“Maxwell’'sche Gleichungen und Metrik,” Sitz. Akad. Wie@ 131(1922), pp. 119-146.

Maxwell's equations and metrics'

By
Friedrich Kottler at Vienna

(Presented at the session on February 23, 1922)

In a previous work'j, the independence of pure field physics from any metais
established in the context of Newtonian laws of atwactiA distinction was made there
between force flux and force; the former is independérny given metric by way of
the field, the latter is determined from it by way of tieion of work, into which the
metric enters. The origin of the metric in Newtanitheory is thus energetic or
dynamical in nature.

The independence of pure field physics from any metric estale in a completely
analogous way for Maxwell's electrodynamics. Herecamtrast to Newtonian field
physics, one has two field vectors (six-vectors infthe-dimensional universe), which
we shall distinguish in the sequel as the electromagraatd magneto-electric field
vectors; both of them are independent of the metriereHthe metric will not, as in
Newtonian mechanics, be introduced from the energetic-dgadstandpoint — since the
field determines its own electromagnetic mechanics — footn the kinematical
standpoint, namely, through the laws of field radiatiaght). In order to show this, we
must associate both fields by way of the so-calletstitive relations (dielectricity and
permeability). The origin of the metric in Maxwell'seetrodynamics, and thus, as a
further consequence, its origin in the Lorentz-Minkowskistein theory of relativity,
lies in these relations.

1.
We begin with the representation of the two sets cafr fMaxwell differential

equations in the form that they were given by Minkow8kidgnd then write them in the
form of two integral theorems, i.e., in the form tkeatends the idea of local effects into

" Translated by D.H. Delphenich.
! F. Kottler, Newton’sches Gesetz und Metrik, Thesaceedings, v. 131 ([1922], denoted by N.).

2 H, Minkowski, Die Grundgleichungen fiir die elektromagsatien Vorganger in bewegten Kérper, Gétt.
Nachr. 1908, esp., § 7-8.
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field physics (see N, no. 2). This form was first gibgnR. Hargreaves') H. Bateman
(®) and the author’) then devoted time to a detailed investigation of it.

As is well known, the Minkowskian representation redato a four-dimensional
manifold (the “Universe”) with three spacelike coordisaééd one timelike coordinate.
The three-dimensional universe of Newtonian static fiply/sics is, as is natural,
replaced with a four-dimensional one in this dynamicaldfiphysics of time-varying
fields, in which each point will also be denoted with tinge at which it is found at each
point. There is nothing more than Lagrange’s geometfgwfdimensions, a realm in
which the aforementioned researchers already examieetianics — although time does
not enter into classical mechanics on an equal badistké spacelike coordinates, but as
an independent parameter, as opposed to Minkowski's theattyen the metric of this
four-dimensional space of Minkowski does not enter ihtoThis metric is (pseudo-)
Euclidian in Cartesian coordinates. In that way, we fivad the Minkowski notation for
Maxwell’'s differential equations is already strainadd it becomes our problem to free
these differential equations from it.

To that end, we next remark that Minkowski’s notatitot.(cit. 8 7 A) and B)
therein, and § 12, in which the dual six-vector was introdii® B) with the generality
of scope that was found in Laue’s book) will be giveequivocal preference here, as A.
Einstein later remarked from the standpoint of genetativiéy theory ¢). The deeper
grounds for this lies in the fact that in the first forme tjuadrupleR) already has the
form of the coefficients of an integral form of thidgree, hence, which would best
correspond to the basic ideas of field physics, and wlasraHorm that is independent of
any metric. The advance that we shall make in thislartonsists of also bringing the
guadruple A) into such a form.

We next give the aforementioned Minkowskian notion. usset (in the notion of
Weyl ©)):

H2z = $x, Hz1 = 5y, Hi2 = 92 (1)

Hia=—-Dx/-1, Hz4 = - Dy/-1, Has = = D24/-1,

in which we have written:

! R. Hargreaves, Integral forms and their connectiith physical equations, Camb. Phil. Traf$.(1908),
pp. 107.

2 H. Bateman, The transformation of the electrodymaimiquations. Lond. Math. Soc. Proceed. Ser. 2,
vol. 8 (1910), pp. 223, et seq. — Of the numerous later publicatibis Bateman that must be given
particular emphasis at this point in time, let us cites blook “Electrical and Optical Wave Motion,”
Cambridge University Press, 1915, and his article: “Elatignetic Vectors,” Physical Reviel# (1918),

pp. 459. — cf., also, the article of Bateman’s studend.FMurnaghan: “The absolute significance of
Maxwell's Equations,” Physical Reviewy (1921), pp. 73, et seq.

3 F. Kottler, Uber die Raumzeitlinien der Minkowski'scheritV These Proceedind®1(1912), esp. § 3.

* A. Einstein, Eine neue formale Deutung der Maxwell’schelddfeichungen der Elektrodynamik. Berl.
Ber., 1916, 1, pp. 184, et seq.

® H. Weyl, Raum-Zeit-Materie,4ed., (1921), § 23, pp. 173, et seq.
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furthermore:

S ==, SZ:_V, S3:E21 &:p\/__l (2)

Here,H means a vector (alternating tensor) of degreeséstor), whose spacelike
part is the magnetic field strengthh, and whose timelike part is the electrical
displacemen®, and furthermoreSis a vector of degree 1 (four-vector) whose spkeel

part is the electrical current densityand whose timelike part is the electrical charge
densityp; finally, c is the velocity of lightx, y, z,t are Cartesian coordinates and time.
From Minkowski, one then has:

4
zaa'j(;k:s, 1=1,2,3,4 8
k=1

for the four-dimensional form of the first Maxwejliadruple, which reads like:

109 i
rotH—--——=—, ,
9 cot c (A)

div®=p,

in ordinary notation. The physical meaning of flet three of equatior(®), or, as
Maxwell and Lorentz would write:
109 i

rot$=———+—,
cot c

is well known: The total electric current is theusme of a magnetic field (Biot-Savart
law). We rightfully speak of(A)as the electromagnetic law. The last equation

in (A) states: The true electric charge is the sourcheoétectrical displacement.

By comparison, formulaA) states: The displacement current and the magnetic
rotation are coupled to each other, since theynatbing but the timelike (spacelike,
resp.) parts of the spacelike components of the-donensional divergence of the six-
vector H; the timelike component of this divergence is tited with the three-
dimensional divergence of the electrical displacatmelhe source of this divergence of
the six-vectorH, the electromagnetic six-vector, is, as we wowddsonably like to
assume, the electrical four-currégtwhich combines the Galvanic current (convection
current, resp.) with the electrical charge. We ase here a return to Maxwell, who
emphasized the unity of the Galvanic and displactmerrent, because he proposed the
magnetic equivalence of both types of curréit ffom Minkowski's standpoint, this
naturally eliminates any meaning to a union of spand time, i.e., of electricity and

! This idea of the equivalence with regard to magnetiectsfis historically important because the
development of modern field notions in empty space took eudéty way of the displacement current.
One sees in this the presence of Hertzian notiayerdeng the extension of electrical forces. Today thi
detour is naturally superfluous since the notion of thle fis completely established.
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magnetism. More precisely, the consideration of déleetrical substance (current and
charge) thus emerges i)( which is perhaps a deficiency in this form of field pbys
Let us further set:

F23 :%x’ F3l:%y’ F12:sB

N 3)
F.=—¢+ -1 F,=-¢J-1 F,= —@Zﬁ}

Here,F refers to a vector of degree 2, whose spacelike ptre imagnetic induction
B, and whose timelike part is the electrical field sgtéreé. According to Minkowski,

one then has:

oF,  OF,  OF, _
m+ + =0 m
0%, 0x  0x, m) ®

for each of the four combinationklif)) of the four indices 1234 taken three at a time for
the four-dimensional form of the second Maxwell quadruplech reads like:

108
rot¢+———=0, ,
c ot (B)

divB=0

in the ordinary Maxwell notation. The physical me@ of the first of the three
equations ifB') , or, as Maxwell and Lorentz would write:

rot¢ = _10%

c ot

is well known: The magnetic induction current kg tsource of an electrical field
(Faraday's law of induction). We rightfully speak (B') as the magneto-electric law.

The last equation ¢B') states: The source of the magnetic induction is.zer

In contrast to this, formulaB) states: The magnetic induction current and the
electrical rotation belong together since they apghing but the timelike (spacelike,
resp.) parts of the spacelike components of thedauensional rotation of the six-vector
F; the timelike components of this rotation are tited with the three-dimensional
divergence of the magnetic induction. The sourfddie rotation of the six-vectd, as
we would like to reasonably assume, is the magrfetic-current, when it is given.
However, since the true magnetic current and the magnetic charge are null in the
usual Maxwellian formulation, the rotation of the-gectorF is equal to null.

What we have denoted here as the four-dimensiamatgence (four-dimensional
rotation, resp.) of a six-vector proves, on closgamination, although we shall say
nothing further about this, to be the interior &idr, resp.) product (in the Grassmann
sense) of the so-called vector operaipwhose components are:

0 0 0 0

Uy =—, o =— Uz =—, g =—,

0x, ox, X, ox,
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with the six-vector.
2.

We once more return to the notation that was useddvgreaves that represents the
eight Maxwell differential equations in the form ofdvntegral laws whose true nature
will be revealed and in terms of which the idea of loaalion in physics is most
reasonable.

The quadrupleR) already has, as we mentioned, the desired formn:The

OFu OFu _p

0%, 0% 0X,

has the form of the coefficients of an integral fasfithird degree, as they appear in the
four-dimensional general theorem of Gauss and Grgen (

'[ Fo3 dX, dxs + Fap dxz dxq + F1o dXq dxo + F1g dxq dXg + Fog dXo dXg + Fay dXs dxs =
:'[U F234 dX; dxz dXg + F134 dX; dxg dXgq + F124 dXg dxo dXg + Fro3dxg dxo dXs . (4)

In (4), the double integral ranges over a closed two-dirmaabisurface that bounds a
three-dimensional space, over which the triple integnages. Accordingly, Hargreaves
and Bateman replace the quadru@ewith the integral theorem:

”z Fik dx dxc = 0, (I1)
(i)

in which the sum is over all six combinatioms) (of the four indices 1234 taken two at a
time.
For the quadrupleA), this formalism is not so simple. If one thusraatuces six-

vectorH , which is complementary (dual) td, (cf., N, no. 3), then one arrives at a
formula that is analogous to (Il). Since, for Minkdiysve have a Euclidian metric in
Cartesian coordinates the covariant and contravacamtdinates are identical, and we
may set:

H12:H341 Hl3:H421 Hl4:H231

Hss=H;,, Ha=H;, Hxa=H,.

Instead ofH , we write good old, and thus have:

1 On this, cf., F. Kottler, Uber die Raumzeitlinien demkbwski'schen Welt. These Proceedingg1
(1912), § 2. — For the notion, cf. N, no. 2.
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=——Ey+—E,+——E,; =B,

ZaH“ 0 0 0
o 0X, 0%, 0X, 0x,

oH, __ 0 d d

_— - -— E.=-E ,
ox, ~ 0x ox, - oox, - 1

>
50ty _ 0 9 9
k
2
k

=Byt E41+_ E12 =Ea24,

ox, 0% 0X, 0X,

0H 0 0 0
- T E31 T

0%, 0% 0X, 0X,

E12 =—Eo3.

Likewise, we introduce the vectBof third degree that is complementary to the

vectorSof first degree™); moreover, we have, in which we wriBdnstead ofS:

S =Sas, S =-S34, S =S4, S = - Sioz,
in which one naturally has, e.g.:
S123= = S132 =~ $13= S$31= S12=— Seo1.

This therefore means that:

Eos=— Dy V-1, E31:—@y\/—_1, En=-9,+/-1,
E14 = 9x, E24 = 9y, Ezs =92, (5)
furthermore: _
5234:%, 5134:—%, 5124:iz, Si23=p V-1. (6)
We then come to the quadruple:
Ewm = Sam (Kim)

in place of A), which can also take the form of an integral law:
[[> Ewdxaa=[[[> Sandx dxcdx. (1)
(ik) (ik)

The first sum goes over all six combinatiorlg Of the four indices 1234 taken two
at a time, and the second sum goes over all fombgwtions ikl) of the four indices

! Here, one occasionally remarks that the complemegisafiot S again, but S thens = - S35, = -G,
etc. Cf,, the remarks on pp. 8 of article N.
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1234 taken two at a time. The double integral is taken treeclosed two-dimensional
bounding surface of a three-dimensional space, over wictriple integral is taken.

3.

We would like to once more focus our consideration @xMell's equations and
their metric upon the formulas (I) and (ll). One inthagely sees that both integral
theorems (1) and (Il) are independent of any metnd, iadependent of the meaning that
one ascribes to the coordinates They can then be generalized to the spacetime
(dynamical) picture that Faraday envisioned, in which geesalike (static) force effect
of the field in any closed neighborhood can be replag#duone that takes place on the
bounding surface. Hence, these integral theorems muesideatial invariants under all
transformations of the coordinate systems, so thetaioly cannot be linked with any
metric because one would prefer not to deal with such a thirtbe evaluation of
boundary surface integrals and the like. Rather, onlyti@rems of integral calculus are
necessary; i.e., the manifolds over which one integranust be made more precise in the
sense of Analysis Situs (connectivity relations, singfigg, etc.), not, however, in the
sense of metric geometr}) (

Accordingly, we would like regard thein (1) and (Il) as any coordinates in any
four-fold extended, simply connected, nowhere singularifimia, in which we, in order
to preserve the reality conditions, would like totidguish thexs, X2, X3 as the spacelike
coordinates ana, as the timelike one. The form of () and (Il) natiyraemains the
same under any transformation to new coordinateas is already known from Jacobi’'s
application of such integrals to the transformation tbhé Laplacian differential
expressions. It thus transforms thand theF like covariant vectors (alternating tensors)
of second degree, hence, e.g.:

oX axq .
Ex= Zqu ox %, (ik)

p.q

etc., and thé& naturally transform like covariant vectors of third degre

0x,, 0X, 0X
Su=) S, ———, (ikl).
% "o 0x, 0

In place of the integral theorems (I) and (ll), we edso pose the eight differential
equations:
Exm = Sum, (Kim) (1a)
Fum=0, Kim). (Ila)

This is therefore the archetype for the form that Mexwell equations become when
they are expressed independently of any metric. In #gmpsations, we mean, for future
reference:

1 On this, cf., H. Poincaré, Analysis situs. Joudel'école polytechnique, 2. série, cah. 1 (1895), § 7.
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Ewm :i Elm +i Emk +i EkI ,
0%,

0% 0,

Fum :i F +i ka +i |:kI ,
0%,

Im 6)(, 6Xm

and E is the electromagnetic six-vector, whife is the magneto-electric six-vector.
FurthermoreS is the vector of third degree that yields the amoustextricity that flows
through the “spatially” oriented surface element intihee element (is contained in the
“spatially” oriented volume element, resp.): i.e., #lectrical four-current. One easily
finds that the next higher construction in &e

0 0 0 0
E1234 :a E234 _6_)(2 134_6_)(3 E 124_6_)(4 E 125 0

vanishes identically. Hence, one has the continuitytexquaf the electrical current:

0 0 0 0
= S,;,—— Siu—— S,—— S,=0.
S1234 6)(1 234 6X2 S‘134 6X3 S124 6X4 812.

In order to understand the physical meaning of the Maxeglhations in the new
form (1 a) and (Ila) we revert, for the moment, to the special Minkowskelipretation,
hence, to equations (3) (equations (5), resp.) for the ebagaectric vector (the
electromagnetic vectdt, resp.). There, the spacelike partfofs the magnetic induction
B and the timelike part d¥ is the electric field®; furthermore, the spacelike part®is

the electric inductior® (as we would like to say instead of “displacemeht;"way of
analogy) and the timelike part & is the magnetic field). As is well known, in

Maxwell's phenomenological picture only the “field”igas in the ether, whereas in
ponderable matter the field will increase due to the effdtat the matter contributes,
such as magnetization (polarization, resp.), in thenfof “induction.” Therefore, the
induction and the field in a non-ferromagnetic (isotropsp.) medium are proportional
to each other, and the proportionality factor is the matig permeability (the dielectric
constant, resp.), which represent constitutive relations

B=u9H, D=€F5.

In the Minkowski picture, the distinction between spased time dissolves;
therefore, the magnetic induction and the electrid foombine into a single entity, the
magneto-electric vectoF, and likewise the electric induction and the magnééic
combine into the electromagnetic vectér (One notes the strict analogy between
induction and field in both cases, which was not true fokbivski, since he coupled the
complementary vectat to the vectof, which is strictly analogous 6, instead oE.)
We will now examine both vectorE and F with regard to their four-dimensional
rotation. This rotation is different from null only wieea true electric (magnetic, resp.)
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four-current exists. Since the true magnetic four-curadmtlys vanishes, the rotation of
the magneto-electric vector is always null.

Physically speaking, one thus hasEnthe “field” [combined magnetic field and
electrical induction (displacement-) current] of a telexctrical quantity (whether moving
or at rest), and i, the “field” (combined electric field and magnetic intdan current)
of a true magnetic quantity (when it is giveB)represents the electromagnetic effect of
the electricity andr represents the magneto-electric effect of the magnet

Corresponding to the phenomenological viewpoint of fEHgisics, which only tries
to describe collective phenomena, but not causal orientaine can naturally exchange
causes and effects in the previous statements and &ayel€ctromagnetic fieldE
produces singularities, viz., the true electric substaaoée the magneto-electric fiekl
produces singularities, viz., the true magnetic substance

In this formulation, there are obviously no opposin@gct®ns between the
electromagnetic and magneto-electric fields. Theamfthe well-known laws of
induction (Lenz’s rule) one has that, e.g., a magnaid that is produced by an electric
current tends to weaken the current that produced it; ireaisple, the electromagnetic
effect thus has a magneto-electric effect as a conseegjtleat tends to weaken it. This is
therefore an obvious failing of field physics. In trutis reaction already assumes the
statement of constitutive relations of the type (7)Meen both vectorg andF, and it
will be shown that these relations are based ongbenaption of a metric, hence, on one
of the quantitative features that are foreign to thgimai “qualitative {)” field theory.

In the following section, it will also be shown thddis metric follows from the
measurement of the velocity of light; in fact, as besn completely understood since the
time of W. Weber and F. Kohlsrausch, the velocityigiitlplays an essential role in all of
the relations that couple electricity and magnetismg andeed in all practical
measurements in the neighborhood of them. However, fiecéater development of
special relativity has shown, a theory that is linkethvdifficult problems with the
velocity of light, problems that A. Einstein gave a psmal resolution to with his
postulate of the constancy of the velocity of lighg @annot set aside the cornerstone of
pure field physics, viz., the qualitative description of ¢bepling relations between the
electromagnetic field and the magneto-electric fieldignore the metrically quantitative
physics in the latter, hence, in a neighborhood in wiieharbitrary convention plays an
essential role. The absence of opposing reactions hetiveeslectromagnetic and the
magneto-electric fields is therefore no failing of ptiedd physics. (On this, we remark
that, as will be shown in no. 6, one can also not spéak @nergetic viewpoint. The
energetic viewpoint [the impossibility of thperpetuum mobile] can support Lenz’s rule,
but only when the dielectric constant and permeabitigyadready known.)

Before we leave behind the prototype for Maxwell’'s equatib@as ((Il a resp.), we
need to make a formal remark. As was known in N,3pahe geometrical principle of
duality also governs vectors as geometrical quantitiesie €an thus introduce the
complementation ofE and F only when one takes care to choose abitrary
proportionality factor that one omits, and which prot@de a vector of fourth degree
here:

! For Poincaré, qualitative refers to the AnalystsiSias opposed to the quantitative metric (despite the use
of coordinates, hence, numbers introduced for the purposedefing). Cf., Poincaré, La valeur de la
science. Chap lll, § 2: “la géometrie qualitative.”



Maxwell’'s equation and metric. 10

€1234,

and which naturally varies from position to positiom order to remain in agreement
with the usual notationA), (B) for Maxwell's equations, we confine ourselves to that
convention, so as to introduce the complementatitelystor E (andS), but not forF.
One has:

E12 = €1234E3*, E13 = €1234E%?, E14 = €1234E%,

Ess = €1234E*?, Eq2 = €1234E", E2s = €1234E",

in whichE is the contravariant vector of degree 2 that is comefgary toE. Likewise:

S34=— €1234S, Si34 =+ €12345%, Si124= — €1234S°,

Si23= — €1234S%,

and therefore, instead ofd), we have:

3 . .
E234 :z— (€0 EY) =Sz =—€10:S',
0%
3 . .
Eisa= —z— (€123 E®) = Stas = + €10347,
0%
3 . .
Ei24 :za (€55 E¥) = Sioa =~ €10uS°,

k

0 . -
Ei23= _ZE (€15, E™) = Si23 = + €1234S*,

k

or, when summarized for the Maxwellian quadruple:

Ly 6 EY=-g,  i=12,34 (Ib
E1234- k 6
Fk.m:%F'eraaFnk +ng| =0 @ . )
X X

Thus,Ssatisfies the continuity equation:

0 '
za_xi(£1234s )=0.
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4.

After having presented Maxwell's equations in the previous@eat a form (la)
((n &), resp.) that was independent of any metric, we msisthaw it is that a metric
enters into the ordinary representation, a metri¢ thadern relativity theory even
presents as its result.

The basis for this is the constitutive relations betwd#entwo vectorsE and F.
Here, we would next like to discuss which viewpoint isessary for their introduction.
Up till now, we have regarded the electromagnetic feklhd the magneto-electric field
F as known and then computed the electric four-cu®dttie null magnetic four-current,
resp.). However, in our experience, it is not th&lfteat is given, since we possess no
sense organ that could make us aware of the presenaa efectromagnetic field.
Rather, we base our experience primarily on our sensglutf which recognizes motion,
but not fields. We thus try to ensure that all of observations will lead back to
observations of a kinematical nature. Thus, we know tid coordinateg;, Xo, X3, X,
which establish the position and time for an event; ¢hg. ponderomotive effect of a
field. Accordingly, instead of regarding the field quaastas the quintessential givens,
as we did before, we must regard them as unknowns wdwseection to the actual
knownsxi, Xz, X3, X4 IS yet to be discovered, hence, their nature as depefushetions of
these independent variables. The integral theoremg Il gtheir corollaries b and Il a,
resp.), when applied to this way of thinking, are transéarmto eight partial differential
equations for the twelve unknowisandF. One can regard the four quantiti®sas
given since they are connected with a motion, nantledycurrent of electricity.

However, if one considers the eight differential equmst (1a), (Il @) for the twelve
unknownsE andF from this new viewpoint then one sees that the probiemtegrating
them is underdetermined. One next sees that the fouratgiéta):

Exm = Sum (Klm) (I3
are not independent of each other, since the identity:

0 0 0 0
E1234 :a E234 _a_X2 E134+6_X3 E 124_6_)(4 E 12= 0

exists. Likewise, the four equations &t
Ek|m =0 Q<Im) (|| a)
are not independent of each other, since the identity:

0 0 0 0
F1234 :a Foas _6_)(2 Fiast 6_)(3 Fioa™ 6_)(4 F.,=0

exists. We thus obtain only six independent differenjab&ions for twelve unknowns,
viz., six equations too few. Thus, if one would like tdiree a well-determined
integration problem then one must add six algebraic equsato the six differential
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equations that one may naturally regard as arbitrarythisnambiguity, the previously-
mentioned conventional element, and likewise the dubiales gi Maxwellian theory,
such as the numerous difficulties in crystal opticeof@agnetic theory, and not least of
all, the theory of optical phenomena in moving medida(raty theory), has been
sufficiently substantiated historically.

The aforementioned six equations that are to be appendegrecisely the six
constitutive relations that represent the six quastii@as functions of the six quantities
F. One thus chooses ordinary linear relations, sucfoagxample, (7) or the relations
for the anisotropic media of crystal optics; natutatipe must never forget that linear
approximations are usually nothing but approximations, inieahs in a Taylor series
development for a complicated function that has been dtadcafter the first power.
(Confer the analogous case of Hooke’s law in elastitiepry.) Thus, if, as is often
asserted nowadays, Maxwell's equations cannot be exteaddestribe the phenomena
inside of matter, which is entirely correct, then tlasib for this must lie completely in
the linearity of the Maxwellian constitutive relati@s an approximation that is not
satisfied for ponderable matter, and not in Maxwelljgaions themselves.

We would now like to give a special example of how toastitutive equations
betweenE andF lead to a metric as a consequence; indeed, we wowlddikake the
case of matter-free space. We will thus obtain thekbdvski metric (the generalized
Einstein metric when we consider gravitation, resp.)e mathematical process is thus
similar to the introduction of the metric in N, sec.tdere, the covariant vector of force
was derived from the contravariant complement of foifag by means of a polar
correlation (orthogonality). Likewise, we will use polar correlation to derive a
covariant vector from the contravariant complemeinthe magneto-electric vectdt,
which we would then like to identify with the vectBr The vectorF and the polar
reciprocal vector to its complement are then bothtems to the Maxwell equations for
the case of matter-free space.

One thus has the constitutive equations:

Ex=) 8,3,F™ (iK) (8)
p.g
in which the form:
4
3Si Sk (9)
ik=1

for the orthogonality has been assumed (cf., N, 4ec.If theay are constant and, in
particular:
1 i=k
ak=Aqk=y . .

o {O i £k
then one has the Minkowski metric, whereas if theyareble functions of the chosen
positionxs, X, X3, X4 then one has the Einstein metric (hence, gravitatiéiythermore,
one now has, as in N, sec. 4:

€1234= Ja (10)
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which makes:
Fi.=F*\a, Fis=F*.a, Fuu=F%®a,
Fas =F*2a, Fio=F%4/a, Fos=F*a.

If one chooses, as Minkowski digly = dx then one has, in particular:

Ei2=F" = Fay, Eis=F"=Fy, etc.,

or [cf., (3) and (5)]:
D =€, B = 9.

In matter-free space with no gravitational field, fialod induction are equal to each
other. In general, according to Einstein, in mattee-fspace with a gravitational field
one has, if we writgjk instead ofy,:

1 ,
Exk=) 0.9, (ik)
% p IJkq /g pq

in whichpgp'q’ means a positive permutation of the indices 1284ne further sets, in
which x no longer refers to a Cartesian coordinate:

Exs=-D1v/-1, Es1 = - Dov-1,

Eu= $-1, Eoa= $H24/-1, etc.,
and likewise:

Fas= By, Fs1= By,

Fi4=— &14/-1, Faq = — €4/-1, etc.,

then one has, e.g.:
-D14/-10fg = 61932 — G220a1) (— €3v/-1) (12)
+ (023931 — G21.033) (— €24/-1)
+ (022933 — G24037) (— €1+/-1)
+ (021034 —024031) B1
+ (022034 —024032) B>
+ (023034 —024033) B3, etc,,

which again reduces 01 = &; if gk = A« .



Maxwell’'s equation and metric. 14

If one considers the constitutive relations (8) thea mray eliminate the vect& by
way ofF in the (1a) ((I b), resp.), and one obtains, e.qg., in place o) (Il b), as a simple
calculation shows'}:

> 9 (Vaa®a“F, )=Sva i=1,234 ()
Kpa 0%
oF,  OoF,  OF, _
T+ + =0 m). 1
ox,  0x  0x, Wm) (e

In this, we have s& = —S. This is the usual preferred notation for Maxigediquations
(for matter-free space), which is already admigtddirdened with a well-defined metric.
Thus, the problem of integrating (@) and (Il ¢) when S is given is completely
determined.

For Minkowski’'s metric &« = Ak ) one has (in matter-free space):

0 i )

—F, =S i (1 )
gaxk ‘
oF,  OF,  OF, _

m 4 + _O , ”d
0X, ox  OX, m) (e

which one would like to equate witA)and B) in sec. 1.

1 Cf., F. Kottler, Uber die Raumzeitlinien der Minkowshsn Welt, these Proceedingg1 (1912), pp.
1688, in which one finds an easily recognizable typographrical. e

2 Here, two passing remarks are in order:

The first one concerns equations (Il). From Voltergeneralization of complex variables iR
dimensional spaces, a connection such as the one théihdsdere between the coefficietisandF of
two integral forms of second degree in a four-dimensiepake is governed by the theory of conjugate
functions. Cf.,, V. Volterra, Linc. Rend. Ser. V,lv6, sem. 1 (1889), pp. 599, et seq., “sulle funzioni
conjugate” or “Lecons sur l'integration des equations auivégs partielles professées a Stockholm,” Paris
1912, lessons 5 and 6. Volterra operates with integréhe dype:

II“ZK; F, o dx* ,

which are taken over an open surface such Fat= 0 depends only upon the boundary curve of this
surface, and which are called functions of this curvedtions de ligne). The conjugate function to it is:

J.J.Z F, dx dx*
(ik)
in whichF, = Fs,, etc.; hence, relations (11) or the Euclidian metri€Cartesian coordinates must apply.

In any case, these conjugate functions must be a fasobtibthe curve; i.e5,, = 0. Thus, thé= satisfy

equations of the form @) (with S= 0) and (Ild) On such systems of differential equations cf., Vdterr
“Sulla integrazioni di un sistema di equazione differala derivate parziali, etc.,” Rend. Circ. Paler&o
(1889), pp. 260, et seq. The term “conjugate function” isfigdtsince the analogy with the Cauchy
integral:
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5.

The definition of the constitutive relations that west carried out determines the
dielectric and magnetic properties of the medium. skljly speaking, this has two
senses: a static one and a dynamical one. Howevenvell-known that one can regard
the static case as a limiting case of the dynanainal namely, one can obtain statics by
considering electromagnetic waves with infinitely lavggevelengths. Accordingly, being
given the dielectric and magnetic properties that meflip mentioned equivalent to being
given the laws of radiation for electromagnetiddgeinside the medium considered. So
to speak, our metric thus amounts to the same thingeaseéhsurement of the velocity of
light.

The radiation of waves is known to be a chaptehentheory of partial differential
equations that unfortunately has been developed essewtiylyfor partial differential
equations in one unknown up till now, whereas here we,ha.g., in (Id), (Il d), a
system of partial differential equations in six unknownale must thus refrain from

j f (2)dz

of classical function theory is valid when this integeataken along an open curve the two-dimensional
complexz-plane. Wherf is a univalent function of the complex variall¢éhis integral depends, in any
case, upon the boundary points (point function). If @tgzs=x; +ix,, f(2) =u; +iu, then one obtains two
real integrals:

'[ Uy dxq — U, dXxs ('[ U, dXq + Uy dXo, reSp.),

which are point functions that are conjugate to eachrotiThus, thay, u, satisfy the Cauchy-Riemann
differential equations, which are thus the two-dimensianalog of the Maxwell differential equations (I
d) (with S= 0) and (Ild). Related facts are found in other places. Cfg alsHanni, “Uber den
Zusammenhang zwischen den Cauchy-Riemann’schen und den IV&ohvea Differentialgleichungen,”
Téhuku Math. Journab (1914), pp. 142 to 175. — One sees in the foregoing the aifgdime Euclidian
metric in the complex plane of classical function thebmp line integrals are given that are merely point
functions; this corresponds to the viewpoint of AnalySitus. They become united as the conjugate
functions to a single function of one complex variablthwhe help of constitutive equations of the form
(11) between the coefficients of their integral formdit degree on two-dimensional space. Through
these constitutive equations, we introduce a metricy asritext.

The second remark concerns equations (12). Such equatoaslready found for the establishment
of Einstein’'s generalized metric by Bateman in the dcitarticle “The transformation of the
electrodynamical equations,” loc. cit., pp. 259, et segarticular formula (2) Bateman then chose a form
for the form (9) in our text that included dielectric and peahility constants in order to obtain
Minkowski's completely understood relations for moving poatlee matter in this way. This is therefore
fundamentally unacceptable, since special relativityrihewst be true for the form (9) witly, = dx, as
well for ponderable matter. The correct form of toastitutive equations for moving matter no longer
depends, like (12), simply upon the fundamental metric fdomea In passing, these forms are coupled

here by:
S@Fkrsr_SK@FirSr .
“Ei’k’ =Fg— (SIJ - 1) r r (I k)
S
In this, iki'k' is a positive permutation of 1234. For electricity at (5= S = S = 0) this turns into the
well-known constitutive equations (7) of our text for paiatéée matter at rest.
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treating the deeper connection between the metric inwedligs equations with
aforementioned mathematical theory of wave frontsharacteristics').

In the following, we treat the problem of founding thetmgeof the field equations
on the laws of radiation for the field in a somewh#fedent way. We restrict ourselves
to the Minkowskian equations @) (Il d) in electricity-free spaceS(= 0):

0 )
E —Fx=0 i 13
0%, “ (13)
oF,  OF,  OF, _
m + + =0 m), 14
0X, ox  OX, Wm) (14)

integrate them by way of the well-known integral imts of planar light waves, and then
show that, conversely, when the field vectors fos¢hwaves have the characteristic form
then the associated field equations)((Il a) must exhibit the Minkowski metric, hence,
the form (1d), (Il d), or the constitutive equations (11). We remark that safice optics
is defined in terms of plane waves we will most ceryanainfine ourselves to that realm
of wave radiation.

One obtains plane waves when one demands that gliarnts of the field vectors
must be proportional to one and the same fundjitimat is linear in its arguments:

4
> Co%,
h=1

(the phase). With this, one next obtains for the magelectric field vectoF:
Fik = Ak ¢ (ZChth (15)
h

in which Aix = — Ay, and similarly theCy, shall be constants. One obtains from (14):
AkC+ A C + A Cn=0 (Km),
equations from which one easily deduces:
A = Ci Dx—Cc D (ik)

in whichD is a constant vector. Thus, it follows from (13) that

! J. Hadamard, Legons sur la propagation des ondes. P@8isCligap. VII. — R. d’Adhemer, Les équations
aux dérivées partielles a caracteristiques réelles. . Soléntia, no. 29, Paris 1907. — In the theory of
characteristics, the four-dimensionaidimensional, resp.) metric of relativity theory usypalppears. Cf.,
the “conormal” of d’Adhemar. C.R., 11 February 1901. @lsp Hadamard, Theorie du probléme de
Cauchy, Acta Math31 (1907), pp. 333 et seq., in particular, pp. 334 to 336.
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G >.D,C-Di D.CZ =0 i
k k

from which it necessarily follows that:

> c?=YC, De=0.

As is well-known, the first of these equations stdtes existence of radiation with the
velocity of light. One sets:

Cl = qu C2 = qu C3 = uZl

in whichu is the unit vector to the three-dimensional wave nbmatu;+u’= 1). One

then necessarily ha€, =++-1. If one chooses the upper sign, which is permissible,
then one has:

4
D Gy X = ux X +uyy +uz—ct,

h=1
from which the radiation of waves with light velgcialong the direction of the wave
normalu becomes evident.

The second of the equations above asserts thevéraatty of the plane waves.
Namely, one now has:

Fik = (CiDk—C«Di) ¢ [Zchxhj (iKk), (15a)
k
in which we have simply set:
Dl = ax, D2 = ay, D3 = az, D4 = 0 y
in which a is a three-dimensional vector (amplitude) thatsBas the transversality

condition au + ayuy + au, = 0, sinced C,D, =0, and (1%) becomes equivalent to:
k

B=[ua d ux+uy+u,z—ct)
¢=  ad (uxx+tuy+uz—ct).

If one sets:
[ua]l=b

in which b is another three-dimensional vector for which oheiously has:

uyby + uyby + usb; = ayby + ayby + ab, =0
yOy yOy
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in which:
[ub]=a.
If one defines a four-vector:

By =bx/~1, By=byv/-1, Bs=b,/-1, Bs=0,

then these relations satisfy:

thCh:thDh:O

k k

and, as one sees frdh=§, € =2 one obviously sets the electromagnetic field veEto
equal to:

Eik = (Ci Bk — C« Bi ) ¢ (ZChxhj (ik) (15b)

or, from (5):
$H = b ¢ (uxx+uy+uz—ct)
D=[buld ux+uy+u,z—-ct).

In summation, the plane wave in vacuo is charagdrby the values of both field
vectors:

Eik = (Ci Bk — Ck Bi ) ¢ (ZChxhj (ik) (15b)
Fik = (Ci Dk—C«Di) ¢ [ZChth k), (159

in which one likewise has for the consta@t$, D:
Zcﬁ: ZChDh:ZChBh:ZBhDh:O' (16)
h h h h

From this, it follows conversely: When equation$ &}, (15b) are valid, along with
(16) then one has, as a simple calculation shows:

B~ Fix (iK)

when iki'k'is a positive permutation of 1234. Since the (raly constant)
proportionality factor does enter here, one caeatly set:

Ei’k’ = Fik (I k) .
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However, these are the Minkowskian constitutive equat{@t¥ hence, a Minkowski
metric and the form (d) (Il d) is valid for the solutions (18) (15b) with the conditions
(16). Q.E.D.

The relations (16) are essential for the previous prdathe appearance of the
metric. Also, without this condition (1&) (15 b) would be a solution of the Maxwell
equations (la) (Il a), from which, all of the components of the two fieldctors are
proportional to one and the same function of a lineguraent. However, the interaction
between both fields would not be precise and the ¢atigd equations (11), which are
equivalent to (10), would fail: physically speaking, Lenzike for any interaction would
fail. These solutions, (18), (15b), but not (16), can naturally be referred to as plane

waves since the argumentC, x, , without the relatior) C? = 0, says nothing about the
k h

velocity of light that the phase propagates at. Thetiad laws of the field are first
given by the metric or conversely.

With the foregoing, we have explained how the Minkowsktn is based on the
laws of radiation of the field in vacuo, and the saamk for the Einstein metric in a
gravitational field grows more important. We thus hewveeek an integral of equations
(I ), (Il c) with S= 0 that would be analogous to plane waves in the vacuuanir@am
which all of optics could be reproduced. Unfortunatelys groblem is insoluble in full
generality. One must therefore appeal to the aforeama theory of characteristics for
help here, which, when it is sufficiently well-definéat a system of partial differential
equations, in any case where this is permissible, shakéda detour around the problem
of finding an actual integral of the differential equatiand read off the laws of radiation
directly. As long as this road is not passable, we msasisfy ourselves with the
following consideration: The gravitational field of Eiem deviates from the Minkowski
vacuum only in terms of higher order; this deviation filetomes significant in a large
domain. If one restricts oneself to a small domhentone can regard thg in (1 c) (Il
c) as constant’), and one can then recall the proof above, in which ong merely
replace | C?, etc., withy a®C,C, , etc. The connection between local laws of ranfiat

h g,h
of the field with the Einstein metric is thereby likiees established.

6.

After the independence of the prototype form of the Maxesgllations (k), (Il a)
((1 b), (Il b), resp.) of any metric was established in sec. 3, intwhath fields — the
electromagnetic fieldE), as well as the magneto-electric fiele)  were regarded as
previously-given quantities in an experiment, the actual gienological calculations
were carried out in sec. 4, in which the fields wegarded as unknown functions of the
guantitiesx — position and time — that are actually experienced. [€diso the necessity
of introducing constitutive relations betwedh and F, which establish interaction
between electromagnetic and magneto-electric phenanin space and time. These
constitutive relations give rise to the appearance mktic in Maxwell's equations, as
their new form shows, e.g.,q) and (lld) in matter-free space without gravity, according
to Minkowski (with gravity, (Ic) and (llc), according to Einstein). In sec. 5, it was then

! More precisely: one can introduce a so-called “geodetiotdinate system.
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shown that for the Minkowskian (Einsteinian, resp.guan the given of constitutive
relations implies the given of the laws of radiatminthe field in space and time, and
conversely, the given of the latter implies theegiwf the former.

In contrast to the foregoing representation, one npghttaps be inclined to look for
the origin of the metric and constitutive relationghe energetic behavior of the fields
and their coupling relations instead. This goes back to auph&sis on energetics in
physics that is still often present, and which, it seameshave not overcome. Thus, it is
good to remember Poincaré’s criticishr (After he argued that the energy principle goes
back to it, that the differential equations of mechantan be expressed as integral
equations of the form: “a certain sum is constant,t, thawever, the choice of which of
these integrals actually represents the total energyrisw unique, he continued: “il y a
quelgue chose qui demeure constant. Sous cette forntrivieee & son tour hors des
atteintes de I'expérience et se réduit a une sortauteldgie. 1l est clair que si le monde
est gouverné par les lois, il a aura des quantités quiudernat constants.”

The truth of this skeptical statement remains unchangekeirdace of the modern
form of the energy principle, which, as one knowsxasithe energy principle and the
impulse theorem into a unified four-dimensional statémenwhich the first part is
timelike and the last part is spacelike. The impulseggnéheorem of Minkowskian
electrodynamics expresses the constancy of impuldeearrgy in the form of: The
impulse (energy, resp.) that is included in a unit voluane @nly increase or decrease
when force fluxes (energy currents, resp.) flow throtiggn boundary surface of the
volume. This recalls the notion of local field physiaccordingly, the impulse-energy
theorem also takes the form of a divergence. Howewvbgn one goes over to the
generalized Einstein metric, one loses this analogly fsid physics. Whereas (N, no.
2), the analysis of field quantities, viz., alternatirgndors (vectors), is actually
independent of the metric, the analysis of general tensxy which impulse, energy,
surface and body stresses are represented, dependsroattize which agrees with the
latter analysis only for the Euclidian Minkowskian nietr Physically, this dependency,
that the gravitational field also carries energy and exom, originates in the variability
of the metric. However, one finds oneself in an undbkr state of dependency on a
special coordinate system that one bases ones catgderupon, since the gravitational
field vanishes upon it. It is well-known that Einstefih fought to regard impulse and
energy as stresses in the gravitational field. Wheneapeesses energy and impulse in
terms of closed system they therefore have only a wsal/dout not a local sense, so to
speak. The impulse theorem then reduces once morsotd @f “tautology,” as Poincaré
had suggested.

One can thus only expect from these consideraticstsadhe can derive identities
from the original field equations, just as one does ftbm equations of mechanics,
whose generalization would represent the conservaticanergy and impulse that we
only known in one special case. The idea of energy misri@nd impulse currents (the

1 H. Poincaré, La science et I'hypothése, chap., \éhergy and thermodynamics, pp. 153, et seq.

2 A. Einstein, Der Energiesatz in der allgemeinen Rétatiatheorie. Berl. Ber., 1918, pp. 448.
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latter due to Planck), through which one seeks to reduce the ambiguity in the
aforementioned method (e.g., in which one sets the sappiloportional to the energy
current [the law of work and energy)), breaks down, as is clear above, since the idea of
field flux, viz., the connection between three-foldwue integrals and two-fold surface
integrals can not be applied to energetic quantitieemeral. For example, if one takes
the integral of impulse-energy currents throughout eetiiold extended domain then it
does not reduce to a mere boundary surface integral.

Therefore, when one finds oneself working within the agpration of the impulse-
energy theorem, it is easy to refute the search fouadation of the metric on it. The
identities that this theorem represents actually foliemsn the prototype for the Maxwell
equations (la), (Il a), just as it does in the special case of Einsteig),(l(Il ¢), and
Minkowski (I d), (Il d); in this way, one thus proves that the general fofrthe@impulse-
energy theorem is independent of any metric.

In order to prove this, we adopt, for the time being, forven (I a), (Il a) that is
equivalent to Maxwell's equations:

) : - .

;E(Eﬂm E k) = 81234S I (l b)
oF,  OoF,  OF, _

M+ + =0 m), b

x| ox o Km) (I'b)

in which we have only seé6 = - S One multiplies the first quadruple By and sums
overi ; by the use of (Ib), it is transformed into:

Z Xk[ 812342 Fa Ekl +— slzsﬁkZF E”j Z[ . (€124 Ekl Fx GZ[&ZMEIk]j

k k

= 812342 Fhi S . (17)

In this expression has the well-known meaning. If one séjs (

! M. Planck, Bemerkungen zum Prinzip der Aktion und Reaktiatemallgemeinen Dynamik, Phys. Zeit.
9 (1908), pp. 828.

2 Cf., e.g., M. Laue, Zur Dynamik der Relativitatsttieo Ann. d. Physild5 (1911), in particular, pp. 520.

% Instead of (18&), one can also, as one easily sees, set:
1
Thk:+ZEhi FM_Zé:ZEj F' hk
i i

in such a way that neither of the fields is distinguishexh the other.
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—z = E"'+ 5kZF E'J (18a)
P _Z Fy S, (18b)

then one easily recognizes in (&Bthe Maxwell-Faraday stress tensor, etc., and in (18
b), the expression for the ponderomotive electroratignLorentz force. If one
introduces the Einstein metric by means of the titomse equations (12), hence, by
means of:

*

E*=>"9"g"Fpu, (K
p.g

then one actually obtains the well-known fortnfor that tensor and that force in general
relativity theory. In this case, one obtains, éast of (17), the well-known form of the
impulse-energy theorem in general relativity the@yy

R ND N SN CL

0%,

The left-hand side, as we already pointed out, du@shave the simple form of a
divergence in field physics, but the complicatedrfoof a covariant divergence of a
general tensor.

In (17) and (18), we thus have before us a fornerwdrgetics that has been freed
from any metric. We have thus produced our prdahdependence of both from each
other. With that, we conclude with a remark: I tforegoing work, the metric of
Newtonian mechanics was based on energy, as onll Wikel to infer from N, no. 4.
There, we had a covariant vector of second degthe force flux — whose complement
was a contravariant vector of first degree; thenitedn of the force in terms of the work
done requires a covariant vector of first degred ttas derived from the latter only by
the introduction of a metric, viz., a polar cortela. Here, we likewise have a covariant
vector of third degree — the electrical charge #Huwhose complement is a contravariant

vector of first degre§or S. Here, the four-forc® is likewise a covariant vector of first
degree, as one can show from relativistic mechamitt®ut difficulty. The derivation of
this covariant vector of first degree from a cowirgant vector of first degree once again
requires a correlation. However, it is no polarretation (metric) that one must
introduce here; rather, the matrixH{ || that is constructed from the vectoralready
defines a correlation, and indeed, a null correfagtthat will also actually be used in the
definition (18b) of the four-force, by way of the four-currefit

Again, this is only a contribution to all of whdtet previous considerations of this
section succeeded in bringing to light: Electronggn mechanics is merely a
consequence of laws of electromagnetic fielddiusthas no self-explanatory meaning.

! See, e.g., H. Weyl, loc. cit., § 28, pp. 209, equationdad)pp. 216, equation (28).

2 Weyl, equation (28).
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7.

Up till now, we have represented the field quantaesinknown functions of space
and time quantities. These were themselves to be regasdmaly four numbers, Xo, X,
X4 , through which the timelike instant and the spacelikatipasof the event were
described. A metric must be added to these four numbess wie desires to ascertain
the field quantities.

Now, however, the phenomena of reality are actuadlyy \complicated: the four
numbersxy, Xz, X3, X4 are, in reality, not given at all, since we can degh only a small
part of space and time immediately; rather, we must @onstruct them. One merely
need think of the organization of events on distant stars.

Now, we construct practical spacelike coordinates ifityelay the measurement of
distances and also determine practical times by the udeakfs. We thus make use of
the properties of “rigid” bodies, hence, of mechanie&s. This is therefore a
mechanical basis for the metric, assuming that theteally is the desired degree of
precision and reproducibility in these rigid bodies. Ifeotonsiders mechanics as
something that is independent of electricity then weelmwmeans of ordering events that
is independent of the presence of an electromagnelicthat we intend to describe with
the help of these coordinates and a suitably inventedanetri

Now, however, the Michelson experiment has reve#tedLorentz contraction of
rigid bodies in motion. Einstein carried out calcwas regarding this fact in which he
demanded that the metric of rigid bodies must obey tlstufade that the velocity of
light, or more generally, the laws of radiation ¢datromagnetic fields must remain the
same in all (proper) systems of reference. In thi® finds the subordination of the
mechanical metric to the laws of optics; Huntingtrfitst gave a concise expression to
this thought by determining not only the time (which EinstE%05 and, incidentally,
Poincaré 1900 had already done), but also the length bysiiggls. This is an optical
basis for the metric.

If one accepts this — it rests implicitly on all oflatevity theory (including the
general theory?[) — then one comes to the difficulty of a circudmgument. We desire
that the electromagnetic field be represented by thedowies we determine the
coordinates by means of the field in practice. It iarctbat in this way the metric form
of the field equations steps into the foreground sincentbg&ic is indeed no longer
additional, but given. (Principle of the constantyhe velocity of light or the invariance
of the generatls’.) In fact, in (special) relativity the Maxwell equatalso led to the
metric historically, and not the converse (in a dartarm).

From the foregoing, it becomes clear that the prdatieaessity of constructing the
coordinates with the assistance of the electromaghettd; the Nature of Things, and the
fundamental independence of pure field physics from anyienetere not touched upon.
If one chooses a non-optical method of constructibent one recognizes this

L E. V. Huntington, A new approach to the theory of ieilgt Weber-Festschrift, Leipzig 1912, pp. 147, et
seq. — also Phil. Ma@3 (1912), pp. 44 et seq. — The same thought recently appeatredeichenbach,
Bericht Gber eine Axiomatik der Einstein’schen Raumigeie, Phys. Zeit22 (1921), pp. 683 et seq.
(“Metrisches Axiom.”)

2 H. Poincaré, La théorie de Lorentz et le principelalereaction (Lorentz-Festschrift). Archives
Néederlanaisées (1900), in particular, pp. 272 et seq.
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immediately. (Admittedly, the question of whethernraptical methods are even
possible at all will not be dealt with here. One thiokshe great distances in interstellar
space that one cannot possibly bridge except with lighOne also thinks of the
connection that obviously must exist between the propeatiss-called rigid bodies and
those of light. This connection will be addressed atlaar time.)

We have previously clarified the contradiction that weoaimnged in the conclusion
of N, sec. 5, that seems to reside in the fact tha¢rgémelativity theory derives the
“field” from the metric, but here we have demanded tm#ependence of pure field
physics from the metric. Perhaps we might add that‘fiel” of general relativity
theory is certainly not the field that we treated hereich was defined as Faraday would
have defined it. The field of general relativity theoryaigravitational field, i.e., it
originates (according to Einstein) in the local vaoiasi of the metric. Thus, the laws of
light first emerge. Special relativity theory teachiesir invariance in a local domain,
and general relativity, their variation from point to paloe to the presence of matter. If
one inverts this (experimentally well-founded) resulenthone has characterized the
neighborhood of matter (its “field”) by way of the {@al) metric. This inversion is the
basic idea behind the explanation for gravitation in seofngeneral relativity theory. It
is just for that reason, however, that the gravitaicheld” reduces to a concomitant of
light in our way of explaining things.




