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Nisnevich topology

Sm|S = schemes which are smooth and of finite type over a
scheme S of finite dimension.

A Nisnevich covering (originally “cd” covering) for an S-scheme
U is a finite family of étale maps Vi → U which is an étale
cover for U , s.t. every map Sp(K) → U lifts to some Vi, for all
fields K.

étale ≥ Nisnevich ≥ Zariski

eg: K = field. F is a sheaf for the Nisnevich topology on et|K
iff F is additive: F (tiSp(Li)) ∼=

∏
i F (Sp(Li)).

Stalks are computed on henselizations Oh
x,U of local rings,

because residue fields must lift to covers.
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Nisnevich cohomology

Nisnevich cohomology and étale cohomology are generally
quite different, eg. fields are acyclic (but not points) for the
Nisnevich topology.

Nisnevich cohomological dimension behaves similarly to
Zariski cohomological dimension:

Theorem: (Kato-Saito) X = Noetherian scheme of finite Krull
dimension d. Then X has cohomological dimension d wrt. all
abelian Nisnevich sheaves.
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Simplicial sheaves, presheaves

s Shv = simplicial sheaves, sPre = simplicial presheaves on
(Sm|S)Nis.

Homotopy theory: f : X → Y is a weak equivalence if all
induced maps Xx → Yx on stalks are weak equivs. of
simplicial sets. Cofibrations are monomorphisms. Ass. sheaf
map X → X̃ is weak equiv. and Ho(s Shv) ' Ho(sPre).

Fibrant model: weak equivalence Y → Yf such that Yf is
fibrant for the homotopy theory.

Fibrant simplicial presheaves are determined by a right lifting
property with respect to trivial cofibrations. Behave like
injective resolutions, homotopy groups in all sections
determined by cohomology with coeffs. in sheaves of
homotopy groups.
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Nisnevich descent

Distinguished square: φ−1(U) //

��

V

φ

��
U

j
// X

j open immersion, φ étale, φ−1Z ∼= Z where Z = X − U .

{j, φ} is Nisnevich cover of X.

Def’n: simplicial presheaf Y has the Nisnevich descent property
(aka. B.G. property) if Y is presheaf of Kan complexes and Y
takes all dist. squares to htpy. cartesian squares.

Nisnevich descent theorem: If Y has the Nisnevich descent
property and Y → Yf is a fibrant model for Y , then
Y (U) ' Yf (U) in all sections.
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Consequences of Nisnevich descent

Simplicial presheaves or sheaves having the Nisnevich
descent property approximate fibrant objects so well that
there is no difference in practice.

Class of simplicial presheaves having Nisnevich descent is
closed under filtered colimits.

This is special to the Nisnevich topology: not true in general
that filtered colimits of fibrant objects are well behaved.
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Motivic homotopy theory

A
1 = S × A

1
Z

is the affine line over S.

Motivic homotopy theory is constructed from the htpy. theory
for simp. sheaves and presheaves on (Sm|S)Nis by formally
contracting the affine line to a point: want A

1 → ∗ to be a
weak equivalence.

How to do it: (“Bousfield localization”)

Z is injective if it is fibrant for Nis. topology and has RLP
wrt. all maps

(A1 × A) ∪A B → A
1 × B

ass. to all inclusions A ⊂ B

Y → Y ′ is motivic weak equiv. if π(Y ′, Z) → π(Y, Z) is
bijection for all injective Z.
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Motivic homotopy theorems

Every weak equivalence for the Nisnevich topology is a
motivic weak equivalence.

Cofibrations are monomorphisms. Motivic fibrations are defined
by a RLP wrt. all motivic trivial cofibrations.

Theorem: There is a proper closed simplicial model structure
on sPre(Sm|S) with cofibrations, motivic weak equivalences
and motivic fibrations defined as above.

Fact: Injective objects = motivic fibrant objects.

Fact: Z is motivic fibrant iff Z if fibrant for the Nisnevich
topology and Z(U) → Z(U × A

1) a weak equivalence of simp.
sets for all U/S.

Fact: Every Y has motivic fibrant model, ie. motivic weak
equiv. Y → Yf s.t. Yf is motivic fibrant.
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Motivic spaces

Other models for motivic homotopy theory:

simplicial sheaves on (Sm|)Nis

sheaves on (Sm|)Nis

presheaves on (Sm|)Nis

Cosimplicial scheme A
n = Sp(Z[t0, . . . , tn]/(

∑
ti − 1):

di(ti) = 0. sj(tj) = tj + tj+1

Singular functor S : Pre → sPre: S(X)n = X(U × A
n). has

right adjoint | | = realization.

Cofibrations are monomorphisms, W → W ′ is weak equiv. iff
K(W, 0) → K(W ′, 0) is motivic weak equiv.

Quillen equivalence: S : Pre � sPre.

Old-timey concept: motivic space = Nisnevich sheaf
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Examples

Pushout square: Gm
//

��

A
1

��
A

1 //
P

1

All maps are inclusions, hence cofibrations and A
1 ' ∗.

P
1 ' S1 ∧ Gm, where S1 = ∆1/∂∆1

P
1 ' A

1/Gm = A
1/(A1 − 0) =: T .

T ∧ T ∧ T ∼= A
3/(A3 − 0), c = cyclic perm. of order 3 acts

on T∧3 via action Gl3 × T∧3 → T∧3. c is prod. of Ei,j(a) in
Gl3(Z), and there is path A

1 → Gl3 def. by t 7→ Ei,j(ta).
There is homotopy T ∧3 × A

1 → T∧3 from c to identity.
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Purity

Theorem: i : Z → X closed embedding of smooth schemes/S.
Then there is a natural equivalence of pointed motivic
homotopy types

X/(X − i(Z)) ' Th(NX,Z)

NX,Z = normal bundle for the imbedding i, and Thom space
Th(NX,Z) is defined by

Th(NX,Z) = NX,Z/(NX,Z − i0(Z)),

where i0 is zero section.

The point of this: X has an open cover {U} for which the
normal bundle trivializes, and then

U/(U − (U ∩ Z)) ' (U ∩ Z)+ ∧ (Ac/(Ac − 0))
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Stable homotopy theory

Homotopy theory of spectra:

Def’n: A spectrum X consists of pointed spaces Xn and
pointed maps S1 ∧ Xn → Xn+1, n ≥ 0.

A map of spectra f : X → Y consists of pointed maps
Xn → Y n which respect structure.

A spectrum X has stable homotopy groups: the maps
Xn → ΩXn+1 induce a system

πn+kX
n → πn+k+1X

n+k+1 → . . .

and πkX is the colimit of this system, k ∈ Z.

A map X → Y of spectra is a stable equivalence if it induces
isomorphisms in all stable homotopy groups.
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More stable homotopy theory

The stable equivalences are the weak equivalences for a
homotopy theory (model structure) on Spt = category of
spectra. Ho(Spt) is the (traditional) stable homotopy
category. S1 ∧ X ' X[1].

Can do similar things for “ordinary” chain complexes
(suspension = shift by −1, spectrum objects are unbounded
chain complexes), presheaves of spectra, presheaves of
chain complexes, spectrum objects in simplicial abelian
groups, ...

There are many stable homotopy categories, depending on
underlying topologies, choice of suspension object.

– p.13/10



T -spectra

Idea: Formally invert X 7→ T ∧ X in the setting of motivic
homotopy theory for good objects T (eg. T = P

1, T = S1,
T = Gm).

Def’n: A T -spectrum X consists of pointed simplicial
presheaves Xn, pointed maps T ∧ Xn → Xn+1, n ≥ 0.

A map of T -spectra f : X → Y consists of pointed maps
Xn → Y n which respect structure.

– p.14/10



Motivic stable equivalence

Every T -spectrum X has a natural levelwise motivic fibrant
model X → Xf , ie. the maps Xn → Xn

f are motivic fibrant
models in all levels.

There is T -spectrum QXf with QXn
f def. by filtered colimit

Xn
f → ΩT Xn+1

f → Ω2
T Xn+2

f → . . .

There are natural maps X → Xf → QXf .

f : X → Y is motivic stable equivalence if all maps
QXn

f (U) → QY n
f (U) are weak equivalences of pointed

simplicial sets.

This makes sense because each QXn
f is sectionwise

equivalent to its motivic fibrant model, by Nisnevich descent.
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Motivic stable categories

Def’n: A cofibration i : A → B is a map s.t. A0 → B0 is a
monomorphism, and all induced maps

(T ∧ Bn) ∪(T∧An) An+1 → Bn+1

are monomorphisms (by analogy with ordinary stable
homotopy theory).

Theorem: The motivic stable equivalences and cofibrations
determine a homotopy theory (model structure) for T -spectra.

Ho(SptP1)S is the standard motivic stable category of Morel
and Voevodsky.

Ho(SptS1)S is the motivic stable category of S1-spectra.
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Examples, Facts

S0 : S0, T, T ∧ T, T ∧ T ∧ T, . . . is motivic sphere
spectrum.

suspension spectrum Σ∞

T A : A, T ∧ A, T ∧ T ∧ A, . . . .

shift functor X[k] : X[k]n = Xn+k defined for all k ∈ Z.
T ∧ X ' X[1]

Fact: Y is stably fibrant if and only if Y n is motivic fibrant and
Y n → ΩT Y n+1 is a motivic weak equiv. for all n ≥ 0.

Fact: Cofibre sequences = fibre sequences.

Fact: X ∨ Y → X × Y is motivic stable equivalence.

Fact: There is a good theory of smash products, via SptΣ
T =

symmetric T -spectra.
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Eilenberg-Mac Lane spectrum

S = Sp(k), k a field. Y = smooth scheme of finite type/k.

LY (U) = free Z-module gen. by closed irred. subschemes
Z ⊂ U × Y such that composite Z ⊂ U × Y → Y is finite and
surjective. The graph determines a presheaf morphism
Y → L(Y ).

Suslin-Voevodsky: LY (U) ∼= ZqfhY (U). LY is a universal
“presheaf with transfers”.

H(Z)n = K(Z(n), 2n) = L(An)/L(An − 0) ' L((P1)∧n) '
L(G∧n

m )[−n].

The graph map and pairings make H(Z) into a P
1-spectrum.
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Motivic cohomology

X/S smooth, T = P
1 ' S1 ∧ Gm, p, q ∈ Z

Hp,q(X, Z) = [Σ∞

T X+, H(Z)(q)[p]]

= [Σ∞

T X+, H(Z) ∧ (S1)p−q ∧ G
q
m]

More generally, if E is a T -spectrum

Hp,q(X,E) = [Σ∞X+, E ∧ (S1)p−q ∧ G
q
m].

G
q
m = G

∧q
m if q ≥ 0.
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Indexing

Fact: X motivic fibrant pointed simplicial presheaf U/S
smooth. T = P

1. Then πrX(U) ∼= [Sr, X|U ].

Y = T -spectrum, all Y n motivic fibrant

QT Y n = lim
−→

(Y n → ΩT Y n+1 → . . . )

πrQT Y n(U) is colimit

[Sr, Y n|U ] → [Sr∧S1∧Gm, Y n+1|U ] → [Sr∧S2∧G
∧2
m , Y n+2|U ] → . . .

πt,sY (U) = lim
−→

([St+n ∧ G
s+n, Y n|U ] → [St+n+1 ∧ G

s+n+1, Y n+1|U ])

∼= [S0 ∧ St ∧ G
s
m, Y |U ]
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Motivic stable homotopy groups

U 7→ πt,sY (U) is the presheaf of motivic stable homotopy
groups.

Fact: E → F is a motivic stable equivalence iff all
πt,sE → πt,sF are isomorphisms of presheaves.

Hp,q(S,E) = [S0, E ∧ Sp−q ∧ G
p
m]

∼= [S0 ∧ Sq−p ∧ G
−p
m , E]

∼= πq−p,−pE(∗).

Fact: Cofibre sequence A → B → B/A ind. long ex. seq.

· · · → πt+1,sB/A → πt,sA → πt,sB → πt,sB/A → . . .
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Asymmetric bispectra

Y = P
1-spectrum. P

1 ' S1 ∧ Gm.

...
...

...

G
2
m ∧ Y 0 //

OO

GmY1
//

OO

Y2
//

OO

· · ·

Gm ∧ Y 0 //

OO

Y1
//

OO 99

S1 ∧ Y1
//

OO

· · ·

Y0
∧S1

//

∧Gm

OO
∧T

88

S1 ∧ Y 0 //

OO

S2 ∧ Y0
//

OO

· · ·

Gm-spectrum in S1-spectra, or S1-spectrum in Gm-spectra
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