunately has been developed essentially only for partial differential 
equations in one unknown up till now, whereas here we have, e.g., in (I d), (II d), a 
system of partial differential equations in six unknowns.  We must thus refrain from 

                                                                                                                                            
( )f z dz∫  

 
of classical function theory is valid when this integral is taken along an open curve the two-dimensional 
complex z-plane.  When f is a univalent function of the complex variable z this integral depends, in any 
case, upon the boundary points (point function).  If one sets z = x1 + ix2, f(z) = u1 + iu2  then one obtains two 
real integrals: 

∫ u1 dx1 – u2 dx2  (∫ u2 dx1 + u1 dx2, resp.), 

 
which are point functions that are conjugate to each other.  Thus, the u1, u2 satisfy the Cauchy-Riemann 
differential equations, which are thus the two-dimensional analog of the Maxwell differential equations (I 
d) (with S = 0) and (II d).  Related facts are found in other places.  Cf., also L. Hanni, “Über den 
Zusammenhang zwischen den Cauchy-Riemann’schen und den Maxwell’schen Differentialgleichungen,” 
Tôhuku Math. Journal 5 (1914), pp. 142 to 175. – One sees in the foregoing the origin of the Euclidian 
metric in the complex plane of classical function theory: two line integrals are given that are merely point 
functions; this corresponds to the viewpoint of Analysis Situs.  They become united as the conjugate 
functions to a single function of one complex variable with the help of constitutive equations of the form 
(11) between the coefficients of their integral forms of first degree on two-dimensional space.  Through 
these constitutive equations, we introduce a metric, as in our text. 

The second remark concerns equations (12).  Such equations were already found for the establishment 
of Einstein’s generalized metric by Bateman in the cited article “The transformation of the 
electrodynamical equations,” loc. cit., pp. 259, et seq, in particular formula (2) Bateman then chose a form 
for the form (9) in our text that included dielectric and permeability constants in order to obtain 
Minkowski’s completely understood relations for moving ponderable matter in this way.  This is therefore 
fundamentally unacceptable, since special relativity theory must be true for the form (9) with aik = δik , as 
well for ponderable matter.  The correct form of the constitutive equations for moving matter no longer 
depends, like (12), simply upon the fundamental metric form alone.   In passing, these forms are coupled 
here by: 

i kE ′ ′µ = Fik – (εµ – 1)
2

i kr r k ir r
r r

r
r

S F S S F S

S

⋅ − ⋅∑ ∑

∑
 (ik) 

In this, iki k′ ′ is a positive permutation of 1234.  For electricity at rest (S1 = S2 = S3 = 0) this turns into the 
well-known constitutive equations (7) of our text for ponderable matter at rest. 
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treating the deeper connection between the metric in Maxwell’s equations with 
aforementioned mathematical theory of wave fronts or characteristics (1). 

In the following, we treat the problem of founding the metric of the field equations 
on the laws of radiation for the field in a somewhat different way.  We restrict ourselves 
to the Minkowskian equations (I d) (II d) in electricity-free space (S = 0): 

 

k kx

∂
∂∑ Fik = 0    i  (13) 

lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0  (klm),   (14) 

 
integrate them by way of the well-known integral in terms of planar light waves, and then 
show that, conversely, when the field vectors for these waves have the characteristic form 
then the associated field equations (I a) (II a) must exhibit the Minkowski metric, hence, 
the form (I d), (II d), or the constitutive equations (11).  We remark that since all of optics 
is defined in terms of plane waves we will most certainly confine ourselves to that realm 
of wave radiation. 

One obtains plane waves when one demands that all components of the field vectors 
must be proportional to one and the same function ϕ that is linear in its arguments: 

 
4

1
h h

h

C x
=
∑  

 
(the phase).  With this, one next obtains for the magneto-electric field vector F: 
 

Fik = Aik ϕ h h
h

C x
 
 
 
∑      (15) 

 
in which Aik = − Aki, and similarly the Ch shall be constants.  One obtains from (14): 
 

Aik Ck + Amk Cl + Akl Cm = 0 (klm), 
 
equations from which one easily deduces: 
 

Aik = Ci Dk – Ck Di  (ik) 
 
in which D is a constant vector.  Thus, it follows from (13) that: 
 

                                                
1 J. Hadamard, Leçons sur la propagation des ondes. Paris 1903, Chap. VII. – R. d’Adhemer, Les équations 
aux dérivées partielles à caracteristiques réelles.  Coll. Scientia, no. 29, Paris 1907. – In the theory of 
characteristics, the four-dimensional (n-dimensional, resp.) metric of relativity theory usually appears.  Cf., 
the “conormal” of d’Adhemar.  C.R., 11 February 1901.  Cf., also Hadamard, Theorie du problème de 
Cauchy, Acta Math. 31 (1907), pp. 333 et seq., in particular, pp. 334 to 336. 
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Ci k
k

D∑ Ck − Di 
2
k

k

C∑  = 0  i 

 
from which it necessarily follows that: 
 

2
kC∑ = kC∑ Dk = 0. 

 
As is well-known, the first of these equations states the existence of radiation with the 
velocity of light.  One sets: 
 

C1 = ux, C2 = uy, C3 = uz, 

 
in which u is the unit vector to the three-dimensional wave normal ( 2 2 2

x y z+ +u u u = 1).  One 

then necessarily has: C4 = 1± − .  If one chooses the upper sign, which is permissible, 
then one has: 

4

1
h

h

C
=
∑ xh = ux x + uy y + uz z – ct , 

 
from which the radiation of waves with light velocity along the direction of the wave 
normal u becomes evident. 

The second of the equations above asserts the transversality of the plane waves.  
Namely, one now has: 
 

Fik = (Ci Dk – Ck Di ) ϕ h h
k

C x
 
 
 
∑   (ik),  (15 a) 

in which we have simply set: 
 

D1 = ax, D2 = ay, D3 = az, D4 = 0 , 

 
in which a is a three-dimensional vector (amplitude) that satisfies the transversality 

condition  axux + ayuy + azuz = 0, since h h
k

C D∑  = 0, and (15 a) becomes equivalent to: 

 
   B = [u a] ϕ (ux x + uy y + uz z – ct) 

   E =       a ϕ (ux x + uy y + uz z – ct) . 

 
If one sets: 

[u a] = b 

 
in which b is another three-dimensional vector for which one obviously has: 

 
uxbx + uyby + uzbz = axbx + ayby + azbz = 0 
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in which: 
[u b] = a . 

If one defines a four-vector: 
 

B1 = bx 1− , B2 = by 1− , B3 = bz 1− , B4 = 0, 

 
then these relations satisfy: 

h h
k

B C∑ = h h
k

B D∑ = 0 

 
and, as one sees from B = H, E = D one obviously sets the electromagnetic field vector E 

equal to: 

Eik = (Ci Bk – Ck Bi ) ϕ h h
k

C x
 
 
 
∑  (ik)  (15 b) 

or, from (5): 
   H  =    b   ϕ (ux x + uy y + uz z – ct)  

   D = [b u] ϕ (ux x + uy y + uz z – ct) . 

 
In summation, the plane wave in vacuo is characterized by the values of both field 

vectors: 

Eik = (Ci Bk – Ck Bi ) ϕ h h
k

C x
 
 
 
∑  (ik)  (15 b) 

 Fik = (Ci Dk – Ck Di ) ϕ h h
k

C x
 
 
 
∑   (ik),  (15 a) 

 
in which one likewise has for the constants C, B, D: 
 

2
h

h

C∑ = h h
h

C D∑ = h h
h

C B∑ = h h
h

B D∑ = 0.   (16) 

 
From this, it follows conversely: When equations (15 a), (15 b) are valid, along with 

(16) then one has, as a simple calculation shows: 
 

i kE ′ ′ ~ Fik   (ik) 

 
when iki k′ ′ is a positive permutation of 1234.  Since the (naturally constant) 
proportionality factor does enter here, one can directly set: 
 

i kE ′ ′ = Fik   (ik) . 
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However, these are the Minkowskian constitutive equations (11), hence, a Minkowski 
metric and the form (I d) (II d) is valid for the solutions (15 a) (15 b) with the conditions 
(16).  Q.E.D. 

The relations (16) are essential for the previous proof of the appearance of the 
metric.  Also, without this condition (15 a) (15 b) would be a solution of the Maxwell 
equations (I a) (II a), from which, all of the components of the two field vectors are 
proportional to one and the same function of a linear argument.  However, the interaction 
between both fields would not be precise and the constitutive equations (11), which are 
equivalent to (10), would fail: physically speaking, Lenz’s rule for any interaction would 
fail.  These solutions, (15 a), (15 b), but not (16), can naturally be referred to as plane 
waves since the argument h h

k

C x∑ , without the relation 2
h

h

C∑ = 0, says nothing about the 

velocity of light that the phase propagates at.  The radiation laws of the field are first 
given by the metric or conversely. 

With the foregoing, we have explained how the Minkowski metric is based on the 
laws of radiation of the field in vacuo, and the same task for the Einstein metric in a 
gravitational field grows more important.  We thus have to seek an integral of equations 
(I c), (II c) with S = 0 that would be analogous to plane waves in the vacuum, and from 
which all of optics could be reproduced.  Unfortunately, this problem is insoluble in full 
generality.  One must therefore appeal to the aforementioned theory of characteristics for 
help here, which, when it is sufficiently well-defined for a system of partial differential 
equations, in any case where this is permissible, should take a detour around the problem 
of finding an actual integral of the differential equations and read off the laws of radiation 
directly.  As long as this road is not passable, we must satisfy ourselves with the 
following consideration: The gravitational field of Einstein deviates from the Minkowski 
vacuum only in terms of higher order; this deviation first becomes significant in a large 
domain.  If one restricts oneself to a small domain then one can regard the aik in (1 c) (II 
c) as constant (1), and one can then recall the proof above, in which one must merely 
replace 2

h
h

C∑ , etc., with
,

gh
g h

g h

a C C∑ , etc.  The connection between local laws of radiation 

of the field with the Einstein metric is thereby likewise established. 
 

6. 
 

After the independence of the prototype form of the Maxwell equations (I a), (II a) 
((I b), (II b), resp.) of any metric was established in sec. 3, in which both fields – the 
electromagnetic field (E), as well as the magneto-electric field (F) – were regarded as 
previously-given quantities in an experiment, the actual phenomenological calculations 
were carried out in sec. 4, in which the fields were regarded as unknown functions of the 
quantities x – position and time – that are actually experienced.  This led to the necessity 
of introducing constitutive relations between E and F, which establish interaction 
between electromagnetic and magneto-electric phenomena in space and time.  These 
constitutive relations give rise to the appearance of a metric in Maxwell’s equations, as 
their new form shows, e.g., (I d) and (II d) in matter-free space without gravity, according 
to Minkowski (with gravity, (I c) and (II c), according to Einstein).  In sec. 5, it was then 
                                                
1 More precisely: one can introduce a so-called “geodetic” coordinate system. 
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shown that for the Minkowskian (Einsteinian, resp.) vacuum the given of constitutive 
relations implies the given of the laws of radiation of the field in space and time, and 
conversely, the given of the latter implies the given of the former. 

In contrast to the foregoing representation, one might perhaps be inclined to look for 
the origin of the metric and constitutive relations in the energetic behavior of the fields 
and their coupling relations instead.  This goes back to over-emphasis on energetics in 
physics that is still often present, and which, it seems, we have not overcome.  Thus, it is 
good to remember Poincaré’s criticism (1): After he argued that the energy principle goes 
back to it, that the differential equations of mechanics can be expressed as integral 
equations of the form: “a certain sum is constant,” that, however, the choice of which of 
these integrals actually represents the total energy is in now unique, he continued: “il y a 
quelque chose qui demeure constant.  Sous cette form il se trouve à son tour hors des 
atteintes de l’expérience et se réduit à une sorte de tautologie.  Il est clair que si le monde 
est gouverné par les lois, il a aura des quantités qui demeureront constants.” 

The truth of this skeptical statement remains unchanged in the face of the modern 
form of the energy principle, which, as one knows, mixes the energy principle and the 
impulse theorem into a unified four-dimensional statement, in which the first part is 
timelike and the last part is spacelike.  The impulse-energy theorem of Minkowskian 
electrodynamics expresses the constancy of impulse and energy in the form of: The 
impulse (energy, resp.) that is included in a unit volume can only increase or decrease 
when force fluxes (energy currents, resp.) flow through the boundary surface of the 
volume.  This recalls the notion of local field physics; accordingly, the impulse-energy 
theorem also takes the form of a divergence.  However, when one goes over to the 
generalized Einstein metric, one loses this analogy with field physics.  Whereas (N, no. 
2), the analysis of field quantities, viz., alternating tensors (vectors), is actually 
independent of the metric, the analysis of general tensors, by which impulse, energy, 
surface and body stresses are represented, depends on the metric, which agrees with the 
latter analysis only for the Euclidian Minkowskian metric.  Physically, this dependency, 
that the gravitational field also carries energy and momentum, originates in the variability 
of the metric.  However, one finds oneself in an undesirable state of dependency on a 
special coordinate system that one bases ones considerations upon, since the gravitational 
field vanishes upon it.  It is well-known that Einstein (2) sought to regard impulse and 
energy as stresses in the gravitational field.  When one expresses energy and impulse in 
terms of closed system they therefore have only a universal, but not a local sense, so to 
speak.  The impulse theorem then reduces once more to a sort of “tautology,” as Poincaré 
had suggested. 

One can thus only expect from these considerations that one can derive identities 
from the original field equations, just as one does from the equations of mechanics, 
whose generalization would represent the conservation of energy and impulse that we 
only known in one special case.  The idea of energy currents and impulse currents (the 

                                                
1 H. Poincaré, La science et l’hypothése, chap. VIII, energy and thermodynamics, pp. 153, et seq. 
 
2 A. Einstein, Der Energiesatz in der allgemeinen Relativitätstheorie. Berl. Ber., 1918, pp. 448. 
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latter due to Planck (1)), through which one seeks to reduce the ambiguity in the 
aforementioned method (e.g., in which one sets the impulse proportional to the energy 
current [the law of work and energy] (2)), breaks down, as is clear above, since the idea of 
field flux, viz., the connection between three-fold volume integrals and two-fold surface 
integrals can not be applied to energetic quantities in general.  For example, if one takes 
the integral of impulse-energy currents throughout a three-fold extended domain then it 
does not reduce to a mere boundary surface integral. 

Therefore, when one finds oneself working within the approximation of the impulse-
energy theorem, it is easy to refute the search for a foundation of the metric on it.  The 
identities that this theorem represents actually follow from the prototype for the Maxwell 
equations (I a), (II a), just as it does in the special case of Einstein (I c), (II c), and 
Minkowski (I d), (II d); in this way, one thus proves that the general form of the impulse-
energy theorem is independent of any metric. 

In order to prove this, we adopt, for the time being, the form (I a), (II a) that is 
equivalent to Maxwell’s equations: 

 

 
*

1234( )ik

k k

E
x

∂ ε
∂∑ = ε1234 S

i     i  (I b)   

lm mk kl

k l m

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0  (klm),  (II b)   

 

in which we have only set 
*

S = − S.  One multiplies the first quadruple by Fhi and sums 
over i ; by the use of (II b), it is transformed into: 
 

* *

1234 1234

1

4
ki k ij

hi h ij
k i ijk

F E F E
x

δ
 ∂ −ε + ε ∂  

∑ ∑ ∑ +
* *

1234 1234
,

1
]

4
ki ikik

ik
i k k h

F
E F E

x x

 ∂ ∂⋅ε − ⋅ [ε ∂ ∂ 
∑  

= ε1234 hi
i

F∑ Si .     (17) 

 
In this expression, δ has the well-known meaning.  If one sets (3): 
 

                                                
1 M. Planck, Bemerkungen zum Prinzip der Aktion und Reaktion in der allgemeinen Dynamik, Phys. Zeit. 
9 (1908), pp. 828. 
 
2 Cf., e.g., M. Laue, Zur Dynamik der Relativitätstheorie.  Ann. d. Physik 35 (1911), in particular, pp. 520. 
 
3 Instead of (18 a), one can also, as one easily sees, set: 
 

k
hT =

* *

,

1

4
ki k ij

hi h ij
i i j

E F E Fδ+ −∑ ∑  h, k 

 
in such a way that neither of the fields is distinguished from the other. 
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k
hT =

* *1

4
ki k ij

hi h ij
i ij

F E F Eδ− +∑ ∑  h, k   (18 a) 

Ph = hi
i

F∑ Si,      (18 b) 

 
then one easily recognizes in (18 a) the Maxwell-Faraday stress tensor, etc., and in (18 
b), the expression for the ponderomotive electromagnetic Lorentz force.  If one 
introduces the Einstein metric by means of the constitutive equations (12), hence, by 
means of: 

*
ikE =

,

ip

p q

g∑ gkq Fpq ,  (ik) 

 
then one actually obtains the well-known form (1) for that tensor and that force in general 
relativity theory.  In this case, one obtains, instead of (17), the well-known form of the 
impulse-energy theorem in general relativity theory (2): 
 

( ) 1

2
ijk ij

h
k ijk h

g
gT g T

x x

∂∂ −
∂ ∂∑ ∑ = g Ph   h . 

 
The left-hand side, as we already pointed out, does not have the simple form of a 
divergence in field physics, but the complicated form of a covariant divergence of a 
general tensor. 

In (17) and (18), we thus have before us a form of energetics that has been freed 
from any metric.  We have thus produced our proof of independence of both from each 
other.  With that, we conclude with a remark: In the foregoing work, the metric of 
Newtonian mechanics was based on energy, as one would like to infer from N, no. 4.  
There, we had a covariant vector of second degree – the force flux – whose complement 
was a contravariant vector of first degree; the definition of the force in terms of the work 
done requires a covariant vector of first degree that was derived from the latter only by 
the introduction of a metric, viz., a polar correlation.  Here, we likewise have a covariant 
vector of third degree – the electrical charge flux – whose complement is a contravariant 

vector of first degree,
*

Sor S.  Here, the four-force P is likewise a covariant vector of first 
degree, as one can show from relativistic mechanics without difficulty.  The derivation of 
this covariant vector of first degree from a contravariant vector of first degree once again 
requires a correlation.  However, it is no polar correlation (metric) that one must 
introduce here; rather, the matrix || Fik || that is constructed from the vector F already 
defines a correlation, and indeed, a null correlation, that will also actually be used in the 
definition (18 b) of the four-force, by way of the four-current S. 

Again, this is only a contribution to all of what the previous considerations of this 
section succeeded in bringing to light: Electromagnetic mechanics is merely a 
consequence of laws of electromagnetic fields; it thus has no self-explanatory meaning. 

                                                
1 See, e.g., H. Weyl, loc. cit., § 28, pp. 209, equation (11) and pp. 216, equation (28). 
 
2 Weyl, equation (28). 
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7. 
 
  Up till now, we have represented the field quantities as unknown functions of space 

and time quantities. These were themselves to be regarded as any four numbers x1, x2, x3, 
x4 , through which the timelike instant and the spacelike position of the event were 
described.  A metric must be added to these four numbers when one desires to ascertain 
the field quantities. 

Now, however, the phenomena of reality are actually very complicated: the four 
numbers x1, x2, x3, x4 are, in reality, not given at all, since we can deal with only a small 
part of space and time immediately; rather, we must first construct them.  One merely 
need think of the organization of events on distant stars. 

Now, we construct practical spacelike coordinates in reality by the measurement of 
distances and also determine practical times by the use of clocks.  We thus make use of 
the properties of “rigid” bodies, hence, of mechanical aids.  This is therefore a 
mechanical basis for the metric, assuming that there actually is the desired degree of 
precision and reproducibility in these rigid bodies.  If one considers mechanics as 
something that is independent of electricity then we have a means of ordering events that 
is independent of the presence of an electromagnetic field that we intend to describe with 
the help of these coordinates and a suitably invented metric. 

Now, however, the Michelson experiment has revealed the Lorentz contraction of 
rigid bodies in motion.  Einstein carried out calculations regarding this fact in which he 
demanded that the metric of rigid bodies must obey the postulate that the velocity of 
light, or more generally, the laws of radiation of electromagnetic fields must remain the 
same in all (proper) systems of reference.  In this, one finds the subordination of the 
mechanical metric to the laws of optics; Huntington (1) first gave a concise expression to 
this thought by determining not only the time (which Einstein 1905 and, incidentally, 
Poincaré 1900 had already done), but also the length by light signals.  This is an optical 
basis for the metric. 

If one accepts this – it rests implicitly on all of relativity theory (including the 
general theory (2)) – then one comes to the difficulty of a circular argument.  We desire 
that the electromagnetic field be represented by the coordinates we determine the 
coordinates by means of the field in practice.  It is clear that in this way the metric form 
of the field equations steps into the foreground since the metric is indeed no longer 
additional, but given.  (Principle of the constancy of the velocity of light or the invariance 
of the general ds2.)  In fact, in (special) relativity the Maxwell equations also led to the 
metric historically, and not the converse (in a certain form). 

From the foregoing, it becomes clear that the practical necessity of constructing the 
coordinates with the assistance of the electromagnetic field, the Nature of Things, and the 
fundamental independence of pure field physics from any metric, were not touched upon.  
If one chooses a non-optical method of construction then one recognizes this 
                                                
1 E. V. Huntington, A new approach to the theory of relativity, Weber-Festschrift, Leipzig 1912, pp. 147, et 
seq.  – also Phil. Mag. 23 (1912), pp. 44 et seq. – The same thought recently appeared in H. Reichenbach, 
Bericht über eine Axiomatik der Einstein’schen Raum-Zeitlehre, Phys. Zeit. 22 (1921), pp. 683 et seq. 
(“Metrisches Axiom.”) 
 
2 H. Poincaré, La théorie de Lorentz et le principe de la reaction (Lorentz-Festschrift).  Archives 
Néederlanaises 5 (1900), in particular, pp. 272 et seq. 
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immediately.  (Admittedly, the question of whether non-optical methods are even 
possible at all will not be dealt with here.  One thinks of the great distances in interstellar 
space that one cannot possibly bridge except with light.   One also thinks of the 
connection that obviously must exist between the properties of so-called rigid bodies and 
those of light.  This connection will be addressed at another time.) 

We have previously clarified the contradiction that we announced in the conclusion 
of N, sec. 5, that seems to reside in the fact that general relativity theory derives the 
“field” from the metric, but here we have demanded the independence of pure field 
physics from the metric.  Perhaps we might add that the “field” of general relativity 
theory is certainly not the field that we treated here, which was defined as Faraday would 
have defined it.  The field of general relativity theory is a gravitational field, i.e., it 
originates (according to Einstein) in the local variations of the metric.  Thus, the laws of 
light first emerge.  Special relativity theory teaches their invariance in a local domain, 
and general relativity, their variation from point to point due to the presence of matter.  If 
one inverts this (experimentally well-founded) result then one has characterized the 
neighborhood of matter (its “field”) by way of the (optical) metric.  This inversion is the 
basic idea behind the explanation for gravitation in terms of general relativity theory.  It 
is just for that reason, however, that the gravitational “field” reduces to a concomitant of 
light in our way of explaining things. 

 
_________________ 

 
 


